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Summary: In this paper the authors introduce a parametric framework to residual anal-
ysis. This approach leads to formulation of a likelihood function which, with a suitable
prior distribution, helps to evaluate the posterior density of nontraditional residual time
series, e.g. truncated and subject to various degrees of skew, kurtosis and serial corre-
lation. The framework allows for the use of transient nuisance variables (hyper param-
eters) to help accommodate so-called non-stationary residual patterns. The framework
presented herein differs a bit from the standard likelihood paradigm in that the starting
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point is some parametric family of distributions which describes the likelihood of ob-
serving the data, Q, given current model output, Qdet. Authors claim that the proposed
likelihood function improves probabilistic inference of hydrologic models via MCMC
machinery – with a more realistic description of parameter and predictive uncertainty.
I enjoyed reading this paper as it combines theory development with practical applica-
tion. The paper is well written and should be of interest to the readership of HESS. I
hope the authors consider the following comments – I believe those will help to further
improve the quality of this manuscript. Note, comments appear in order of my reading
of the paper.

1. Page 5, Line 9-11. Authors state that most (many) modelers will have an intuitive
idea about the probability distributions of the observations for a given model output. I
disagree with this assertion. For the sake of my argument, lets follow the hydrologic
example as presented in this work. Let’s assume that the model simulates a discharge
of 20 mm/day. What would be a reasonable expectation of the actual (observed) dis-
charge at that time? 15? 30? I cannot confidently claim that I would know what
probability distribution to assume for the observed discharge at that time. Of course,
if 20 mm/day is among the largest simulated values, then I would generally expect the
dispersion of this supposed distribution to be larger than for a simulated value of 5
mm/day. Yet, this is only the dispersion – I would not really have an idea about the
underlying distribution – would I center this distribution on 20 mm/day? Or is my model
systematically under or overestimating the data so that I should shift the distribution to
higher or lower values, respectively. Of course, for low discharge values I know that
the distribution is truncated at zero – and probably has a tail to the right. But then
again do I center the distribution on the model simulated value? Or do we shift it up or
downward? In other words, I do not agree with the assertion that many modelers will
have an intuitive idea what the distribution of the observed discharge would be if the
model output is known.

2. Page 5, Line 22-23. The authors refer to Eq. (3) before presenting Eq. (2). Do
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not understand why this is done – would think that text can be presented so that Eq.
(3) follows first – then followed by Eq. (2). Note, is Eq. (3) needed after all? The
right-hand-side of Eq. (3) can be placed at end of Eq. (2) – then the index needs to be
fixed.

3. Page 5, Line 27-29: I do not understand the statement that truncation at zero would
lead to lighter tails on the lower end. Yes, truncation would move the probability of
negative streamflow values to streamflow values larger than zero. In essence, one
could then argue that the tail at the right-hand-side may become larger – as the pdf
has to integrate to unity. Yet, because of truncation the left tail is essentially gone if
simulated streamflow values are close to zero. The wording “lighter tails” may be a bit
confusing as the tail is truncated. It is no longer there.

4. Page 5, Eq. (2) – (3) – thus, eta is the normally transformed counterpart of Q – with
truncation accounted for?

5. Equation (4) – authors may consider for normal distribution, N, instead
\mathcal(N)(a,b), where “a” (mean) is the first term between brackets in Eq. (5) and
“b” is the second term in Eq. (4). In text below Eq. (4) authors could then explain that
“a” is the mean of the distribution and b is the variance.

6. Eq. (6) – reference should be given.

7. Page 6, Line 12-14. Maybe I am missing something here, but with any other likeli-
hood function one can ignore missing data as well? One simply does not include this
particular observation in the likelihood function. The authors may have a point if se-
rial correlation is considered – then this removal is not straightforward as it breaks the
AR-error model.

8. Eq. (7) – top line of curly brace may fit on one line if authors define rho = (ti+1 –
ti)/tau, and then use rho in the equation – maybe etatrans written as etaT.

9. Then notation – not sure about the guidelines of HESS, but should theta (param-
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eter vector) not be upright-bold instead of italic-bold? Same holds for the nuisance
variables, psi.

10. Is notation DQ required or would fQ suffice instead? Then, the text would talk
about a distribution of Q – instead of DQ.

11. A limitation of Eq. (4) is that serial correlation at higher-order lags cannot be
modelled, right? Unless you specify different “rho’s” in Eq. (6) – but this then leads
to multiple likelihoods. This limitation should be stated in the text as residuals may
exhibit/show residual correlation beyond lag-1.

12. In Eq. (8) how do we compute the first term on the right-hand-side – that is – the
likelihood of the zeroth discharge observation (at t0)? Do we assume normality with
dispersion of variance/(1-rhoˆ2)?

13. Page 7, Line 12-13: The statement “the likelihood function can be evaluated ana-
lytically” is a bit confusing to me. What does the word “analytical” mean in this context?
Most other commonly used likelihood functions in the applied (hydrologic) literature are
simple to evaluate in practice, right? That means numerically. All that is needed are
the model output and the data? What is different in the present context?

14. The authors use the affine invariant ensemble sampler of Foreman and Mackay
et al. (2013) to sample the posterior parameter and nuisance variable distribution.
The article would benefit from some more background information – that is – algorith-
mic settings (number of walkers, the types of moves that are considered, etc.). Note,
that this ensemble sampler has many elements in common with the DREAM family of
MCMC algorithms – which uses parallel direction and snooker moves. For later work
it may be interesting to compare both methods in terms of efficiency – and to evaluate
the power and usefulness of the walk, stretch and replacement move. Note, that the
ensemble sampler has two important shortcomings; 1) detailed balance requires the
use of a relatively large number of walkers (chains) – this is a significant disadvan-
tage for higher dimensional problems as each chain needs burn-in before reaching the
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target distribution, and 2) the walkers require stepwise updating – this guarantees re-
versibility but does not make the sampler amenable to distributed computing, wherein
each chain is evolved on a different core/node.

15. Equation (10) – the subscript “F” in the flashiness index, should this not be regular
font – that is – upright? As “F” is an abbreviation for “flashiness” and not a variable.
Same holds for some of the other summary metrics used in this paper, for example the
Nash-Sutcliffe efficiency (subscript “N” should be regular = upright font). Note, that on
Page, 8, Line 25 correct notation is used for the flashiness index of the deterministic
model output.

16. Page 5, Line 24: “maximum posterior parameter values” – this is rather awkward
wording as it literally means – the largest posterior parameter values. And it is not
clear what this means either as each dimension of the target distribution will have a
maximum posterior value – but all these maxima combined are unlikely to make up an
actual posterior sample. Instead, what the authors should use is “maximum a-posteriori
density (MAP) parameter values” – that is – the parameter values that maximize the
product of the prior density and the likelihood.

17. Eq. (15) and (16) list the flux and water balance equations used by the hydrologic
model – but equally important what numerical solution method is used to solve these
equations? I assume that the authors have used an implicit solution with time-variable
integration step? Solution maintains mass balance?

18. Page 12, Line 5: Why are these model parameters held constant? Why are they
not part of the inference – this would be much stronger in my view. If held constant,
then how does one know the assumed values are reasonable for the catchment of
interest? Note, if I look at the equations then m, alpha and beta must have a large
impact on the simulated model output. Hence, unless these parameters have a strong
physical underpinning I do not see why one would keep them fixed in the present work.
Certainly, the values of m, alpha and beta will affect the residual analysis.
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19. The authors do not consider highly relevant work by Scharnagl et al. (2015) pub-
lished in HESS: Inverse modeling of in situ soil water dynamics: accounting for het-
eroscedastic, autocorrelated, and non-Gaussian distributed residuals. This work also
used a Student distribution for the conditional density of the residuals – and combined
this with the template function of Fernandez and Steel (1998) to enable treatment of
skewed residual distributions. Given the similarities with the work presented in this
paper I think it is important for the authors to consider the listed work of Scharnagl et
al.

20. Eq. (18) – does this function satisfy the laws of total expectation and total vari-
ance? This is a concern not typically addressed in the hydrologic literature – but the
paper by Hernandez-Lopez in HESS (2017) makes some important points regarding
preservation of expectation and variance of the error model.

21. I am wondering whether readability of the paper would improve if the section on er-
ror models is placed directly after the likelihood section. Indeed, the likelihood contains
tau – which is then defined (among others) in the error model section.

22. Page 11, Line 16: What has happened to the index time in the formulation of Qdet?
It appears on the left-hand side but does not appear on the right-hand side. Also, what
are Qs and Qf? These entities are introduced but they are not discussed nor do they
appear elsewhere in the paper?

23. At this point I am wondering why the authors are not using the more common
terminology of P(.) for prior distribution and L(.|.) for likelihood function.

24. Figure 6 – the values of eta show a strong temporal correlation for error model E2
and E3. Would it be possible to plot, in some way, the decorrelated eta values (with
serial correlation removed).

25. In general, it may be useful if the authors include a plot of the marginal posterior
distributions of the model parameters and nuisance variables. As it stands it is difficult
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to determine which parameters are well defined and which variables are not well de-
fined by inference against the measured data (for one or more error models). In fact,
the authors could compute the KL divergence of the prior and posterior distributions
for each error model. In any case, it would be good to have insights on how well the
parameters and nuisance variables are defined. Do their posterior distributions extend
over the entire prior ranges, or are they limit to a small region inside the prior distribu-
tion? Note, Figure 6 goes a long way but is difficult to interpret as the matrix plot is
rather small and the x-ranges are scaled according to the posterior uncertainty.

26. Figures 3 and 4: I find these results a bit difficult to interpret. The color/symbol
coding is not necessarily clear – making it difficult to interpret the findings. I am sure
the authors can find a way of plotting from which the main results are directly visible.
Then, again, other readers may like to digest this plot.

27. Figure 5: Difficult to see the differences between the three panels. Would it be
possible to enlarge the horizontal length of each of the subplots? Right now, the mea-
sured data interacts too much with the grey region, particularly when the posterior
prediction/simulation uncertainty is small.

28. Note, the authors use the wording “prediction” – one could argue though that
what is presented are simulations as the rainfall for the next is assumed known when
simulating streamflow values.

29. Page 24, Line 9 – 12: Is this not due in large part because of ignoring the laws of
total expectation and total variance? Per my previous comment on this topic.

30. I think a weakness of this paper is that the authors do not compare their findings
against another likelihood function. In the introduction section, the authors discuss
strength and limitations of previously used/developed likelihood functions – they use
this as justification for their own approach. Yet, my own practical experience suggests
that a simple AR-1 likelihood would already do quite a reasonable job. This likelihood
is easy to include in the present paper. What is more, the authors should consider
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the generalized likelihood function – it is argued that this likelihood has a limitation
because of the treatment of serial correlation on non-standardized residuals – this is
easy to remedy in practice. Then, the argument of analytic tractability I do not really
follow (Page 3, Line 22).

31. Would the inference not lead to more realistic results if the authors augment their
likelihood with an error model for the rainfall data? This would carry another set of
nuisance variables / hyper parameters (depending in large part on the choice of rainfall
prior) but make the inference more robust.

32. Just a thought – but is nonstationary the right wording in the present application of
the likelihood function? If tau does vary between rainfall and dry periods – but these
two values of tau repeat themselves in the future (e.g. are constant) – then one may
argue that overall the residual time series is a stationary time series. Tau just differs
between rainfall and non-rainfall days.

33. Overall, I think the author should better recognize the highly related work of Schar-
nagl (2015) published in the same journal (HESS). Indeed, this paper used the Student
distribution with the Fernandez and Steel template function for skew.

I hope these comments are useful to further improve the paper, Jasper Vrugt
jasper@uci.edu
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