
Author’s response 

Note that all the references to the manuscript (made by referees and by authors) refer to the manuscript 
resulting from the last revision cycle, not the revised markup version contained in this file. 

RC: Referee comment 

AC: Author comment 

Changes made to the manuscript are highlighted in italic font. 

Reply to Referee #1 

RC(1): Table 1 provides an overview of the different error models and their assumptions. It would help 
readability to include an additional column that briefly summarizes in words (as opposed to just symbols) 
the main assumption or characteristic of each model. In fact, I did this for myself while reading the paper 

AC(1): We agree that this is a very useful modification. 

We included two additional columns in Table 1, specifying the assumptions regarding the 
correlation and the distribution of streamflow. In addition, we changed the order of the columns 
to be more consistent with the line of thinking of the reader. 

RC (2): Evaluation criteria: I understand the authors are using evaluation criteria that have been defined 
elsewhere, and thus they simply adopt the same terminology, but unfortunately the terminology is 
counter-intuitive (e.g. low reliability = good, low precision = good). This doesn't affect the scientific 
merits of the paper, but it does affect communication and could be easily avoided by changing the 
terminology to something more intuitive 

AC (2): We agree that the terminology is counter-intuitive and up to this point, we still preferred 
the consistency with previous literature over an intuitive name. However, given the repeated 
comments of the referees on this matter, we decided to make the performance metrics more 
intuitive and accept inconsistency with previous literature. 

We redefined the reliability metric to its complement, i.e. new reliability = 1 – previous reliability. 
This was preferred over renaming it to something similar to “unreliability”. The redefinition lead 
to changes in Equation 14, Figure 3 and 7, Table B1 and B2, and in several instances throughout 
the text. Additionally, we renamed the metric “precision” to “relative spread”, which lead to 
changes in Figure 3, Table B1 and B2 and in several instances throughout the text. 

RC (3): page 16, line 11: spell out the meaning of EN-det 

AC(3): We agree that the term should be spelled out here. 

We corrected this in the new version. 



RC (4): page 28, lines 8-19: the discussion here points out that distributions with positive support lead to 
bad fits, but no details are given, for example which distributions were tested. As such the discussion in 
this paragraph is not entirely convincing. The last sentence suggests to use an inverse relation between 
skewness and discharge, but isn't that automatically fulfilled when using positive-support distributions? 
For example, the Gamma distribution is skewed near zero but becomes symmetric away from zero 

AC(4): We agree that this part of the discussion is a bit vague, and that we should provide more 
detailed information on the tests that we run in this direction. In a limited exploration, we tested 
the lognormal distribution as a distribution with positive support, which is also more skewed 
when the mean is close to zero, like the Gamma distribution mentioned by the referee. 
However, for any distribution, the skewness would have to be extreme to allow for observed 
streamflow that is multiple orders of magnitude larger than the modelled streamflow. If that is 
not the case, then the inference will likely be affected by the strong outliers for small modelled 
streamflow. This was tentatively confirmed by our unsuccessful explorations with the lognormal 
distribution. 

We clarified that we used the lognormal distribution and reformulated the reason why we believe 
that it is not worth keeping the mass balance at very small modelled streamflows. In addition, we 
removed the last sentence of the paragraph, which was correctly questioned by the referee. 

RC (5): page 29, line 27: I would add the caveat that this conclusion is based on the chosen approach for 
handling non-normality (skewed student t distribution) 

AC (5): We agree that this is an important caveat that should be added at that point. 

We included a corresponding statement in the new version of the manuscript. 

  



Reply to Referee #2 

RC: The study introduces a new approach for treating non-stationary auto-correlation in residuals of 
hydrological models. A likelihood framework is used to evaluate different complexities in 
autocorrelation, and this is applied for different temporal resolution of data in two catchments. The 
improved representation of auto-correlation is shown to solve previously identified problems with joint 
calibration of hydrological and residual error models, and the authors demonstrate how autocorrelation 
is important for hydrological signatures such as flashiness index. I found this study to be well written and 
insightful. The framework for comparing different complexities of the error models, and the experiments 
implemented via this framework, worked well. I believe this paper will be of clear interest for the HESS 
audience, and recommend it be published following the following minor comments being addressed 

AC: Thank you for this general feedback. 

RC (1): Title and focus: I found the title to be somewhat misleading, in that it refers to deterministic 
hydrological predictions, whereas this paper is largely about improving probabilistic predictions. I think 
the authors are under-selling their contribution by not including the term “probabilistic” or “uncertainty” 
in the title. 

AC (1): We acknowledge that the “probabilistic” or “uncertainty” are important keywords. The 
title does not really refer to deterministic predictions, however, but to deterministic hydrological 
models, which are made probabilistic by the presented likelihood framework. In our point of 
view, the term “likelihood” is sufficient to highlight the probabilistic nature of the chosen 
approach. We would prefer to keep the title as it is. 

RC (2): While results of this study are promising, the findings are somewhat limited by considering only 2 
catchments. I feel the authors should recognize this in the discussion or conclusions, and emphasize that 
further research required on large datasets to determine which error model to use for different 
catchments, temporal resolutions, etc. 

AC (2): We agree that more extensive studies considering a larger number of catchments are 
needed to confirm the main findings of this paper. We supervised a Master thesis that extended 
this analysis to 3 additional catchments using different hydrological models, with very similar 
results (which are not published). Therefore, we are confident that the results are generalizable 
to a certain degree. This still has to be shown with an even larger number of catchments, 
however. 

We included a corresponding statement in the conclusions. 

RC (3): The authors state on page 3, lines 23-27 that “An explicit marginal distribution of streamflow 
(Krzysztofowicz, 2002) facilitates scientific communication and discussion, since hydrologists are 
generally more familiar with streamflow than with Box-Cox transformation parameters or distributions 
of the innovations of residuals.” I see where the authors are coming from here, but predictive 
performance is likely as important as scientific communication. I would like to see comparison with 
existing error models listed as an area of further research in the discussion or conclusions. 



AC (3): We agree that predictive performance is an important goal of any probabilistic model, 
which is why we thoroughly assessed the predictive performance based on multiple metrics in 
this study. We did so for multiple error models, some of which can be considered to be “existing” 
ones (E1 and E2) and demonstrated the superiority of our approach also in practical terms. We 
agree that there is a need for more comparative studies in this direction. 

We mentioned the need for studies comparing multiple assumptions about the characteristics of 
the errors in the conclusions. 

RC (5): In equation (7), the conditional probabilities when Q(ti-1) =0 do not take into account information 
about Q from any previous time steps. In theory, these probabilities should take into account the last 
uncensored observation, and the fact that all observations in between are censored. See (Zeger and 
Brookmeyer, 1986) and (Hannachi, 2014) for details. This limitation should be recognised in equation (7). 

AC (5): Thanks for highlighting these very relevant papers. Indeed, the approach described 
therein is very similar to ours, with the difference that it allows to keep the memory of the 
autocorrelated process during times of censored observations. This can indeed be transferred to 
streamflow measurements where zero flow measurements can occur. It requires numerically 
solving an integral with dimension proportional to the length of the zero streamflow periods, 
which can be very long in ephemeral catchments. Due to the nature of streamflow data, for 
which frequent changes between zero and non-zero data are unlikely, the expected benefit of 
keeping the correlation during zero flow time periods is small, especially when correlation is 
reduced anyway during precipitation events. However, the approach presented in the papers 
mentioned by the referee could be very relevant in some catchments or other hydrological 
applications in general. 

We included a reference to those papers in a new paragraph at the end of Section 2.1, discussing 
the relevance of their approach and why we do not keep correlation during censored time 
periods. 

RC (6): Pg 6, line 20: “Note that, if the distributional assumptions about DQ hold at all points in time, η(ti) 
are a sample from a standard normal distribution, except for the lower tail, which can be lighter due to 
the truncation at zero at each individual time step. “I agree there would be a lower proportion of η(ti) 
near the lower tail. But the pdf should have an area of 1, so I would have thought there would be an 
increase in samples of η(ti) close to the truncation point (which varies in time) to make up for this. 

AC (6): If the type of distribution chosen for DQ extends below 0, the area below 0 is assigned as 
a probability mass to 0. Therefore, the area of the pdf in the first line of Equation (1) is not 1, but 
1 – X, where X is the integral of DQ from minus infinity to 0. It is an alternative option to truncate 
the distribution at zero as suggested by the reviewer (which implies renormalization); this leads 
to a model with zero probability for a discharge of zero which may be adequate for some 
catchments. We mention this option in the paper as well. In the chosen approach, there is not a 
higher density of samples of η(ti) close to the truncation point, but a discrete probability of η(ti) 
to be exactly at the truncation point, which corresponds to zero flow and varies in time. 



RC (7): Pg 10, line 6: What does τmin = 0 correspond to? Why was this chosen? 

AC (7): τmin = 0 means that there is no autocorrelation during precipitation events. From visual 
inspection of some time series of η, it was clear that the correlation is strongly reduced during 
precipitation events in case of high-frequency data (Figure 9). Setting τmin = 0 seemed like a 
pragmatic and simple choice, even though the true correlation is likely to be larger than 0 during 
precipitation events. This was accounted for in other error models (E3a, E4a) by inferring τmin. A 
third alternative would be to fix τmin at a value larger than 0.  

RC (8): It would be interesting to see the proportion of zero flows for these catchments, since zero flows 
are represented in the likelihood function. 

AC (8): Neither of the two investigated catchments contained any zero-flow data (see Table 2). 
The catchments were not selected to test the ability of the chosen distribution to deal with zero 
flows, although this would have been another interesting aspect that could be investigated in a 
future study. The presented framework allows to easily compare different distributional 
assumptions about streamflow, which could include distributions that differ in their treatment of 
zero flows. However, the focus of this study was on the description of correlation and the shape 
of the non-zero part of the distribution. 

RC (9): Figures 3, 4: It would also be useful to have arrows for “better” performance for all metrics (not 
just reliability and precision” 

AC (9): We agree that it makes sense to include such an arrow for the Nash-Sutcliffe efficiency in 
Figure 4, but not for the difference between the observed and modelled Flashiness Index and the 
streamflow error. The latter two have an optimal value of 0 and can be positive or negative, so a 
one directional arrow would be misleading. 

We included such an arrow for the Nash-Sutcliffe Efficiency 

RC (10): Figures 3-6: It would be useful to label all panels of figures to make it easier to refer to parts of 
figures. 

AC (10): We agree that this makes the orientation easier. 

We included labels for all subplots of Figures 3, 4, 5, 6 and 9. The references in the text were 
adapted to point to the specific labels of the subplots where appropriate. 

RC (11): Pg 18, line 5-6: “IF,det is often similar to IF for E2 (Tables B1 and B2), indicating that the large part 
of the flashiness of the model output is due to the hydrological model response and only a small part is 
due to the stochastic variability added through the error model.” Isn’t this true for all models? 

AC (11): The referee is right when it comes to daily resolution, where the characteristic 
correlation time is usually only a few time steps (i.e. days). In that case, the difference between 
the error models (which differ in their treatment of correlation) w.r.t. the Flashiness Index is 
small. In case of high-resolution data (e.g. hourly), the inferred characteristic correlation time 



with E2 can span many time steps, resulting in only minor increases of the Flashiness Index 
through the probabilistic model (IF is only marginally larger than IF,det), as opposed to e.g. E1, 
where the missing correlation causes a large increase in the Flashiness Index of the stochastic 
model output compared to the output of the deterministic hydrological model. We acknowledge 
that the message would be clearer if the sentence above mentioned that for E2, this is the case 
for all temporal resolutions, which distinguishes it from many of the other error models in this 
respect. 

We mentioned in the corresponding sentence that we refer to all the resolutions. 

RC (12): Pg 20, line 29-31: “Figure 5 compares the predicted hydrographs of E1, E2 and E3a. In this case, 
allowing for different characteristic correlation times during precipitation events and dry periods (E3a) 
prevents the problematic behaviour encountered when making the constant correlation assumption.” It 
is not clear which problems the authors are referring to, and how E3a fixes them. Please provide more 
details. 

AC (12): We very much agree with the statement of the referee. 

We expanded the sentence, mentioning that we mean the better behaviour of the error bands 
and the more realistic stochastic output of the model. 

RC (13): Figure 5: It is difficult to see difference between models. Zooming in on a smaller time period 
may help emphasize differences. 

AC (13): We fully agree with the referee. 

We zoomed in to the first half of the time period and adapted the limits of the y-axis of each 
panel to better highlight the different results of the error models. 

RC(Edits):  

Pg 5, line 17: Move “e.g.” to start of brackets 

Pg 10, line 28: Change “10’000” to “10,000” 

Pg 11, line 15: Change “empirical error models, as the ones” to “empirical error models, such as the 
ones“ 

Pg 13, line 18: Change “Streamflow data is a courtesy” to “Streamflow data is courtesy” 

Pg 15, line 12-13: Change “prior believe” to “prior belief” 

Pg 19, line 16: Change “the reliability measure shows a stable performance in,” to “the reliability 
measure shows stable performance” 

Pg 29, line 11: Change “catchments storage” to “catchment’s storage” 

AC(Edits): Thank you for pointing these out. We agree that all of these are errors. 



We corrected them in this version of the manuscript. 

Additional Changes 

Throughout document: 

• changed to more consistent indentation using the \par command. 
• removed repeated reference to Baker, 2004 for Flashiness Index 
• changed notation of “df” to “df” (also in supplementary material) to be consistent with journal 

requirements 

Eq. (11): changed wording from “for”, “else” to “if”, “otherwise” 

Pg. 4, Line 24: changed wording form “in wet and dry periods” to “regarding wet and dry periods” 

Pg. 5, Line 27: added that the mean of the distribution DQ varies with time 

Pg. 6, Line 20: deleted unclear and unnecessary sentence 

Pg. 7, Eq. (7): Replaced tau with tau(ti) 

Pg. 8, Line 1: mentioned more general case of vanishing correlation, which is relative to the 
measurement interval 

Pg. 8, Line 18: “probability density” instead of probability 

Pg. 9, Figure 1: Corrected “kurtosis” to “degrees of freedom” and added units of the standard deviation 

Pg. 17, Figure 3: changed text direction of “better” on right hand side to agree with the text direction of 
the y-axis label 

Pg. 26, Figure 9: changed legend 

Pg. 33, Line 22: “method of skewing” changed to “method for skewing” 

Pg. 34, Eq. (6) and (7) changed “for” to “if” 

Pg. 36, Line 1-4: corrected variable name of Flashiness Index. 

Additional references 

HANNACHI, A. 2014. Intermittency, autoregression and censoring: a first-order AR model for 
daily precipitation. Meteorological Applications, 21, 384-397. 

ZEGER, S. L. & BROOKMEYER, R. 1986. Regression Analsis with Censored Autocorrelated Data. 
Journal of the American Statistical Association, 81, 722-729. 
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Abstract. The widespread application of deterministic hydrological models in research and practice calls for suitable methods

to describe their uncertainty. The errors of those models are often heteroscedastic, non-Gaussian and correlated due to the

memory effect of errors in state variables. Still, residual error models are usually highly simplified, often neglecting some of the

mentioned characteristics. This is partly because general approaches to account for all of those characteristics are lacking, and

partly because the benefits of more complex error models in terms of achieving better predictions are unclear. For example, the5

joint inference of autocorrelation of errors and hydrological model parameters has been shown to lead to poor predictions. This

study presents a framework for likelihood functions for deterministic hydrological models that considers correlated errors and

allows for an arbitrary probability distribution of observed streamflow. The choice of this distribution reflects prior knowledge

about non-normality of the errors. The framework was used to evaluate increasingly complex error models with data of varying

temporal resolution (daily to hourly) in two catchments. We found that (1) the joint inference of hydrological and error model10

parameters leads to poor predictions when conventional error models with stationary correlation are used, which confirms

previous studies, (2) the quality of these predictions worsens with higher temporal resolution of the data, (3) accounting for a

non-stationary autocorrelation of the errors, i.e. allowing it to vary between wet and dry periods, largely alleviates the observed

problems, and (4) accounting for autocorrelation leads to more realistic model output as shown by signatures such as the

Flashiness Index. Overall, this study contributes to a better description of residual errors of deterministic hydrological models.15

1 Introduction

Deterministic hydrological models are widely applied in research and decision-making processes. The quantification of their

associated uncertainties is therefore an important task with high relevance for the scientific learning process, as well as for

operational decisions with respect to water management. The total output uncertainty of those models is a combination of (i)

propagated input uncertainty (e.g., Sun et al., 2000; Kavetski et al., 2003; Bárdossy and Das, 2008), (ii) model structural errors20

(e.g. Butts et al., 2004), which can be attributed to aggregation and parameterisation, and (iii) parameter uncertainty (e.g. Freer

et al., 1996; Wagener et al., 2001). When performing inference, observation errors (iv) are an additional source of uncertainty,

which arises for example due to errors in rating curves (e.g. Kuczera and Franks, 2002). The sources (i-iv) usually result in

residual errors of predicted streamflow observations with the following characteristics:
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– Non-normality: model residuals are seldom well represented by a normal distribution with constant mean and vari-

ance. Instead, residuals are typically heteroscedastic (increasing with streamflow), right-skewed due to non-negativity of

streamflow, and characterized by excess kurtosis (fat tails) (e.g. Schoups and Vrugt, 2010).

– Autocorrelation: several sources of error cause memory effects. Such sources are inadequacy of model structure, errors

in internal states of the model (Kavetski et al., 2003) or missed rainfall events, which can have an effect on the residuals5

several days after the event has occurred (e.g. Beven and Westerberg, 2011).

– Non-stationarity: model residuals can have very different characteristics in time. For example, during wet periods dom-

inated by rainfall, errors are generally less correlated than during dry periods (Yang et al., 2007). Schaefli et al. (2007)

find that residuals are less correlated during high flows than during low flows in a glacierised alpine catchment.

– Unequally spaced observations: observations do not always take place at fixed time intervals. Particularly for water10

quality, volume-proportional sampling strategies are generally preferable to fixed-time strategies (e.g. Schleppi et al.,

2006). These strategies generate observations at unequal time intervals. Another cause of unequal observation intervals

is missing data.

Various studies have investigated error models that consider correlation, heteroscedasticity and non-normality of errors of

deterministic hydrological models. A typical approach, which is also applied in this study, is to describe total output uncertainty15

in a lumped way (e.g. Schoups and Vrugt, 2010; McInerney et al., 2017). Another group of approaches distinguishes among

the different sources of total uncertainty such as input, parametric and output measurement uncertainty (e.g. Kavetski et al.,

2006; Renard et al., 2010). The latter approach is conceptually desirable, but it can lead to identifiability problems and it is

computationally very intensive due to the required propagation of errors through the model. For many applications we need a

computationally cheaper approach that can be achieved with a lumped model. It is the goal of this paper to contribute to the20

improvement of these lumped approaches. Current approaches to describe total output uncertainty in a lumped way differ in if,

and how, they deal with the various characteristics of residual errors mentioned above. Some of the most common approaches

are the following:

– Heteroscedasticity is often considered in weighted least squares error models by parameterising the variance of the

normal distribution as a function of the streamflow (Thyer et al., 2009; Evin et al., 2013; Bertuzzo et al., 2013). Another25

common approach is to apply transformations such as Box-Cox to the observed and modelled streamflow time series and

formulate a model for the residuals of the transformed time series (e.g. Bates and Campbell, 2001; Del Giudice et al.,

2013; McInerney et al., 2017). However, this transformation affects several properties of the residuals simultaneously,

including heteroscedasticity, skewness and kurtosis.

– Typically, residual errors are represented as a stationary process. The issue of stationarity has been the subject of recent30

debate (Milly et al., 2008; Montanari and Koutsoyiannis, 2014). Focusing on streamflow dynamics, an example of

representing non-stationarity of residual errors is Yang et al. (2007), who distinguish between wet and dry periods by
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applying a continuous autoregressive process with different parameters for the wet and the dry periods to the Box-Cox

transformed residuals.

– A probabilistic model to deal with unequally spaced data was proposed by Duan et al. (1988). A more natural formulation

is to adopt a continuous-time formulation of the autoregressive model, such as an Ornstein-Uhlenbeck process (e.g.

Kloeden and Platen, 1995; Yang et al., 2007).5

– Non-negativity of streamflow can be addressed by truncating the error pdf so that it does not extend to negative stream-

flow. This leads to zero probability for zero streamflow, which may not always be adequate. The truncation approach is

seldom followed, and in most applications the truncation occurs “in prediction only” (McInerney et al., 2017).

Residual error models are usually highly simplified, in the sense that they do not account for all the above mentioned

characteristics of these errors. In particular, residual error models seldom go beyond using “variance stabilisation” techniques10

such as Box-Cox. The widespread use of relatively simple error models is due to several reasons. In our opinion, the following

are the most important.

First, there is a lack of general approaches that can deal with all the above mentioned characteristics of error models si-

multaneously. One general error model that can accommodate various characteristics is the probabilistic model proposed by

Schoups and Vrugt (2010), which can deal with residual errors that are correlated, heteroscedastic, and non-Gaussian with15

varying degrees of kurtosis and skewness. They do this by describing the errors with an autoregressive process with a skew

exponential power (SEP) rather than a normal distribution for the innovations. However, their approach is shown to produce

unrealistically large predictive uncertainties caused by the application of the autoregressive process to non-standardised resid-

uals (Evin et al., 2013). Scharnagl et al. (2015) attempt to address this issue by applying an autoregressive process to the

standardized residuals of a soil moisture model, using a skewed Student’s t-distribution to describe the probability density of20

the innovations of the autoregressive process. However, with this approach they experience problematic inference behaviour

and biased results similar to the ones mentioned by Evin et al. (2013). Furthermore, while the conventional approach of using

normal innovations for the errors leads to a normal marginal of (potentially transformed) streamflow, non-normal innovations

lead to marginal streamflow distributions which are generally not available in closed form. An explicit marginal distribution of

streamflow (Krzysztofowicz, 2002) facilitates scientific communication and discussion, since hydrologists are generally more25

familiar with streamflow than with Box-Cox transformation parameters or distributions of the innovations of residuals.

Second, there is limited guidance to the choice of a particular error model for a given application. In the past, the choice has

been generally ad-hoc, with limited justification. Only recently, there has been more systematic comparison and testing which

has resulted in some general recommendations. For example, McInerney et al. (2017) compare various residual error schemes,

including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter) and30

the log-sinh transformation using data from 23 catchments, and concluded that Box-Cox has on average the best behaviour.

Third, previous experience has shown that more realistic error models, which are more complex, do not always result in better

predictions. The additional parameters of some of the more complex error models were found to have undesirable interactions

with the parameters of the hydrological model, leading to unrealistic parameter values and poor predictions. For example,
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particularly in dry catchments, accounting for autocorrelation produces worse predictions than omitting it (Schoups and Vrugt,

2010; Evin et al., 2013). To circumvent such problems, Evin et al. (2014) recommend that autoregressive parameters are

inferred sequentially, that is, after having estimated all other parameters of the hydrological and of the error model. Similarly,

many uncertainty analysis techniques are applied for fixed hydrological parameters, avoiding the re-calibration of hydrological

models (e.g. Montanari and Brath, 2004). The joint inference of hydrological and error model parameters remains conceptually5

preferable, as it recognises potential interactions between parameters. The conditions under which this can be achieved remain

poorly understood.

Fourth, the potential advantages of more complex error models are under-appreciated by the hydrological community. For

relatively simple uncertainty analysis, like the plotting of uncertainty bands around hydrographs, the use of simplified error

models may appear justified. However, there are several applications that go beyond this task, and for which a simplified error10

model may lead to poor results. For example, assuming uncorrelated errors may lead to unrealistic extrapolations (Del Giudice

et al., 2013) or too strong short term fluctuations, which have a large effect on hydrograph signatures that are sensitive to noise,

such as the Flashiness Index (Baker et al., 2004; Fenicia et al., 2018). The ability of correctly representing signatures is not

only important for conceptual reasons, but also for practical purposes such as in signature based model calibration.

The goals of this study are the following:15

1. Develop a flexible framework for likelihood functions for hydrological models that accounts for the following major

characteristics of their errors: non-normality (heteroscedasticity, skewness and excess kurtosis), autocorrelation, non-

stationarity in
::::::::
regarding wet and dry periods, unequally spaced observation time points and non-negativity of streamflow.

2. Use the flexible framework to do controlled experiments by varying some of the assumptions and by performing joint

inference of a hydrological model with error models of increasing complexity. Investigate the effect of the various as-20

sumptions on the quality of the predictive distributions. In particular, with case studies in two catchments, we investigate

the following questions:

(a) Can we confirm previous findings about the problems related to joint inference of hydrological and error model

parameters?

(b) What are the causes of the problems encountered in joint inference of hydrological and error model parameters?25

(c) Can we improve the joint inference by introducing non-stationarity by allowing the autoregressive parameter to

change between wet and dry periods?

(d) Does the consideration of autocorrelation lead to more realistic predictions (e.g. in terms of better representation

of hydrograph signatures such as the Flashiness Index)?

(e) Can parameters controlling the shape of the distribution of the errors be inferred jointly with the hydrological model30

parameters to account for non-normality?

The paper is structured as follows. The theoretical framework for the probabilistic model, corresponding to Goal 1, is

presented in Sect. 2.1 and the performance metrics used to evaluate it are described in Sect. 2.4. Section 3 describes the case
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study setup used to carry out the necessary investigations for Goal 2. The case study is based on two catchments (Sect. 3.1),

one hydrological bucket model (Sect. 3.2) and three different time step sizes (daily, 6-hourly and hourly). The results of those

investigations are presented in Sect. 4 and discussed in Sect. 5. Section 6 lists the main conclusions and sketches potential

directions for future research.

2 Methods5

2.1 Probabilistic framework

Suppose we choose the distributionDQ to describe the probability of observing streamflowQ, given the model outputQdet (see

Fig. 1). We believe that this is a natural place to start the derivation of a probabilistic framework for hydrological models, since

it enables us to communicate and discuss the basic assumptions in a space that is most familiar to hydrological modellers; the

space of streamflow. Note the major difference to transformation based approaches (Bates and Campbell, 2001; Del Giudice et al., 2013; McInerney et al., 2017, e.g.)10

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bates and Campbell, 2001; Del Giudice et al., 2013; McInerney et al., 2017) and approaches that use non-normal innova-

tions of the stochastic process (Schoups and Vrugt, 2010; Scharnagl et al., 2015), both of which lead to DQ not being readily

available in closed form. In particular, discussing the possible distribution of streamflow given the output of a hydrological

model is easier than discussing Box-Cox transformation parameters or the distribution of the innovations of the model errors.

Providing explicit control over DQ therefore facilitates the formulation of the model based on prior knowledge resulting from15

past experience of hydrologists in units they are familiar with. Wani et al. (In preparation) present another approach in which

DQ at subsequent output time steps is accessed through copulas.

We assume that DQ is parameterised by Qdet and some error model parameters ψ, i.e. Q(t)∼DQ(Qdet(t,θ),ψ), where θ

are the parameters of the deterministic hydrological model. This implies that the observed streamflow at different time points

can be described by different distributions (e.g. with varying
:::::
mean

:::
and standard deviation), but these distributions belong to the20

same parametric family. The distribution DQ may extend to negative values. In this case, the integrated probability of negative

values is assigned to the probability of observing a streamflow of zero. This leads to

pDQ(Qdet,ψ)

(
Q
)

=


fDQ(Qdet,ψ)

(
Q
)

for Q> 0

FDQ(Qdet,ψ)

(
0
)

for Q= 0

0 for Q< 0

(1)

where fDQ and FDQ are the density and cumulative distribution function of DQ, respectively. p is a probability density for

Q> 0 and a discrete probability for Q= 0. Note that Eq. (1) reflects our prior knowledge that Q≥ 0 when dealing with non-25

tidal rivers. If the distribution chosen for DQ is limited to positive support, either by choosing a distribution with positive

support or by truncating at zero, only the first case in Eq. (1) applies and we get zero probability for Q= 0. This is a common

approach that is fully covered by the presented framework. However, especially in ephemeral catchments, a finite probability

for Q= 0 might be desirable (Smith et al., 2010). This can be achieved by choosing a distribution DQ that extends to negative
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values. Eq. (1) then assigns the negative tail to Q= 0. If correlation is absent or neglected, Eq. (1) can be applied at each time

step and the likelihood function is simply the product of those mutually independent terms.

Accounting for temporal correlation requires some additional conceptualisations. Consider the transformation function

ηtrans(Q,Qdet,ψ) = F−1
N(0,1)

(
FDQ(Qdet,ψ)(Q)

)
(2)

which transforms the streamflow, Q, via its assumed marginal distribution, DQ, which is dependent on the model output, Qdet.5

If the distributional assumptions forDQ are correct, the result of this transformation is a standard normally distributed variable.

Applying Eq. (2) to a time series of streamflow, Q(ti), leads to a time series of transformed streamflows

η(ti) = ηtrans(Q(ti),Qdet(ti),ψ) (3)

where ti are the time points of interest for inference or prediction. Note that, if the distributional assumptions about DQ hold

at all points in time, η(ti) are a sample from a standard normal distribution, except for the lower tail, which can be lighter due10

to the truncation at zero at each individual time step.If there are systematic deviations of Q from Qdet, the series η(ti) will be

autocorrelated.

To describe autocorrelation in the deviations ofQ fromQdet, we assume that the corresponding time series of η are discrete-

time results of a continuous-time autoregressive process:

η(ti) | η(ti−1)∼N

(
η(ti−1)exp

(
− ti− ti−1

τ(ti)

)
,

√
1− exp

(
−2

ti− ti−1

τ(ti)

))
(4)15

where N is the normal distribution and the first and the second argument is the mean and the standard deviation, respectively.

This so-called Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930) has a standard normal asymptotic distribution and

a characteristic correlation time, τ(ti), that is assumed to be constant over the interval [ti−1, ti].

In summary, to transfer information between time points, we transform the distributionDQ at time ti−1 to a standard normal

distribution ηi−1 according to Eq. (2), advance ηi−1 to ηi according to Eq. (4), and transform ηi back to DQ at time ti.20

Note that, for a constant time step ∆t= ti− ti−1, Eq. (4) becomes:

η(ti | ti−1)∼N
(
η(ti−1)φ,

√
1−φ2

)
(5)

with

φ= exp(−∆t

τ
) or τ =− ∆t

ln(φ)
(6)

This is a discrete-time AR(1) process with autoregression coefficient φ and white noise variance 1−φ2. The formulation25

of a continuous-time autoregressive process with evaluation at discrete time points allows us to apply it to non-equidistant

time series. One advantage of this formulation is that it combines autocorrelation with the possibility to easily deal with

missing data, which is considerably more difficult when using the fixed-time version in Eq. (5). Note that the continuous-time

formulation assumes that η can be described well by an autoregressive process of first order, where in fact higher orders have
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been observed (Kuczera, 1983; Bates and Campbell, 2001). Nonetheless, the first order approximation has been used often

throughout hydrological literature.

In order to formulate the probability of the streamflow Q, we used Eq. (1) to (4) to derive the following conditional proba-

bilities for Q(ti) given Q(ti−1) (see Appendix A for the full derivation):

if Q(ti−1)> 0 :

pi
(
Q(ti) |Q(ti−1),θ,ψ

)

=



fDQ(Qdet(ti,θ),ψ)

(
Q(ti)

) fN

(
η(ti−1)exp

(
−
ti−ti−1
τ(ti)

)
,

√
1−exp

(
−2

ti−ti−1
τ(ti)

))(η(ti))

fN(0,1)(η(ti))
for Q(ti)> 0

F
N

(
η(ti−1)exp

(
− ti−ti−1

τ(ti)

)
,

√
1−exp

(
−2

ti−ti−1
τ(ti)

)) (η(ti)) for Q(ti) = 0

if Q(ti−1) = 0 :

pi
(
Q(ti) |Q(ti−1),θ,ψ

)
=


f
DQ

(
Qdet(ti,θ),ψ

)(Q(ti)
)

for Q(ti)> 0

F
DQ

(
Qdet(ti,θ),ψ

)(0) for Q(ti) = 0

(7)5

Note that p is a probability density (denoted by f ) if Q(ti)> 0, and an integrated, discrete probability (denoted by F ) if

Q(ti) = 0. Note also that η in Eq. (7) is calculated with Eq. (3) and depends on Q and Qdet(θ). Furthermore, Eq. (7) reduces

to Eq. (1) for τ → 0
:::::::::::::::
(ti− ti−1)/τ →∞, i.e. if correlation is absent or neglected.

:::
the

:::::::::::
characteristic

::::::::::
correlation

::::
time

::
is

:::::
short

::::::::
compared

::
to

:::
the

:::::
length

:::
of

::
the

:::::
time

::::
step.

The likelihood is then obtained by building the product of the conditional probabilities in Eq. (7) and by substituting the10

observations, Qobs, for Q:

fL

(
Qobs(t0),Qobs(t1), . . . ,Qobs(tn) | θ,ψ

)
= pDQ(Qdet(t0,θ),ψ)

(
Qobs(t0)

) n∏
i=1

pi
(
Qobs(ti) |Qobs(ti−1),θ,ψ

)
(8)

Note that the first term on the right hand side of Eq. (8) can be calculated with Eq. (1), since it is not conditional on the previous

time step.

:::::::::::::::::::::::::
Zeger and Brookmeyer (1986)

:::
and

::::::::::::::
Hannachi (2012)

:::::::::
formulated

:
a
:::::::::
likelihood

:::
that

::::::
allows

:
to
:::::
keep

::
the

:::::::
memory

:::
of

::
an

::::::::::::
autoregressive15

::::::::
processes

::::::
during

::::
time

::::::
periods

:::::
with

::::::::
censored

::::
data.

::::
This

:::::::
concept

::::
can

::
be

::::::::::
transferred

::
to

:::
the

::::
case

:::
of

::::
zero

::::::::::
streamflow.

::
It

:::
has

::
a

:::::::::
conceptual

::::::::
advantage

::::
over

::::
Eq.

:::
(7),

:::::::::
especially

:::::
when

::::::
dealing

::::
with

::::::::::
intermittent

::::
data

::::
with

:::::::
frequent

:::::::
periods

::::
with

::::::::::
observations

:::
of

:::
zero

::::
that

:::
can

::
be

::::::
shorter

::::
than

:::
the

:::::::::::
characteristic

:::::::::
correlation

::::::
length,

::::
like

:::
for

:::::::
example

::
in

:::
the

::::
case

::
of

::::::::::
precipitation

:::::::::::::::
(Hannachi, 2012)

:
.
:::::::::
Depending

:::
on

:
a
::::::::::
catchment’s

::::::::
low-pass

:::::::
filtering

::::::
effect,

:::::::::
streamflow

::
is
::::::::
expected

::
to

:::::
have

:::::
fewer

:::
but

::::::
longer

:::::::::
continuous

:::::::
periods

::
of

::::
zero

:::
and

::::::::
non-zero

::::
data

:::::::::
compared

::
to

:::::::::::
precipitation.

::::::::::::
Consequently,

:::
the

:::::::
memory

:::
of

:::
the

::::::
process

:::::
given

:::
by

:::
Eq.

:::
(4)

::
is
::::::
likely

::
to20

:::::
vanish

::::::
during

:
a
::::
zero

::::::::::
streamflow

:::::
period

:::
of

::::::
typical

::::::
length,

:::::::
reducing

:::
the

::::::
benefit

::
of

:::::::
keeping

:::
the

:::::::::
correlation

::::::
during

:::::
those

:::::::
periods.
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::::::::
Therefore,

:::
the

::::
cost

::
of

::::::::::
numerically

::::::
solving

::::::::
integrals,

:::
the

:::::::::
dimension

::
of

:::::
which

::
is

::::::::::
proportional

::
to

:::
the

::::::
length

::
of

:::
the

:::
zero

::::::::::
streamflow

:::::
period

::::::::::::::
(Hannachi, 2012)

:
,
:::::::::
outweighs

::
the

:::::::::
conceptual

:::::::
benefits

::::
w.r.t.

::::
this

:::::::::
application.

::::
The

::::::::
approach

::
by

:::::::::::::::::::::::::
Zeger and Brookmeyer (1986)

:::::
might

::
be

::::::
highly

:::::::
relevant

::
in

::::
other

:::::::::::
hydrological

::::::::::
applications,

::::::::
however.

:

2.2 Error Models

As a basis for subsequent applications, we set DQ to the skewed Student’s t-distribution (Fig. 1), which is obtained by trans-5

forming the conventional Student’s t-distribution according to Fernandez and Steel (1998). This approach of skewing has been

used in a previous study on error models (Schoups and Vrugt, 2010), albeit in a different setting. Thus, we introduce two error

model parameters: γ, defining the degree of skewness, and df
:
df , the degrees of freedom as a measure for the kurtosis. The

skewed Student’s t-distribution reduces to the normal distribution for γ = 1 and df →∞
:::::::
df →∞. Two assumptions are tested

to centre DQ at Qdet:10

E[DQ] =Qdet(t) (9a)

mode(DQ) =Qdet(t) (9b)

i.e. we either assign the expected value or the highest probability
::::::
density of DQ to Qdet. A third alternative would be to set

the median of DQ equal to Qdet. By testing the two options in Eq. (9), we include the lowest and the highest value, the third15

option would be a compromise between the two and was not included in the study. If not indicated otherwise, the assumption

in Eq. (9a) was used. The results obtained with Eq. (9b) can be found in Appendix B.

The standard deviation of DQ is parameterised as follows:

σDQ(t) = aQ0

(
Qdet(t)

Q0

)c
+ bQ0 (10)

Note that skewing a distribution with the approach developed by Fernandez and Steel (1998) changes its standard deviation;20

σDQ(t) is the standard deviation ofDQ after skewing. Other parameterisations of σDQ are in principle possible; see McInerney

et al. (2017) for a theoretical correspondence with transformation approaches. McInerney et al. (2017) have shown that trans-

formation approaches with a first order correspondence to c= 0.8 or c= 0.5 can lead to more reliable and precise predictions

than those corresponding to c= 1. To limit the scope of the analysis, and to maintain comparability to previous studies (Thyer

et al., 2009; Schoups and Vrugt, 2010; Evin et al., 2013), we set c= 1. Note that the parameters a and b become dimensionless25

(and therefore more universal) by including a reference streamflow, Q0, that corresponds to the mean of the observations:

Q0 =Qobs. Thus, a accounts for the variable and b for the constant contributions to the total standard deviation.

Table 1 lists the error models applied in this study, together with their underlying assumptions. E1 is included as a reference

case; it is based on the assumption of uncorrelated heteroscedastic errors with a normal distribution. These assumptions,

with the exception of heteroscedasticity and the treatment of Qobs = 0, are identical to the ones made when e.g. maximising30

the Nash-Sutcliffe Efficiency, or, equivalently, minimising the squared residuals. Error Model E2 represents a conventional

8



Figure 1. Example of skewed Student’s t-distributions withE[DQ] =Qdet(t) = 2.5 mm h−1
::::::::::::::::::
E[DQ] =Qdet(t) = 2.5

:::::
mmh-1

:
and standard

deviation σDQ(t) = 0.6
:::::
mmh-1 for different values of skewness, γ, and kurtosis

:::::
degrees

::
of

::::::
freedom, df

::
df .

Table 1. Overview of the error models applied in this study,
::::
their

:::::::::
assumptions

::::::::
regarding

::::::::
correlation

:
and

::
the

:::::::::
distribution

::
of

:::::::::
streamflow,

::
as

:::
well

::
as

:
their corresponding parameters (

::::
SKT:

::::::
skewed

:::::::
Student’s

:
t
:::::::::
-distribution,

:
×: fitted). If ? is appended to the name of the error model, a

smoothed version of Perr(t) (moving average of window size 5 h) was used in Eq. (11).

Error Model τmin :::::::::
Distribution τmax::::::::

Correlation a b γ df
::
df ::::

τmin ::::
τmax

E1 0
::::::
Gaussian

:
0

:::
none × × 1 ∞

:
0

:
0

E2 = τmax :::::::
Gaussian ×

::::::
constant

:
× × 1 ∞

::::::
= τmax ::

×

E3(?) 0
::::::
Gaussian

:
×

:::::::::::
non-stationary,

::::::
partially

::::
fitted

:
× × 1 ∞

:
0

:
×
:

E3a(?) ×
:::::::
Gaussian ×

:::::::::::
non-stationary,

::::
fitted × × 1 ∞

::
×

::
×

E4(?) 0
:::
SKT

:::::::::::
non-stationary,

::::::
partially

:::::
fitted × × × ×

:
0 ×

E4a(?)
::::
SKT

:::::::::::
non-stationary,

::::
fitted × × × × × ×

approach of considering autocorrelation. In the case of equally spaced time-steps, it is similar to the error model applied e.g. by

Evin et al. (2013), who assume that the rescaled errors follow an AR(1) process with a standard normal marginal distribution.
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One difference between the two approaches is, again, the treatment of cases whereQobs = 0. In error model E3, we additionally

account for the fact that τ might be time-dependent. The following formula for τ is used in those cases:

τ(t) =


τmin if Perr(t)> 0

τmax otherwise
(11)

where Perr is the precipitation used as an input for the error model. In E3, τmin is fixed at 0, while in E3a, it is fitted. Perr was

either equal to the recorded precipitation, P , or, in case of hourly resolution in the Maimai catchment, smoothed with a moving5

average of window size 5 h. This was done to prevent frequent jumps between τmin and τmax during precipitation events, and

to be more robust w.r.t. potential time lags between observed precipitation and streamflow. Note that, if such time lags were

excessively large, they would have to be considered in Eq. (11). Since in the Murg catchment, smoothing did not change the

results substantially, Perr = P applies there. Thus, error Model E3a (or E3) can be seen as a mixture of E1 and E2, in the sense

that τ alternates between periods of high and low (or no) correlation. Finally, E4 relaxes the assumption of normality for DQ;10

we use a skewed Student’s t-distribution, inferring the degrees of freedom and the skewness. Again, E4a denotes the version

where τmin is inferred.

2.3 Inference and prediction

Consider that for any practical case of inference or prediction, we will have a finite series of time points of interest (t0, t1, . . . , tn)

and a corresponding time series of streamflow Q= (Q(t0),Q(t1), . . . ,Q(tn)) or, in analogy, Qdet and Qobs. When perform-15

ing inference, the parameters of the hydrological model, θ, are estimated jointly with the parameters of the error model, ψ, by

evaluating the likelihood function (Eq. 8) according to the following procedure:

1. Given a suggested parameter vector θ, evaluate the deterministic hydrological model,Qdet, for all time points.

2. Using ψ andQdet, calculate the likelihood in Eq. (8).

As the likelihood (Eq. 8) is available in closed form for a given output of the hydrological model, like in many common20

likelihood functions in hydrology, we do Bayesian inference based on standard MCMC sampling of the posterior. The affine-

invariant ensemble sampler by Foreman-Mackey et al. (2013) is used for this purpose. It uses the so-called “stretch move” to

propose a new value for a point in parameter space based on other members of the ensemble. The ensemble size consists of

100 walkers in this study and convergence is assessed visually. A full posterior sample consists of 10’
:
,000 model evaluations

after successful convergence.25

For prediction, stochastic realisations of model output are obtained by inverting Eq. (2):

Qtrans(η,Qdet,ψ) = F−1
DQ(Qdet,ψ)

(
FN(0,1)(η)

)
(12)

and applying the following procedure to produce a single stochastic streamflow realisationQj :

10



1. Randomly draw a parameter vector (θ,ψ)j from the posterior sample.

2. Using θj , evaluate the deterministic hydrological model to obtainQdet,j for all time points.

3. Using τ j ∈ψj and Eq. (4), produce a stochastic realisation of an OU-process, ηj , with a standard normal marginal

distribution.

4. Use ψj and Qdet,j , determined in Steps 1 and 2, to transform ηj into a stochastic realisation of streamflow, Qj , with5

Eq. (12).

Note that a simulation with the hydrological model requires some additional input like precipitation and potential evapotran-

spiration data (Sect. 3.1), which is assumed to be known also for the prediction period. In a synthetic case study, we could

successfully verify the consistency of the implemented likelihood and sampling functions (see supplementary material).

2.4 Evaluation criteria10

How can the performance of empirical error models,
:::
such

:
as the ones presented in this study, be quantified? We argue that the

performance of an error model in joint inference with a hydrological model should be judged according to following criteria:

(a) good reproduction of observed dynamic fluctuations by individual model realizations, (b) good overall predictive marginal

distribution of streamflow (c) small absolute deviance between model output and observations. The Flashiness Index (Sect.

2.4.1) is an indicator for (a). The reliability and the precision
::::::
relative

::::::
spread

:
of the predictive distribution (Sect. 2.4.2 and15

??
::::
2.4.3, respectively) are used as an indicator for (b). The Nash-Sutcliffe Efficiency (Sect. 2.4.4) and the relative error in

cumulative streamflow (Sect. 2.4.5) cover (c). In addition to those performance metrics, we calculated the Kullback-Leibler

divergence (Kullback and Leibler, 1951) of the marginal posterior parameter distributions from the prior according to the

method proposed by Boltz et al. (2007).

2.4.1 Flashiness Index20

The function to calculate the Flashiness Index (Baker et al., 2004) is given by:

I(Q) =

∑n
i=1 |Q(ti)−Q(ti−1)|∑n

i=1Q(ti)
(13)

where Q= (Q(t0),Q(t1), . . . ,Q(tn)). Let x̂ denote the quantity x that is related to the hydrological parameter values at

the maximum posterior density. The Flashiness Index is calculated for the observations, IF,obs = I(Qobs), the output of the

deterministic hydrological model, ÎF,det = I(Q̂det), and the individual stochastic realisations of the predictive streamflow25

sample, IF = median(I(Qj)). IF is sensitive to the amount of autocorrelation in a streamflow time series, as well as the height

of the peaks ofQdet (sinceQj depends onQdet).
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2.4.2 Reliability

Reliability is defined equivalently
::::::::
similarly to McInerney et al. (2017), as:

Ξreli = 1− 2

n+ 1

n∑
i=0

|FQ(ti)(Qobs(ti))−FΨ(FQ(ti)(Qobs(ti)))| (14)

where Ψ = {FQ(ti)(Qobs(ti))|i ∈ N,0≤ i≤ n}, FΨ is the empirical cumulative distribution function of Ψ and FQ(ti) is the

empirical cumulative distribution function of the predicted streamflow at time ti. Ξreli can take values in the interval [0,1],5

where smaller
:::::
larger values of Ξreli correspond to better , and zero to perfect ,

::::::::
reliability

:::
and

:::::
unity

::::::
means

::::::
perfect

:
reliability.

It summarises the deviance of the observations from
:::::::
measures

:::
the

::::::
degree

::
to

:::::
which

:::
the

:::::::::::
observations

:::
are

:::::::::
consistent

::::
with

:::::
being

:
a
::::::
sample

:::
of the predictive distributionover all time points, and the distance is measured .

:::::
Since

::::::::::
comparison

:::::::
happens

:
in the

uniform space. Therefore, the influence of heavy outliers on Ξreli is limited.
::::
Note

:::
that

:::
we

:::
use

:::
the

::::::::::
complement

:::
of

::
the

:::::::::
reliability

:::::::
measure

::::::::
proposed

::
by

::::::::::::::::::::
McInerney et al. (2017),

::
in
:::::
order

::
to
:::::
allow

:::
for

::
a
::::
more

::::::::
intuitive

:::::::::::
interpretation

::::::
(larger

::::::
values

::::
mean

::::::
larger10

:::::::::
reliability).

2.4.3 Precision
:::::::
Relative

::::::
Spread

The precision metric
:::
The

::::::
relative

::::::
spread

:
is an indicator for the width of the predictive distributions over all time points, and

was proposed by McInerney et al. (2017) as:

Ωspread =

∑n
i=0σQ(ti)∑n
i=0Qobs(ti)

(15)15

where σQ(ti) is the standard deviation of the predictive distribution at time point ti calculated from the ensemble of all

stochastic predictions at that point in time. Ωprec ∈ R+
::::::::::::
Ωspread ∈ R+, and small values of Ωprec indicate high precision

::::::
Ωspread

::::::
indicate

:::::::
precise

:::::::::
predictions or small predictive uncertainty. The smaller the predictive uncertainty, the better the quality of the

underlying model, given that the predictions are not overconfident.
:::::
While

::::::::::::::::::::
McInerney et al. (2017)

:::
use

:::
the

::::
name

::::::::::
“precision”

:::
for

:::::::
Ωspread,

::
we

:::::::
believe

:::
that

:::::::
“relative

:::::::
spread”

::
is

:
a
:::::
more

:::::::::
appropriate

:::::
term

:::::::::
considering

:::
its

:::::
actual

::::::::
meaning.

:
20

2.4.4 Nash-Sutcliffe Efficiency

The Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970), EN,f (f for function), is defined as:

EN,f(Q,Qobs) = 1−
∑n
i=0 (Q(ti)−Qobs(ti))

2∑n
i=0(Qobs(ti)−Qobs)

2
(16)

whereQ= (Q(t0),Q(t1), . . . ,Q(tn)). It is used in this study to assess the output of the hydrological at the maximum posterior

parameter density, ÊN,det = EN,f(Q̂det,Qobs), as well as the stochastic simulations, EN = median(EN,f(Qj ,Qobs)). It is25

used as a rough measure of how well two hydrographs correspond to each other, primarily with the goal of identifying very

poorly fitting hydrographs. It is known to be sensitive to errors in high flows (Legates and McCabe, 1999), which can be of

particular practical interest. Therefore it complements the other measures, which are less informative with respect to errors in

high flows.
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2.4.5 Relative error in total cumulative streamflow

As a measure of systematic over- or under-prediction of streamflow, we calculate the relative error in total cumulative stream-

flow:

∆(Q,Qobs) =

∑n
i=0Qobs(ti)−Q(ti)∑n

i=0Qobs(ti)
(17)

It is calculated w.r.t. the model output based on the parameter values at the maximum posterior density; ∆̂Q,det = ∆(Q̂det,Qobs),5

as well as for the ensemble of individual stochastic simulations: ∆Q = median(∆(Qj ,Qobs)). Note that, contrary to McIner-

ney et al. (2017), ∆Q is the median error of all the individual hydrograph realisations, not the error of the average hydrograph.

3 Case study setup

3.1 Catchments and data

The probabilistic framework developed in Sect. 2.1 was tested in two case study sites, the Murg and the Maimai catchments,10

which are described in this section. The Murg river flows through a hilly headwater catchment in temperate climate with

a size of 80 km2 in northeastern Switzerland. Some key hydrological summary statistics are listed in Table 2. Land use is

predominantly agricultural (50 %), with forested headwaters (30 %) and a considerable part of urban areas (10 %). The mean

elevation is 652 m a.s.l., spanning from 466 to 1035 m a.s.l. Streamflow peaks can be quite sharp, especially for small events, in

which baseflow conditions are reached again within just a few hours. This is potentially due to impervious areas being drained15

directly into the river. The data consists of hourly averages of streamflow, precipitation and potential evapotranspiration from

January 1995 to December 2002. Calibration was performed in the first 5 years (Jan 1995-Dec 1999) and validation in the

consecutive 3 years (Jan 2000-Dec 2002). Streamflow data is a courtesy of the Swiss Federal Office for the Environment

(FOEN). Precipitation and potential evapotranspiration are based on meteorological data (Meteoschweiz, 2018) and were

processed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), with the preprocessing tools of20

PREVAH (Viviroli et al., 2009).

The Maimai experimental catchments are a set of small headwater catchments with a long history of hydrological research.

They are located on a deeply incised hillslope on the South Island of New Zealand. The area is forested and the climate is

considerably more humid than in the Murg catchment (Table 2). The site was chosen for this study due to its homogeneous

characteristics and relatively simple hydrological response, which make it very suited for model evaluation and testing (e.g.25

?
::::::::::::::::::::::::
Seibert and McDonnell (2002)). We use hourly data recorded in 1985-1987 in the M8 experimental catchment, the most

intensely studied of the Maimai catchments. It has an area of ca. 7 ha with steep (34◦) slopes. The reader is referred to

Brammer and McDonnell (1996) for a more detailed description of the characteristics of the M8 and the other experimental

catchments. This study does not attempt to make a significant contribution to the understanding of the hillslope processes in

the Maimai catchment (see McGlynn et al. (2002) for an extensive overview). Calibration was performed based on data from30

Jan 1985-Dec 1986, and validation during Jan-Dec 1987. The data was kindly provided by Jeffrey McDonnell.
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Table 2. Properties of the two case study catchments. P is the precipitation and RC the runoff coefficient (calculated from cumulative

streamflow and precipitation). Qobs,max, Qobs,min and Qobs are the minimum, the maximum and the average streamflow, respectively.

IF,obs is the Flashiness Index(Baker et al., 2004).

Catchment Area P RC Qobs,max Qobs,min Qobs IF,obs

[km2] [mm a−1] [-] [mm h−1] [mm h−1] [mm h−1] [-]

Murg 80 1369 0.57 2.7 1e-2 0.089 0.053

Maimai 0.07 2349 0.62 8.5 1e-4 0.17 0.13

Figure 2. Structure of the deterministic hydrological model used in this study. Pu is the precipitation and Eu the evapotranspiration. Su

represents the active water content of the unsaturated zone, while Sf is a non-linear reservoir representing the fast flow component.

While the resolution of the original data was hourly, we produced data sets with 6-hourly and daily resolution by aggregation

for both catchments. This setup allows us to systematically investigate the effect of the temporal resolution of the data on the

joint inference of hydrological and error model parameters. This could contribute to the identification of the cause of previously

encountered problems in joint inference (Goal 2b specified in Sect. 1). Furthermore, the two selected catchments are different

in size, signatures (Table 2), and complexity of their hydrological response, so that the influence of the catchment or data5

properties can be assessed to some degree. To limit the scope of the study, we constrained the analysis to two catchments.

3.2 Deterministic Hydrological Model

The hydrological model used throughout this study is a simple, lumped bucket model with two reservoirs (Figure 2), which

are meant to represent the unsaturated soil zone and the subsurface flow being fed by it. A slower flow component is included

though a linear outflow from the unsaturated zone reservoir directly. Due to its simplicity, and due to the fact that it is not clear10

whether the chosen model structure is suited for the studied catchment a priori, we expect systemic difficulties in reproducing

the observed streamflow dynamics. This is a very common situation in hydrological modelling and it will lead to correlated and

potentially heteroscedastic and non-normal errors. This allows us, in principle, to test the error models (Sect. 2.2) under realistic

conditions. The streamflow simulated by this deterministic model is denoted as Qdet(t,θ) =Qs(t,θ) +Qf(t,θ), where Qs is

14



the slow response of the model, Qf is the fast response and θ = (Ce,Smax,ku,kf) are the calibrated hydrological parameters.

The fluxes (Eu, Pu, Qu, Qs, Qf ) and states (Su, Sf ) of the model are given by:

dSu

dt
= Pu−Eu−Qu−Qs

Eu = CeEp

Su

Smax
(1 +m)

Su

Smax
+m

Qu = Pu

(
Su

Smax

)β
Qs = kuSu

(18)

dSf

dt
=Qu−Qf

Qf = kfSf
α

(19)

whereEp is the potential evapotranspiration. WhileCe, Smax, ku and kf were inferred,m, β and αwere kept fixed at 0.01, 3 and5

2, respectively. m can be seen as a smoothing parameter and m= 0.01 translates to Eu ≈ CeEp as long as Su/Smax� 0.01.

β = 3 and α= 2 were found to lead to reasonable results in both investigated catchments and were fixed due to potential

interactions with Smax and kf . The hydrological model was implemented in SUPERFLEX (Fenicia et al., 2011; Kavetski and

Fenicia, 2011), a flexible framework for conceptual hydrological models which uses efficient numerical integration schemes.

3.3 Priors10

The prior distribution of the parameters was assumed to be composed of independent normal or log-normal distributions with

relatively large standard deviations (see Table 3). A unimodal distribution is the more accurate representation of our prior

believe
:::::
belief

:
than e.g. a uniform distribution over a predefined range, since we do assume that values in the middle of the

suspected range are more probable than at its edge. Note that this is primarily a conceptual difference, as large standard

deviations were chosen to minimise the influence of the priors on the results.15

4 Results

After providing some general results, this section contains a more detailed summary of the results for each of the tested error

models. The complete analysis included additional error models and performance metrics, which are included in Appendix

B. The supplementary material contains further information on the resulting posterior density estimates of the parameters and

Kullback-Leibler divergences of the marginal posterior and prior parameter density estimates.20

Figure 3 gives an overview of the difference in Flashiness Index, the reliability and the precision
::::::
relative

::::::
spread

:
in the

calibration and the validation periods for both catchments, all temporal resolutions of the data and all tested error models.
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Table 3. Prior distributions of the hydrological and error model parameters applied in all the cases where the respective parameter was used.

N = Gaussian Normal; LN = log-normal. Where lower and upper boundaries are listed, the distribution is truncated at those values.

Parameter Distribution Unit µ σ low. bound. up. bound.

Ce N - 1 0.2 0.2 3

Smax LN mm 148 1086 2.7 1086

ku LN h−1 1.8e-2 0.13 2.3e-6 5e-2

kf LN h−1 0.37 2.7 2.3e-6 0.37

a LN - 0.2 0.2 - -

b LN - 0.1 0.1 1e-2 0.5

τmax LN h 148 1086 0 2000

γ LN - 1 0.2 0.1 5

df
::
df LN - 14 17 3 -

Figure 4 provides additional information about the relative error in cumulative streamflow, ∆Q, and about
:::
the

::::::::::::
Nash-Sutcliffe

:::::::::
Efficiency, ÊN,det. The temporal resolution of the data has a pronounced effect on all the analysed performance metrics.

The spread over all the combinations of error models and catchments is larger for higher temporal resolutions (Fig. 3 and

4). Furthermore, the average of each metric indicates decreasing performance for increasing temporal resolution. This loss

in performance is more pronounced in the Murg catchment and for Error Models E2 and E3a than in the Maimai catchment5

and for other error models. The difference between the two catchments is most clearly visible in ÊN,det (Fig. 4): for 6-hourly

and daily resolution of the data, the worst performing error model in the Maimai catchment has a better ÊN,det than the best

performing error model in the Murg catchment.

4.1 Individual error models

4.1.1 Model E110

E1 tends to strongly overestimate the true flashiness in case of high temporal resolutions in both catchments (Fig. 3
::
a/b, the

difference between the observed and the median of the predicted Flashiness Index is around -0.4 for both catchments). In

terms of reliability, E1 is never the single best of the error models, but always among the best, and it is robust in light of

varying temporal resolution (Ξreli is smaller
:::::
larger

:
or equal to 0.2

::
0.8

:
in all the cases, Fig. 3

::
c/d). E1 is also among the error

models that provide the most precise
::::
least

::::::::
uncertain

:
predictions (average

::::::
relative

:::::
spread

:
of 0.41over all the cases,

::::
Fig.

::::
3e/f),15

have the smallest ∆Q (usually between 0 and -10 %) and the highest ÊN,det overall (Fig. 4). Except for the Flashiness Index,

its performance stays stable for high-frequency data in both catchments. However, the high Flashiness Index of this model

demonstrates the strong violation in the description of the output behavior despite its good performance regarding the other

performance metrics.
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Figure 3. Performance of the error models w.r.t. flashiness index
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Flashiness
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for both catchments

and all temporal resolutions. Perr was smoothed (?) exclusively for hourly data in the Maimai catchment.
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4.1.2 Model E2

With the constant correlation assumption made in E2, IF,obs is generally well reproduced by IF with deviances ranging from

-0.03 to 0.07 (Fig. 3).
:::
a/b).

::::
For

:::
E2,

:̂
IF,det is often similar to IF for E2

::
all

:::::::
temporal

::::::::::
resolutions (Tables B1 and B2), indicating

that the large part of the flashiness of the model output is due to the hydrological model response and only a small part is due

to the stochastic variability added through the error model. Regarding all the other performance metrics, however, E2 is often5

among the worst performing error models. For example, in more than half of all the investigated combinations of catchments

and temporal resolutions, E2 is the error model with the worst reliability (Fig. 3
::
c/d). E2 has an average precision

::::::
relative

::::::
spread

of 0.61 over all the cases, compared to a precision of 0.41 of
:::::
while

:::
the

:::
one

::
of
:

E1
:
is
::::
0.41. It tends to produce large errors in

cumulative streamflow, especially in case of hourly resolution (∆Q <−75%, Fig. 4
:::
a/b). The degradation of the streamflow

error and ÊN,det with increasing measurement frequency is very pronounced for E2 compared to the other error models (Fig.10

4
:::
a-d).

4.1.3 Model E3

E3 generally overestimates the true Flashiness
::::::::
flashiness, i.e. IF is often larger than IF,obs. The difference is around 0.2 for

hourly and 6-hourly resolution and a bit less for daily resolution (Fig. 3
:::
a/b). The overestimation of the flashiness by E3 is less

severe than with E1. E3 results in stable reliability metrics for all temporal resolutions in both catchments: Ξreli is smaller than15

0.2
:::::
larger

::::
than

:::
0.8 in every case and smaller than 0.1

:::::
larger

::::
than

:::
0.9 in more than half of the cases (Fig. 3

::
c/d). In the validation

period in the Murg catchment, it is the most reliable error model of all . The precision
::::
(Fig.

:::
3d).

::::
The

::::::
relative

::::::
spread of E3 is in

the range of [0.34,0.5] in all instances with an average value of 0.43, and it is unaffected by the temporal resolution (Fig. 3
:::
e/f).

The absolute value of ∆Q is never larger than 25 % and usually smaller than 10 % (Fig. 4
::
a/b). In terms of ÊN,det, E3 reaches

values larger than 0.75 in all cases except for hourly resolution in the Murg catchment, where it is 0.69. All the metrics show20

stable performance of E3 under increasing measurement frequency (Figs. 3 and 4).

4.1.4 Model E3a

When inferring τmin with Error Model E3a, we get close correspondence of IF and IF,obs in all cases (Fig. 3
::
a/b, the deviation

is never larger than 0.05). In the Maimai catchment, the reliability measure shows a stable performancein
:::::
stable

::::::::::
performance,

with values between 0.04 and 0.19
::::
0.81

:::
and

::::
0.96 in the validation period (Maimai, Fig. 3

::
c/d), showing no clear signs of worse25

performance for high-frequency data. The inferred values of τmin were in the order of 1 d
:::
day and therefore clearly smaller

than τmax (Fig. 7). Furthermore, τmin was consistent among the different temporal resolutions.

In the Murg catchment, on the other hand, we see degenerating performance of E3a with increasing measurement frequency,

with values of Ξreli > 0.5
::::::::
Ξreli < 0.5

:
for 6-hourly and hourly data (Fig. 4

:::
3c/d), indicating poor performance. All the other

metrics show a similar pattern(Fig. 4). .
:
The inferred τmin were between 50 and 100 h, where values on the upper end of the30

spectrum
:::
that

:::::
range coincided with bad reliabilities (Fig. 7).
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4.1.5 Model E4

The stochastic model realisations with E4 tend to overestimate the true Flashiness Index; the difference between IF,obs and IF

is usually between -0.2 and -0.1 (Fig. 3
::
a/b). IF is often much larger than ÎF,det in the Murg catchment (Table B1), indicating

that a relatively large part of the flashiness is accounted for by the error model and less by the hydrological model in that case.

This manifests in smaller values of ÊN,det with E4 compared to E1 (e.g. 0.65 for E4 with hourly resolution compared to 0.795

with E1, Fig. 4
:
c). In the Maimai catchment, the hydrological model captures a larger part of the variability than in the Murg

catchment, and the difference between IF and ÎF,det is smaller (Table B2). Concerning the reliability, Ξreli is largely smaller

than 0.2
::::::::
generally

:::::
larger

::::
than

:::
0.8, indicating well-conditioned predictive distributions, except in the validation period for hourly

resolution (Fig. 3
::
c/d). In the Maimai catchment, reliability is better in the calibration period compared to

:::
than

::
in
:
the validation

period, which is a sign of over-fitting. Especially for daily resolution, E4 provides very good reliabilities in the calibration10

period (Ξreli < 0.03
::
in

::::
both

:::::::::
catchments

:::::::::::
(Ξreli > 0.97, Fig. 3

:
c). The average precision

::::::
relative

::::::
spread of E4 is 0.60. ∆Q is not

more extreme than -27 % in any case and usually less severe than 20 % (Fig. 4
:::
a/b). A slight degradation of ∆Q with increasing

frequency of the data can be observed.

4.1.6 Model E4a

E4a results in IF that are very close to the observed flashiness in all cases: the difference is never more extreme than 0.0515

(Fig. 3
:::
a/b). ÎF,det is often smaller than IF,obs in the Murg catchment, which, similar as in E4, is an indication that most of

the variability is explained by the error model and not the hydrological model. Ξreli is always smaller (better) than 0.2
:::::
larger

:::
than

::::
0.8

::::
(Fig.

:::::
3c/d) except for the validation period with hourly resolution in both catchments . Like with

:::
(Fig.

::::
3d).

:::::::
Similar

::
to E4, we can see a tendency for over-fitting with E4a in the Maimai catchment: in the calibration period, reliabilities of 0.02,

0.05 and 0.08
::::
0.98,

::::
0.95

::::
and

::::
0.92 are reached, while the validation results in values of 0.16, 0.16 and 0.23

::::
0.84,

::::
0.84

::::
and

::::
0.7720

for daily, 6-hourly and hourly resolutions, respectively (Table B2). A look at the precision metric
::::::
relative

::::::
spread (Fig. 3

::
e/f)

shows that E4a gives
::::
leads

::
to

:
unrealistically large prediction uncertainty in the Maimai catchment for 6-hourly and hourly

resolution but that it is among the most precise error models in the Murg catchment. Similarly, E4a produces relatively large

errors in cumulative streamflow in the Maimai catchment, but very small ones in the Murg catchment (Fig. 4
:::
a/b). Opposed to

that, ÊN,det is larger
:::::
better

:
than 0.75 in all cases in the Maimai catchment, while it reaches values as low as 0.5 for hourly25

resolution in the Murg catchment .
::::
(Fig.

:::::
4c/d).

:

4.2 Relaxing the constant-correlation assumption

Error Model E3, which accounts for reduced correlation of errors during the precipitation events, leads to an overall improve-

ment in the investigated performance metrics (except IF) compared to E2, which assumes constant correlation (Fig. 3 and 4).

For example, the reliability for hourly resolution in the Murg catchment is 0.06 and 0.61 for E3 and E2, respectively (Fig. 3
:::
c/d).30

In contrast to E2, the performance of E3 does not show systematically worse performance for high-frequency data. In fact, E3

and E1 show a similar stability in performance, but E3 provides more realistic estimates of the correlation during recessions

20
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Figure 5. Streamflow predictions with hourly resolution in the Maimai creek
:::::::
catchment

:
in a part of the validation period (1993)

::::::
obtained

:::
with

::::
error

::::::
models

:::
E1

:::
(a),

::
E2

:::
(b)

:::
and

::::
E3a

::
(c). Deterministic predictions with the parameter values at the maximum posterior density are

shown together with the 90%-confidence bands and one single stochastic streamflow realisation for each of the error models.
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Figure 6. Transformed residuals, η, as a function of modelled streamflow (top) and correlation structure of the posterior parameter sample

(bottom) resulting with Error Models E2 (left) and E3 (right) for data with hourly resolution in the Murg catchment.

and baseflow, leading to a better estimate of IF .
::::
(Fig.

:::::
3a/b). Figure 6 shows typical results of E2 and E3 w.r.t. streamflow bias,

visible as a bias in η
::::
(Fig.

::::
6a/b), and posterior correlation between heteroscedasticity and correlation parameters a and τmax .

::::
(Fig.

:::::
6c/d).

:
Note also the smaller standard deviation (parameter a) resulting from E3 .

::::
(Fig.

::::
6d). Additional results about the

standardized innovations of η are available in the supplementary material.

Figure 5 compares the predicted hydrographs of E1, E2 and E3a
::
in

:::
the

::::::
Maimai

:::::::::
catchment

:::::
using

::::::
hourly

::::
data. In this case,5

allowing for different characteristic correlation times during precipitation events and dry periods (E3a) prevents the problematic

behaviour encountered when making the ,
::::
Fig.

:::
5c)

:::::
leads

::
to

:::::
better

::::::::
behaved

::::
error

:::::
bands

:::::::::
compared

::
to

:::
the

:
constant correlation

assumption .
:::
(Fig.

::::
5b)

:::
and

::
to

:::::
more

::::::
realistic

:::::::::
stochastic

:::::
output

:::
of

:::
the

:::::
model

::::
than

::::
with

:::
the

:::::::::::::
zero-correlation

::::::::::
assumption

::::
(Fig.

::::
5c).

Note that E3a results in better estimates of IF than E3, since it considers correlation during precipitation events (τmin > 0). In
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Figure 7. Marginal posterior densities of τmin and τmax, and corresponding reliability measures Ξreli in the validation period resulting from

Error Model E3a in all combinations of catchments and temporal resolutions.

the Murg Catchment, inferring τmin resulted in a degenerative performance for high-frequency data, which were also linked to

higher values of τmin (Fig. 7). The posterior estimates of τmax depend on the resolution in both catchments. While large τmin

coincide with the worst reliabilities, large τmax were also obtained together with good reliabilities (Fig. 7). The effect of τmin

on the relative cumulative streamflow error is shown in Fig. 8 for 6-hourly data in the Murg catchment. The streamflow error

starts to increase for τmin > 10h and at the same time ÊN,det decreases (not shown), approaching the one of E2.5

4.3 Relaxing the assumption of normality

Relaxing the assumption of normality by inferring γ and df
::
df (E4 and E4a) had a mixed effect on the numeric performance

indices analyzed in this study. When τmin = 0, including skewness and kurtosis (E4) often led to a better reliability in the

calibration period
::::
(Fig.

:::
3c), but a worse reliability in the validation period

::::
(Fig.

:::
3d)

:
compared to the assumption of a normal

distribution with E3(Fig. 3).
:
. Predictions with E4 were generally less precise

:::
had

::::::::
generally

:
a
::::::
smaller

::::::
spread than the ones with10

E3, e.g. Ξreli ::::::
Ωspread was around 0.5 with E3 and 1.0 with E4 for hourly resolution in the Maimai catchment (Fig. 3

::
e/f). When

τmin was inferred additionally, the non-normal case (E4a) showed better performance metrics than the normal case (E3a) in
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Figure 8. Relationship between the fixed correlation time during precipitation events, τmin, and the total streamflow error, ∆Q, for 6-hourly

data resolution in the Murg catchment. Each point corresponds to a full inference and prediction procedure. The error bars span two standard

deviations of 500 stochastic predictions. E3 corresponds to τmin = 0 and E2 to τmin = τmax ≈ 170 h.

the Murg catchment, but worse ones in the Maimai catchment. E4 and E4a in the Maimai catchment were the only cases that

showed a pronounced difference between calibration and validation, which is a sign of overfitting. A visual inspection of the

QQ-plots of η revealed that E4 and E4a successfully reduced some very heavy outliers that strongly violated the assumption

of normality. In both catchments, the inferred γ were in the range of [1.5,2.8] for E4 and E4a. The values at the upper end

of this spectrum were reached for hourly resolutions, and they were associated with underestimation of the peak flows by5

the deterministic hydrological model, reflected in reduced ÊN,det. For example, E4a resulted in γ ≈ 2.5, ÊN,det = 0.5 and an

underestimation of peak flows by the hydrological model for hourly data in the Murg catchment. Inferred df
:
df:

were always at

or close to the lower limit of 3, which is indicative of heavy outliers.

Regarding the location ofDQ w.r.t.Qdet, the assumption in Eq. (9a) led to better results than Eq. (9b) in the Murg catchment.

For example, Ξreli with E4a is 0.22 or 0.87 when applying Eq. (9a) or (9b), respectively (Table B1). In the Maimai catchment,10

the opposite is true: Ξreli is 0.32 or 0.23 with Eq. (9a) or (9b), respectively (Table B2). The difference between results obtained

with Eqs. (9a) and (9b) is generally larger for higher frequency of the data.

5 Discussion

5.1 Presence and absence of autocorrelation

Assumptions about the presence (E2) and absence (E1) of autocorrelation in η were shown to have profound effects on the15

quality of the prediction in the cases investigated in this study. Neglecting autocorrelation leads to close correspondence be-

tween Q̂det and Qobs in terms of the Nash-Sutcliffe coefficient
::::::::
Efficiency

:
and to relatively well-fulfilled assumptions about
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the distribution of η in the uniform space (i.e. small values of Ξreli). However, major assumptions of the underlying statistical

model are clearly violated. Most striking is the violation of the zero correlation assumption (Fig. 9
:
b), which translates into

unrealistic fluctuations of the stochastic streamflow predictions (E1 in Fig. 5
:
a). Note that E1 also comes with disadvantages

related to operational forecasts, where one can make more accurate predictions for streamflow in the near future given an error

in previous streamflows when accounting for correlated errors (Del Giudice et al., 2013). This effect was not analyzed in this5

study.

Accounting for the fact that η is obviously autocorrelated, and therefore describing it by a Gaussian process with constant

autocorrelation (E2), comes with additional difficulties. Those are: strong interactions between estimates of
:::::
These

::::::
include

::
a

:::::
strong

:::::::::
interaction

:::
of

:::
the hydrological water balance parameters and heteroscedasticity and autocorrelationparameters of the

error model (E2 in
:::::::::
parameter,

:::
CE,

::::
with

::::::::::::::
autocorrelation,

:::::
τmax.

::
In

:::::::
addition,

:::
we

::::::::
observed

:
a
::::::
strong

:::::::
posterior

::::::::::
correlation

:::::::
between10

::
the

:::::::::
parameter

:::
for

::::::::::::::
autocorrelation,

:::::
τmax,

::::
and

:::::::::::::::
heteroscedasticity,

::
a,
::

(Fig. 6),
::
c).

::::
This

::::::::::
correlation

::
in

:::
the

::::::::
posterior

:::::::::
parameter

:::::::::
distribution

::::::::
coincided

:::::
with

:::::::::
systematic

::::::::::::
overprediction

::
of

::::::::::
streamflow.

::
E2

::::
also

:::::::
showed smaller EN ,

:::
and ÊN,det, and worse ∆Q

compared to E1
::::
(Fig.

::
4). Strong posterior correlations between τ and a coincided with systematic overprediction of streamflow.

Evin et al. (2013), who tested an error model similar to E2 on daily data, obtained very similar results in terms of interactions

between
::
of

:
water balance parameters , heteroscedasticity and correlation

:::
with

:::::::::
correlation

::::
and

:::::::::::::::
heteroscedasticity parameters.15

The reasons for those problems are still poorly understood. Failing to reproduce the problems under synthetic conditions, Evin

et al. (2014) suggest that the “nonrobustness of the joint approach” might be caused by “structural errors in the hydrological and

/ or error models”. Based on case studies with daily data, they find that (i) the catchments where these problems are absent are

all wet catchments with relatively high runoff coefficients and low ephemerality. To this, we can add that (ii) the performance

of the corresponding error model in our study (E2) strongly degrades for higher data frequency within two relatively wet20

catchments.

5.2 (Non-)Stationarity
::::::::::::::
Non-stationarity of autocorrelation

Figure 9 visualizes one potential reason for the degrading performance of E2 for high-frequency data: our assumptions about

the stochastic process (OU-process with constant correlation time τ ) seem to be much better fulfilled for the daily
::::
(Fig.

:::
9a)

than for the hourly
::::
(Fig.

:::
9b)

:
data. In the latter case, a visual assessment of η(t) obtained with E1, reveals strongly reduced auto-25

correlation during storms compared to inter-storm periods(Fig. 9).
:
. Yang et al. (2007) made similar observations. This raises

the hypothesis that the neglection of non-stationarity of the autocorrelation is a major deficit of conventional error models,

which leads to the previously encountered problems in the joint inference of autoregressive and hydrological model parameters

mentioned in Sect. 5.1.

What is the physical explanation for non-stationary autocorrelation of the errors η? The autocorrelation of errors in stream-30

flow is primarily caused by the memory effect of errors in storage (Kavetski et al., 2003). Since this memory effect of a

catchment during precipitation events can be expected to be different from the one during dry weather, the correlation of the

errors in streamflow can be expected to be different as well. The degree of change of the correlation may depend on multiple

factors, like the hydrological model used, the precipitation intensity or volume, the extent to which the precipitation signal is
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a

b

> 0

> 0

Figure 9. Time series of η corresponding to the parameter values at the maximum posterior density obtained with E1 in the Maimai catchment

for daily and hourly resolution. Intervals where P > 0 are shaded in grey.

filtered by the catchment, time-lags between precipitation and runoff, and potentially others. Most probably, the mentioned

factors will lead to smaller correlation during wet periods and larger ones during dry periods.

A very simple way of considering this reduced correlation (E3) provides strongly improved results compared to the assump-

tion of stationary correlation (Sect. 4.2). This indicates that neglection of the non-stationarity of the autoregressive parameter

is a substantial shortcoming of conventional error models, which causes, at least partly, the well-known problems related to5

joint inference. Note that non-stationary correlation can also be implemented in other existing likelihood functions and does in

principle not require the use of the proposed theoretical framework described in Sect. 2.1.

To challenge this hypothesis, one could argue that the improved performance of E3 (compared to E2) might also be achieved

when reducing τ during completely arbitrary time intervals instead of precipitation events. This would dismiss the hypotheses

that the precipitation has a direct influence on τ and that considering this influence leads to a better inference behavior. To test10

this, we shifted Perr (Eq. 11) substantially in time, so that it would not correspond to the observed precipitation P anymore,

while still keeping the major properties (duration and intermittency) of the time intervals during which τ is reduced. Then,

inference was performed with E3 again. The low Nash-Sutcliffe Efficiency and the high streamflow error of the stochastic

predictions in that case (E3† in Table B2) shows that it is indeed important to reduce τ during the precipitation events and not

during arbitrary periods with the same intermittency and duration as the precipitation events. With the shifted Perr, the resulting15
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τmax (≈ 145h) was much smaller than the original τmax (≈ 1400h), confirming the hypothesis of reduced correlation time of

errors in streamflow during precipitation events.

One could also argue that the improved performance of E3 compared to E2 is primarily due to assuming reduced autocorre-

lation during periods with strong outliers (i.e. storm events) and that those outliers (visible in Fig. (6)) should be accounted for

by appropriate values of γ and df
::
df , instead of reducing their influence by neglecting correlation in the periods they appear. Or,5

similarly said, if the autoregressive process with constant correlation is applied to appropriately standardized residuals, which

are marginally normally distributed, it should not cause any problems. To explore this possibility, we performed some experi-

mental analysis for hourly resolution in the Murg catchment: we modified E1 by fixing γ = 1.5 and df = 5
:::::
df = 5 (E1+). This

led to a well-conditioned η and performance metrics that were comparable to or better than the ones of E1 (Table B1). Then,

we inferred τ under the assumption of constant correlation, while skewness and kurtosis were kept fixed at the values given10

above (E2+). The resulting performance metrics and a visual assessment of the hydrographs revealed strong deficiencies of this

approach compared to E3 and to E1+ (Table B1). This indicates that it is not enough to ensure that the marginal distributions

of errors is sufficiently well captured before applying an autoregressive process, but that it is also important to account for a

potential non-stationarity of the correlation of the errors. Note that also the distributional parameters of DQ (e.g. γ or df
::
df )

could be non-stationary (Wani et al., In preparation).15

It is still unclear what the optimal parametrization of a time-dependent correlation could be. Using the input to directly

inform the correlation structure of the output requires knowledge of how the catchment transforms the signal. E.g., there could

be a significant lag time between precipitation and streamflow, which would have to be taken into account in Eq. (11). For the

Maimai catchment, we found that using a smoothed version of Perr in Eq. (11) improved the performance of Error Models

E3 and E4 in case of hourly resolved data (Table B2). For the coarser resolutions in the Maimai catchment, and for all the20

tested resolutions in the Murg river, transforming Perr in a similar way did not lead to a remarkable change in the results.

The influence of possible transformations of Perr to account for the filtering effect of the catchment was not systematically

investigated in this study.

5.3 Inference of τmin

The fact that τmin (Eq. 11) could only be inferred with partial success, shows that there are still problematic interactions among25

parameters controlling the correlation of the errors and hydrological model parameters. Figure 7 indicates that those problems

are more related to τmin than to τmax, since higher values of τmin tend to coincide with bad performance. Or, in more general

terms, the previously encountered problems in the joint inference of hydrological and correlation parameters (Evin et al., 2013)

seem to originate from precipitation periods, not from dry periods. The fact that the inference of τmin is more successful in

the Maimai catchment (Sect. 4.1.4), which has the simpler hydrological response, suggests that the realism of a hydrological30

model facilitates the successful inference of the correlation parameters.

These findings call for additional investigations into the issue of non-stationary correlation, potentially exploring other

relationships between τ and P or Qdet. Making τ dependent on Qdet instead of P would have the advantage that potential
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low-pass filtering or time-lag between precipitation and streamflow are taken care of by the hydrological model and need not be

considered anymore in the error model. We performed some exploratory analysis in that direction, so far with limited success.

5.4 Shape of the distributionDQ

Relaxing the assumption of marginal normality ofQobs givenQdet successfully reduced some very heavy outliers that strongly

violated that assumption. However, this did not always translate to improved distributional assumptions in the uniform space,5

where Ξreli is calculated. We suspect that the presence of strong outliers (large η) under the normal assumption led to the strong

right-skew ofDQ when inferring γ and df
::
df , which was less appropriate for the rest of the distribution of observed streamflows.

In that case, a different distributional shape forDQ would be more appropriate, e.g. a mixture distribution, that allows for some

heavy tails on the upper side without skewing the central body too much to the right. Testing other distributional shapes for

DQ was beyond the scope of this study, however. Note that heavy outliers (i.e. η� 0) do not necessarily correspond to high10

streamflow; in both catchments the largest η were observed during medium to low flows (Fig.6
::::
6a/b), namely during small

peaks of observed streamflow that were not captured by the model.

The ranking in performance of the two options to either place the mean or the mode of DQ at Qdet (Eq. 9), was different for

the two analyzed catchments. The previous led to better results in the Murg catchment, while the latter seemed preferable in

the Maimai catchment. Ideally, we would like to satisfy both conditions, but this is obviously not possible when DQ is skewed.15

Regarding the choice of the type of the distributionDQ, recall thatQ(t)∼DQ(Qdet(t),ψ). A distribution type with positive

support would be a desirable alternative to the skewed Student’s t-distribution, since it would ensure positive streamflow

without the need to assign the probability of Q< 0 to Q= 0. If additionally, E[Q(t)] =Qdet(t), mass conservation would be

guaranteed (since the applied hydrological model conserves mass). In our experience, however, such distributions
:::::
Some

::::::
limited

:::::::::
exploration

::
in

:::
this

::::::::
direction

::::
with

:
a
:::::::::
lognormal

::::::::::
distribution lead to unsatisfactory fits (results not shown). An extreme

::::
This

:::::
might20

::
be

:::
due

:::
to

:::
the

::::::::::::
unrealistically

:::::
strong

:
right-skew is needed to account for cases where Qobs(t)� E[Q(t)], i.e. when observed

streamflow is several orders of magnitude larger than modelled streamflow, which can happen if the latter approaches zero.

Such an extreme right-skew is unrealistic in case of larger modelled streamflows, where it is very unlikely that the observations

are several orders of magnitude larger than a well-calibrated hydrological model
:::::::::::::
Qobs(t)�Qdet:::::

when
:::::
using

:
a
::::::::::
distribution

::::
with

::::::
positive

:::::::
support

:::
and

:::::
mean

:::::
equal

::
to

::::
Qdet. Thus,

::
in

:::
our

:::::::::
experience,

:
the non-negativity of discharge

:::::::::
streamflow observations (for25

non-tidal rivers) makes it in our experience practically nearly impossible to keep mass balances
:::
the

:::::::::::
conservation

::
of

:::::
mass

::::::
difficult

:
at very low discharge

::::::::
modelled

:::::::::
streamflow

:
if there is a considerable observation error. A possible solution to this

problem might be non-stationary skewness or kurtosis of DQ (Wani et al., In preparation), e.g. imposing an inverse relation

between skewness or kurtosis and Qdet.

6 Conclusions30

We presented and evaluated a flexible framework for probabilistic model formulations (i.e. likelihood functions) to describe

the total uncertainty of the output of deterministic hydrological models. This framework allows us to consider heteroscedastic
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errors with non-stationary correlation, non-equidistant observations and zero probability for negative streamflow. It does so

by allowing for arbitrary and explicit marginal distributions for the observed streamflow at each point in time. For experts, it

is easier to parameterise these marginal streamflow distributions than the distribution characterizing the autoregressive model

or some non-intuitive transformations like the Box-Cox transformation. The consistent implementation of this framework was

successfully checked with a synthetic case study.5

Using a simple deterministic hydrological bucket model and two case study catchments, the flexible framework was used

to systematically test different error models on real world data. Those error models represented various assumptions about the

statistical properties of the errors in terms of autocorrelation, skewness and kurtosis. The assumptions were found to have a

profound effect on the quality of the predictions. The key findings are as follows:

1. We confirmed that, as shown in previous work by various authors, accounting for autocorrelation with conventional10

approaches (represented by model E2) can lead to worse predictions than omitting autocorrelation (model E1). For

example, model E2 had errors in cumulative streamflow of 76 % in the Murg catchment and 96 % in the Maimai

catchment for hourly resolution in the calibration period. With model E1, in comparison, those errors were 1 and 19 %,

respectively. However, this result is unsatisfactory as there is clearly visible autocorrelation in the residuals that invalidate

the model E1.15

2. We showed that the predictions of conventional approaches to deal with autocorrelation worsen significantly as the tem-

poral resolution increases. For example, the performance of model E2 in terms of Nash-Sutcliffe Efficiency decreases

from 0.76 to 0.09 in the calibration period when moving from daily to hourly data resolution. In comparison, the perfor-

mance of model E1 remains relatively stable (Nash-Sutcliffe Efficiency decreases from 0.83 to 0.79).

3. Since rapid changes in a catchments
:::::::::
catchment’s

:
storage change its memory, errors in streamflow are expected to show20

different correlations during precipitation events and dry weather. Based on the hypothesis that this non-stationarity

increases when going from daily to hourly resolution, neglecting non-stationarity of correlation is the likely cause for

finding 2.

4. Accounting for non-stationarity in autocorrelation significantly alleviated the observed problems of finding 2. In particu-

lar, allowing for the autocorrelation to be lower during wet than during dry periods (models E3 and E4) led to more stable25

behaviour across time resolutions. For example, volume errors for model E3 in the Murg catchment were not larger that

3 % for all three investigated temporal resolutions. However, inferring the characteristic correlation time during precipi-

tation events (model E3a) provided good results in only one of the two investigated catchments. Keeping that correlation

fixed (model E3) could be seen as a pragmatic option with stable performance.

5. If the problems mentioned in finding 1 can be avoided, accounting for autocorrelation results in more realistic character-30

istics of model output than omitting autocorrelation, which is confirming previous work. In particular, signatures such

as the Flashiness Index are much better represented when including autocorrelation. For example, for an observed value
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of the Flashiness Index of 0.13 in the Maimai catchment in the calibration period, model E3a provided a value of 0.13,

whereas model E1 resulted in a much larger value of 0.56.

6. Inferring the skewness and kurtosis
::
of

:
a
:::::::
skewed

::::::::
Student’s

:
t
::::::::::
-distribution

:
can lead to better fulfilled distributional as-

sumptions about the errors. In our case study, this expectation was partly fulfilled for daily data, but not for data of

higher frequency. For hourly data, for example, more freedom w.r.t. the shape of the distribution can actually lead to less5

accurate representation of the observed distribution.

These results contribute to a better characterization of the residual errors of deterministic hydrological models. However,

some questions remain. For example,
:
It
::::
still

:::
has

::
to

:::
be

::::::
shown

::
to

:::::
which

::::::
degree

:::
the

:::::::
findings

:::
of

:::
this

:::::
study

:::
are

::::::::::::
generalizable

::
to

:
a
:::::
larger

::::
and

::::
more

::::::
diverse

:::
set

::
of

::::::::::
catchments

:::
and

:::
to

:::::::
different

:::::::::::
hydrological

::::::
models.

::
A
::::::::::
comparison

:::
of

:::
the

::::::::
presented

::::::::
approach

::
to

::::::
existing

::::::::::
frameworks

:::::
based

:::
on

:::::::
different

:::::::::::
assumptions,

::::
like

:::
the

::::::::::
generalized

::::::::
likelihood

::::::::::
framework,

::::::
would

::::
yield

::::::
further

::::::::
insights.10

::::::::::
Furthermore,

:
it is still unclear how the non-stationary autocorrelation should ideally be parametrized. The chosen approach,

where we alternate between two values of the autoregressive parameter based on whether there is precipitation or not, might

lead to problems in catchments with strong lags between precipitation and streamflow. In those cases, defining the autoregres-

sive parameter as a function of modelled streamflow might be more suitable. Furthermore, it could be investigated whether

:::::
future

::::::
studies

:::::
could

:::::::::
investigate

:::::::
different

:::::::::
approaches

::
to
::::::::
describe

::::::::::::
non-stationary

:::::::::
correlation

::
or distributions other than the Gaus-15

sian and the skewed Student’s tare more appropriate or whether a different model for the temporal correlation would perform

better. Overall, this study confirms previously encountered difficulties in finding a parametrization of an additive error term

that adequately describes the effects of intrinsic stochasticity.

Appendix A: Derivation of the likelihood function

To derive the conditional distribution of Q(ti) |Q(ti−1) (and construct the likelihood function by iteratively multiplying the20

conditional probability densities), we have to propagate the distribution η(ti) | η(ti−1) given by Eq. (4) to the streamflow using

the (inverse) transformation ηtrans given by Eq. (2).

In simplified notation (which makes it easier to get the key idea without getting in notational details), we get:

f
(
Q(ti) |Q(ti−1)

)
= f

(
η(ti) | η(ti−1)

) dη(ti)

dQ(ti)
= fOU

(
η(ti) | η(ti−1)

) fDQ(Q(ti)
)

fN(0,1)

(
η(ti)

) (A1)

where, in the final equation, fOU refers to the standard Ornstein-Uhlenbeck process defined by Eq. (4) and the ratio of the25

densities fDQ and fN(0,1) results from the derivative and inner derivative of the transformation given by Eq. (2) (the derivative

of cumulative distribution functions are the corresponding probability densities).
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With explicit notation of functions and arguments, we get

f
(
Q(ti) |Q(ti−1),θ,ψ

)
= f

(
ηtrans

(
Q(ti),Qdet(ti,θ),ψ

)
| ηtrans

(
Q(ti−1),Qdet(ti−1,θ),ψ

))dηtrans

dQ

(
Q(ti),Qdet(ti,θ),ψ

)
= f

N

(
ηtrans

(
Q(ti−1),Qdet(ti−1,θ),ψ

)
exp

(
−
ti−ti−1

τ

)
,

√
1−exp

(
−2

ti−ti−1
τ

))(ηtrans(Q(ti),Qdet(ti,θ),ψ
))

5

·
f
DQ

(
Qdet(ti,θ),ψ

)(Q(ti)
)

fN(0,1)

(
ηtrans

(
Q(ti),Qdet(ti,θ),ψ

)) (A2)

This corresponds to the first sub-equation of Eq. (7). The order of the factors was changed in Eq. (7) to emphasize the product

of the marginal distribution fDQ with a modification factor that tends to unity if ti− ti−1 becomes much larger than τ . The

other sub-equations in Eq. (7) consider truncating the streamflow distribution at zero and assigning a point mass corresponding

to the integral of the tail below zero to a streamflow of zero.10

Appendix B: Complete results

Appendix C: Specific error models

C1 Normal distribution

DQ = N(µ,σ)

µ(Qdet) =Qdet , σ(Qdet,a,b,c) = aQ0

(
Qdet

Q0

)c
+ bQ0 , ψ = (a,b,c)

(C1)

Q0 is a chosen constant to make the fraction that is taken to the power of c non-dimensional. A modification of the constant Q015

leads to a re-definition of the parameter a. Therefore, introducing the constant Q0 does not increase the number of parameters

but it simplifies the units of the parameters a and b that become the same as those of streamflow, whereas c is non-dimensional.

Empirical evidence has shown that the normal distribution works astonishingly well. However, there is still as small number

of outliers that violate the distributional assumptions relatively strongly. For this reason, a distribution with heavier tails seems

appropriate.20

C2 Student’s t-distribution

DQ = Tdf ,σ(µ,σ,df)

µ(Qdet) =Qdet , σTdf
= aQ0

(
Qdet

Q0

)c
+ bQ0 , ψ = (a,b,c)

(C2)

The Student’s t-distribution with degrees of freedom df > 2
:::::
df > 2 is a straightforward candidate with heavier tails that reduces

to the normal distribution for df →∞
::::::
df →∞. Note that we need to rescale the original Student’s t-distribution, T (df)

:::::
T (df),

31



Ta
bl

e
B

1.
M

ur
g:

su
m

m
ar

y
of

th
e

pr
ed

ic
tio

ns
in

th
e

ca
lib

ra
tio

n
an

d
th

e
va

lid
at

io
n

pe
ri

od
m

ad
e

w
ith

er
ro

r
m

od
el

s
E

1-
E

4
fo

r
di

ff
er

en
tt

em
po

ra
lr

es
ol

ut
io

ns
of

th
e

hy
dr

ol
og

ic
al

da
ta

.V
al

ue
s

ar
e

m
ed

ia
ns

(a
nd

st
an

da
rd

de
vi

at
io

ns
)

of
th

e
qu

al
ity

in
di

ce
s

of
th

e
de

te
rm

in
is

tic
m

od
el

ou
tp

ut
fo

r
th

e
m

ax
im

um
po

st
er

io
r

pa
ra

m
et

er
s,

as

w
el

la
s

th
os

e
of

50
0

st
re

am
flo

w
re

al
is

at
io

ns
pr

od
uc

ed
w

ith
th

e
fu

ll
po

st
er

io
rp

ar
am

et
er

di
st

ri
bu

tio
ns

.R
ec

al
lt

ha
ts

m
al

le
rv

al
ue

s
of

Ξ
re

li
an

d
Ω

p
re

c
:
:
:
:
:

Ω
sp

re
a
d
:
in

di
ca

te

be
tte

rr
es

ul
ts

.?
:s

m
oo

th
in

g
P
e
rr

(t
)

w
ith

a
m

ov
in

g
av

er
ag

e
w

in
do

w
of

si
ze

5
h

be
fo

re
ap

pl
yi

ng
E

q.
11

.̃
de

no
te

s
th

e
op

tio
n

w
he

re
m

o
d
e(
D
Q

)
=
Q

d
e
t
.+

m
ea

ns
th

at

γ
=

1
.5

an
d
df

=
5

:
:
:
:

d
f

=
5 :

w
as

fix
ed

.

C
al

ib
ra

tio
n

V
al

id
at

io
n

C
as

e
Ξ

r
e
li

Ω
p
r
e
c
:
:
:
:
:

Ω
s
p
r
e
a
d

Ê
N
,d

e
t

E
N

∆̂
Q
,d

e
t

∆
Q

Î
F
,d

e
t

I
F

I
F
,o

b
s

Ξ
r
e
li

Ω
p
r
e
c
:
:
:
:
:

Ω
s
p
r
e
a
d

Ê
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Î
F
,d

e
t

I
F

I
F
,o

b
s

[%
]

[%
]

[%
]

[%
]

24
h

E
1

0.
09
:
:

0.
91

0.
42

0.
92

0.
73

(0
.0

6)
-8

-8
(3

.7
)

0.
77

0.
88

(0
.0

3)
0.

83
0.

09
:
:

0.
91

0.
4

0.
91

0.
7(

0.
08

)
-3

-4
(3

.9
)

0.
84

0.
94

(0
.0

4)
0.

88

24
h

E
2

0.
25
:
:

0.
75

0.
52

0.
91

0.
62

(0
.1

)
-1

7
-2

0(
7.

4)
0.

74
0.

8(
0.

03
)

0.
83

0.
07
:
:

0.
93

0.
49

0.
9

0.
59

(0
.1

3)
-1

1
-1

3(
7.

9)
0.

81
0.

85
(0

.0
3)

0.
88

24
h

E
3

0.
11
:
:

0.
89

0.
45

0.
91

0.
7(

0.
08

)
-1

1
-1

1(
4.

1)
0.

79
0.

89
(0

.0
4)

0.
83

0.
1 :0.

9
0.

43
0.

9
0.

65
(0

.1
)

-6
-5

(4
.5

)
0.

87
0.

95
(0

.0
4)

0.
88

24
h

E
3a

0.
22
:
:

0.
78

0.
49

0.
91

0.
64

(0
.0

9)
-1

6
-1

8(
6.

4)
0.

75
0.

82
(0

.0
3)

0.
83

0.
04
:
:

0.
96

0.
47

0.
9

0.
62

(0
.1

1)
-1

0
-1

1(
6.

3)
0.

82
0.

88
(0

.0
4)

0.
88

24
h
Ẽ
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Ẽ

4
?

0.
07
:
:

0.
93

0.
63

0.
86

0.
31

(0
.4

3)
-8

-2
4(

2.
2)

0.
12

0.
42

(0
.0

2)
0.

13
0.

27
:
:

0.
73

0.
59

0.
86

0.
3(

0.
56

)
-1

-1
6(

2.
6)

0.
13

0.
43

(0
.0

2)
0.

12

1h
E

4?
0.

11
:
:

0.
89

1.
02

0.
8

-0
.1

7(
0.

61
)

-2
7

-2
7(

3.
9)

0.
1

0.
5(

0.
02

)
0.

13
0.

33
:
:

0.
67

0.
94

0.
78

-0
.2

2(
0.

93
)

-1
6

-1
6(

4.
8)

0.
11

0.
51

(0
.0

3)
0.

12

1h
Ẽ
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to the standard deviation σ, i.e. T (σ,df):
:::::::
T (σ,df):

:

fTdf ,σ
(x) =

1

σ

√
df

df − 2
fTdf

(
1

σ

√
df

df − 2
x

)
(C3)

and

FTdf ,σ
(x) = FTdf

(
1

σ

√
df

df − 2
x

)
. (C4)

Note that the degrees of freedom, df
::
df , have to be larger than 2 to make the standard deviation finite and allow for rescaling to5

a given standard deviation, σ.

C3 Skewed Student’s t-distribution

DQ = skγ [Tdf ,σ](Qdet,σ,df ,γ)

σskγ [Tdf ,σ
] = aQ0

(
Qdet

Q0

)c
+ bQ0 , ψ = (a,b,c)

(C5)

To account for the often encountered case of skewed errors of deterministic hydrological models, we transform the Student’s t-

distribution with a generally applicable method of
::
for

:
skewing distributions (Fernandez and Steel, 1998). For γ = 1, the skewed10

Student’s t-distribution distribution reduces to the conventional Student’s t-distribution. Note that the skewing happens after

we rescaled the original Student’s t-distribution to the standard deviation σ. The skewing changes the distributions’ standard

deviation again, thus σ 6= σskγ [Tdf,σ ]::::::::::::
σ 6= σskγ [Tdf ,σ

]. The density and cumulative distribution functions of the skewed rescaled

distribution, are:

fskγ [Tdf ,σ
](x) =



2

γ+
1

γ

fTdf ,σ
(γx) =

2

γ+
1

γ

1

σ

√
df

df − 2
fTdf

(
1

σ

√
df

df − 2
γx

)
if x≤ 0

2

γ+
1

γ

fTdf ,σ

(
x

γ

)
=

2

γ+
1

γ

1

σ

√
df

df − 2
fTdf

(
1

σ

√
df

df − 2

x

γ

)
if x≥ 0 .

(C6)15

and

Fskγ [Tdf ,σ
](x) =



2

1 + γ2FTdf ,σ
(γx) =

2

1 + γ2FTdf

(
1

σ

√
df

df − 2
γx

)
if x≤ 0

1

1 + γ2 +
2

1 +
1

γ2

(
FTdf ,σ

(
x

γ

)
− 1

2

)

=
1

1 + γ2 +
2

1 +
1

γ2

(
FTdf

(
1

σ

√
df

df − 2

x

γ

)
− 1

2

)
if x≥ 0 .

(C7)
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And the mean and the variance of the skewed rescaled distribution are:

µskγ [Tdf ,σ
] = 2σ

γ2− 1

γ2

γ+
1

γ

√
df(df − 2)

df − 1

Γ

(
df + 1

2

)
√
π df Γ

(
df

2

) (C8)

and:

σ2
skγ [Tdf ,σ

] =

γ3 +
1

γ3

γ+
1

γ

σ2−µ2
skγ [Tdf ,σ

]5

=

γ
3 +

1

γ3

γ+
1

γ

− 4

γ
2− 1

γ2

γ+
1

γ


2

df(df − 2)

(df − 1)2

Γ2

(
df + 1

2

)
π df Γ2

(
df

2

)
σ2 . (C9)

To shift the distribution we can evaluate

fskγ [Tdf ,σ
](x−Qdet) (C10a)

fskγ [Tdf ,σ
](x+ medskγ [Tdf ,σ

]−Qdet) (C10b)10

fskγ [Tdf ,σ
](x+µskγ [Tdf ,σ

]−Qdet) (C10c)

In these cases, the mode, the median, and the mean are located at x0, respectively.

Appendix D: Notation

P Precipitation used as an input to the hydrological model.15

Perr Precipitation used as an input to the error model where needed (not to the hydrological model).

Qdet(t,θ) Deterministic hydrological model providing streamflow as a function of time, t, and hydrological model pa-

rameters θ.

Q̂det Deterministic hydrological model output corresponding to the parameter vector θ̂ with the maximum posterior

density.20

Qobs(t) Observed streamflow at time t.

Qtrans(η) Function transforming η into streamflow (used to sample from the probabilistic model consisting of the hydro-

logical model and the error model).
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DQ Distribution of observed streamflow at a certain point in time, given the output of the deterministic hydrological

model at the same point in time.

θ Parameters of the deterministic hydrological model, Qdet.

ψ Parameters of the error model, including heteroscedasticity and correlation parameters.

η Autocorrelated, stochastic process with standard normal asymptotic distribution that serves to describe the5

autocorrelation of the errors of the deterministic hydrological model.

τ Characteristic correlation time of the process η.

τmin Minimum value of τ in the cases where τ is a function of Perr and therefore of time.

τmax Maximum value of τ in the cases where τ is a function of Perr and therefore of time.

FX Cumulative distribution function of the distribution X .10

fX Probability density function of the distribution X .

:::::::
E[X] Expected value of the random variable X .

N(µ,σ) Normal distribution with mean µ and standard deviation σ.

:::::::::
T(df ,σ) Rescaled Student’s t-distribution with df

::
df degrees of freedom and standard deviation σ.

:::::::::::::
SKT(µ,σ,df) Shifted and rescaled skewed Student’s t-distribution with mean µ, standard deviation σ, and df

::
df:

degrees of15

freedom.

::::
IF The median of the Flashiness Indices (Baker et al., 2004) of all the individual model realisations constituting

a sample of model outputs.

:::::::
ÎF,det The Flashiness Index (Baker et al., 2004) of Q̂det.

:::::::
IF,obs The Flashiness Index (Baker et al., 2004) of Qobs.20

EN The median of the Nash-Sutcliffe Indices
:::::::::
Efficiencies

:
(Nash and Sutcliffe, 1970) of all the individual model

realisations constituting a sample of model outputs.

ÊN,det The Nash-Sutcliffe Index
::::::::
Efficiency (Nash and Sutcliffe, 1970) of Q̂det.

∆Q The median of the relative errors in cumulative streamflow of all the individual model realisations constituting

a sample of model outputs.25

∆̂Q,det The relative error in cumulative streamflow of Q̂det.

Ξreli Reliability metric(McInerney et al., 2017) Precision metric (McInerney et al., 2017)
:
;
:::
the

::::::::::
complement

:::
of

:::
the

::::::::
reliability

:::::
metric

:::::::
defined

::
in

::::::::::::::::::::
McInerney et al. (2017)

::::::::
Ωspread :::::::

Relative
:::::
spread

::::::
metric;

:::::
equal

::
to
:::
the

::::::::
precision

::::::
metric

::::::
defined

::
in

::::::::::::::::::::
McInerney et al. (2017)

OU-process Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930).30
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