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RC: Referee comment 

AC: Author comment 

Changes made to the manuscript are highlighted in italic font. 

Reply to Referee #1, Jasper Vrugt 

J. Vrugt: Summary: In this paper the authors introduce a parametric framework to residual analysis. This 
approach leads to formulation of a likelihood function which, with a suitable prior distribution, helps to 
evaluate the posterior density of nontraditional residual time series, e.g. truncated and subject to 
various degrees of skew, kurtosis and serial correlation. The framework allows for the use of transient 
nuisance variables (hyper parameters) to help accommodate so-called non-stationary residual patterns. 
The framework presented herein differs a bit from the standard likelihood paradigm in that the starting 
point is some parametric family of distributions which describes the likelihood of observing the data, Q, 
given current model output, Qdet. Authors claim that the proposed likelihood function improves 
probabilistic inference of hydrologic models via MCMC machinery – with a more realistic description of 
parameter and predictive uncertainty. I enjoyed reading this paper as it combines theory development 
with practical application. The paper is well written and should be of interest to the readership of HESS. I 
hope the authors consider the following comments – I believe those will help to further improve the 
quality of this manuscript. Note, comments appear in order of my reading of the paper. 

AC: Thanks for this general feedback. We have to clarify that the ability to deal with non-
stationary correlation (or other parameters) is independent of the presented likelihood 
framework (as referee #2 correctly pointed out), and could (and should) also be achieved with 
other frameworks / methods. 

We included a corresponding sentence in Sect. 5.2.. 

J. Vrugt (1): Page 5, Line 9-11. Authors state that most (many) modelers will have an intuitive idea about 
the probability distributions of the observations for a given model output. I disagree with this assertion. 
For the sake of my argument, lets follow the hydrologic example as presented in this work. Let’s assume 
that the model simulates a discharge of 20 mm/day. What would be a reasonable expectation of the 
actual (observed) discharge at that time? 15? 30? I cannot confidently claim that I would know what 
probability distribution to assume for the observed discharge at that time. Of course, if 20 mm/day is 
among the largest simulated values, then I would generally expect the dispersion of this supposed 
distribution to be larger than for a simulated value of 5 mm/day. Yet, this is only the dispersion – I would 
not really have an idea about the underlying distribution – would I center this distribution on 20 
mm/day? Or is my model systematically under or overestimating the data so that I should shift the 
distribution to higher or lower values, respectively. Of course, for low discharge values I know that the 



distribution is truncated at zero – and probably has a tail to the right. But then again do I center the 
distribution on the model simulated value? Or do we shift it up or downward? In other words, I do not 
agree with the assertion that many modelers will have an intuitive idea what the distribution of the 
observed discharge would be if the model output is known. 

AC (1): This is an interesting point of discussion about one of the main motivations for the 
presented likelihood framework. Interestingly, there is a contrasting opinion of the referee J. 
Vrugt and the author of a short comment, Alberto Montanari, on exactly this point. We 
acknowledge that our wording “many modellers will have an intuitive idea about the probability 
distribution ...” is too strong. We agree that it can be difficult to formulate this distribution of the 
observed streamflow, as the example of J. Vrugt shows. 

We rephrased the sentence accordingly. 

However, in case we do have at least some idea about the shape of the distribution, the 
presented framework allows to incorporate this as prior knowledge. If we have no idea about 
the distribution, the presented framework is still useful, because we can communicate and 
discuss our assumptions in the space of streamflow (with the corresponding units), as the 
example in the comment of the referee shows. With previously used approaches to deal with 
skewness and kurtosis (e.g. Box-Cox transformation, generalized likelihood function) it is more 
difficult to discuss these assumptions, because they are made in transformed (Box-Cox) or 
innovation (generalized likelihood) spaces, which are less intuitive for us. Our point was that it is 
easier for hydrologists (although admittedly still not easy) to discuss the marginal distribution of 
streamflow (because they have been confronted with deviations of model results from 
observations for this quantity in the past) rather than Box- Cox parameters or the distribution of 
innovations without simple access to the consequences on marginal streamflow distributions. In 
summary, this discussion illustrates the major advantage of the presented framework: that 
distributional assumptions are transparent and easy to communicate, which means that they can 
be better discussed and questioned. 

We mentioned this shortcoming of previous approaches more explicitly in the paragraph on page 
3, line 20. Accordingly, we expanded the first paragraph of Sect. 2.1 to provide a clearer 
motivation for the presented approach of parameterizing the distribution of streamflow given 
model output, as compared to transformation approaches (Box-Cox) or probabilistic models 
formulated in the innovation space (generalized likelihood). 

J. Vrugt (2): Page 5, Line 22-23. The authors refer to Eq. (3) before presenting Eq. (2). Do not understand 
why this is done – would think that text can be presented so that Eq. (3) follows first – then followed by 
Eq. (2). Note, is Eq. (3) needed after all? The right-hand-side of Eq. (3) can be placed at end of Eq. (2) – 
then the index needs to be fixed.  

AC(2): We agree to reverse the order of the equations. Equation (3) is very important to 
introduce the transformation function before it is applied to the actual time series, as this 
transformation is the key of our concept of introducing autocorrelation for arbitrary marginal 
discharge distributions. 



We reversed the order of Eq.(2) and Eq.(3) and we edited the adjacent paragraphs to provide 
better explanations of the equations and the idea of the transformation to combine 
autocorrelation with arbitrary marginal distributions of streamflow. 

J. Vrugt (3): Page 5, Line 27-29: I do not understand the statement that truncation at zero would lead to 
lighter tails on the lower end. Yes, truncation would move the probability of negative streamflow values 
to streamflow values larger than zero. In essence, one could then argue that the tail at the right-hand-
side may become larger – as the pdf has to integrate to unity. Yet, because of truncation the left tail is 
essentially gone if simulated streamflow values are close to zero. The wording “lighter tails” may be a bit 
confusing as the tail is truncated. It is no longer there. 

AC(3): It is true that the negative part of the distribution DQ is truncated at each individual time 
step, so the negative tail at each time step is no longer there. However, here we refer to the 
marginal distribution of eta over all time steps, and usually there will be no sharp “cut” visible, 
since the truncation happens at different values at each time step. 

We included a corresponding sentence. We also more clearly discussed that our framework 
allows for truncation with compensation by increased density for positive values (as described by 
the referee) or for assigning a finite probability for an observed discharge of zero (as actually 
done in this study). 

J. Vrugt(4): Page 5, Eq. (2) – (3) – thus, eta is the normally transformed counterpart of Q – with 
truncation accounted for?  

AC(4): Yes, this is exactly right. Together with the changes made regarding comment 3, we hope 
that this became clearer. Truncation will only be needed if the distributional shape of the 
discharge extends to negative values. This may not always have to be the case. 

J. Vrugt(5): Equation (4) – authors may consider for normal distribution, N, instead \mathcal(N)(a,b), 
where “a” (mean) is the first term between brackets in Eq. (5) and “b” is the second term in Eq. (4). In 
text below Eq. (4) authors could then explain that “a” is the mean of the distribution and b is the 
variance. 

AC(5): We agree that it must be made more explicit that the first term is the mean and the 
second is the standard deviation. 

Rather than introducing two new variables, we stated in the text that the two elements are the 
mean and the standard deviation. 

J. Vrugt(6): Eq. (6) – reference should be given. 

AC(6): To clarify the derivation, we replaced the paragraph around Eqs. (5) and (6) by: 

Note that for a constant time step ∆t = ti+1-ti , Eq. (4) becomes 

𝜂𝜂(𝑡𝑡𝑖𝑖+1)|𝜂𝜂(𝑡𝑡𝑖𝑖)~N �𝜙𝜙𝜂𝜂(𝑡𝑡𝑖𝑖),�1 − 𝜙𝜙2� 



with 

𝜙𝜙 = exp �−Δ𝑡𝑡
𝜏𝜏
�     or     𝜏𝜏 = −  Δ𝑡𝑡

log (𝜙𝜙)
 

This is an AR1 process with autoregression coefficient 𝜙𝜙 and white noise variance (1 − 𝜙𝜙2). 

J. Vrugt(7): Page 6, Line 12-14. Maybe I am missing something here, but with any other likelihood 
function one can ignore missing data as well? One simply does not include this particular observation in 
the likelihood function. The authors may have a point if serial correlation is considered – then this 
removal is not straightforward as it breaks the AR-error model. 

AC(7): Yes, we agree. Any likelihood can deal with missing data when neglecting correlation, but 
it requires more effort with an AR error model. Since we think that considering correlation is 
important, we think it is necessary that future likelihoods can accommodate both, correlation 
and missing data (or varying time step sizes) naturally. Our point is that this is particularly simple 
in the suggested approach as it does not need any changes because there is no underlying 
assumption of equidistant points in time. 

We mentioned this more explicitly in the manuscript. 

J. Vrugt(8): Eq. (7) – top line of curly brace may fit on one line if authors define rho = (ti+1 – ti)/tau, and 
then use rho in the equation – maybe etatrans written as etaT. 

AC(8): We agree that Eq. (7) is not ideally displayed. We prefer to implement the latter 
proposition of the referee. 

We replaced eta_trans by eta(ti), i.e. we substituted Eq. (2) into Eq. (7). Since the dependence of 
eta(t_i) on Q(t_i) is then not explicit anymore, we added a statement about that dependence and 
referred to Eq. (2). Making these changes, we realized that “theta” is not properly introduced in 
this section and the dependence of Qdet on “theta” is not consistently stated. We introduced 
“theta” and added the dependence at two points in the text. We also realized that Eq. (2) still 
contained a “xi”-function from a previous notation version and removed it from Eq. (2) and from 
the Appendix. 

J. Vrugt(9): Then notation – not sure about the guidelines of HESS, but should theta (parameter vector) 
not be upright-bold instead of italic-bold? Same holds for the nuisance variables, psi. 

AC(9): The current guidelines of HESS are italic bold for vectors, according to the information we 
have. 

J. Vrugt(10): Is notation DQ required or would fQ suffice instead? Then, the text would talk about a 
distribution of Q – instead of DQ. 

AC(10): This would be a possibility, and it would probably make the equations better readable. 
However, talking about the “distribution of Q” instead of DQ, would make the text quite a bit 



longer, since the term appears often. We would prefer to stay with the name DQ, because with 
think it is overall simpler to read. 

J. Vrugt(11): A limitation of Eq. (4) is that serial correlation at higher-order lags cannot be modelled, 
right? Unless you specify different “rho’s” in Eq. (6) – but this then leads to multiple likelihoods. This 
limitation should be stated in the text as residuals may exhibit/show residual correlation beyond lag-1. 

AC(11): Yes, we fully agree with this comment. 

We included a corresponding statement about Eq. (4) in this version of the manuscript. 

J. Vrugt(12): In Eq. (8) how do we compute the first term on the right-hand-side – that is – the likelihood 
of the zeroth discharge observation (at t0)? Do we assume normality with dispersion of variance/(1-
rhoˆ2)? 

AC(12): This term is calculated with Eq.(1). We recognize that it is confusing that the index “i” 
refers to the current time step for which we want to calculate the likelihood in Eq.(8), but that it 
refers to the time step before the current time in Eq. (7). 

We referred explicitly to Eq. (1) and also modified the index “i” in Eq. (7), in the adjacent text, as 
well as in the Appendix A, so that it has the same meaning as in Eq. (8). We also changed the 
time index in section 2.3, so that it is consistent with the rest of the manuscript. 

J. Vrugt(13): Page 7, Line 12-13: The statement “the likelihood function can be evaluated analytically” is 
a bit confusing to me. What does the word “analytical” mean in this context? Most other commonly used 
likelihood functions in the applied (hydrologic) literature are simple to evaluate in practice, right? That 
means numerically. All that is needed are the model output and the data? What is different in the 
present context?  

AC(13): We agree that this is a property shared by most likelihoods formulated on top of a 
deterministic hydrological model. We wanted to express that our framework still belongs to that 
class and does not lead to additional numerical effort as e.g. stochastic hydrological models that 
may require PMCMC or ABC rather than standard MCMC. It was not our intention to state that 
our model is special in this respect. 

We clarified this and replaced the expression “evaluated analytically” with “available in closed 
form” to make it clearer what we mean here. 

J. Vrugt(14): The authors use the affine invariant ensemble sampler of Foreman and Mackay et al. (2013) 
to sample the posterior parameter and nuisance variable distribution. The article would benefit from 
some more background information – that is – algorithmic settings (number of walkers, the types of 
moves that are considered, etc.). Note, that this ensemble sampler has many elements in common with 
the DREAM family of MCMC algorithms – which uses parallel direction and snooker moves. For later 
work it may be interesting to compare both methods in terms of efficiency – and to evaluate the power 
and usefulness of the walk, stretch and replacement move. Note, that the ensemble sampler has two 
important shortcomings; 1) detailed balance requires the use of a relatively large number of walkers 



(chains) – this is a significant disadvantage for higher dimensional problems as each chain needs burn-in 
before reaching the target distribution, and 2) the walkers require stepwise updating – this guarantees 
reversibility but does not make the sampler amenable to distributed computing, wherein each chain is 
evolved on a different core/node. 

AC(14): We agree that more background information should be provided on this. 

We included the specific settings used for sampling with this ensemble sampler. 

We also agree that it would be interesting to compare the performance of the sampler applied in 
this study and the DREAM samplers in a future study. 

J. Vrugt(15): Equation (10) – the subscript “F” in the flashiness index, should this not be regular font – 
that is – upright? As “F” is an abbreviation for “flashiness” and not a variable. Same holds for some of the 
other summary metrics used in this paper, for example the Nash-Sutcliffe efficiency (subscript “N” 
should be regular = upright font). Note, that on Page, 8, Line 25 correct notation is used for the flashiness 
index of the deterministic model output.  

AC(15): This is right, thanks for the notice. 

We checked and improved regular versus italics fonts in equations throughout the manuscript. 
Based on this we found that the vector notation (bold) for streamflow was not consistent in Sect. 
2.3. Therefore we introduced the vector notation for time series of streamflow at the beginning 
of the section and improved the notation of the equations in that section.  

J. Vrugt(16): Page 5, Line 24: “maximum posterior parameter values” – this is rather awkward wording as 
it literally means – the largest posterior parameter values. And it is not clear what this means either as 
each dimension of the target distribution will have a maximum posterior value – but all these maxima 
combined are unlikely to make up an actual posterior sample. Instead, what the authors should use is 
“maximum a-posteriori density (MAP) parameter values” – that is – the parameter values that maximize 
the product of the prior density and the likelihood.  

AC(16): We assume that the referee means Page 8, Line 24 instead of Page 5, Line 24. What we 
mean by this is the single parameter vector that is associated with the largest posterior 
probability density of all the points in the parameter sample. As we are not referring to marginal 
posterior densities, this can hardly be misunderstood in the way the referee argues. However it 
certainly makes sense to add the word “density” to “maximum posterior”. 

We changed the wording “maximum posterior parameter values” to “parameter values at the 
maximum posterior density” 

J. Vrugt(17): Eq. (15) and (16) list the flux and water balance equations used by the hydrologic model – 
but equally important what numerical solution method is used to solve these equations? I assume that 
the authors have used an implicit solution with time-variable integration step? Solution maintains mass 
balance? 

AC(17): We very much agree with the referee. This information should be provided. 



We included a reference to the software used to implement the hydrological model, which also 
contains information about the numerical integration schemes. 

J. Vrugt(18): Page 12, Line 5: Why are these model parameters held constant? Why are they not part of 
the inference – this would be much stronger in my view. If held constant, then how does one know the 
assumed values are reasonable for the catchment of interest? Note, if I look at the equations then m, 
alpha and beta must have a large impact on the simulated model output. Hence, unless these 
parameters have a strong physical underpinning I do not see why one would keep them fixed in the 
present work. Certainly, the values of m, alpha and beta will affect the residual analysis. 

AC(18): We agree that in principle, it is always desirable to infer more parameters. The 
mentioned parameters were kept fixed to keep the hydrological model parsimonious. Fixing 
some of the parameters is commonly done in hydrological bucket models, for example, the 
widely used GR4J model has 4 parameters that are inferred, which is equal to the number of 
hydrological parameters we infer in this study, and it has other parameters that are kept fixed, 
including the parameter that is equivalent to “beta” in this study. “m” can be seen as a 
smoothing parameter, and m=0.01 means that there is close to full evaporation as long as the 
reservoir Su is not empty. “alpha=2” was found to lead to reasonable results in both the 
investigated catchments and was fixed because of its potential interactions with kf. We do admit 
that we do not know if the fixed values of “beta” and “m” are ideal for the investigated 
catchments. Since we reached good fits with at least some error models in both catchments, we 
would argue that the values of “beta” and “m” are proven to be reasonable. Often when 
applying a hydrological model to a catchment, we do not really know whether the model is 
perfectly appropriate for that catchment and we cannot infer all the (potentially many) 
parameters of the model. Also, systematic errors are common in practice, so we do not want to 
avoid them here by overly complex models. One could argue that this limits the transferability of 
the results to other, more complex models. One could also argue that we should have tested 
different hydrological models, more catchments and more temporal resolutions to obtain more 
generalizable results. However, the focus of this paper is on the method development, which 
allows only for a limited amount of application case studies and comparisons. 

We included the above mentioned explanations as to why those parameters were kept fixed, but 
we did not additionally include model runs where those parameters are fitted. 

J. Vrugt(19): The authors do not consider highly relevant work by Scharnagl et al. (2015) published in 
HESS: Inverse modeling of in situ soil water dynamics: accounting for heteroscedastic, autocorrelated, 
and non-Gaussian distributed residuals. This work also used a Student distribution for the conditional 
density of the residuals – and combined this with the template function of Fernandez and Steel (1998) to 
enable treatment of skewed residual distributions. Given the similarities with the work presented in this 
paper I think it is important for the authors to consider the listed work of Scharnagl et al.  

AC(19): We agree that the work of Scharnagl et al. is related to the topic of this study and we 
were not aware of it, since it was not published as a final paper in HESS. Their “Likelihood 2” uses 
a skewed Student t-Distribution, but they use it to describe the probability density of the 



innovations, like Schoups and Vrugt (2010), not the probability density of the observed 
streamflow, as is done in this study. A difference to Schoups and Vrugt (2010) is that Scharnagl et 
al. (2015) apply the autocorrelated process to the standardized residuals, as the correction 
suggested by Evin et al. (2013). However, this approach does not give satisfying results in that 
case. Then, the relevance of “Likelihood 3” in Scharnagl et al. (2015) for predictive application 
was correctly questioned by one of the referees. 

We included a reference to that discussion in the manuscript in the introduction and in Sect. 2.1. 

J. Vrugt(20): Eq. (18) – does this function satisfy the laws of total expectation and total variance? This is a 
concern not typically addressed in the hydrological literature – but the paper by Hernandez-Lopez in 
HESS (2017) makes some important points regarding preservation of expectation and variance of the 
error model. 

AC(20): The Law of Total Expectation and the Law of Total Variance are statistical theorems. 
There is no way of violating them for any correctly formulated probabilistic model. We are 
formulating a joint probability density of discharge at all observations points in equation (8) 
conditional on the output of the deterministic model. The choice and parameterization of the 
discharge distribution does not change the validity of fundamental statistical theorems. For this 
reason, the consideration of heteroscedasticity by Eq. (18) cannot lead to a violation of the Total 
Laws. Note that we carefully transform the distribution assumed for “eta” to the distribution of 
“Q” in equation (7); not doing this carefully could be a potential source of error and could lead to 
a violation of statistical theorems. 

Why do Hernandez-Lopez (2015) state that the fulfillment of statistical theorems must be 
guaranteed by eliminating parameters from MCMC sampling and calculating them from the 
other components of the sample point (section 4.4 in their paper)? This argument is based on a 
fundamental misinterpretation of a statistical equation that is valid, if correctly interpreted. 
Their derivation of equation (22) resp. (B9) in appendix B demonstrates, that this equation links 
the parameters α and κ, the error variance, the discharge variance and expectation for an error 
model with fixed parameters α and κ (see equation B5 where this assumption is used). In 
Bayesian inference, α and κ become random variables and equation (22) is no longer valid (it 
would contain a sum of random and non-random variables [the expectation and the variance of 
a random variable are not random]). Applying this invalid equation is the first problem of their 
approach. The second problem is that the Laws of total Expectation and Variance are integral 
equations over a multivariate distribution. They have no meaning for individual sampling points 
to which they apply them. The full sample will fulfill the statistical theorems as a result of the 
consistency of the approach and without explicit enforcement. 

The more interesting question is whether the expectation of the probabilistic model for a given 
deterministic model output is equal to this deterministic model output. Our framework makes 
the formulation of such models possible (e.g. a lognormal distribution with mean equal to the 
deterministic model output). This seems at the first sight a desirable property of the model as it 
guarantees mass conservation (if the deterministic model conserves mass). Unfortunately, our 



experience with such error model formulations were unsatisfactory. In cases in which the model 
output is very small, even small observations errors can lead to observations that are orders of 
magnitude larger than the output of the deterministic model and would thus require an 
extremely strongly skewed distribution. The consequence of such extremely skewed 
distributions would be that for each “large observation” a very large number of very small 
observations would be needed to keep the mean (as these observations cannot be much smaller 
than a small output of the hydrological model). In our experience, such distributions lead to 
unsatisfactory fits. Thus, the non-negativity of discharge observations (for non-tidal rivers) 
makes it practically nearly impossible to keep mass balances at very low discharge if there is a 
considerable observation error. 

We added a paragraph in Sect. 5.4 to mention this problem which may also not have gained 
sufficient attention in the literature. 

As for the Law of Total Expectation and Variance, we felt it unnecessary to state the fulfillment 
of any laws of probability in the paper as this is a property of any correctly formulated model. 

J. Vrugt(21): I am wondering whether readability of the paper would improve if the section on error 
models is placed directly after the likelihood section. Indeed, the likelihood contains tau – which is then 
defined (among others) in the error model section. 

AC(21): We agree with this suggestion. 

We changed the order of the sections in the manuscript. In addition, we changed the first 
sentence of the section on error models slightly, so that it fits better to the new position in the 
manuscript. The paragraph on the priors, which used to be in the section about error models, was 
transformed into a separate section (3.3), and some wordings were changed in that paragraph. 

J. Vrugt(22): Page 11, Line 16: What has happened to the index time in the formulation of Qdet? It 
appears on the left-hand side but does not appear on the right-hand side. Also, what are Qs and Qf? 
These entities are introduced but they are not discussed nor do they appear elsewhere in the paper?  

AC(22): We agree that the arguments “t” and “θ” should also appear on the right hand side of 
the equation and that Qs and Qf should be mentioned in the text. They are the fast and the slow 
flow components of the model, respectively, and are given by Eq. (15) and illustrated in Fig. 1. 

We added the arguments “t” and “tau” on the right hand side and included a statement about Qs 
and Qf in the adjacent text. 

J. Vrugt(23): At this point I am wondering why the authors are not using the more common terminology 
of P(.) for prior distribution and L(.|.) for likelihood function.  

AC(23): Only when the output of the probabilistic model is replaced by the observed data for 
inference, we obtain the likelihood as a function of the parameters given the observed data. The 
likelihood function is therefore crucial for inference. It is hardly possible to formulate this 
function directly. This is why scientists formulate probabilistic models as probability distributions 



of outcomes given parameters and only afterwards get the likelihood function by substituting 
the observations for the outcomes. For this reason, it does not make sense to use L when 
formulating the probabilistic model. We then preferred to stay with the notation when 
substituting the observations to avoid unnecessary confusion. We recognize that this distinction 
was not entirely consistent throughout the manuscript. 

We modified the text to more clearly distinguish the terms “probability distribution of 
observations conditional on parameters” and “likelihood function” (of the parameters) after 
substituting the observations. This means we changed the wording from “likelihood” to 
“probabilistic model” in all the places where it does not specifically refer to inference. However, 
there are some exceptions; we kept the term “likelihood function” in the title and the abstract 
(even though we refer to the probabilistic model there), to keep the keyword and the connection 
to the more common terminology that does not distinguish between the two.  

J. Vrugt(24): Figure 6 – the values of eta show a strong temporal correlation for error model E2 and E3. 
Would it be possible to plot, in some way, the decorrelated eta values (with serial correlation removed). 

AC(24): What we could plot is the deviation of eta from its expected value (given the previous 
eta) as a function of time, which could be interpreted as decorrelated eta values. 

We calculated the standardized innovations of eta for the data underlying Figure 6 and included 
a time series plot of those innovations for both catchments in the supplementary information. 

J. Vrugt(25): In general, it may be useful if the authors include a plot of the marginal posterior 
distributions of the model parameters and nuisance variables. As it stands it is difficult to determine 
which parameters are well defined and which variables are not well defined by inference against the 
measured data (for one or more error models). In fact, the authors could compute the KL divergence of 
the prior and posterior distributions for each error model. In any case, it would be good to have insights 
on how well the parameters and nuisance variables are defined. Do their posterior distributions extend 
over the entire prior ranges, or are they limit to a small region inside the prior distribution? Note, Figure 
6 goes a long way but is difficult to interpret as the matrix plot is rather small and the x-ranges are scaled 
according to the posterior uncertainty. 

AC(25): We agree that these would be useful plots. 

We included the prior and the posterior marginal density plots for all the error models, 
parameters and temporal resolutions for one catchment in the supplementary information. We 
also computed the KL-divergence and included that information in the supplementary 
information, in the form of a figure for both catchments, all error models and all parameters. 

J. Vrugt(26): Figures 3 and 4: I find these results a bit difficult to interpret. The color/symbol coding is not 
necessarily clear – making it difficult to interpret the findings. I am sure the authors can find a way of 
plotting from which the main results are directly visible. Then, again, other readers may like to digest this 
plot.  

AC(26): We agree that the plots are a bit crowded and can be difficult to interpret. 



We made these plots more easily interpretable by enlarging the size of the individual panels, by 
slightly changing the color coding, adding lines for visual reference and removing the jitter. 

J. Vrugt(27): Figure 5: Difficult to see the differences between the three panels. Would it be possible to 
enlarge the horizontal length of each of the subplots? Right now, the measured data interacts too much 
with the grey region, particularly when the posterior prediction/simulation uncertainty is small.  

AC(27): We enlarged the panels of Figure 5 horizontally. We also adapted the legend of Fig. 5 to 
include the more precise annotation of E3a* instead of E3a. In the figure caption, we mention 
now that this figure is based on hourly resolution. Additionally, we also enlarged the panels of 
Figures 6 and 9. 

J. Vrugt(28): Note, the authors use the wording “prediction” – one could argue though that what is 
presented are simulations as the rainfall for the next is assumed known when simulating streamflow 
values.  

AC(28): We agree that what is input and what is predicted is a matter of systems boundaries. 
Thus, all predictions are conditional on some inputs. As we are dealing with hydrological and not 
(also) with climatological models, we still think that prediction should not lead to 
misunderstandings. 

To clarify our system boundaries, we added a statement at the end of Section 2.2 to say that the 
hydrological model is evaluated for given precipitation and potential evapotranspiration data, 
also in the prediction period. 

J. Vrugt(29): Page 24, Line 9 – 12: Is this not due in large part because of ignoring the laws of total 
expectation and total variance? Per my previous comment on this topic.  

AC(29): As we are not ignoring the laws of total expectation and of total variance, this cannot be 
the reason (see our reply to comment 20). When looking at the time series of 𝜂𝜂 in Fig. 9, using a 
constant autocorrelation time would obviously not be adequate as there are much shorter-term 
fluctuations during rainfall periods than during recessions. It is also clear from a hydrological 
point of view that (irregular) rainfall destroys the very strong autocorrelation structure we see 
during recession periods. The point of non-stationary autocorrelation was also raised by Th. 
Wöhling as referee comment 5 (Hydrol. Earth Syst. Sci. Discuss., 12, C831–C841, 2015) on the 
manuscript by Scharnagl et al. (2015) that was mentioned by the referee. This said, it is also clear 
that non-constant autocorrelation is not the only deficit of our deterministic and probabilistic 
models and further research is needed to further improve an adequate uncertainty description 
of hydrological models. However, the consideration of non-constant autocorrelation was a point 
that, in our view, has not been sufficiently discussed in the hydrological literature so far and we 
hope to contribute to stimulating this topic. 

J. Vrugt(30): I think a weakness of this paper is that the authors do not compare their findings against 
another likelihood function. In the introduction section, the authors discuss strength and limitations of 
previously used/developed likelihood functions – they use this as justification for their own approach. 



Yet, my own practical experience suggests that a simple AR-1 likelihood would already do quite a 
reasonable job. This likelihood is easy to include in the present paper. What is more, the authors should 
consider the generalized likelihood function – it is argued that this likelihood has a limitation because of 
the treatment of serial correlation on non-standardized residuals – this is easy to remedy in practice. 
Then, the argument of analytic tractability I do not really follow (Page 3, Line 22). 

AC(30): The paper does systematically compare multiple likelihood functions. They were all 
implemented with the same framework, to ensure comparability, but they rest on fundamentally 
different assumptions. For example, likelihood E2 is a “simple AR-1 likelihood”. It is clearly shown 
in the paper that its performance is very bad in the considered case studies. We see no necessity 
to test another, similar version of a simple AR1 model. As for the generalized likelihood function, 
we agree that a comparison with the presented framework would be interesting and useful. 
However, since both approaches are frameworks with considerable flexibility, a meaningful 
comparison would require to test a large number of probabilistic models covering a reasonable 
range of different assumptions with both frameworks. This would go clearly beyond the scope of 
this study. Since we do not attempt that comparison, we do not argue that the presented 
framework leads to better results than the generalized likelihood function, but only repeat the 
concerns that have been raised by Evin et al. (2013) about the generalized likelihood. Then, we 
do not completely understand what the referee means by “easy to remedy in practice”. It is not 
obvious for us how the shortcomings documented in Evin et al. (2013) could be overcome since 
this would require a new approach that would have to be theoretically developed and tested 
with a practical application. As we understand it, what comes closest to the generalized 
likelihood function, including corrections of the mentioned shortcomings, is the “Likelihood 2” in 
the submitted manuscript of Scharnagl et al. (2015). There, a heavy-tailed distribution is 
assumed for the innovations of the stochastic process describing the residuals, as in the 
generalized likelihood, but the autocorrelated process is applied to the transformed residuals, as 
suggested by Evin et al. (2013). However, also Scharnagl et al. (2015) obtain heavily biased 
results when assuming constant autocorrelation in a case where it was not appropriate to 
assume so. Specifically, we would suspect that the generalized likelihood function, after 
addressing the concerns of Evin et al. (2013), might also benefit a lot from considering non-
stationary correlation, which might lead to similar results as presented in this study. This would 
certainly be a very interesting potential future study. 

We expanded page 3, line 22 and page 5, line 10 by including more explanations about the 
benefits of specifying the distributional assumptions in the intuitive space of streamflow as 
compared to the abstract space of transformed residuals or innovations of transformed residuals. 

J. Vrugt(31): Would the inference not lead to more realistic results if the authors augment their 
likelihood with an error model for the rainfall data? This would carry another set of nuisance variables / 
hyper parameters (depending in large part on the choice of rainfall prior) but make the inference more 
robust.  

AC(31): We agree that this is another important aspect for quantifying uncertainty of 
hydrological models. We consider such approaches, which try to distinguish between different 



sources of uncertainty explicitly, as another class of approaches that come with their own 
benefits and shortcomings. This study intentionally focused on an approach to describe the total 
uncertainty in a lumped way, which minimizes the number of error model parameters and 
avoids the potential identifiability problems associated with estimating input errors. 

We expanded the sentence on page 2, Line 23 accordingly, mentioning the benefits and 
shortcomings of explicitly accounting for input uncertainty in more detail. 

J. Vrugt(32): Just a thought – but is nonstationary the right wording in the present application of the 
likelihood function? If tau does vary between rainfall and dry periods – but these two values of tau 
repeat themselves in the future (e.g. are constant) – then one may argue that overall the residual time 
series is a stationary time series. Tau just differs between rainfall and non-rainfall days. 

AC(32): We acknowledge that we chose a very simplistic non-stationary pattern. We would still 
call it non-stationary because of the high potential we see in relaxing the assumption of 
stationary autocorrelation in general, preferably also with more complex patterns. 

J. Vrugt(33): Overall, I think the author should better recognize the highly related work of Scharnagl 
(2015) published in the same journal (HESS). Indeed, this paper used the Student distribution with the 
Fernandez and Steel template function for skew. 

AC(33): See comment 19. 

 

  



Reply to Referee #2 

RC: This is an interesting well-written paper that revisits some open problems with the statistical 
characterization of hydrological model residuals (differences between observed and simulated values) in 
the context of conceptual rainfall-runoff modeling. Specifically, it addresses the issue of accounting for 
autocorrelation of model residuals, which is known to be troublesome in e.g. semi-arid basins where 
performance of spatially lumped models often is sub-optimal. The paper shows that similar problems 
occur in humid basins when the temporal resolution increases from daily to hourly. A novel approach 
that uses different autocorrelation coefficients for dry and wet periods is shown to yield better 
probabilistic streamflow predictions compared to the common practice of using a constant 
autocorrelation coefficient. 

AC: Thank you for this general feedback. 

RC (1): Title and contribution: the title is quite broadly formulated and doesn’t really bring out the main 
novel contribution of the paper, i.e. improved autocorrelation modeling at sub-daily resolutions. In my 
opinion the proposed likelihood function framework is secondary to this: although it is different from 
previous approaches, its performance for constant autocorrelation is similar to previous approaches (at 
least qualitatively – a numerical comparison is not done in the paper), and the novel use of a variable 
autocorrelation coefficient could also readily be implemented with previous approaches. So it’s not 
entirely clear what we gain from the new framework, even though I do find it quite elegant. If the main 
selling point is the new likelihood framework then more extensive comparisons (both theoretical and 
empirical) with existing approaches would be helpful. The proposed framework also has some 
(conceptual) issues, as discussed in the next point. 

AC (1): The referee correctly points out that the two major elements of the manuscript, the 
likelihood framework and the variable autocorrelation coefficient are independent of each other. 
While we do want to stress that the latter can strongly improve the results of the inference 
procedure, we do not claim that the presented likelihood framework leads to better results than 
other approaches. For this it is too general, the results achieved with the framework will depend 
strongly on the assumptions made. It will indeed lead to similar results as previous likelihoods, if 
the assumptions made are very similar (e.g. constant correlation where it is not appropriate). 
The major novelty of the framework is the ability to transparently discuss the assumptions about 
the distribution of streamflow given the model output, as the next comment of the referee 
illustrates. With previously used approaches like Box-Cox transformations or the generalized 
likelihood, the assumed distribution of streamflow is often unknown and cannot be efficiently 
communicated and discussed. We do acknowledge that this benefit is of rather qualitative 
nature and cannot be illustrated by a quantitative comparison. 

We included some more theoretical explanations about the potential benefits of the likelihood 
framework. 

We also agree that the variable autocorrelation coefficient is among the most important novel 
contributions of the paper. 



Therefore, we included it in the title of the paper, which was changed to: “A likelihood framework 
for deterministic hydrological models and the importance of non-stationary autocorrelation” 

RC(2): Section 2.1: the statistical model and corresponding likelihood is based on specifying the density 
of observed discharge Q conditioned on simulated discharge, Eq. 1. To avoid negative Q values, the 
density is truncated at zero by removing all probability mass for Q<0 and placing it at Q=0. This deviates 
from the usual truncation approach, which would scale the entire density by 1/(1-FQ(0)). In fact, the 
proposed approach results in strange bimodal looking densities with a peak at Q=0 and another at some 
Q>0; somehow I don’t think this is an intuitive model that hydrologists would come up with based on 
prior knowledge (as suggested on page 5, line 11)! Another consequence of the chosen truncation is that 
the transformed variables eta in Eq. 2 are also truncated and not Gaussian. This is partially acknowledged 
on page 5 line 28, but I don’t think it’s correct that the lower tail of eta will be lighter: there simply will 
be no lower tail (truncation). Note that these issues could be remedied by adopting the usual truncation 
approach (scale the entire density) or by using a density with nonnegative support. It’s not clear whether 
these truncation issues matter in practice, perhaps not for the humid basins studied here, but it may 
matter in drier basins with discharge close to zero. 

AC(2): This critique is partly based on a misunderstanding resulting from an insufficient 
discussion in our paper. The intention of our approach was to allow for a finite probability at Q=0 
which is important for intermittent rivers and is often poorly reflected by the deterministic part 
of the model in which the discharge approaches zero only asymptotically. Such a finite 
probability for Q=0 can be desirable, see e.g. Smith et al. (2010), whose approach of a mixture 
distribution is in conceptual agreement with Eq.(1). However, truncation and assignment of the 
truncated mass to Q=0 is only needed if the distribution extends to negative values. As our 
framework allows for an arbitrary distribution of discharge, we can choose the distribution 
mentioned by the referee from the beginning (truncate at zero and rescale the density 
accordingly). In this case there will not be any additional truncation in our probabilistic model 
and the probability of Q=0 will be zero. We agree with the referee that this may often be the 
choice of the modeler and this option is fully covered by our framework (which we did not 
clearly write in the paper so far). In our study we chose the other distribution to illustrate the 
possibility of having a finite probability for Q=0, as suggested by Smith et al. (2010). This 
probability distribution can look a bit non-intuitive, but we still believe that e.g. hydrologists 
working in ephemeral catchments would appreciate having a finite probability for Q=0. 

In Section 2.1, we improved the discussion of the flexibility the modeler has in choosing the 
distribution of discharge, in particular regarding distributing the probability for a negative 
outcome to all positive values of discharge. We also added a statement concerning the limitation 
of the truncation and rescaling approach on page 2, Line 9. To clearly distinguish between the 
two different “truncating” approaches, we reserved the word “truncating” for the approach that 
includes rescaling of the positive part of the distribution. Thus, the approach presented in the 
case studies, where the probability of a negative outcome is assigned to zero, is not called 
“truncation” anymore. 



Concerning the truncation of the lower tail, the referee is correct in the statement that there is 
no lower tail at all anymore for each individual time step. However, when considering the 
marginal distribution of the etas at all the time steps, there is still a lower tail, since the 
individual distributions at each time step are each truncated to a different extent at the lower 
end, which still results in a continuous marginal distribution over all time steps. We admit that 
this is not mentioned clearly enough in the manuscript. 

We complemented page 5, line 28 by mentioning that we mean the marginal distributions of the 
etas, which still has a lower tail. 

RC(3): Section 2.3, evaluation criteria: the reliability and precision metrics are counterintuitive in that 
smaller values for these metrics indicate better performance. Unreliability and imprecision metrics? 
Another natural metric to consider is the maximum loglikelihood value of each model (perhaps corrected 
with number of parameters, as in BIC). 

AC(3): In order to maintain consistency with McInerney et al. (2017), we would like to keep the 
names “reliability” and “precision”. However, we agree that the names can be misleading in this 
case. 

We added 2 arrows in Figure 3, clarifying that smaller reliability and precision values mean better 
results. We also added corresponding sentences in the captions of Table B1 and B2. 

We agree that the maximum loglikelihood value would be another straightforward metric to 
consider, but is not clear what information we would gain from it that we do not already have in 
the other measures. It is not very meaningful for practical purposes and it says nothing about the 
quality of the predictive distribution since it only characterizes the single best model realization. 
Given also the broad range of measures already included in the study, we would prefer to not 
include the maximal loglikelihood as a measure. 

RC(4): Section 3.3, error models: the method of Fernandez and Steel (1998) to skew a symmetric density 
was also used by Schoups and Vrugt (2010), in their case to skew an exponential-power density. It may 
be appropriate to cite that paper here, especially if that’s where you learned about the Fernandez and 
Steel method. 

AC(4): Thank you for pointing this out. We were not aware that Schoups and Vrugt (2010) have 
already used the approach of Fernandez and Steel (1998). We found it independently in the 
statistical literature. 

We mentioned that already Schoups and Vrugt (2010) have used this skewing approach. 

RC(5): Table 2, page 14, line 1: the E1 model also truncates fQ at zero, which is another difference with 
maximizing NSE. 

AC(5): This is right, the two approaches are different in their assumption about the distribution 
of streamflow in the range of Q<=0. In any case where Q<0 is not observed (almost always), the 
negative part of the distribution will not affect inference, and therefore it will not lead to a 



different result. However, when there is data of Q=0, the NSE maximization might lead to 
different results than E1. 

We added this statement on page 14, line 1.  

RC(6): Figure 6: in the top-right plot for model E3, it’s not clear that distributional assumptions for eta 
are satisfied; there are significant outliers in this plot, and the variance is not constant. 

AC(6): We agree with the statement of the referee. We do not claim that error model E3 results 
in perfectly fulfilled assumptions. Also the assumption of zero correlation during precipitation 
events is violated. We think that the major benefit of E3 is a pragmatic trade-off between 
fulfilling the assumptions to a satisfactory degree and still providing reasonable results in terms 
of the fit of the hydrological model and the predictive uncertainty. 

RC(7): Conclusions: finding 5 (accounting for autocorrelation is good) seems to contradict finding 1 
(accounting for autocorrelation can be bad); you may need to clarify/reformulate these a bit. 

AC(7): We agree that there is some contradiction in those two findings as they are formulated 
now. 

We added a statement in finding 5 saying that the benefit of considering autocorrelation is only 
useful if the problems mentioned in finding 1 can be avoided. 

RC(8): Conclusions: finding 3 states that errors in streamflow are expected to be less correlated during 
precipitation events than during dry weather. Is that always the case though? What about rainfall errors, 
these could lead to significant bias and correlated errors in simulated streamflow. Also, structural errors 
in the fast flow component of the model may be (much) larger than in the slow flow component. 
Perhaps a better, more general, justification for a nonstationary correlation model is to say that the error 
correlation structure can be expected to differ between wet and dry periods (for various reasons), and 
then let the data decide whether wet or dry has the larger autocorrelation coefficient. 

AC(8): We agree with that statement. It is not completely certain a-priori that the rainfall events 
will have the less correlated errors, although we do believe that this will often be the case. 

We added a statement on page 24 line 16 and adapted finding 3 of the conclusions to say that in 
principle also higher correlation of errors during precipitation events is possible, but we still 
mention that reduced correlation is more likely. 

RC(Edits):  

- page 4, line 5, "Understanding...remains poorly understood": remove "understanding". 

- Eq. 13, Nash-Sutcliffe formula: change Q to Qobs in the denominator 

- page 21, line 12: "normality" has a typo 

- figure 9, caption: left/right should be top/bottom 



- page 27, line 28: likeli -> likely 

- page 28, line 17: "appropriate" has a typo 

AC(Edits): Thank you for pointing these out. We agree that all of these are errors. 

We corrected them in this version of the manuscript. 

Additional Changes 

Page 1, Line 23: Highlighted the special characteristic of observation errors: they only need to be 
accounted for when doing inference based on observations. 

Page 2, Line 16: Based on a comment of Alberto Montanari, the non-negativity is not listed as a separate 
characteristic anymore, but added to the first point of the list about the non-normality of the residuals. 

Page 2, Line 26: More precise wording regarding the treatment of heteroscedasticity in the weighted 
least squares approach. 

Page 2, Line 29: Bibtex Entry was corrected: Del Giudice, D. 

Page 4, Line 11: some clarifications w.r.t. the disadvantages of not accounting for autocorrelation in the 
residuals 

Page 4, Line 21 and Line 30: some clarifications regarding the goals of this study 

Page 5, Line 14: better wording regarding the application of copulas to access DQ by Wani et al. 

Page 8, Line 16: more precise wording regarding the criteria of performance of an error model. 

Page 8, Eq. (10): the absolute value operator was missing in the numerator. 

Page 10, Eq. (14): replaced the integration with a sum 

Page 13, Figure 2: We included the reference modelled streamflow, Qdet, and changed the centering of 
DQ so that Qdet is equal to the mean of DQ and not the mode. This is more representative of the 
method applied for generating the results in the paper. 

Page 13, Line 15: Since Qobs is a deterministic value, the notation E[] does not make sense, we replaced 
it with the “bar” to denote the average. 

Page 14, Line 12: Short sentence clarifying the need to account for temporal lags between precipitation 
and streamflow when using E3. 
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Abstract. The widespread application of deterministic hydrological models in research and practise
::::::
practice calls for suitable

methods to describe their uncertainty. The errors of those models are often heteroscedastic, non-Gaussian and correlated due

to the memory effect of errors in state variables. Still, the residual error models used to describe them are usually highly

simplified, often neglecting some of the mentioned characteristics. This is partly because general approaches to account for all

of those characteristics are lacking, and partly because the benefits of more complex error models in terms of achieving better5

predictions are unclear. For example, the joint inference of autocorrelation
::
of

:::::
errors

:
and hydrological model parameters has

been shown to lead to poor predictions. This study presents a framework for likelihood functions for deterministic hydrological

models that considers correlated errors and allows for an arbitrary probability distribution of observed streamflow. The choice of

this distribution reflects prior knowledge about non-normality of the errors. The framework was used to evaluate increasingly

complex error models with data of varying temporal resolution (daily to hourly) in two catchments. We found that (1) the10

joint inference of hydrological and error model parameters leads to poor predictions when conventional error models with

stationary correlation are used, which confirms previous studies, (2) the quality of these predictions worsens with higher

temporal resolution of the data, (3) accounting for a non-stationary autocorrelation of the errors, i.e. allowing it to vary between

wet and dry periods, largely alleviates the observed problems, and (4) accounting for autocorrelation leads to more realistic

model output as shown by signatures such as the Flashiness Index. Overall, this study contributes to a better description of15

residual errors of deterministic hydrological models.

1 Introduction

Deterministic hydrological models are widely applied in research and decision-making processes. The quantification of their

associated uncertainties is therefore an important task with high relevance for the scientific learning process, as well as for

operational decisions with respect to water management. The total output uncertainty of those models is a combination of20

(i) propagated input uncertainty (e.g., Sun et al., 2000; Kavetski et al., 2003; Bárdossy and Das, 2008), (ii) model structural

errors (e.g. Butts et al., 2004), which can be attributed to aggregation and parameterisation,
:::
and (iii) parameter uncertainty

(e.g. Freer et al., 1996; Wagener et al., 2001), and .
::::::

When
:::::::::
performing

:::::::::
inference,

::::::::::
observation

:::::
errors

:
(iv) observation errors of

1



the output,
:::
are

::
an

:::::::::
additional

::::::
source

::
of

::::::::::
uncertainty,

:::::
which

:::::
arises

:
for example due to errors in rating curves (e.g. Kuczera and

Franks, 2002). The sources (i-iv) usually result in residual errors of streamflow predictions
::::::::
predicted

:::::::::
streamflow

:::::::::::
observations

with the following characteristics:

– Non-normality: model residuals are seldom well represented by a normal distribution with constant mean and vari-

ance. Instead, residuals are typically heteroscedastic (increasing with streamflow), right-skewed , and charactered
:::
due

::
to5

::::::::::::
non-negativity

::
of

:::::::::
streamflow,

::::
and

:::::::::::
characterized by excess kurtosis (fat tails) (e.g. Schoups and Vrugt, 2010).

– Autocorrelation: several sources of error cause memory effects. For example
::::
Such

::::::
sources

::::
are

::::::::::
inadequacy

::
of

::::::
model

:::::::
structure, errors in internal states of the model (Kavetski et al., 2003) or missed rainfall events, which can have an effect

on the residuals several days after the event has occurred (e.g. Beven and Westerberg, 2011)
:
.

– Non-stationarity: model residuals can have very different characteristics in time. For example, during wet periods dom-10

inated by rainfall, errors are generally less correlated than during dry periods (Yang et al., 2007). Schaefli et al. (2007)

find that residuals are less correlated during high flows than during low flows in a glacierised alpine catchment.

– Unequally spaced observations: observations do not always take place at fixed time intervals. Particularly for water

quality, volume-proportional sampling strategies are generally preferable to fixed-time strategies (e.g. Schleppi et al.,

2006). These strategies generate observations at unequal time intervals. Another cause of unequal observation intervals15

is missing data.

– Non-negativity: in typical situations, streamflow measurements are non-negative meaning that streamflow always flows

in the same direction

Various studies have investigated error models that consider correlation, heteroscedasticity and non-normality of errors of

deterministic hydrological models. A typical approach, which is also applied in this study, is to describe total output uncertainty20

in a lumped way (e.g. Schoups and Vrugt, 2010; McInerney et al., 2017). Another group of approaches distinguishes among the

different sources of total uncertainty such as input, parametric and output measurement uncertainty (e.g. Kavetski et al., 2006;

Renard et al., 2010). The latter approach requires information about input and output uncertainty to overcome an otherwise

ill-posed problem, and is not pursued in this work
:
is
:::::::::::

conceptually
::::::::
desirable,

::::
but

:
it
::::
can

:::
lead

::
to
::::::::::::

identifiability
::::::::
problems

:::
and

::
it

::
is

:::::::::::::
computationally

::::
very

::::::::
intensive

:::
due

::
to

:::
the

:::::::
required

:::::::::::
propagation

::
of

:::::
errors

:::::::
through

:::
the

::::::
model.

:::
For

:::::
many

::::::::::
applications

:::
we

::::
need

::
a25

:::::::::::::
computationally

:::::::
cheaper

::::::::
approach

:::
that

::::
can

::
be

::::::::
achieved

::::
with

:
a
:::::::

lumped
::::::
model.

::
It

::
is

:::
the

::::
goal

::
of

::::
this

:::::
paper

::
to

:::::::::
contribute

::
to

:::
the

:::::::::::
improvement

::
of

::::
these

:::::::
lumped

:::::::::
approaches. Current approaches to describe total output uncertainty in a lumped way differ in if,

and how, they deal with the various characteristics of residual errors mentioned above. Some of the most common approaches

are the following:

– Residuals are often normalised for weighed
:::::::::::::::
Heteroscedasticity

:
is
:::::
often

:::::::::
considered

::
in

::::::::
weighted least squares error models30

by parameterising the variance of the normal distribution as a function of the streamflow (Thyer et al., 2009; Evin et al.,

2013; Bertuzzo et al., 2013). Another common approach is to apply transformations such as Box-Cox to the observed

2



and modelled streamflow time series and formulate a model for the residuals of the transformed time series (e.g. Bates

and Campbell, 2001; Del Giudice et al., 2013; McInerney et al., 2017). However, this transformation affects several

properties of the residuals simultaneously, including heteroscedasticity, skewness and kurtosis.

– Typically, residual errors are represented as a stationary process. The issue of stationarity has been the subject of recent

debate (Milly et al., 2008; Montanari and Koutsoyiannis, 2014). Focusing on streamflow dynamics, an example of5

representing non-stationarity of residual errors is Yang et al. (2007), who distinguish between wet and dry periods by

applying a continuous autoregressive process with different parameters for the wet and the dry periods to the Box-Cox

transformed residuals.

– A likelihood function
::::::::::
probabilistic

::::::
model

:
to deal with unequally spaced data was proposed by Duan et al. (1988). A

more natural formulation is to adopt a continuous-time formulation of the autoregressive model, such as an Ornstein-10

Uhlenbeck process (e.g. Kloeden and Platen, 1995; Yang et al., 2007).

– Non-negativity
:
of

::::::::::
streamflow can be addressed by truncating the error pdf so that it does not extend to negative stream-

flow. However, this
:::
This

:::::
leads

::
to

::::
zero

:::::::::
probability

:::
for

:::
zero

::::::::::
streamflow,

:::::
which

::::
may

:::
not

::::::
always

:::
be

::::::::
adequate.

:::
The

:::::::::
truncation

approach is seldom followed, and in most applications the truncation occurs “in prediction only” (McInerney et al., 2017).

Residual error models are usually highly simplified, in the sense that they do not account for all the above mentioned char-15

acteristics of these errors. In particular, residual error models seldom go beyond using “variance stabilisation” techniques such

as Box-Cox. The widespread use of relatively simple error models is due to several reasons. In our opinion, the following are

the most important.

First, there is a lack of general approaches that can deal with all the above mentioned characteristics of error models simulta-20

neously. One general error model that can accommodate various characteristics is the likelihood parameterisation
::::::::::
probabilistic

:::::
model

:
proposed by Schoups and Vrugt (2010), which can deal with residual errors that are correlated, heteroscedastic, and

non-Gaussian with varying degrees of kurtosis and skewness. They do this by formulating
::::::::
describing

:::
the

:::::
errors

::::
with

:
an autore-

gressive process with a skew exponential power (SEP) rather than a normal distribution . This results in marginal distributions

for streamflow at given time points that can be non-normal and skewed, but are not easily accessible analytically. Furthermore,25

the approach was
::
for

:::
the

:::::::::::
innovations.

::::::::
However,

::::
their

:::::::
approach

::
is
:
shown to produce unrealistically large predictive uncertainties

caused by the application of the autoregressive process to non-standardised residuals (Evin et al., 2013).
:::::::::::::::::::
Scharnagl et al. (2015)

::::::
attempt

::
to

:::::::
address

::::
this

::::
issue

:::
by

::::::::
applying

::
an

::::::::::::
autoregressive

:::::::
process

::
to
::::

the
::::::::::
standardized

::::::::
residuals

:::
of

:
a
::::
soil

::::::::
moisture

::::::
model,

::::
using

::
a
:::::::
skewed

::::::::
Student’s

:
t
::::::::::
-distribution

::
to

:::::::
describe

::::
the

:::::::::
probability

::::::
density

:::
of

:::
the

::::::::::
innovations

::
of

:::
the

:::::::::::::
autoregressive

:::::::
process.

::::::::
However,

::::
with

:::
this

::::::::
approach

::::
they

:::::::::
experience

::::::::::
problematic

::::::::
inference

::::::::
behaviour

:::
and

::::::
biased

::::::
results

::::::
similar

::
to

:::
the

::::
ones

:::::::::
mentioned30

::
by

:::::::::::::::
Evin et al. (2013).

::::::::::::
Furthermore,

:::::
while

:::
the

:::::::::::
conventional

::::::::
approach

:::
of

:::::
using

::::::
normal

::::::::::
innovations

:::
for

:::
the

::::::
errors

:::::
leads

::
to

::
a

::::::
normal

:::::::
marginal

:::
of

::::::::::
(potentially

:::::::::::
transformed)

::::::::::
streamflow,

::::::::::
non-normal

::::::::::
innovations

::::
lead

::
to

::::::::
marginal

:::::::::
streamflow

:::::::::::
distributions

:::::
which

:::
are

::::::::
generally

::::
not

:::::::
available

:::
in

::::::
closed

:::::
form.

:::
An

:::::::
explicit

::::::::
marginal

::::::::::
distribution

::
of

::::::::::
streamflow

::::::::::::::::::::
(Krzysztofowicz, 2002)
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::::::::
facilitates

::::::::
scientific

:::::::::::::
communication

:::
and

:::::::::
discussion,

:::::
since

:::::::::::
hydrologists

:::
are

::::::::
generally

::::
more

:::::::
familiar

::::
with

::::::::::
streamflow

::::
than

::::
with

:::::::
Box-Cox

:::::::::::::
transformation

:::::::::
parameters

::
or

:::::::::::
distributions

::
of

:::
the

:::::::::
innovations

:::
of

::::::::
residuals.

Second, there is limited guidance to the choice of a particular error model for a given application. In the past, the choice

has been generally ad-hoc, with limited justification. Only recently, there has been more systematic comparison and testing5

which has resulted in some general recommendations. For example, McInerney et al. (2017) compared
:::::::
compare

:
various resid-

ual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power

parameter) and the log-sinh transformation on
:::::
using

:::
data

:::::
from 23 catchments, and concluded that Box-Cox has on average the

best behaviour.

10

Third, previous experience has shown that more realistic error models, which are more complex, do not always result in better

predictions. The additional parameters of some of the more complex error models were found to have undesirable interactions

with the parameters of the hydrological model, leading to unrealistic parameter values and poor predictions. For example,

particularly in dry catchments, accounting for autocorrelation produces worse predictions than omitting it (Schoups and Vrugt,

2010; Evin et al., 2013). To circumvent such problems, Evin et al. (2014) recommended inferring autoregressive parameters15

:::::::::
recommend

::::
that

::::::::::::
autoregressive

::::::::::
parameters

:::
are

:::::::
inferred

:
sequentially, that is, after having estimated all other parameters of

the hydrological and of the error model.
:::::::
Similarly,

::::::
many

:::::::::
uncertainty

:::::::
analysis

::::::::::
techniques

:::
are

::::::
applied

:::
for

:::::
fixed

:::::::::::
hydrological

:::::::::
parameters,

::::::::
avoiding

:::
the

:::::::::::
re-calibration

::
of

:::::::::::
hydrological

::::::
models

:::::::::::::::::::::::::::
(e.g. Montanari and Brath, 2004).

:
The joint inference of hydro-

logical and error model parameters remains conceptually preferable, as it recognises potential interactions between parameters.

Understanding the
:::
The

:
conditions under which this can be achieved remains

:::::
remain

:
poorly understood.20

Fourth, the potential advantages of more complex error models are under-appreciated by the hydrological community. Most

commonly, residual error models are used to plot some “uncertainty bands ” around the hydrograph. For such purposes
:::
For

:::::::
relatively

:::::::
simple

:::::::::
uncertainty

::::::::
analysis,

::::
like

:::
the

:::::::
plotting

::
of

::::::::::
uncertainty

:::::
bands

::::::
around

:::::::::::
hydrographs, the use of relatively sim-

plified error models may appear justified. However, there are several applications that go beyond this task, and for which a25

simplified error model may lead to poor results. For example, assuming uncorrelated errors may lead to unrealistic extrapo-

lations (Del Giudice et al., 2013) or unrealistic values of hydrograph signatures , particularly if these
::
too

::::::
strong

::::
short

:::::
term

::::::::::
fluctuations,

:::::
which

::::
have

::
a
::::
large

:::::
effect

:::
on

::::::::::
hydrograph

::::::::
signatures

::::
that are sensitive to noise, such as for example the Flashiness

Index (Baker et al., 2004; Fenicia et al., 2018). The ability of correctly representing signatures is not only important for con-

ceptual reasons, but also for practical purposes such as in signature based model calibration.30

The goals of this study are the following:

1. Develop a
::::::
flexible

:
framework for likelihood functions for hydrological models that accounts for the following major

characteristics of their errors: non-normality (heteroscedasticity, skewness and excess kurtosis), autocorrelation, non-

stationarity in wet and dry periods, unequally spaced observation time points and non-negativity of streamflow.35
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2. Investigate the ability to infer the various parameters of the error model and the
:::
Use

:::
the

:::::::
flexible

::::::::::
framework

::
to

:::
do

::::::::
controlled

::::::::::
experiments

:::
by

:::::::
varying

::::
some

:::
of

:::
the

::::::::::
assumptions

:::
and

:::
by

::::::::::
performing

::::
joint

::::::::
inference

::
of

::
a

::::::::::
hydrological

::::::
model

::::
with

::::
error

::::::
models

:::
of

::::::::
increasing

::::::::::
complexity.

::::::::::
Investigate

:::
the

:::::
effect

::
of

:::
the

::::::
various

:::::::::::
assumptions

::
on

::::
the quality of the pre-

dictive distributions. In particular, with case studies in two catchments, we investigate the following questions:

(a) Can we confirm previous findings about the problems related to joint inference of hydrological and error model5

parameters?

(b) What are the causes of the problems encountered in joint inference of hydrological and error model parameters?

(c) Can we improve the joint inference by introducing non-stationarity by allowing the autoregressive parameter to

change between wet and dry periods?

(d) Does the consideration of autocorrelation lead to more realistic predictions (e.g. in terms of better representation10

of hydrograph signatures such as the Flashiness Index)?

(e) Can parameters controlling the shape of the distribution of the errors be inferred jointly with the hydrological model

parameters to account for non-normality?

Note that the developed framework allows for additional flexibility in aspects that are not covered with Questions 2a-2e (e.g.

unequally spaced observations, non-negativity). To limit the scope of this paper, we refrain from controlled experiments w.r.t.15

those aspects. The paper is structured as follows. The theoretical framework for likelihood functions
::
the

:::::::::::
probabilistic

:::::
model,

corresponding to Goal 1, is presented in Sect. 2.1 and the performance metrics used to evaluate it are described in Sect. 2.4.

Section 3 describes the case study setup used to carry out the necessary investigations for Goal 2. The case study is based on

two catchments (Sect. 3.1), one hydrological bucket model (Sect. 3.2) and three different time step sizes (daily, 6-hourly and

hourly). The results of those investigations are presented in Sect. 4 and discussed in Sect. 5. Section 6 lists the main conclusions20

and sketches potential directions for future research.

2 Methods

2.1 Likelihood
:::::::::::
Probabilistic

:
framework

Suppose we choose the distribution DQ to describe the probability of observing streamflow Q, given the model output Qdet

.
:::
(see

::::
Fig.

:::
1).

:
We believe that this is a natural place to start the derivation of a likelihood function

::::::::::
probabilistic

::::::::::
framework25

for hydrological models, since many modellerswill have an intuitive idea about the probability distribution of the observations

given an output of their model (Fig. 1).
:
it
:::::::
enables

::
us

::
to

:::::::::::
communicate

::::
and

::::::
discuss

:::
the

::::
basic

:::::::::::
assumptions

::
in

:
a
:::::
space

::::
that

:
is
:::::
most

::::::
familiar

:::
to

::::::::::
hydrological

::::::::::
modellers;

:::
the

:::::
space

::
of

::::::::::
streamflow.

:::::
Note

:::
the

:::::
major

:::::::::
difference

::
to

:::::::::::::
transformation

:::::
based

::::::::::
approaches

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bates and Campbell, 2001; Del Giudice et al., 2013; McInerney et al., 2017, e.g.)

:::
and

:::::::::
approaches

::::
that

:::
use

::::::::::
non-normal

:::::::::
innovations

::
of

::
the

:::::::::
stochastic

::::::
process

:::::::::::::::::::::::::::::::::::::::::
(Schoups and Vrugt, 2010; Scharnagl et al., 2015),

::::
both

::
of

:::::
which

::::
lead

::
to

:::
DQ:::

not
:::::
being

::::::
readily

::::::::
available30

::
in

:::::
closed

:::::
form.

::
In

::::::::
particular,

:::::::::
discussing

:::
the

:::::::
possible

:::::::::
distribution

::
of

::::::::::
streamflow

::::
given

:::
the

::::::
output

::
of

:
a
:::::::::::
hydrological

:::::
model

::
is

:::::
easier

5



:::
than

:::::::::
discussing

::::::::
Box-Cox

::::::::::::
transformation

:::::::::
parameters

::
or

:::
the

::::::::::
distribution

::
of

:::
the

:::::::::
innovations

::
of

:::
the

::::::
model

:::::
errors. Providing explicit

control over DQ :::::::
therefore

:
facilitates the formulation of the model based on prior knowledge resulting from past experience

of hydrologists . Note the major difference to the approach of Schoups and Vrugt (2010) and transformation based approaches

(Bates and Campbell, 2001; Del Giudice et al., 2013; McInerney et al., 2017, e.g.), where DQ is not easily accessible.
:
in

:::::
units

:::
they

::::
are

:::::::
familiar

::::
with.

:
Wani et al. (In preparation) present another approach in which the temporal dependence of DQ ::

at5

:::::::::
subsequent

:::::
output

:::::
time

::::
steps

:
is accessed through copulas.

We assume thatDQ is parameterised byQdet and some error model parametersψ, i.e.Q(t)∼DQ(Qdet(t),ψ)
::::::::::::::::::::::
Q(t)∼DQ(Qdet(t,θ),ψ),

:::::
where

::
θ

::
are

:::
the

::::::::::
parameters

::
of

:::
the

::::::::::
deterministic

:::::::::::
hydrological

:::::
model. This implies that the observed streamflow at different time

points can be described by different distributions
::::
(e.g.

::::
with

:::::::
varying

:::::::
standard

:::::::::
deviation), but these distributions belong to the10

same parametric familyDQ. The distribution DQ may extend to negative values. In this case, the integrated probability of

negative values is assigned to the probability of observing a streamflow of zero. This leads to

pDQ(Qdet,ψ)

(
Q
)

=


fDQ(Qdet,ψ)

(
Q
)

for Q> 0

FDQ(Qdet,ψ)

(
0
)

for Q= 0

0 for Q< 0

(1)

where fDQ and FDQ be
:::
are the density and cumulative distribution function of DQ, respectively. p is a probability density

for Q> 0 and a discrete probability for Q= 0. Note that Eq. (1) reflects our prior knowledge that Q≥ 0 . Transforming Q15

according to
::::
when

:::::::
dealing

::::
with

::::::::
non-tidal

::::::
rivers.

::
If

:::
the

::::::::::
distribution

::::::
chosen

:::
for

::::
DQ::

is
::::::
limited

:::
to

:::::::
positive

:::::::
support,

:::::
either

:::
by

:::::::
choosing

::
a
::::::::::
distribution

::::
with

:::::::
positive

:::::::
support

::
or

:::
by

:::::::::
truncating

::
at

:::::
zero,

::::
only

:::
the

::::
first

::::
case

::
in
:

Eq. (2) leads to a (potentially

correlated) time series: with
::
1)

::::::
applies

:::
and

:::
we

:::
get

::::
zero

:::::::::
probability

:::
for

::::::
Q= 0.

::::
This

::
is

:
a
::::::::
common

:::::::
approach

::::
that

::
is

::::
fully

:::::::
covered

::
by

:::
the

::::::::
presented

::::::::::
framework.

::::::::
However,

:::::::::
especially

::
in

:::::::::
ephemeral

::::::::::
catchments,

::
a

::::
finite

::::::::::
probability

:::
for

:::::
Q= 0

:::::
might

:::
be

::::::::
desirable

:::::::::::::::
(Smith et al., 2010)

:
.
::::
This

:::
can

:::
be

:::::::
achieved

:::
by

::::::::
choosing

:
a
::::::::::
distribution

::::
DQ :::

that
:::::::
extends

::
to

:::::::
negative

::::::
values.

:::
Eq.

:::
(1)

::::
then

:::::::
assigns20

::
the

::::::::
negative

:::
tail

::
to

::::::
Q= 0.

::
If
::::::::::

correlation
::
is

::::::
absent

::
or

:::::::::
neglected,

:::
Eq.

:::
(1)

::::
can

::
be

:::::::
applied

::
at

::::
each

::::
time

::::
step

::::
and

:::
the

:::::::::
likelihood

:::::::
function

:
is
::::::

simply
:::
the

:::::::
product

::
of

:::::
those

:::::::
mutually

:::::::::::
independent

:::::
terms.

:::::::::
Accounting

:::
for

::::::::
temporal

:::::::::
correlation

:::::::
requires

:::::
some

::::::::
additional

::::::::::::::::
conceptualisations.

::::::::
Consider

:::
the

::::::::::::
transformation

:::::::
function

ηtrans(Q,Qdet,ψ) = F−1
N(0,1)

(
FDQ(Qdet,ψ)(Q)

)
(2)25

:::::
which

:::::::::
transforms

:::
the

:::::::::
streamflow,

:::
Q,

:::
via

::
its

::::::::
assumed

:::::::
marginal

::::::::::
distribution,

::::
DQ,

::::::
which

:
is
:::::::::
dependent

::
on

:::
the

::::::
model

::::::
output,

:::::
Qdet.

:
If
:::
the

:::::::::::
distributional

:::::::::::
assumptions

::
for

::::
DQ :::

are
::::::
correct,

:::
the

:::::
result

::
of

:::
this

:::::::::::::
transformation

:
is
::
a

:::::::
standard

:::::::
normally

:::::::::
distributed

::::::::
variable.

::::::::
Applying

:::
Eq.

:::
(2)

::
to

:
a
::::
time

:::::
series

::
of

::::::::::
streamflow,

::::::
Q(ti),

::::
leads

::
to

::
a

::::
time

:::::
series

::
of

::::::::::
transformed

::::::::::
streamflows

:

η(ti) = ηtrans(Q(ti),Qdet(ti),ψ) (3)

where Qdet is the result of the deterministic hydrological model
::
ti :::

are
:::
the

::::
time

:::::
points

:::
of

::::::
interest

:::
for

::::::::
inference

::
or
:::::::::

prediction.30

Note that, if the distributional assumptions about DQ hold
:
at

:::
all

:::::
points

::
in
:::::

time,
:::::
η(ti):::

are
::
a

::::::
sample

::::
from

::
a
:::::::
standard

:::::::
normal

6



:::::::::
distribution, η will be marginally standard normally distributed, except for the truncation at zero

::::
lower

:::
tail, which can lead to

lighter tails on the lower end.

::
be

::::::
lighter

:::
due

::
to

:::
the

:::::::::
truncation

::
at

::::
zero

::
at

::::
each

:::::::::
individual

::::
time

::::
step.

::
If
:::::
there

:::
are

:::::::::
systematic

:::::::::
deviations

::
of

::
Q

:::::
from

:::::
Qdet, :::

the

:::::
series

::::
η(ti)::::

will
::
be

:::::::::::::
autocorrelated.

5

To describe autocorrelation between successive streamflow values
:
in
:::
the

:::::::::
deviations

::
of

::
Q

:::::
from

::::
Qdet, we assume that the corre-

sponding time series of η are discrete-time results of a continuous-time autoregressive process:

η(ti) | η(ti−1)∼N

(
η(ti−1)exp

(
− ti− ti−1

τ(ti)

)
,

√
1− exp

(
−2

ti− ti−1

τ(ti)

))
(4)

:::::
where

::
N

::
is

:::
the

::::::
normal

::::::::::
distribution

:::
and

:::
the

::::
first

:::
and

:::
the

::::::
second

::::::::
argument

::
is
:::
the

:::::
mean

:::
and

:::
the

::::::::
standard

::::::::
deviation,

:::::::::::
respectively.

This so-called Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930) has a standard normal asymptotic distribution and10

τ(ti+1) represents the
:
a characteristic correlation time

:
,
:::::
τ(ti), that is assumed to be constant over the interval [ti, ti+1].Consider

the conventional AR(1) process: where εt is white noise. For equidistant time steps, the relation between τ in Eq. (4) and φ in

Eq. (5) is given by: where ∆t is the size of the time step. To apply Eq.
:::::::
[ti−1, ti].

::
In

::::::::
summary,

:
to transfer information between time points, we transform the distribution DQ at time ti :::

ti−1:
to a standard15

normal distribution ηi ::::
ηi−1 according to Eq. (2), advance ηi to ηi+1 ::::

ηi−1 ::
to

::
ηi according to Eq. (4), and transform ηi+1 :

ηi:back

to DQ at time ti+1.
::
ti.

::::
Note

::::
that,

:::
for

:
a
:::::::
constant

::::
time

::::
step

:::::::::::::
∆t= ti− ti−1,

:::
Eq.

:::
(4)

::::::::
becomes:

:

η(ti | ti−1)∼N
(
η(ti−1)φ,

√
1−φ2

)
(5)20

::::
with

φ= exp(−∆t

τ
) or τ =− ∆t

ln(φ)
(6)

::::
This

:
is
::

a
:::::::::::
discrete-time

::::::
AR(1)

::::::
process

:::::
with

::::::::::::
autoregression

:::::::::
coefficient

::
φ

:::
and

:::::
white

:::::
noise

:::::::
variance

:::::::
1−φ2. The formulation of

a continuous-time autoregressive process with evaluation at discrete time points allows us to apply it to non-equidistant time

series; one
:
.
:::
One

:
advantage of this formulation is that it allows us

::::::::
combines

:::::::::::::
autocorrelation

::::
with

:::
the

:::::::::
possibility to easily deal25

with missing data.

:
,
:::::
which

::
is

::::::::::
considerably

:::::
more

::::::
difficult

:::::
when

:::::
using

:::
the

::::::::
fixed-time

:::::::
version

::
in

:::
Eq.

:::
(5).

::::
Note

::::
that

::
the

::::::::::::::
continuous-time

::::::::::
formulation

:::::::
assumes

:::
that

::
η

:::
can

::
be

::::::::
described

::::
well

:::
by

::
an

::::::::::::
autoregressive

::::::
process

::
of

::::
first

:::::
order,

:::::
where

::
in

::::
fact

:::::
higher

::::::
orders

::::
have

::::
been

::::::::
observed

:::::::::::::::::::::::::::::::::::
(Kuczera, 1983; Bates and Campbell, 2001)

:
.
::::::::::
Nonetheless,

:::
the

::::
first

::::
order

::::::::::::
approximation

:::
has

::::
been

::::
used

:::::
often

:::::::::
throughout

:::::::::::
hydrological

::::::::
literature.30

7



In order to formulate the likelihood
::::::::
probability

:
of the streamflow Q, we derived

::::
used

:::
Eq.

:::
(1)

::
to
:::

(4)
:::

to
:::::
derive

:
the following

conditional probabilities for Q(ti+1) given Q(ti) ::::
Q(ti):::::

given
:::::::
Q(ti−1)

:
(see Appendix A for the full derivation):

if Q(ti−1)> 0 :

pi
(
Q(ti) |Q(ti−1),θ,ψ

)

=



fDQ(Qdet(ti,θ),ψ)

(
Q(ti)

) fN

(
η(ti−1)exp

(
−
ti−ti−1

τ

)
,

√
1−exp

(
−2

ti−ti−1
τ

))(η(ti))

fN(0,1)(η(ti))
for Q(ti)> 0

F
N

(
η(ti−1)exp

(
− ti−ti−1

τ

)
,

√
1−exp

(
−2

ti−ti−1
τ

)) (η(ti)) for Q(ti) = 0

if Q(ti−1) = 0 :

pi
(
Q(ti) |Q(ti−1),θ,ψ

)
=


f
DQ

(
Qdet(ti,θ),ψ

)(Q(ti)
)

for Q(ti)> 0

F
DQ

(
Qdet(ti,θ),ψ

)(0) for Q(ti) = 0

(7)

Note that p is a probability density (denoted by f ) if Q(ti+1)> 0
::::::::
Q(ti)> 0, and an integrated, discrete probability (denoted

by F ) if Q(ti+1) = 0. The full
::::::::
Q(ti) = 0.

:::::
Note

:::
also

::::
that

:
η
::
in

::::
Eq.

::
(7)

::
is
:::::::::
calculated

::::
with

:::
Eq.

:::
(3)

:::
and

:::::::
depends

:::
on

::
Q

:::
and

::::::::
Qdet(θ).5

::::::::::
Furthermore,

::::
Eq.

:::
(7)

::::::
reduces

::
to

:::
Eq.

:::
(1)

:::
for

::::::
τ → 0,

:::
i.e.

::
if

:::::::::
correlation

::
is

:::::
absent

:::
or

::::::::
neglected.

:::
The

:
likelihood is then simply

:::::::
obtained

:::
by

:::::::
building

:
the product of the conditional probabilities in Eq. (7)

:::
and

:::
by

::::::::::
substituting

::
the

::::::::::::
observations,

::::
Qobs,:::

for
:::
Q:

fL

(
Qobs(t0),Qobs(t1), . . . ,Qobs(tn) | θ,ψ

)
= pDQ(Qdet(t0,θ),ψ)

(
Qobs(t0)

) n∏
i=1

pi
(
Qobs(ti) |Qobs(ti−1),θ,ψ

)
(8)10

::::
Note

:::
that

:::
the

::::
first

::::
term

::
on

:::
the

::::
right

:::::
hand

:::
side

::
of

::::
Eq.

::
(8)

::::
can

::
be

::::::::
calculated

::::
with

::::
Eq.

:::
(1),

::::
since

::
it
::
is

:::
not

:::::::::
conditional

:::
on

::
the

::::::::
previous

::::
time

::::
step.

2.2
::::
Error

:::::::
Models

::
As

::
a
:::::
basis

:::
for

::::::::::
subsequent

:::::::::::
applications,

:::
we

:::
set

::::
DQ ::

to
:::
the

:::::::
skewed

::::::::
Student’s

::
t
::::::::::
-distribution

::::
(Fig.

:::
1),

::::::
which

::
is
::::::::

obtained
:::
by

::::::::::
transforming

:::
the

:::::::::::
conventional

::::::::
Student’s

:
t
::::::::::
-distribution

::::::::
according

::
to

:::::::::::::::::::::::
Fernandez and Steel (1998).

::::
This

::::::::
approach

::
of

::::::::
skewing

:::
has15

::::
been

::::
used

::
in

:
a
::::::::
previous

:::::
study

::
on

::::
error

:::::::
models

::::::::::::::::::::::
(Schoups and Vrugt, 2010),

:::::
albeit

::
in

::
a
:::::::
different

::::::
setting.

:::::
Thus,

:::
we

::::::::
introduce

::::
two

::::
error

:::::
model

::::::::::
parameters:

::
γ,

:::::::
defining

:::
the

::::::
degree

::
of

:::::::::
skewness,

:::
and

:::
df ,

:::
the

:::::::
degrees

::
of

:::::::
freedom

::
as

::
a
:::::::
measure

:::
for

:::
the

:::::::
kurtosis.

::::
The

::::::
skewed

::::::::
Student’s

:
t
::::::::::
-distribution

::::::
reduces

::
to

:::
the

::::::
normal

::::::::::
distribution

:::
for

:::::
γ = 1

:::
and

::::::::
df →∞.

::::
Two

::::::::::
assumptions

:::
are

:::::
tested

::
to
::::::
centre

:::
DQ::

at
::::
Qdet:

E[DQ] =Qdet(t) (9a)20
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Figure 1.
::::::
Example

::
of

::::::
skewed

::::::::
Student’s

:
t
:::::::::
-distributions

::::
with

::::::::::::::::::::::::::
E[DQ] =Qdet(t) = 2.5 mm h−1

:::
and

:::::::
standard

:::::::
deviation

:::::::::::
σDQ(t) = 0.6

:::
for

::::::
different

:::::
values

::
of

::::::::
skewness,

::
γ,

:::
and

::::::
kurtosis,

:::
df .

mode(DQ) =Qdet(t) (9b)

:::
i.e.

:::
we

:::::
either

:::::
assign

:::
the

::::::::
expected

::::
value

::
or

:::
the

::::::
highest

::::::::::
probability

::
of

:::
DQ::

to
:::::
Qdet.::

A
::::
third

:::::::::
alternative

:::::
would

:::
be

::
to

::
set

:::
the

:::::::
median

::
of

:::
DQ:::::

equal
::
to

:::::
Qdet.:::

By
::::::
testing

::
the

::::
two

::::::
options

::
in

::::
Eq.

:::
(9),

:::
we

::::::
include

:::
the

::::::
lowest

:::
and

:::
the

::::::
highest

:::::
value,

:::
the

:::::
third

:::::
option

::::::
would

::
be

:
a
:::::::::::
compromise

:::::::
between

:::
the

:::
two

:::
and

::::
was

:::
not

:::::::
included

::
in
:::
the

:::::
study.

::
If
:::
not

::::::::
indicated

:::::::::
otherwise,

:::
the

:::::::::
assumption

::
in

:::
Eq.

::::
(9a)

::::
was5

::::
used.

::::
The

:::::
results

::::::::
obtained

::::
with

:::
Eq.

::::
(9b)

:::
can

:::
be

:::::
found

::
in

::::::::
Appendix

:::
B.

:::
The

:::::::
standard

::::::::
deviation

::
of

::::
DQ::

is
::::::::::::
parameterised

::
as

:::::::
follows:

σDQ(t) = aQ0

(
Qdet(t)

Q0

)c
+ bQ0 (10)

::::
Note

::::
that

:::::::
skewing

:
a
::::::::::
distribution

::::
with

:::
the

::::::::
approach

:::::::::
developed

:::
by

:::::::::::::::::::::::
Fernandez and Steel (1998)

::::::
changes

:::
its

:::::::
standard

:::::::::
deviation;

::::::
σDQ(t)

::
is

:::
the

:::::::
standard

:::::::
deviation

:::
of

:::
DQ::::

after
:::::::
skewing.

:::::
Other

:::::::::::::::
parameterisations

::
of

::::
σDQ:::

are
::
in

:::::::
principle

::::::::
possible;

:::
see

::::::::::::::::::::
McInerney et al. (2017)10

::
for

::
a
:::::::::
theoretical

::::::::::::::
correspondence

::::
with

:::::::::::::
transformation

::::::::::
approaches.

::::::::::::::::::::
McInerney et al. (2017)

::::
have

::::::
shown

::::
that

:::::::::::::
transformation

:::::::::
approaches

::::
with

:
a
::::
first

:::::
order

:::::::::::::
correspondence

::
to

::::::
c= 0.8

::
or

:::::::
c= 0.5

:::
can

::::
lead

::
to

:::::
more

::::::
reliable

:::
and

:::::::
precise

:::::::::
predictions

::::
than

:::::
those

:::::::::::
corresponding

::
to
::::::
c= 1.

::
To

::::
limit

:::
the

:::::
scope

::
of

:::
the

:::::::
analysis,

:::
and

::
to

::::::::
maintain

:::::::::::
comparability

::
to

:::::::
previous

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Thyer et al., 2009; Schoups and Vrugt, 2010; Evin et al., 2013)

:
,
::
we

:::
set

:::::
c= 1.

:::::
Note

:::
that

:::
the

:::::::::
parameters

::
a
:::
and

::
b

::::::
become

::::::::::::
dimensionless

::::
(and

::::::::
therefore

::::
more

:::::::::
universal)

::
by

::::::::
including

::
a
::::::::
reference

:::::::::
streamflow,

::::
Q0,

:::
that

:::::::::::
corresponds

::
to

:::
the

:::::
mean

::
of

:::
the

:::::::::::
observations:

::::::::::
Q0 =Qobs.:::::

Thus,
::
a

:::::::
accounts

:::
for

:::
the

:::::::
variable

:::
and

::
b
:::
for

:::
the15

:::::::
constant

:::::::::::
contributions

::
to

:::
the

::::
total

:::::::
standard

::::::::
deviation.

::::
Table

::
1

:::
lists

:::
the

:::::
error

::::::
models

:::::::
applied

::
in

:::
this

:::::
study,

:::::::
together

:::::
with

::::
their

:::::::::
underlying

:::::::::::
assumptions.

:::
E1

::
is

:::::::
included

::
as

::
a
::::::::
reference

9



Table 1.
:::::::
Overview

::
of

::
the

::::
error

::::::
models

::::::
applied

::
in

:::
this

::::
study

:::
and

::::
their

:::::::::::
corresponding

::::::::
parameters

:::
(×:

::::::
fitted).

:
If
::

?
:
is
::::::::
appended

::
to

::
the

:::::
name

::
of

::
the

::::
error

::::::
model,

:
a
:::::::
smoothed

::::::
version

::
of

::::::
Perr(t) ::::::

(moving
::::::
average

::
of

::::::
window

:::
size

::
5
::
h)

:::
was

::::
used

::
in

:::
Eq.

:::
(11).

::::
Error

:::::
Model

: ::::
τmin ::::

τmax :
a
: :

b
: :

γ
: ::

df

::
E1

: :
0
: :

0
: ::

×
::
×

:
1

::
∞

::
E2

: ::::::
= τmax ::

×
::
×

::
×

:
1

::
∞

::::
E3(?)

: :
0
: ::

×
::
×

::
×

:
1

::
∞

:::::
E3a(?)

::
×

::
×

::
×

::
×

:
1

::
∞

::::
E4(?)

: :
0
: ::

×
::
×

::
×

::
×

:
×

:::::
E4a(?)

::
×

::
×

::
×

::
×

::
×

:
×

::::
case;

::
it

::
is

:::::
based

:::
on

:::
the

::::::::::
assumption

:::
of

:::::::::::
uncorrelated

:::::::::::::
heteroscedastic

:::::
errors

::::
with

::
a
::::::
normal

:::::::::::
distribution.

::::::
These

:::::::::::
assumptions,

::::
with

:::
the

::::::::
exception

::
of

:::::::::::::::
heteroscedasticity

::::
and

:::
the

::::::::
treatment

::
of

::::::::
Qobs = 0,

::::
are

:::::::
identical

::
to

:::
the

::::
ones

:::::
made

:::::
when

::::
e.g.

::::::::::
maximising

::
the

:::::::::::::
Nash-Sutcliffe

:::::::::
Efficiency,

:::
or,

:::::::::::
equivalently,

:::::::::
minimising

::::
the

::::::
squared

:::::::::
residuals.

:::::
Error

::::::
Model

::
E2

:::::::::
represents

::
a
:::::::::::
conventional

:::::::
approach

::
of

::::::::::
considering

:::::::::::::
autocorrelation.

::
In

:::
the

::::
case

::
of

:::::::
equally

:::::
spaced

::::::::::
time-steps,

:
it
::
is

::::::
similar

::
to

:::
the

::::
error

::::::
model

::::::
applied

:::
e.g.

:::
by

::::::::::::::
Evin et al. (2013),

::::
who

:::::::
assume

:::
that

:::
the

:::::::
rescaled

::::::
errors

:::::
follow

:::
an

:::::
AR(1)

:::::::
process

::::
with

:
a
::::::::
standard

::::::
normal

::::::::
marginal

::::::::::
distribution.5

:::
One

:::::::::
difference

:::::::
between

:::
the

:::
two

::::::::::
approaches

::
is,

:::::
again,

:::
the

::::::::
treatment

::
of

::::
cases

::::::
where

::::::::
Qobs = 0.

::
In

::::
error

::::::
model

:::
E3,

:::
we

::::::::::
additionally

::::::
account

:::
for

:::
the

:::
fact

::::
that

::
τ

:::::
might

::
be

::::::::::::::
time-dependent.

:::
The

::::::::
following

:::::::
formula

:::
for

::
τ

::
is

::::
used

::
in

::::
those

::::::
cases:

τ(t) =


τmin for Perr(t)> 0

τmax else
(11)

:::::
where

::::
Perr ::

is
:::
the

::::::::::
precipitation

::::
used

:::
as

::
an

:::::
input

::
for

:::
the

:::::
error

::::::
model.

::
In

:::
E3,

::::
τmin::

is
:::::
fixed

::
at

::
0,

:::::
while

::
in

::::
E3a,

:
it
::
is
:::::
fitted.

::::
Perr::::

was

:::::
either

::::
equal

::
to

:::
the

::::::::
recorded

:::::::::::
precipitation,

::
P ,

:::
or,

::
in

::::
case

::
of

:::::
hourly

:::::::::
resolution

::
in

:::
the

::::::
Maimai

::::::::::
catchment,

::::::::
smoothed

::::
with

:
a
:::::::
moving10

::::::
average

::
of

:::::::
window

::::
size

:
5
::
h.
:::::
This

:::
was

:::::
done

::
to

::::::
prevent

:::::::
frequent

::::::
jumps

:::::::
between

::::
τmin:::

and
:::::
τmax::::::

during
::::::::::
precipitation

::::::
events,

::::
and

::
to

::
be

:::::
more

:::::
robust

:::::
w.r.t.

:::::::
potential

:::::
time

:::
lags

::::::::
between

::::::::
observed

::::::::::
precipitation

::::
and

::::::::::
streamflow.

::::
Note

::::
that,

::
if

::::
such

::::
time

::::
lags

:::::
were

:::::::::
excessively

:::::
large,

::::
they

::::::
would

::::
have

::
to

:::
be

:::::::::
considered

::
in

:::
Eq.

:::::
(11).

:::::
Since

::
in

:::
the

:::::
Murg

:::::::::
catchment,

:::::::::
smoothing

:::
did

:::
not

:::::::
change

:::
the

:::::
results

:::::::::::
substantially,

::::::::
Perr = P

::::::
applies

:::::
there.

:::::
Thus,

::::
error

::::::
Model

::::
E3a

::
(or

::::
E3)

:::
can

::
be

::::
seen

:::
as

:
a
:::::::
mixture

::
of

::
E1

::::
and

:::
E2,

::
in

:::
the

:::::
sense

:::
that

::
τ

::::::::
alternates

:::::::
between

::::::
periods

:::
of

::::
high

:::
and

::::
low

::
(or

::::
no)

:::::::::
correlation.

:::::::
Finally,

:::
E4

::::::
relaxes

:::
the

:::::::::
assumption

::
of
:::::::::

normality
:::
for

::::
DQ;15

::
we

::::
use

:
a
:::::::
skewed

::::::::
Student’s

:
t
::::::::::
-distribution,

::::::::
inferring

:::
the

::::::
degrees

:::
of

:::::::
freedom

:::
and

:::
the

:::::::::
skewness.

::::::
Again,

::::
E4a

::::::
denotes

:::
the

:::::::
version

:::::
where

::::
τmin::

is
:::::::
inferred.
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2.3 Inference and prediction

:::::::
Consider

::::
that

::
for

::::
any

:::::::
practical

::::
case

::
of

::::::::
inference

::
or

:::::::::
prediction,

::
we

::::
will

::::
have

:
a
:::::
finite

:::::
series

::
of

::::
time

:::::
points

::
of

::::::
interest

::::::::::::
(t0, t1, . . . , tn)

:::
and

:
a
::::::::::::
corresponding

::::
time

::::::
series

::
of

:::::::::
streamflow

::::::::::::::::::::::::::
Q= (Q(t0),Q(t1), . . . ,Q(tn))

::
or,

::
in

::::::::
analogy,

::::
Qdet::::

and
:::::
Qobs. When perform-5

ing inference, the parameters of the hydrological model, θ, are estimated jointly with the parameters of the error model, ψ, by

evaluating the likelihood function (Eq. 8) according to the following procedure:

1. Given a suggested parameter vector θ, evaluate the deterministic hydrological model, Qdet ::::
Qdet, for all time points.

2. Using ψ and Qdet ::::
Qdet, calculate the likelihood in Eq. (8)by substituting the argument Q with the observed streamflow,

Qobs.10

As the likelihood (Eq. 8) can efficiently be evaluated analytically
:
is
::::::::

available
:::

in
::::::
closed

::::
form

:
for a given output of the

hydrological model,
:::
like

::
in

:::::
many

::::::::
common

:::::::::
likelihood

::::::::
functions

::
in

:::::::::
hydrology,

:
we do Bayesian inference based on standard

MCMC sampling of the posterior. The affine-invariant ensemble sampler by Foreman-Mackey et al. (2013) is used for this

purpose.
::
It

::::
uses

:::
the

::::::::
so-called

::::::
“stretch

::::::
move”

::
to

:::::::
propose

::
a
::::
new

::::
value

:::
for

::
a
:::::
point

::
in

::::::::
parameter

:::::
space

::::::
based

::
on

:::::
other

::::::::
members

::
of

:::
the

::::::::
ensemble.

::::
The

::::::::
ensemble

:::
size

:::::::
consists

::
of

::::
100

:::::::
walkers

::
in

:::
this

:::::
study

:::
and

:::::::::::
convergence

:
is
::::::::
assessed

:::::::
visually.

::
A

:::
full

::::::::
posterior15

::::::
sample

::::::
consists

:::
of

::::::
10’000

:::::
model

::::::::::
evaluations

::::
after

:::::::::
successful

:::::::::::
convergence.

For prediction, stochastic realisations of model output are obtained by inverting Eq. (2):

Qtrans(η,Qdet,ψ) = F−1
DQ(Qdet,ψ)

(
FN(0,1)(η)

)
(12)

and applying the following procedure to produce a single stochastic streamflow realisationQj :

1. Randomly draw a parameter vector (θ,ψ)j from the posterior sample.20

2. Using θj , evaluate the deterministic hydrological model to obtain ,Qdet,j , for all time points.

3. Using τ j ∈ψj and Eq. (4), produce a stochastic realisation of an OU-process, ηj , with a standard normal marginal

distribution.

4. Use Qdet,j and ψj :::
and

:::::
Qdet,j , determined in Steps 1 and 2, to transform ηj into a stochastic realisation of streamflow,

Qj , with Eq. (12).25

::::
Note

:::
that

::
a

::::::::
simulation

::::
with

:::
the

:::::::::::
hydrological

:::::
model

:::::::
requires

::::
some

:::::::::
additional

::::
input

::::
like

::::::::::
precipitation

:::
and

::::::::
potential

:::::::::::::::
evapotranspiration

:::
data

:::::
(Sect.

:::::
3.1),

:::::
which

::
is

:::::::
assumed

::
to
:::
be

::::::
known

:::
also

:::
for

:::
the

:::::::::
prediction

::::::
period.

:
In a synthetic case study, we could successfully

verify the consistency of the implemented likelihood and sampling functions (Appendix ??
::
see

:::::::::::::
supplementary

:::::::
material).
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2.4 Evaluation criteria

How can the performance of empirical error models, as the ones presented in this study, be quantified? We argue that the perfor-

mance of an error model in joint inference with a hydrological model should be judged according to following criteria: (a) good

reproduction of observed dynamic fluctuations
::
by

:::::::::
individual

:::::
model

::::::::::
realizations, (b) good overall predictive distributions and

:::::::
marginal

::::::::::
distribution

::
of

:::::::::
streamflow

:
(c) small absolute deviance between model output and observations. The Flashiness Index5

(Sect. 2.4.1) quantifies
:
is
:::
an

::::::::
indicator

:::
for (a). The reliability and the precision of the predictive distribution (Sect. 2.4.2 and

2.4.3, respectively) are used as an indicator for (b). The Nash-Sutcliffe Efficiency (Sect. 2.4.4) and the relative error in cumula-

tive streamflow (Sect. 2.4.5) cover (c).
:
In

:::::::
addition

::
to

:::::
those

::::::::::
performance

:::::::
metrics,

:::
we

:::::::::
calculated

::
the

:::::::::::::::
Kullback-Leibler

:::::::::
divergence

::::::::::::::::::::::::
(Kullback and Leibler, 1951)

:
of

:::
the

::::::::
marginal

:::::::
posterior

:::::::::
parameter

::::::::::
distributions

::::
from

:::
the

::::
prior

:::::::::
according

::
to

:::
the

::::::
method

::::::::
proposed

::
by

:::::::::::::::
Boltz et al. (2007)

:
.10

2.4.1 Flashiness Index

The
::::::
function

::
to

::::::::
calculate

:::
the Flashiness Index (Baker et al., 2004) , IF , is given by:

I(Q) =

∑n
i=1 |Q(ti)−Q(ti−1)|∑n

i=1Q(ti)
(13)

where Q= (Q(t1),Q(t2), . . . ,Q(tN )). IF is
::::::::::::::::::::::::::
Q= (Q(t0),Q(t1), . . . ,Q(tn)).

:::
Let

::̂
x

::::::
denote

:::
the

:::::::
quantity

::
x
::::

that
::
is
::::::
related

:::
to

::
the

:::::::::::
hydrological

:::::::::
parameter

:::::
values

::
at
:::
the

:::::::::
maximum

::::::::
posterior

::::::
density.

::::
The

:::::::::
Flashiness

:::::
Index

::
is

:
calculated for the observations,15

Qobs::::::::::::::
IF,obs = I(Qobs), the output of the deterministic hydrological modelat the maximum posterior parameter values, Q̂det,

::::::::::::::
ÎF,det = I(Q̂det),

:
and the individual

::::::::
stochastic realisations of the full predictive distribution of streamflow , Qj . The resulting

metrics are denoted as IF,obs, ÎF,det and IF , respectively, where the latter is the median of the flashiness indices of the individual

realisations Qj . IF is
::::::::
predictive

:::::::::
streamflow

:::::::
sample,

::::::::::::::::::
IF = median(I(Qj)).

:::
IF ::

is sensitive to the amount of autocorrelation in

a streamflow time series, as well as the height of the peaks of Qdet::::
Qdet::::::

(since
:::
Qj :::::::

depends
::
on

:::::
Qdet).20

2.4.2 Reliability

Reliability is defined equivalently to McInerney et al. (2017), as:

Ξreli =
2

n+ 1

n∑
i=0

|FQ(ti)(Qobs(ti))−FΨ(FQ(ti)(Qobs(ti)))| (14)

where Ψ = {FQ(ti)(Qobs(ti))|i ∈ N, i≤Nt}:::::::::::::::::::::::::::::::::
Ψ = {FQ(ti)(Qobs(ti))|i ∈ N,0≤ i≤ n}, FΨ is the empirical cumulative distri-25

bution function of Ψ and FQ(ti) is the empirical cumulative distribution function of the predicted streamflow at time ti. Ξreli

can take values in the interval [0,1], where smaller values of Ξreli correspond to better, and zero to perfect, reliability. It sum-

marises the deviance of the observations from the predictive distribution over all time points, and the distance is measured in

the uniform space. Therefore, the influence of heavy outliers on Ξreli is limited.
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2.4.3 Precision

The precision metric is an indicator for the width of the predictive distributions over all time points, and was proposed by

McInerney et al. (2017) as:

Ωprec =

∑n
i=0σQ(ti)∑n
i=0Qobs(ti)

(15)

where σQ(ti) :::::
σQ(ti):is the standard deviation of the predictive distribution at time point ti calculated from the ensemble of all5

stochastic predictions at that point in time. Ωprec ∈ R+, and small values of Ωprec indicate high precision or small predictive

uncertainty. The smaller the predictive uncertainty, the better the quality of the underlying model, given that the predictions are

not overconfident.

2.4.4 Nash-Sutcliffe Efficiency

The Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970), EN :::
EN,f::

(f
:::
for

::::::::
function), is defined as:10

EN,f(Q,Qobs) = 1−
∑n
i=0 (Q(ti)−Qobs(ti))

2∑n
i=0(Qobs(ti)−Qobs)

2
(16)

whereQ= (Q(t1),Q(t2), . . . ,Q(tN ))
::::::::::::::::::::::::
Q= (Q(t0),Q(t1), . . . ,Q(tn)). It is used in this study to quantify the agreement between

Q̂det andQobs, :::::
assess

::
the

::::::
output

::
of

:::
the

:::::::::::
hydrological

:
at
:::
the

:::::::::
maximum

:::::::
posterior

:::::::::
parameter

::::::
density,

::::::::::::::::::::::::
ÊN,det = EN,f(Q̂det,Qobs),

as well as between the j-th stochastic realisationQj andQobs. The two cases are denoted as ÊN,det andEN , respectively, where

EN is the median of the efficiencies of the individual realisationsQj ::
the

::::::::
stochastic

:::::::::::
simulations,

::::::::::::::::::::::::::
EN = median(EN,f(Qj ,Qobs)).15

It is used as a rough measure of how well two hydrographs correspond to each other, primarily with the goal of identifying

very poorly fitting hydrographs. It is known to be sensitive to errors in high flows (Legates and McCabe, 1999), which can be

of particular practical interest. Therefore it complements the other measures, which are less informative with respect to errors

in high flows.

2.4.5 Relative error in total cumulative streamflow20

As a measure of systematic over- or under-prediction of streamflow, we calculate the relative error in total cumulative stream-

flow:

∆(Q,Qobs) =

∑n
i=0Qobs(ti)−Q(ti)∑n

i=0Qobs(ti)
(17)

It is calculated w.r.t. the maximum posterior output of the deterministic model; ∆̂Q,det = ∆Q(Q̂det,Qobs):::::
model

::::::
output

:::::
based

::
on

:::
the

::::::::
parameter

::::::
values

::
at

:::
the

::::::::
maximum

::::::::
posterior

:::::::
density;

:::::::::::::::::::::
∆̂Q,det = ∆(Q̂det,Qobs), as well as for the

::::::::
ensemble

::
of

:
individual25

stochastic simulations: ∆Q = median(∆(Qj ,Qobs))::::::::::::::::::::::::
∆Q = median(∆(Qj ,Qobs)). Note that, contrary to McInerney et al.

(2017), ∆Q is the median error of
::
all the individual hydrograph realisations, not the error of the averaged hydrographs

::::::
average

:::::::::
hydrograph.
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3 Case study setup

3.1 Catchments and data

The likelihood
::::::::::
probabilistic

:
framework developed in Sect. 2.1 was tested in two case study sites, the Murg and the Maimai

catchmets
:::::::::
catchments, which are described in this section. The Murg river flows through a hilly headwater catchment in tem-

perate climate with a size of 80 km2 in northeastern Switzerland. Some key hydrological summary statistics are listed in Table5

2. Land use is predominantly agricultural (50 %), with forested headwaters (30 %) and a considerable part of urban areas (10

%). The mean elevation is 652 m a.s.l., spanning from 466 to 1035 m a.s.l. Streamflow peaks can be quite sharp, especially

for small events, in which baseflow conditions are reached again within just a few hours. This is potentially due to impervious

areas being drained directly into the river. The data consists of hourly averages of streamflow, precipitation and potential evap-

otranspiration from January 1995 to December 2002. Calibration was performed in the first 5 years (Jan 1995-Dec 1999) and10

validation in the consecutive 3 years (Jan 2000-Dec 2002). Streamflow data is a courtesy of the Swiss Federal Office for the

Environment (FOEN). Precipitation and potential evapotranspiration are based on meteorological data (Meteoschweiz, 2018)

and were processed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), with the preprocessing

tools of PREVAH (Viviroli et al., 2009).

15

The Maimai experimental catchments are a set of small headwater catchments with a long history of hydrological research.

They are located on a deeply incised hillslope on the South Island of New Zealand. The area is forested and the climate is

considerably more humid than in the Murg catchment (Table 2). The site was chosen for this study due to its homogeneous

characteristics and relatively simple hydrological response, which make it very suited for model evaluation and testing (e.g.

Seibert and McDonnell (2002)). We use hourly data recorded in 1985-1987 in the M8 experimental catchment, the most20

intensely studied of the Maimai catchments. It has an area of ca. 7 ha with steep (34◦) slopes. The reader is referred to

Brammer and McDonnell (1996) for a more detailed description of the characteristics of the M8 and the other experimental

catchments. This study does not attempt to make a significant contribution to the understanding of the hillslope processes in

the Maimai catchment (see McGlynn et al. (2002) for an extensive overview). Calibration was performed based on data from

Jan 1985-Dec 1986, and validation during Jan-Dec 1987. The data was kindly provided by Jeffrey McDonnell.25

While the resolution of the original data was hourly, we produced data sets with 6-hourly and daily resolution by aggregation

for both catchments. This setup allows us to systematically investigate the effect of the temporal resolution of the data on the

joint inference of hydrological and error model parameters. This could contribute to the identification of the cause of previously

encountered problems in joint inference (Goal 2b specified in Sect. 1). Furthermore, the two selected catchments are different30

in size, signatures (Table 2), and complexity of their hydrological response, so that the influence of the catchment or data

properties can be assessed to some degree. To limit the scope of the study, we constrained the analysis to two catchments.

14



Table 2. Properties of the two case study catchments. P is the precipitation and RC:::
RC:

the runoff coefficient (calculated from cumulative

streamflow and precipitation).Qobs,max,Qobs,min andQobs are the minimum, the maximum and the average streamflow, respectively. IF,obs

is the Flashiness Index (Baker et al., 2004).

Catchment Area P RC Qobs,max Qobs,min Qobs IF,obs

[km2] [mm a−1] [-] [mm h−1] [mm h−1] [mm h−1] [-]

Murg 80 1369 0.57 2.7 1e-2 0.089 0.053

Maimai 0.07 2349 0.62 8.5 1e-4 0.17 0.13

Figure 2. Structure of the deterministic hydrological model used in this study. Pu is the precipitation and Eu the evapotranspiration. Su

represents the active water content of the unsaturated zone, while Sf is a non-linear reservoir representing the fast flow component.

3.2 Deterministic Hydrological Model

The hydrological model used throughout this study is a simple, lumped bucket model with two elements
::::::::
reservoirs (Figure 2),

which are meant to represent the unsaturated soil zone and the subsurface flow being fed by it. A slower flow component is

included though a linear outflow from the unsaturated zone reservoir directly. Due to its simplicity, and due to the fact that it

is not clear whether the chosen model structure is suited for the studied catchment a priori, we expect systemic difficulties in5

reproducing the observed streamflow dynamics. This is a very common situation in hydrological modelling and it will lead to

correlated and potentially heteroscedastic and non-normal errors. This allows us, in principle, to test the error models (Sect.

2.2) under realistic conditions. The streamflow simulated by this deterministic model is denoted as Qdet(t,θ) =Qs +Qf ,

where θ = (Ce,Smax,ku,kf ) are the
:::::::::::::::::::::::::::
Qdet(t,θ) =Qs(t,θ) +Qf(t,θ),

:::::
where

:::
Qs::

is
:::
the

::::
slow

::::::::
response

::
of

:::
the

::::::
model,

:::
Qf ::

is
:::
the

15



:::
fast

:::::::
response

::::
and

::::::::::::::::::
θ = (Ce,Smax,ku,kf):::

are
:::
the

:::::::::
calibrated hydrological parameters. The fluxes (Eu, Pu, Qu, Qs, Qf:::

Eu,
::::
Pu,

:::
Qu,

:::
Qs,:::

Qf ) and states (Su, Sf :::
Su,

::
Sf ) of the model are given by:

dSu

dt
= Pu−Eu−Qu−Qs

Eu = CeEp

Su

Smax
(1 +m)

Su

Smax
+m

Qu = Pu

(
Su

Smax

)β
Qs = kuSu

(18)

dSf

dt
=Qu−Qf

Qf = kfSf
α

(19)

where Ep:::
Ep is the potential evapotranspiration. The following parameters were kept fixed: m= 0.01, β = 3, and

::::
While

::::
Ce,5

:::::
Smax,

:::
ku :::

and
:::
kf ::::

were
::::::::
inferred,

:::
m,

::
β

:::
and

::
α
:::::
were

::::
kept

:::::
fixed

::
at

:::::
0.01,

:
3
::::
and

::
2,

:::::::::::
respectively.

::
m

::::
can

::
be

:::::
seen

::
as

::
a

:::::::::
smoothing

::::::::
parameter

:::
and

:::::::::
m= 0.01

::::::::
translates

::
to

::::::::::
Eu ≈ CeEp::

as
::::
long

::
as

:::::::::::::::
Su/Smax� 0.01.

:::::
β = 3

::::
and α= 2 .

3.3 Error Models

For DQ, we use the skewed Student’s t-distribution (Fig. 1) as the most general case, which is obtained by transforming the

conventional Student’s t-distribution according to Fernandez and Steel (1998). Thus, we introduce two error model parameters:10

γ, defining the degree of skewness, and df , the degrees of freedom as a measure for the kurtosis. The skewed Student’s

t-distribution reduces to the normal distribution for γ = 1
::::
were

:::::
found

::
to

::::
lead

::
to

:::::::::
reasonable

:::::
results

::
in

::::
both

::::::::::
investigated

::::::::::
catchments

:::
and

::::
were

:::::
fixed

:::
due

::
to

::::::::
potential

::::::::::
interactions

::::
with

::::
Smax:

and df →∞. Two assumptions are tested to centre DQ at Qdet: i.e. we

either assign the expected value or the highest probability of DQ to Qdet. A third alternative would be to set the median of DQ

equal to Qdet. It is a priori unclear which of those options is most suitable. By testing the two options in Eq. (9), we include15

the lowest and the highest value, the third option would be a compromise between the two and was not included in the study.

If not indicated otherwise, the assumption in Eq. (9a) was used. The results obtained with Eq. (9b) can be found in Appendix

B.
:::
kf . :::

The
:::::::::::
hydrological

:::::
model

::::
was

:::::::::::
implemented

::
in

:::::::::::
SUPERFLEX

::::::::::::::::::::::::::::::::::::::::
(Fenicia et al., 2011; Kavetski and Fenicia, 2011)

:
,
:
a
:::::::
flexible

:::::::::
framework

:::
for

:::::::::
conceptual

::::::::::
hydrological

:::::::
models

:::::
which

::::
uses

:::::::
efficient

::::::::
numerical

::::::::::
integration

:::::::
schemes.

:

Shape of the skewed Student’s t-distribution for different values of skewness, γ, and kurtosis, df .20

The standard deviation of DQ is parameterised as follows: Note that skewing a distribution with the approach developed

by Fernandez and Steel (1998) changes its standard deviation; σDQ(t) is the standard deviation of DQ after skewing. Other

parameterisations of σDQ are in principle possible; see McInerney et al. (2017) for a theoretical correspondence with transformation
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approaches. Like previous studies (Thyer et al., 2009; Schoups and Vrugt, 2010; Evin et al., 2013), we set c= 1 in Eq. (10).

McInerney et al. (2017) have shown that transformation approaches with a first order correspondence to c= 0.8 or c= 0.5 can

lead to more reliable and precise predictions than those corresponding to c= 1. To limit the scope of the analysis, which

focuses on the autocorrelation of the errors, we set c= 1. This also leads to better comparability to the aforementioned

studies. Note that the parameters a and b become dimensionless (and therefore more universal) by including a reference5

streamflow, Q0 = E[Qobs]. Thus, a can be seen as the standard deviation of the error relative to the modelled streamflow,

while b represents a characteristic fraction of the reference streamflow Q0, below which the magnitude of the error starts to

become less dependent on Qdet.Overview of the error models applied in this study and their corresponding parameters (×:

fitted). If ? is appended to the name of the error model, a smoothed version of Perr(t) (moving average of window size 5

h) was used in Eq. (11). Error Model τmin τmaxa b γ dfE1 0 0 ××1∞E2 = τmax × ××1∞E3(?) 0 × ××1∞E3a(?) × ×10

××1∞E4(?) 0×××××E4a(?) ××××××Table 1 lists the error models applied in this study, together with their underlying

assumptions. E1 is included as a reference case; it is based on the assumption of uncorrelated heteroscedastic errors with a

normal distribution. These assumptions, with the exception of heteroscedasticity, are identical to the ones made when e.g.

maximising the Nash-Sutcliffe Efficiency, or, equivalently, minimising the squared residuals. Error Model E2 represents a

conventional approach of considering autocorrelation. In the case of equally spaced time-steps, it is similar to the error model15

applied e.g. by Evin et al. (2013), who assume that the rescaled errors follow an AR(1) process with a standard normal marginal

distribution. One difference between the two approaches is that we truncate DQ at zero. In error model E3, we additionally

account for the fact that τ might be time-dependent. The following formula for τ is used in those cases:

where Perr is the precipitation used as an input for the error model . In E3, τmin is fixed at 0, while in E3a, it is fitted. Perr was

either equal to the recorded precipitation, P , or, in case of hourly resolution in the Maimai catchment, smoothed with a moving20

average of window size 5 h. This was done to prevent frequent jumps between τmin and τmax during precipitation events,

and to be more robust w.r.t. potential time lags between observed precipitation and streamflow. Since in the Murg catchment,

smoothing did not change the results substantially, Perr = P applies there. Thus, Error Model E3a (or E3) can be seen as a

mixture of E1 and E2, in the sense that τ alternates between periods of high and low (or no) correlation. Finally, E4 relaxes the

assumption of normality for DQ; we use a skewed Student’s t-Distribution, inferring the degrees of freedom and the skewness.25

Again, E4a denotes the version where τmin is inferred.The prior distributions of all the parameters , listed in Table 3, were

3.3
:::::

Priors

:::
The

:::::
prior

:::::::::
distribution

::
of

:::
the

::::::::::
parameters

:::
was

:
assumed to be

::::::::
composed

::
of

:
independent normal or log-normal distributions with

relatively large standard deviations
:::
(see

::::::
Table

::
3). A unimodal distribution is the more accurate representation of our prior

believe than e.g. a uniform distribution
:::
over

:
a
:::::::::
predefined

:::::
range, since we do assume that values in the middle of the suspected30

range are more probable than at its edge. Note that this is primarily a conceptual difference, as large standard deviations were

chosen to minimise the influence of the priors on the results.
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Table 3. Prior distributions of the hydrological and error model parameters applied in all the cases where the respective parameter was used.

N = Gaussian Normal; LN = log-normal. Where lower and upper boundaries are listed, the distribution is truncated at those values.

Parameter Distribution Unit µ σ low. bound. up. bound.

CE ::
Ce:

N
::
N - 1 0.2 0.2 3

Smax LN
::
LN mm 148 1086 2.7 1086

ku LN
::
LN h−1 1.8e-2 0.13 2.3e-6 5e-2

kf LN
::
LN h−1 0.37 2.7 2.3e-6 0.37

a LN
::
LN - 0.2 0.2 - -

b LN
::
LN - 0.1 0.1 1e-2 0.5

τmax LN
::
LN h 148 1086 0 2000

γ LN
::
LN - 1 0.2 0.1 5

df LN
::
LN - 14 17 3 -

4 Results

After providing some general results, this section contains a more detailed summary of the results for each of the tested error

models. The complete analysis included additional error models and performance metrics, which are included in Appendix

B.
:::
The

:::::::::::::
supplementary

:::::::
material

:::::::
contains

::::::
further

::::::::::
information

::
on

:::
the

::::::::
resulting

::::::::
posterior

::::::
density

::::::::
estimates

::
of

:::
the

:::::::::
parameters

::::
and

::::::::::::::
Kullback-Leibler

::::::::::
divergences

::
of

:::
the

:::::::
marginal

::::::::
posterior

:::
and

:::::
prior

::::::::
parameter

:::::::
density

::::::::
estimates.5

Figure 3 gives an overview of the difference in Flashiness Index, the reliability and the precision in the calibration and the

validation periods for both catchments, all temporal resolutions of the data and all tested error models. Figure 4 provides ad-

ditional information about the relative error in cumulative streamflow, ∆Q, and about ÊN,det. The temporal resolution of the

data has a pronounced effect on all the analysed performance metrics. The spread over all the combinations of error models10

and catchments is larger for higher temporal resolutions (Fig. 3 and 4). Furthermore, the average of each metric indicates de-

creasing performance for increasing temporal resolution. This loss in performance is more pronounced in the Murg catchment

and for Error Models E2 and E3a than in the Maimai catchment and for other error models. The difference between the two

catchments is most clearly visible in ÊN,det (Fig. 4): for 6-hourly and daily resolution of the data, the worst performing error

model in the Maimai catchment has a better ÊN,det than the best performing error model in the Murg catchment.15

4.1 Individual error models

4.1.1 Model E1

E1 tends to strongly overestimate the true flashiness in case of high temporal resolutions in both catchments (Fig. 3, the

difference between the observed and the median of the predicted Flashiness Index is around -0.4 for both catchments). The
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Figure 3. Performance of the error models w.r.t. flashiness index, reliability and precision for both catchments and all temporal resolutions.

Perr was smoothed (?) exclusively for hourly data in the Maimai catchment.

reliability of
::
In

:::::
terms

::
of

:::::::::
reliability, E1 is never the single best of the error models, but always among the best, and it is robust in

light of varying temporal resolution (Ξreli is smaller or equal to 0.2 in all the cases, Fig. 3). E1 is also among the error models

that provide the most precise predictions (average of 0.41 over all the cases), have the smallest ∆Q (usually between 0 and

-10 %) and the highest ÊN,det overall (Fig. 4). Except for the Flashiness Index, its performance stays stable for high temporal

resolutions of the
:::::::::::::
high-frequency data in both catchments. However, the high Flashiness Index of this model demonstrates the5

strong violation in the description of the output behavior despite its good performance regarding the other performance metrics.

4.1.2 Model E2

With the constant correlation assumption made in E2, IF,obs is generally well reproduced by IF ::
IF with deviances ranging from

-0.03 to 0.07 (Fig. 3). ÎF,det is often similar to IF ::
IF:

for E2 (Tables B1 and B2), indicating that the large part of the flashiness
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Figure 4. Performance of the error models in terms of the relative cumulative error in streamflow, ∆Q, and the Nash-Sutcliffe Efficiency,

ÊN,det, for both catchments and all temporal resolutions. Perr was smoothed (?) exclusively for hourly data in the Maimai catchment.

of the model output is due to the hydrological model response and only a small part is due to the stochastic variability added

through the error model. Regarding all the other performance metrics, however, E2 is often among the worst performing error

models. For example, in more than half of all the investigated combinations of catchments and temporal resolutions, E2 is the

error model with the worst reliability (Fig. 3). E2 has an average precision of 0.61 over all the cases, compared to a precision

of 0.41 of E1. It tends to produce large errors in cumulative streamflow, especially in case of hourly resolution (∆Q <−75%,5

Fig. 4). The degradation of the streamflow error and ÊN,det with increasing temporal resolution
:::::::::::
measurement

::::::::
frequency is very

pronounced for E2 compared to the other error models (Fig. 4).
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4.1.3 Model E3

E3 generally overestimates the true Flashiness, i.e. IF ::
IF is often larger than IF,obs. The difference is around 0.2 for hourly

and 6-hourly resolution and a bit less for daily resolution (Fig. 3). The overestimation of the flashiness by E3 is less severe

than with E1. E3 results in stable reliability metrics for all temporal resolutions in both catchments: Ξreli is smaller than 0.2 in

every case and smaller than 0.1 in more than half of the cases (Fig. 3). In the validation period in the Murg catchment, it is the5

most reliable error model of all. The precision of E3 is in the range of [0.34,0.5] in all instances with an average value of 0.43,

and it is unaffected by the temporal resolution (Fig. 3). The absolute value of ∆Q is never larger than 25 % and usually smaller

than 10 % (Fig. 4). In terms of ÊN,det, E3 reaches values larger than 0.75 in all cases except for hourly resolution in the Murg

catchment, where it is 0.69. All the metrics show stable performance of E3 under increasing temporal resolution
:::::::::::
measurement

::::::::
frequency (Figs. 3 and 4).10

4.1.4 Model E3a

When inferring τmin with Error Model E3a, we get close correspondence of IF ::
IF and IF,obs in all cases (Fig. 3, the deviation

is never larger than 0.05). In the Maimai catchment, the reliability measure shows a stable performance in, with values be-

tween 0.04 and 0.19 in the validation period (Maimai, Fig. 3), showing no clear signs of worse performance for high temporal

resolutions
::::::::::::
high-frequency

::::
data. The inferred values of τmin were in the order of 1 d and therefore clearly smaller than τmax15

(Fig. 7). Furthermore, τmin was consistent among the different temporal resolutions.

In the Murg catchment, on the other hand, we see degenerating performance of E3a with increasing temporal resolution
::::::::::
measurement

::::::::
frequency, with values of Ξreli > 0.5 for 6-hourly and hourly data (Fig. 4), indicating poor performance. All the other metrics

show a similar pattern (Fig. 4). The inferred τmin were between 50 and 100 h, where values on the upper end of the spectrum20

coincided with bad reliabilies
:::::::::
reliabilities

:
(Fig. 7).

4.1.5 Model E4

The stochastic model realisations with E4 tend to overestimate the true Flashiness Index; the difference between IF,obs and IF

::
IF is usually between -0.2 and -0.1 (Fig. 3). IF ::

IF:is often much larger than ÎF,det in the Murg catchment (Table B1), indicating

that a relatively large part of the variability
::::::::
flashiness

:
is accounted for by the error model and less by the hydrological model in25

that case. This manifests in smaller values of ÊN,det with E4 compared to E1 (e.g. 0.65 for E4 with hourly resolution compared

to 0.79 with E1, Fig. 4). In the Maimai catchment, the hydrological model captures a larger part of the variability than in the

Murg catchment, and the difference between IF ::
IF and ÎF,det is smaller (Table B2). Concerning the reliability, Ξreli is largely

smaller than 0.2, indicating well-conditioned predictive distributions, except in the validation period for hourly resolution (Fig.

3). In the Maimai catchment, reliability is better in the calibration period compared to the validation period, which is a sign of30

over-fitting. Especially for daily resolution, E4 provides very good reliabilities in the calibration period (Ξreli < 0.03, Fig. 3).
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The average precision of E4 is 0.60. ∆Q is not more extreme than -27 % in any case and usually less severe than 20 % (Fig.

4). A slight degradation of ∆Q with increasing temporal resolution
::::::::
frequency

::
of

:::
the

::::
data can be observed.

4.1.6 Model E4a

E4a results in IF ::
IF:that are very close to the observed flashiness in all cases: the difference is never more extreme than 0.05

(Fig. 3). ÎF,det is often smaller than IF,obs in the Murg catchment, which, similar as in E4, is an indication that most of the5

variability is explained by the error model and not the hydrological model. Ξreli is always smaller (better) than 0.2 except for

the validation period with hourly resolution in both catchments. Like with E4, we can see a tendency for over-fitting with E4a

in the Maimai catchment: in the calibration period, reliabilities of 0.02, 0.05 and 0.08 are reached, while the validation results

in values of 0.16, 0.16 and 0.23 for daily, 6-hourly and hourly resolutions, respectively (Table B2). A look at the precision

metric (Fig. 3) shows that E4a gives unrealistically large prediction uncertainty in the Maimai catchment for 6-hourly and10

hourly resolution but that it is among the most precise error models in the Murg catchment. Similarly, E4a produces relatively

large errors in cumulative streamflow in the Maimai catchment, but very small ones in the Murg catchment (Fig. 4). Opposed to

that, ÊN,det is larger than 0.75 in all cases in the Maimai catchment, while it reaches values as low as 0.5 for hourly resolution

in the Murg catchment.

4.2 Relaxing the constant-correlation assumption15

Error Model E3, which accounts for reduced correlation of errors during the precipitation events, leads to an overall improve-

ment in the investigated performance metrics (except IF ::
IF) compared to E2, which assumes constant correlation (Fig. 3 and

4). For example, the reliability for hourly resolution in the Murg catchment is 0.06 and 0.61 for E3 and E2, respectively (Fig.

3). In contrast to E2, the performance of E3 does not show systematically worse performance for finer temporal resolution of

the
::::::::::::
high-frequency

:
data. In fact, E3 and E1 show a similar stability in performance, but E3 provides more realistic estimates of20

the correlation during recessions and baseflow, leading to a better estimate of IF::
IF. Figure 6 shows typical results of E2 and

E3 w.r.t. streamflow bias, visible as a bias in η, and posterior correlation between heteroscedasticity and correlation parameters

a and τmax. Note also the smaller standard deviation (parameter a) resulting from E3.
:::::::::
Additional

:::::
results

:::::
about

:::
the

:::::::::::
standardized

:::::::::
innovations

::
of

::
η
:::
are

::::::::
available

::
in

:::
the

::::::::::::
supplementary

:::::::
material.

25

Figure 5 compares the predicted hydrographs of E1, E2 and E3a. In this case, allowing for different characteristic correlation

times during precipitation events and dry periods (E3a) prevents the problematic behaviour encountered when making the

constant correlation assumption. Note that E3a results in better estimates of IF ::
IF than E3, since it considers correlation

during precipitation events (τmin > 0). In the Murg Catchment, inferring τmin resulted in a degenerative performance for high

temporal resolutions
:::::::::::::
high-frequency

::::
data, which were also linked to higher values of τmin (Fig. 7). The posterior estimates of30

τmax depend on the resolution in both catchments. While large τmin coincide with the worst reliabilities, large τmax were also

obtained together with good reliabilities (Fig. 7). The effect of τmin on the relative cumulative streamflow error is shown in

Fig. 8 for 6-hourly data in the Murg catchment. The streamflow error starts to increase for τmin > 10h and at the same time

22



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●●●
●●●●●

●●●●●
●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●

●
●●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●●●
●●●●●

●●●●●
●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●

●
●●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●●●●●●
●●●●●

●●●●●
●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●

●
●●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

2

4

6

0

2

4

6

0

2

4

6

May 31 Jun 07 Jun 14 Jun 21

●

E1 det
E1 stoch
observed

●

E2 det
E2 stoch
observed

●

E3a* det
E3a* stoch
observed

S
tr

ea
m

flo
w

 [m
m

/h
]

Figure 5. Streamflow predictions for
:::
with

:::::
hourly

::::::::
resolution

::
in

:
the Maimai creek in a part of the validation period (1993). Deterministic

predictions with the maximum posterior parameter values
:
at
:::
the

::::::::
maximum

:::::::
posterior

:::::
density

:
are shown together with the 90%-confidence

bands and one single stochastic streamflow realisation for each of the error models.

ÊN,det decreases (not shown), approaching the one of E2.

4.3 Relaxing the assumption of normality

Relaxing the assumption of noramality
::::::::
normality by inferring γ and df (E4 and E4a) had a mixed effect on the numeric per-

formance indices analyzed in this study. When τmin = 0, including skewness and kurtosis (E4) often led to a better reliability5

in the calibration period, but a worse reliability in the validation period compared to the assumption of a normal distribution

with E3 (Fig. 3). Predictions with E4 were generally less precise than the ones with E3, e.g. Ξreli was around 0.5 with E3 and

1.0 with E4 for hourly resolution in the Maimai catchment (Fig. 3). When τmin was inferred additionally, the non-normal case

(E4a) showed better performance metrics than the normal case (E3a) in the Murg catchment, but worse ones in the Maimai

catchment. E4 and E4a in the Maimai catchment were the only cases that showed a pronounced difference between calibration10

and validation, which is a sign of overfitting. A visual inspection of the QQ-plots of η revealed that E4 and E4a successfully

reduced some very heavy outliers that strongly violated the assumption of normality. In both catchments, the inferred γ were

23



Figure 6. Transformed residuals, η, as a function of modelled streamflow (top) and correlation structure of the posterior parameter sample

(bottom) resulting with Error Models E2 (left) and E3 (right) for data with hourly resolution in the Murg catchment.
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Figure 7. Marginal posterior densities of τmin and τmax, and corresponding reliability measures Ξreli in the validation period resulting from

Error Model E3a in all combinations of catchments and temporal resolutions.
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Figure 8. Relationship between the fixed correlation time during precipitation events, τmin, and the total streamflow error, ∆Q, for 6-hourly

data resolution in the Murg catchment. Each point corresponds to a full inference and prediction procedure. The error bars span two standard

deviations of 500 stochastic predictions. E3 corresponds to τmin = 0 and E2 to τmin = τmax ≈ 170 h.
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in the range of [1.5,2.8] for E4 and E4a. The values at the upper end of this spectrum were reached for hourly resolutions,

and they were associated with underestimation of the peak flows by the deterministic hydrological model, reflected in reduced

ÊN,det. For example, E4a resulted in γ ≈ 2.5, ÊN,det = 0.5 and an underestimation of preak
:::
peak

:
flows by the hydrological

model for hourly data in the Murg catchment. Inferred df were always at or close to the lower limit of 3, which is indicative of

heavy outliers.5

Regarding the location ofDQ w.r.t.Qdet, the assumption in Eq. (9a) led to better results than Eq. (9b) in the Murg catchment.

For example, Ξreli with E4a is 0.22 or 0.87 when applying Eq. (9a) or (9b), respectively (Table B1). In the Maimai catchment,

the opposite is true: Ξreli is 0.32 or 0.23 with Eq. (9a) or (9b), respectively (Table B2). The difference between results obtained

with Eqs. (9a) and (9b) is generally larger for higher temporal resolutions
::::::::
frequency

::
of

:::
the

::::
data.10

5 Discussion

5.1 Presence and absence of autocorrelation

Assumptions about the presence (E2) and absence (E1) of autocorrelation in η were shown to have profound effects on the qual-

ity of the prediction in the cases investigated in this study. Neglecting autocorrelation leads to close correspondence between

Q̂det and Qobs in terms of the Nash-Sutcliffe coefficient and to relatively well-fulfilled assumptions about the distribution of15

η in the uniform space (i.e. small values of Ξreli). However, major assumptions of the underlying statistical model are clearly

violated. Most striking is the violation of the zero correlation assumption (Fig. 9), which translates into unrealistic oscillations

:::::::::
fluctuations

:
of the stochastic streamflow predictions (E1 in Fig. 5). Note that E1 also comes with disadvantages related to op-

erational forecasts, where one can make more accurate predictions for streamflow in the near future given an error in previous

streamflows when accounting for correlated errors (Del Giudice et al., 2013). This effect was not analyzed in this study.20

Accounting for the fact that η is obviously autocorrelated, and therefore describing it by a Gaussian process with constant

autocorrelation (E2), comes with additional difficulties. Those are: strong interactions between estimates of hydrological water

balance parameters and heteroscedasticity and autocorrelation parameters of the error model (E2 in Fig. 6), smaller EN:::
EN,

ÊN,det, and worse ∆Q compared to E1. Strong posterior correlations between τ and a coincided with systematic overprediction

of streamflow. Evin et al. (2013), who tested an error model similar to E2 on daily data, obtained very similar results in terms25

of interactions between water balance parameters, heteroscedasticity and correalation
:::::::::
correlation parameters. The reasons for

those problems are still poorly understood. Failing to reproduce the problems under synthetic conditions, Evin et al. (2014)

suggest that the “nonrobustness of the joint approach” might be caused by “structural errors in the hydrological and / or error

models”. Based on case studies with daily data, they find that (i) the catchments where these problems are absent are all wet

catchments with relatively high runoff coefficients and low ephemerality. To this, we can add that (ii) the performance of the30

corresponding error model in our study (E2) strongly degrades for finer temporal resolution of the data
:::::
higher

::::
data

:::::::::
frequency

within two relatively wet catchments.
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5.2 (Non-)Stationarity of autocorrelation

Figure 9 visualizes one potential reason for the degrading performance of E2 for high-frequency data: our assumptions about

the stochastic process (OU-process with constant correlation time τ ) seem to be much better fulfilled for the daily than for the

hourly data. In the latter case, a visual assessment of η(t) obtained with E1, reveals strongly reduced auto-correlation during

storms compared to inter-storm periods (Fig. 9). Yang et al. (2007) made similar observations. This raises the hypothesis that5

the neglection of non-stationarity of the autocorrelation is a major deficit of conventional error models, which leads to the pre-

viously encountered problems in the joint inference of autoregressive and hydrological model parameters mentioned in Sect.

5.1.

What is the physical explanation for non-stationary autocorrelation of the errors η? The autocorrelation of errors in streamflow10

is primarily caused by the memory effect of errors in storage (Kavetski et al., 2003). Since this memory effect is smaller during

periods of rapid change, e.g.
::
of

:
a
:::::::::
catchment during precipitation events

:::
can

::
be

::::::::
expected

::
to

::
be

:::::::
different

:::::
from

:::
the

:::
one

::::::
during

:::
dry

::::::
weather, the correlation of the errors in streamflow is

:::
can

::
be

:
expected to be smaller as wellduring those times

:::::::
different

::
as

::::
well.

The degree of the reduction of
:::::
change

::
of

:::
the

:
correlation may depend on multiple factors, like the

::::::::::
hydrological

:::::
model

:::::
used,

:::
the

precipitation intensity or volume, the extent to which the precipitation signal is filtered by the catchment, time-lags between15

precipitation and runoff, and potentially others.
::::
Most

::::::::
probably,

:::
the

:::::::::
mentioned

::::::
factors

::::
will

::::
lead

::
to

:::::::
smaller

:::::::::
correlation

::::::
during

:::
wet

::::::
periods

::::
and

:::::
larger

::::
ones

::::::
during

:::
dry

:::::::
periods.

A very simple way of considering this reduced correlation (E3) provides strongly improved results compared to the assump-

tion of stationary correlation (Sect. 4.2). This indicates that neglection of the non-stationarity of the autoregressive parameter20

is a substantial shortcoming of conventional error models, which causes, at least partly, the well-known problems related to

joint inference.
:::
Note

::::
that

::::::::::::
non-stationary

:::::::::
correlation

:::
can

::::
also

::
be

:::::::::::
implemented

::
in

:::::
other

:::::::
existing

::::::::
likelihood

::::::::
functions

::::
and

::::
does

::
in

:::::::
principle

:::
not

::::::
require

:::
the

:::
use

:::
of

:::
the

:::::::
proposed

:::::::::
theoretical

::::::::::
framework

::::::::
described

::
in

::::
Sect.

::::
2.1.

To challenge this hypothesis, one could argue that the improved performance of E3 (compared to E2) might also be achieved25

when reducing τ during completely arbitrary time intervals instead of precipitation events. This would dismiss the hypotheses

that the precipitation has a direct influence on τ and that considering this influence leads to a better inference behavior. To test

this, we shifted Perr (Eq. 11) substantially in time, so that it would not correspond to the observed precipitation P anymore,

while still keeping the major properties (duration and intermittency) of the time intervals during which τ is reduced. Then,

inference was performed with E3 again. The low Nash-Sutcliffe Efficiency and the high streamflow error of the stochastic30

predictions in that case (E3† in Table B2) shows that it is indeed important to reduce τ during the precipitation events and not

during arbitrary periods with the same intermittency and duration as the precipitation events. With the shifted Perr, the resulting

τmax (≈ 145h) was much smaller than the original τmax (≈ 1400h), confirming the hypothesis of reduced correlation time of

errors in streamflow during precipitation events.
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Figure 9. Time series of η corresponding to the
::::::::
parameter

:::::
values

::
at

::
the

:
maximum posterior parameter set

:::::
density

:
obtained with E1 in the

Maimai catchment for daily resolution (left), and hourly resolution(right). Intervals where P > 0 are shaded in grey.

One could also argue that the improved performance of E3 compared to E2 is primarily due to assuming reduced autocor-

relation during periods with strong outliers (i.e. storm events) and that those outliers (visible in Fig. (6)) should be accounted

for by appropriate values of γ and df , instead of reducing their influence by neglecting correlation in the periods they appear.

Or, similarly said, if the autoregressive process with constant correlation is applied to appropriately standardized residuals,5

which are marginally normally distributed, it should not cause any problems. To explore this possibility, we performed some

experimental analysis for hourly resolution in the Murg catchment: we modified E1 by fixing γ = 1.5 and df = 5 (E1+). This

led to a well-conditioned η and performance metrics that were comparable to or better than the ones of E1 (Table B1). Then,

we inferred τ under the assumption of constant correlation, while skewness and kurtosis were kept fixed at the values given

above (E2+). The resulting performance metrics and a visual assessment of the hydrographs revealed strong deficiencies of this10

approach compared to E3 and to E1+ (Table B1). This indicates that it is not enough to ensure that the marginal distributions

of errors is sufficiently well captured before applying an autoregressive process, but that it is also important to account for a

potential non-stationarity of the correlation of the errors. Note that also the distributional parameters ofDQ (e.g. γ or df ) could

be non-stationary (Wani et al., In preparation).

15
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It is still unclear what the optimal parametrization of a time-dependent correlation could be. Using the input to directly in-

form the correlation structure of the output requires knowledge of how the catchment transforms the signal. E.g., there could

be a significant lag time between precipitation and streamflow, which would have to be taken into account in Eq. (11). For the

Maimai catchment, we found that using a smoothed version of Perr in Eq. (11) improved the performance of Error Models

E3 and E4 in case of hourly resolved data (Table B2). For the coarser resolutions in the Maimai catchment, and for all the5

tested resolutions in the Murg river, transforming Perr in a similar way did not lead to a remarkable change in the results.

The influence of possible transformations of Perr to account for the filtering effect of the catchment was not systematically

investigated in this study.

5.3 Inference of τmin10

The fact that τmin (Eq. 11) could only be inferred with partial success, shows that there are still problematic interactions among

parameters controlling the correlation of the errors and hydrological model parameters. Figure 7 indicates that those problems

are more related to τmin than to τmax, since higher values of τmin tend to coincide with bad performance. Or, in more general

terms, the previously encountered problems in the joint inference of hydrological and correlation parameters (Evin et al., 2013)

seem to originate from precipitation periods, not from dry periods. The fact that the inference of τmin is more successful in15

the Maimai catchment (Sect. 4.1.4), which has the simpler hydrological response, suggests that the realism of a hydrological

model facilitates the succesful
::::::::
successful inference of the correlation parameters.

These findings call for additional investigations into the issue of non-stationary correlation, potentially exploring other re-

lationships between τ and P or Qdet. Making τ dependent on Qdet instead of P would have the advantage that potential20

low-pass filtering or time-lag between precipitation and streamflow are taken care of by the hydrological model and need not

be considered anymore in the error model. We performed some exploratory analysis in that direction, so far with limited suc-

cess.

5.4 Shape of the Distribution
:::::::::::
distributionDQ25

Relaxing the assumption of marginal normality ofQobs givenQdet successfully reduced some very heavy outliers that strongly

violated that assumption. However, this did not always translate to improved distributional assumptions in the uniform space,

where Ξreli is calculated. We suspect that the presence of strong outliers (large η) under the normal assumption led to the strong

right-skew of DQ when inferring γ and df , which was less appropriate for the rest of the distribution of observed streamflows.

In that case, a different distributional shape forDQ would be more appropriate, e.g. a mixture distribution, that allows for some30

heavy tails on the upper side without skewing the central body too much to the right. Testing other distributional shapes for

DQ was beyond the scope of this study, however. Note that heavy outliers (i.e. η� 0) do not necessarily correspond to high

streamflow; in both catchments the largest η were observed during medium to low flows (Fig. 6), namely during small peaks

29



of observed streamflow that were not captured by the model.

The ranking in performance of the two options to either place the mean or the mode of DQ at Qdet (Eq. 9), was different for

the two analyzed catchments. The previous led to better results in the Murg catchment, while the latter seemed preferable in

the Maimai catchment. Ideally, we would like to satisfy both conditions, but this is obviously not possible when DQ is skewed.5

::::::::
Regarding

:::
the

::::::
choice

::
of

:::
the

::::
type

::
of

:::
the

:::::::::
distribution

::::
DQ,

:::::
recall

:::
that

:::::::::::::::::::::
Q(t)∼DQ(Qdet(t),ψ).

::
A

:::::::::
distribution

::::
type

::::
with

:::::::
positive

::::::
support

::::::
would

::
be

::
a
::::::::
desirable

:::::::::
alternative

:::
to

:::
the

:::::::
skewed

::::::::
Student’s

:
t
::::::::::
-distribution,

:::::
since

::
it
::::::

would
::::::
ensure

:::::::
positive

::::::::::
streamflow

::::::
without

:::
the

:::::
need

::
to

::::::
assign

:::
the

:::::::::
probability

::
of
::::::
Q< 0

::
to
:::::::
Q= 0.

::
If

::::::::::
additionally,

:::::::::::::::::
E[Q(t)] =Qdet(t),

::::
mass

:::::::::::
conservation

::::::
would

::
be

:::::::::
guaranteed

::::::
(since

:::
the

::::::
applied

:::::::::::
hydrological

:::::
model

:::::::::
conserves

::::::
mass).

::
In

:::
our

::::::::::
experience,

::::::::
however,

::::
such

:::::::::::
distributions

::::
lead

::
to10

:::::::::::
unsatisfactory

:::
fits

:::::::
(results

:::
not

:::::::
shown).

:::
An

:::::::
extreme

:::::::::
right-skew

::
is
::::::
needed

:::
to

::::::
account

:::
for

:::::
cases

::::::
where

:::::::::::::::::
Qobs(t)� E[Q(t)],

:::
i.e.

::::
when

::::::::
observed

::::::::::
streamflow

::
is

::::::
several

::::::
orders

::
of

:::::::::
magnitude

::::::
larger

::::
than

::::::::
modelled

::::::::::
streamflow,

::::::
which

:::
can

:::::::
happen

::
if

:::
the

:::::
latter

:::::::::
approaches

:::::
zero.

::::
Such

:::
an

:::::::
extreme

:::::::::
right-skew

::
is

:::::::::
unrealistic

::
in

::::
case

::
of

:::::
larger

:::::::::
modelled

::::::::::
streamflows,

::::::
where

:
it
::

is
:::::

very
:::::::
unlikely

:::
that

:::
the

::::::::::
observations

:::
are

::::::
several

::::::
orders

::
of

:::::::::
magnitude

:::::
larger

::::
than

:
a
::::::::::::
well-calibrated

:::::::::::
hydrological

::::::
model.

:::::
Thus,

:::
the

::::::::::::
non-negativity

::
of

::::::::
discharge

::::::::::
observations

::::
(for

::::::::
non-tidal

:::::
rivers)

::::::
makes

:
it
:::
in

:::
our

:::::::::
experience

:::::::::
practically

:::::
nearly

:::::::::
impossible

:::
to

::::
keep

::::
mass

::::::::
balances15

:
at
:::::
very

:::
low

::::::::
discharge

::
if

:::::
there

:
is
::
a
::::::::::
considerable

::::::::::
observation

:::::
error.

::
A

:::::::
possible

:::::::
solution

::
to

::::
this

:::::::
problem

:::::
might

:::
be

::::::::::::
non-stationary

:::::::
skewness

:::
or

:::::::
kurtosis

::
of

::::
DQ ::::::::::::::::::::::

(Wani et al., In preparation)
:
,
:::
e.g.

::::::::
imposing

:::
an

::::::
inverse

:::::::
relation

:::::::
between

::::::::
skewness

::
or

:::::::
kurtosis

::::
and

::::
Qdet.:

6 Conclusions

We presented and evaluated a flexible framework for probabilistic model formulations (i.e. likelihood functions) to describe20

the total uncertainty of the output of deterministic hydrological models. This framework allows us to consider heteroscedastic

errors with non-stationary correlation, non-equidistant observations and zero probability for negative streamflow. It does so

by allowing for arbitrary and explicit marginal distributions for the observed streamflow at each point in time. For experts, it

is easier to parameterise these marginal streamflow distributions than the distribution characterizing the autoregressive model

or some non-intuitive transformations like
:::
the Box-Cox

::::::::::::
transformation. The consistent implementation of this framework was25

successfully checked with a synthetic case study.

Using a simple deterministic hydrological bucket model and two case study catchments, the flexible likelihood framework

was used to systematically test different error models on real world data. Those error models represented various assumptions

about the statistical properties of the errors in terms of autocorrelation, skewness and kurtosis. The assumptions were found to30

have a profound effect on the quality of the predictions. The key findings are as follows:

1. We confirmed that, as shown in previous work by various authors, accounting for autocorrelation with conventional

approaches (represented by model E2) can lead to worse predictions than omitting autocorrelation (model E1). For

30



example, model E2 had errors in cumulative streamflow of 76 % in the Murg catchment and 96 % in the Maimai

catchment for hourly resolution in the calibration period. With model E1, in comparison, those errors were 1 and 19 %,

respectively.
::::::::
However,

:::
this

:::::
result

::
is

:::::::::::
unsatisfactory

:::
as

::::
there

::
is

::::::
clearly

:::::
visible

:::::::::::::
autocorrelation

::
in

:::
the

:::::::
residuals

::::
that

::::::::
invalidate

::
the

::::::
model

:::
E1.

:

2. We showed that the predictions of conventional approaches to deal with autocorrelation worsen significantly as the5

temporal resolution increases. For example, the performance of model E2 in terms of Nash-Sutcliffe Efficiency goes

::::::::
decreases from 0.76 to 0.09 in the calibration period when moving from daily to hourly data resolution. In comparison,

the performance of model E1 remains relatively stable (Nash-Sutcliffe Efficiency goes
::::::::
decreases

:
from 0.83 to 0.79).

3. Since rapid changes in a catchments storage reduce
::::::
change its memory, errors in streamflow are expected to be less

correlated
::::
show

:::::::
different

::::::::::
correlations

:
during precipitation events than during

:::
and

:
dry weather. Based on the hypothesis10

that this non-stationarity increases when going from daily to hourly resolution, neglecting non-stationarity of correlation

is the likeli
:::::
likely cause for finding 2.

4. Accounting for non-stationarity in autocorrelation significantly alleviated the observed problems of finding 2. In particu-

lar, allowing for the autocorrelation to be lower during wet than during dry periods (models E3 and E4) led to more stable

behaviour across time resolutions. For example, volume errors for model E3 in the Murg catchment were not larger that15

3 % for all three investigated temporal resolutions. However, inferring the characteristic correlation time during precipi-

tation events (model E3a) provided good results in only one of the two investigated catchments. Keeping that correlation

fixed (model E3) could be seen as a pragmatic option with stable performance.

5. Accounting
:
If

:::
the

::::::::
problems

:::::::::
mentioned

::
in

::::::
finding

:
1
:::
can

::
be

::::::::
avoided,

:::::::::
accounting for autocorrelation results in more realistic

characteristics of model output than omitting autocorrelation, which is confirming previous work. In particular, signatures20

such as the Flashiness Index are much better represented when including autocorrelation. For example, for an observed

value of the Flashiness Index of 0.13 in the Maimai catchment in the calibration period, model E3a provided a value of

0.13, whereas model E1 resulted in a much larger value of 0.56.

6. Inferring the skewness and kurtosis can lead to better fulfilled distributional assumptions about the errorsin case of low

temporal resolution of the data. For higher resolutions, however
:
.
::
In

:::
our

::::
case

::::::
study,

:::
this

::::::::::
expectation

::::
was

:::::
partly

:::::::
fulfilled25

::
for

:::::
daily

::::
data,

:::
but

::::
not

:::
for

:::
data

:::
of

:::::
higher

:::::::::
frequency.

::::
For

::::::
hourly

::::
data,

:::
for

:::::::
example, more freedom w.r.t. the shape of the

distribution can actually lead to less accurate representation of the observed distribution.

These results contribute to a better characterization of the residual errors of deterministic hydrological models. However,

some questions remain. For example, it is still unclear how the non-stationary autocorrelation should ideally be parametrized.

The chosen approach, where we alternate between two values of the autoregressive parameter based on whether there is pre-30

cipitation or not, might lead to problems in catchments with strong lags between precipitation and streamflow. In those cases,

defining the autoregressive parameter as a function of modelled streamflow might be more suitable. Furthermore, it could

31



be investigated whether distributions other than the Gaussian and the skewed Student’s t are more appropirate
:::::::::
appropriate

::
or

:::::::
whether

:
a
::::::::
different

:::::
model

:::
for

::::
the

:::::::
temporal

::::::::::
correlation

:::::
would

:::::::
perform

::::::
better. Overall, this study confirms previously en-

countered difficulties in finding a parametrization of an additive error term that adequately describes the effects of intrinsic

stochasticity.

Appendix A: Derivation of the likelihood function5

To derive the conditional distribution of Q(ti+1) |Q(ti) ::::::::::::
Q(ti) |Q(ti−1)

:
(and construct the likelihood function by iteratively

multiplying the conditional probability densities), we have to propagate the distribution η(ti+1) | η(ti) :::::::::::
η(ti) | η(ti−1)

:
given by

Eq. (4) to the streamflow using the (inverse) transformation ηtrans ::::
ηtrans:

given by Eq. (2).

In sloppy
::::::::
simplified notation (which makes it easier to get the key idea without getting in notational details), we get:

f
(
Q(ti) |Q(ti−1)

)
= f

(
η(ti) | η(ti−1)

) dη(ti)

dQ(ti)
= fOU

(
η(ti) | η(ti−1)

) fDQ(Q(ti)
)

fN(0,1)

(
η(ti)

) (A1)10

where, in the final equation, fOU refers to the standard Ornstein-Uhlenbeck process defined by Eq. (4) and the ratio of the

densities fDQ and fN(0,1) results from the derivative and inner derivative of the transformation given by Eq. (2) (the derivative

of cumulative distribution functions are the corresponding probability densities).
With explicit notation of functions and arguments, we get

15

f
(
Q(ti) |Q(ti−1),θ,ψ

)
= f

(
ηtrans

(
Q(ti),Qdet(ti,θ),ψ

)
| ηtrans

(
Q(ti−1),Qdet(ti−1,θ),ψ

))dηtrans

dQ

(
Q(ti),Qdet(ti,θ),ψ

)
= f

N

(
ηtrans

(
Q(ti−1),Qdet(ti−1,θ),ψ

)
exp

(
−
ti−ti−1

τ

)
,

√
1−exp

(
−2

ti−ti−1
τ

))(ηtrans(Q(ti),Qdet(ti,θ),ψ
))

·
f
DQ

(
Qdet(ti,θ),ψ

)(Q(ti)
)

fN(0,1)

(
ηtrans

(
Q(ti),Qdet(ti,θ),ψ

)) (A2)

This corresponds to the first sub-equation of Eq. (7). The order of the factors was changed in Eq. (7) to emphasize the product20

of the marginal distribution fDQ with a modification facor
:::::
factor that tends to unity if ti+1− ti :::::::

ti− ti−1:
becomes much larger

than τ . The other sub-equations in Eq. (7) consider truncating the streamflow distribution at zero and assigning a point mass

corresponding to the integral of the tail below zero to a streamflow of zero.

Appendix B: Complete results

Appendix C: Synthetic case study: inferring known true parameters25

To check if the implemented likelihood and sampling functions are inverses of each other, we produce a streamflow sample

with known parameters according to the procedure outlined in Sect. 2.3. Table ?? shows the results when trying to re-infer

those known parameters with the error models presented in this study. In all cases, the true value of the parameters are inside
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Î
F
,d

e
t

I
F
:
:
I
F

I
F
,o

b
s

Ξ
r
e
li

Ω
p
r
e
c

Ê
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Ẽ

4
a

0.
04

0.
38

0.
76

0.
6(

0.
16

)
16

-3
(3

.7
)

0.
22

0.
29

(0
.0

1)
0.

31
0.

15
0.

38
0.

64
0.

48
(0

.2
5)

18
-2

(4
)

0.
2

0.
28

(0
.0

1)
0.

33

24
h

E
4a

0.
03

0.
35

0.
81

0.
66

(0
.3

7)
5

4(
2.

6)
0.

2
0.

28
(0

.0
2)

0.
31

0.
06

0.
35

0.
72

0.
56

(1
.4

)
6

5(
2.

8)
0.

19
0.

27
(0

.0
2)

0.
33

6h
E

1
0.

13
0.

38
0.

81
0.

59
(0

.0
3)

-4
-4

(0
.8

)
0.

12
0.

44
(0

.0
1)

0.
16

0.
12

0.
37

0.
8

0.
57

(0
.0

2)
-2

-2
(0

.8
)

0.
12

0.
43

(0
.0

1)
0.

16

6h
E

2
0.

4
0.

56
0.

6
0.

13
(0

.1
5)

-3
4

-4
0(

5.
7)

0.
14

0.
18

(0
)

0.
16

0.
35

0.
54

0.
6

0.
05

(0
.1

4)
-3

0
-3

5(
5.

7)
0.

14
0.

18
(0

)
0.

16

6h
E

3
0.

1
0.

42
0.

76
0.

5(
0.

04
)

-3
-3

(1
.4

)
0.

15
0.

36
(0

.0
1)

0.
16

0.
04

0.
41

0.
76

0.
48

(0
.0

3)
0

0(
1.

5)
0.

14
0.

36
(0

.0
1)

0.
16

6h
E

3a
0.

52
0.

63
0.

55
-0

.0
3(

0.
17

)
-4

1
-5

0(
7.

3)
0.

14
0.

18
(0

)
0.

16
0.

46
0.

61
0.

52
-0

.1
8(

0.
2)

-3
6

-4
5(

7.
5)

0.
14

0.
18

(0
)

0.
16

6h
Ẽ
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the posterior 95%-confidence intervals. Synthetic case study based on parameter values obtained for the Murg river with daily

resolution. ML = maximum likelihood estimation, CI = confidence interval. Param.Unit True valueML95%-CIML95%-CIML95%-CIML95%-CIML95%-CIML95%-CICE

- 1.031.0431.0271.020.981.02 1.01.041.0071.03 1.004 1.041.01.0631.071.041.0751.0581.06Smax mm 345352329336298325

302 330300330307338302370373346365356368ku h−1 8.5e-58.59e-57.7e-5 9.76e-57.44e-59.5e-5 8.0e-5 7.95e-56.09e-59.87e-58.14e-58.48e-57.43e-59.7e-51.28e-41.1e-49.29e-51.13e-41.08e-4kf

h−17.59e-48.31e-47.06e-4 8.82e-57.09e-58.29e-46.6e-4 6.77e-45.39e-48.83e-46.81e-47.72e-46.65e-49.88e-41.19e-49.8e-4 7.96e-41.00e-31.03e-3a5

- 2.042.03 1.911.82 1.621.93 1.81 2.121.921.961.791.951.772.15 2.162.072.272.142.11b - 2.0e-22.0e-21.2e-2 0.0170.0111.66e-24.6e-3

2.45e-21.43e-23.44e-21.77e-21.63e-21.05e-23.4e-20.0423.0e-24.23e-25.17e-22.99e-2τmax h 393- - 297 255385 335 414347374326357300-424445497432425τmin

h 48- - - - --47.241.3--44.638.6-- -57.7-52.7γ - 1.2----- ---1.211.151.161.10----1.281.23df - 7.39----- ---6.093.979.485.63----10.218.3

Appendix C: Specific error models

C1 Normal distribution10

DQ = N(µ,σ)

µ(Qdet) =Qdet , σ(Qdet,a,b,c) = aQ0

(
Qdet

Q0

)c
+ bQ0 , ψ = (a,b,c)

(C1)

Q0 is a chosen constant to make the fraction that is taken to the power of c non-dimensional. A modification of the constant Q0

leads to a re-definition of the parameter a. Therefore, introducing the constant Q0 does not increase the number of parameters

but it simplifies the units of the parameters a and b that become the same as those of streamflow, whereas c is non-dimensional.

Empirical evidence has shown that the normal distribution works astonishingly well. However, there is still as small number15

of outliers that violate the distributional assumptions relatively strongly. For this reason, a distribution with heavier tails seems

appropriate.

C2 Studentt distribution
::
’s

:
t
:::::::::::
-distribution

DQ = Tdf,σ(µ,σ,df)

µ(Qdet) =Qdet , σTdf = aQ0

(
Qdet

Q0

)c
+ bQ0 , ψ = (a,b,c)

(C2)

The student t distribution
:::::::
Student’s

::
t
:::::::::
-distribution

:
with degrees of freedom df > 2 is a straightforward candidate with heavier20

tails that reduces to the normal distribution for df →∞. Note that we need to rescale the original Studentt-distribution
::
’s

:
t
:::::::::
-distribution, T (df), to the standard deviation σ, i.e. T (σ,df):

fTdf,σ (x) =
1

σ

√
df

df − 2
fTdf

(
1

σ

√
df

df − 2
x

)
(C3)

and

FTdf,σ (x) = FTdf

(
1

σ

√
df

df − 2
x

)
. (C4)25
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Note that the degrees of freedom, df , have to be larger than 2 to make the standard deviation finite and allow for rescaling to a

given standard deviation, σ.

C3 Skewed Studentt distribution
::
’s

:
t
:::::::::::
-distribution

DQ = skγ [Tdf,σ](Qdet,σ,df,γ)

σskγ [Tdf,σ ] = aQ0

(
Qdet

Q0

)c
+ bQ0 , ψ = (a,b,c)

(C5)

To account for the often encountered case of skewed errors of deterministic hydrological models, we transform the Studentt5

distribution
:
’s
::

t
:::::::::
-distribution

:
with a generally applicable method of skewing distributions (Fernandez and Steel, 1998). For

γ = 1, the skewed Studentt
::
’s

:
t
:::::::::
-distribution

:
distribution reduces to the conventional Studentt distribution

:
’s

:
t
::::::::::
-distribution. Note

that the skewing happens after we rescaled the original Studentt-distribution
:
’s
:
t
::::::::::
-distribution

:
to the standard deviation σ. The

skewing changes the distributions’ standard deviation again, thus σ 6= σskγ [Tdf,σ ]. The density and cumulative distribution

functions of the skewed rescaled distribution, are:10

fskγ [Tdf,σ ](x) =



2

γ+
1

γ

fTdf,σ (γx) =
2

γ+
1

γ

1

σ

√
df

df − 2
fTdf

(
1

σ

√
df

df − 2
γx

)
for x≤ 0

2

γ+
1

γ

fTdf,σ

(
x

γ

)
=

2

γ+
1

γ

1

σ

√
df

df − 2
fTdf

(
1

σ

√
df

df − 2

x

γ

)
for x≥ 0 .

(C6)

and

Fskγ [Tdf,σ ](x) =



2

1 + γ2FTdf,σ (γx) =
2

1 + γ2FTdf

(
1

σ

√
df

df − 2
γx

)
for x≤ 0

1

1 + γ2 +
2

1 +
1

γ2

(
FTdf,σ

(
x

γ

)
− 1

2

)

=
1

1 + γ2 +
2

1 +
1

γ2

(
FTdf

(
1

σ

√
df

df − 2

x

γ

)
− 1

2

)
for x≥ 0 .

(C7)

And the mean and the variance of the skewed rescaled distribution are:

µskγ [Tdf,σ ] = 2σ

γ2− 1

γ2

γ+
1

γ

√
df(df − 2)

df − 1

Γ

(
df + 1

2

)
√
π df Γ

(
df

2

) (C8)15
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and:

σ2
skγ [Tdf,σ ] =

γ3 +
1

γ3

γ+
1

γ

σ2−µ2
skγ [Tdf,σ ]

=

γ
3 +

1

γ3

γ+
1

γ

− 4

γ
2− 1

γ2

γ+
1

γ


2

df(df − 2)

(df − 1)2

Γ2

(
df + 1

2

)
π df Γ2

(
df

2

)
σ2 . (C9)

To shift the distribution we can evaluate5

fskγ [Tdf,σ ](x−Qdet) (C10a)

fskγ [Tdf,σ ](x+ medskγ [Tdf,σ ]−Qdet) (C10b)

fskγ [Tdf,σ ](x+µskγ [Tdf,σ ]−Qdet) (C10c)10

In these cases, the mode, the median, and the mean are located at x0, respectively.

Appendix D: Notation

P Precipitation used as an input to the hydrological model.

Perr Precipitation used as an input to the error model where needed (not to the hydrological model).

Qdet(t,θ) Deterministic hydrological model providing streamflow as a function of time, t, and hydrological model pa-15

rameters θ.

Q̂det Deterministic hydrological model output corresponding to the parameter vector θ̂ with maximum posterior

probability
::
the

:::::::::
maximum

:::::::
posterior

:::::::
density.

Qobs(t) Observed streamflow at time t.

Qtrans(η) Function transforming η into streamflow (used to sample from the probabilistic model consisting of the hydro-20

logical model and the error model).

DQ Distribution of observed streamflow at a certain point in time, given the output of the deterministic hydrological

model at the same point in time.

θ Parameters of the deterministic hydrological model, Qdet.

ψ Parameters of the error model, including heteroscedasticity and correlation parameters.25
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η Autocorrelated, stochastic process with standard normal asymptotic distribution that serves to describe the

autocorrelation of the errors of the deterministic hydrological model.

τ Characteristic correlation time of the process η.

τmin Minimum value of τ in the cases where τ is a function of Perr and therefore of time.

τmax Maximum value of τ in the cases where τ is a function of Perr and therefore of time.5

FX Cumulative distribution function of the distribution X .

fX Probability density function of the distribution X .

E[X] Expected value of the random variable X .

N(µ,σ) Normal distribution with mean µ and standard deviation σ.

T(df,σ) Rescaled Student-t distribution
::::::::
Student’s

:
t
::::::::::
-distribution with df degrees of freedom and standard deviation σ.10

SKT(µ,σ,df) Shifted and rescaled skewed Student-t distribution
:::::::
Student’s

:
t
::::::::::
-distribution

:
with mean µ, standard deviation

σ, and df degrees of freedom.

FI The median of the Flashiness Indices (Baker et al., 2004) of all the individual model realisations constituting

a sample of model outputs.

F̂I,det The Flashiness Index (Baker et al., 2004) of Q̂det.15

FI,obs The Flashiness Index (Baker et al., 2004) of Qobs.

:::::
EN The median of the Nash-Sutcliffe Indices (Nash and Sutcliffe, 1970) of all the individual model realisations

constituting a sample of model outputs.

ÊN,det The Nash-Sutcliffe Index (Nash and Sutcliffe, 1970) of Q̂det.

∆Q The median of the relative errors in cumulative streamflow of all the individual model realisations constituting20

a sample of model outputs.

::::::::
∆̂Q,det The relative error in cumulative streamflow of Q̂det.

Ξreli Reliability metric (McInerney et al., 2017)

Ωprec Precision metric (McInerney et al., 2017)

OU-process Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930).25
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