
Reply to Referee #1, Jasper Vrugt 

AC: Authors comment 

Intended changes to the manuscript are highlighted in italic font. 

J. Vrugt: Summary: In this paper the authors introduce a parametric framework to residual analysis. This 

approach leads to formulation of a likelihood function which, with a suitable prior distribution, helps to 

evaluate the posterior density of nontraditional residual time series, e.g. truncated and subject to 

various degrees of skew, kurtosis and serial correlation. The framework allows for the use of transient 

nuisance variables (hyper parameters) to help accommodate so-called non-stationary residual patterns. 

The framework presented herein differs a bit from the standard likelihood paradigm in that the starting 

point is some parametric family of distributions which describes the likelihood of observing the data, Q, 

given current model output, Qdet. Authors claim that the proposed likelihood function improves 

probabilistic inference of hydrologic models via MCMC machinery – with a more realistic description of 

parameter and predictive uncertainty. I enjoyed reading this paper as it combines theory development 

with practical application. The paper is well written and should be of interest to the readership of HESS. I 

hope the authors consider the following comments – I believe those will help to further improve the 

quality of this manuscript. Note, comments appear in order of my reading of the paper. 

AC: Thanks for this general feedback. We have to clarify that the ability to deal with non-

stationary correlation (or other parameters) is independent of the presented likelihood 

framework (as referee #2 correctly pointed out), and could (and should) also be achieved with 

other frameworks / methods. 

We will mention this more explicitly in the revised manuscript. 

J. Vrugt (1): Page 5, Line 9-11. Authors state that most (many) modelers will have an intuitive idea about 

the probability distributions of the observations for a given model output. I disagree with this assertion. 

For the sake of my argument, lets follow the hydrologic example as presented in this work. Let’s assume 

that the model simulates a discharge of 20 mm/day. What would be a reasonable expectation of the 

actual (observed) discharge at that time? 15? 30? I cannot confidently claim that I would know what 

probability distribution to assume for the observed discharge at that time. Of course, if 20 mm/day is 

among the largest simulated values, then I would generally expect the dispersion of this supposed 

distribution to be larger than for a simulated value of 5 mm/day. Yet, this is only the dispersion – I would 

not really have an idea about the underlying distribution – would I center this distribution on 20 

mm/day? Or is my model systematically under or overestimating the data so that I should shift the 

distribution to higher or lower values, respectively. Of course, for low discharge values I know that the 

distribution is truncated at zero – and probably has a tail to the right. But then again do I center the 

distribution on the model simulated value? Or do we shift it up or downward? In other words, I do not 

agree with the assertion that many modelers will have an intuitive idea what the distribution of the 

observed discharge would be if the model output is known. 

AC (1): This is an interesting point of discussion about one of the main motivations for the 

presented likelihood framework. Interestingly, there is a contrasting opinion of the referee J. 



Vrugt and the author of a short comment, Alberto Montanari, on exactly this point. We 

acknowledge that our wording “many modellers will have an intuitive idea about the probability 

distribution ...” is too strong. We agree that it can be difficult to formulate this distribution of the 

observed streamflow, as the example of J. Vrugt shows. 

We will rephrase the sentence accordingly. 

However, in case we do have at least some idea about the shape of the distribution, the 

presented framework allows to incorporate this as prior knowledge. If we have no idea about 

the distribution, the presented framework is still useful, because we can communicate and 

discuss our assumptions in the space of streamflow (with the corresponding units), as the 

example in the comment of the referee shows. With previously used approaches to deal with 

skewness and kurtosis (e.g. Box-Cox transformation, generalized likelihood function) it is more 

difficult to discuss these assumptions, because they are made in transformed (Box-Cox) or 

innovation (generalized likelihood) spaces, which are less intuitive for us. Our point was that it is 

easier for hydrologists (although admittedly still not easy) to discuss the marginal distribution of 

streamflow (because they have been confronted with deviations of model results from 

observations for this quantity in the past) rather than Box- Cox parameters or the distribution of 

innovations without simple access to the consequences on marginal streamflow distributions. In 

summary, this discussion illustrates the major advantage of the presented framework: that 

distributional assumptions are transparent and easy to communicate, which means that they can 

be better discussed and questioned. 

We will mention this shortcoming of previous approaches more explicitly in the paragraph on 

page 3, line 20. Accordingly, we will expand the first paragraph of Sect. 2.1 to provide a clearer 

motivation for the presented approach of parameterizing the distribution of streamflow given 

model output, as compared to transformation approaches (Box-Cox) or probabilistic models 

formulated in the innovation space (generalized likelihood). 

J. Vrugt (2): Page 5, Line 22-23. The authors refer to Eq. (3) before presenting Eq. (2). Do not understand 

why this is done – would think that text can be presented so that Eq. (3) follows first – then followed by 

Eq. (2). Note, is Eq. (3) needed after all? The right-hand-side of Eq. (3) can be placed at end of Eq. (2) – 

then the index needs to be fixed.  

AC(2): We agree to reverse the order of the equations. Equation (3) is very important to 

introduce the transformation function before it is applied to the actual time series, as this 

transformation is the key of our concept of introducing autocorrelation for arbitrary marginal 

discharge distributions. 

We will reverse the order of Eq.(2) and Eq.(3) and we will include some more clarifying text about 

Eq.(3). 

J. Vrugt (3): Page 5, Line 27-29: I do not understand the statement that truncation at zero would lead to 

lighter tails on the lower end. Yes, truncation would move the probability of negative streamflow values 

to streamflow values larger than zero. In essence, one could then argue that the tail at the right-hand-



side may become larger – as the pdf has to integrate to unity. Yet, because of truncation the left tail is 

essentially gone if simulated streamflow values are close to zero. The wording “lighter tails” may be a bit 

confusing as the tail is truncated. It is no longer there. 

AC(3): It is true that the negative part of the distribution DQ is truncated at each individual time 

step, so the negative tail at each time step is no longer there. However, here we refer to the 

marginal distribution of eta over all time steps, and usually there will be no sharp “cut” visible, 

since the truncation happens at different values at each time step. 

We will include a corresponding sentence in the next version of the manuscript. We will also more 

clearly discuss that our framework allows for truncation with compensation by increased density 

for positive values (as described by the referee) or for assigning a finite probability for an 

observed discharge of zero (as actually done in this study). Both options may be useful, 

depending on the circumstances (e.g. for ephemeral catchments the latter option could be 

preferable, since a non-zero probability of zero discharge may be very important there). 

J. Vrugt(4): Page 5, Eq. (2) – (3) – thus, eta is the normally transformed counterpart of Q – with 

truncation accounted for?  

AC(4): Yes, this is exactly right. Together with the changes intended for comment 3, we hope 

that this will become clearer. Truncation will only be needed if the distributional shape of the 

discharge extends to negative values. This may not always have to be the case. 

J. Vrugt(5): Equation (4) – authors may consider for normal distribution, N, instead \mathcal(N)(a,b), 

where “a” (mean) is the first term between brackets in Eq. (5) and “b” is the second term in Eq. (4). In 

text below Eq. (4) authors could then explain that “a” is the mean of the distribution and b is the 

variance. 

AC(5): We agree that it must be made more explicit that the first term is the mean and the 

second is the standard deviation. 

Rather than introducing two new variables, we will state in the text that the two elements are 

the mean and the standard deviation. 

J. Vrugt(6): Eq. (6) – reference should be given. 

AC(6): To clarify the derivation, we will replace the paragraph around Eqs. (5) and (6) by: 

Note that for a constant time step t = ti+1-ti , Eq. (4) becomes 

𝜂(𝑡𝑖+1)|𝜂(𝑡𝑖)~N (𝜙𝜂(𝑡𝑖), √1 − 𝜙2) 

with 

𝜙 = exp (−
Δ𝑡

𝜏
)     or     𝜏 = − 

Δ𝑡

log (𝜙)
 

This is an AR1 process with autoregression coefficient 𝜙 and white noise variance (1 − 𝜙2). 



J. Vrugt(7): Page 6, Line 12-14. Maybe I am missing something here, but with any other likelihood 

function one can ignore missing data as well? One simply does not include this particular observation in 

the likelihood function. The authors may have a point if serial correlation is considered – then this 

removal is not straightforward as it breaks the AR-error model. 

AC(7): Yes, we agree. Any likelihood can deal with missing data when neglecting correlation, but 

it requires more effort with an AR error model. Since we think that considering correlation is 

important, we think it is necessary that future likelihoods can accommodate both, correlation 

and missing data (or varying time step sizes) naturally. Our point is that this is particularly simple 

in the suggested approach as it does not need any changes because there is no underlying 

assumption of equidistant points in time. 

We will mention this more explicitly in the next version. 

J. Vrugt(8): Eq. (7) – top line of curly brace may fit on one line if authors define rho = (ti+1 – ti)/tau, and 

then use rho in the equation – maybe etatrans written as etaT. 

AC(8): We agree that Eq. (7) is not ideally displayed. We prefer to implement the latter 

proposition of the referee. 

We will replace eta_trans by eta(ti), i.e. we will substitute Eq. (2) into Eq. (7). Since the 

dependence of eta(t_i) on Q(t_i) is then not explicit anymore, we will add a statement about that 

dependence and refer to Eq. (2). 

J. Vrugt(9): Then notation – not sure about the guidelines of HESS, but should theta (parameter vector) 

not be upright-bold instead of italic-bold? Same holds for the nuisance variables, psi. 

AC(9): The current guidelines of HESS are italic bold for vectors, according to the information we 

have. 

J. Vrugt(10): Is notation DQ required or would fQ suffice instead? Then, the text would talk about a 

distribution of Q – instead of DQ. 

AC(10): This would be a possibility, and it would probably make the equations better readable. 

However, talking about the “distribution of Q” indstead of DQ, would make the text quite a bit 

longer, since the term appears often. We would prefer to stay with the name DQ, because with 

think it is overall simpler to read. 

J. Vrugt(11): A limitation of Eq. (4) is that serial correlation at higher-order lags cannot be modelled, 

right? Unless you specify different “rho’s” in Eq. (6) – but this then leads to multiple likelihoods. This 

limitation should be stated in the text as residuals may exhibit/show residual correlation beyond lag-1. 

AC(11): Yes, we fully agree with this comment. 

We will include a corresponding statement about Eq. (4) in the next version of the manuscript. 



J. Vrugt(12): In Eq. (8) how do we compute the first term on the right-hand-side – that is – the likelihood 

of the zeroth discharge observation (at t0)? Do we assume normality with dispersion of variance/(1-

rhoˆ2)? 

AC(12): This term is calculated with Eq.(1). We recognize that it is confusing that the index “i” 

refers to the current time step for which we want to calculate the likelihood in Eq.(8), but that it 

refers to the time step before the current time in Eq. (7). 

We will refer explicitly to Eq. (1) and also modify the index “i” in Eq. (7) so that it has the same 

meaning as in Eq. (8). 

J. Vrugt(13): Page 7, Line 12-13: The statement “the likelihood function can be evaluated analytically” is 

a bit confusing to me. What does the word “analytical” mean in this context? Most other commonly used 

likelihood functions in the applied (hydrologic) literature are simple to evaluate in practice, right? That 

means numerically. All that is needed are the model output and the data? What is different in the 

present context?  

AC(13): We agree that this is a property shared by most likelihoods formulated on top of a 

deterministic hydrological model. We wanted to express that our framework still belongs to that 

class and does not lead to additional numerical effort as e.g. stochastic hydrological models that 

may require PMCMC or ABC rather than standard MCMC. It was not our intention to state that 

our model is special in this respect. 

We will clarify this in the next version and replace the expression “evaluated analytically” with 

“available in closed form” to make it clearer what we mean here. 

J. Vrugt(14): The authors use the affine invariant ensemble sampler of Foreman and Mackay et al. (2013) 

to sample the posterior parameter and nuisance variable distribution. The article would benefit from 

some more background information – that is – algorithmic settings (number of walkers, the types of 

moves that are considered, etc.). Note, that this ensemble sampler has many elements in common with 

the DREAM family of MCMC algorithms – which uses parallel direction and snooker moves. For later 

work it may be interesting to compare both methods in terms of efficiency – and to evaluate the power 

and usefulness of the walk, stretch and replacement move. Note, that the ensemble sampler has two 

important shortcomings; 1) detailed balance requires the use of a relatively large number of walkers 

(chains) – this is a significant disadvantage for higher dimensional problems as each chain needs burn-in 

before reaching the target distribution, and 2) the walkers require stepwise updating – this guarantees 

reversibility but does not make the sampler amenable to distributed computing, wherein each chain is 

evolved on a different core/node. 

AC(14): We agree that more background information should be provided on this. 

We will include the specific settings used for sampling with this ensemble sampler in the next 

version of the manuscript. 

We also agree that it would be interesting to compare the performance of the sampler applied in 

this study and the DREAM samplers in a future study. 



J. Vrugt(15): Equation (10) – the subscript “F” in the flashiness index, should this not be regular font – 

that is – upright? As “F” is an abbreviation for “flashiness” and not a variable. Same holds for some of the 

other summary metrics used in this paper, for example the Nash-Sutcliffe efficiency (subscript “N” 

should be regular = upright font). Note, that on Page, 8, Line 25 correct notation is used for the flashiness 

index of the deterministic model output.  

AC(15): This is right, thanks for the notice. 

We will check and improve regular versus italics fonts in equations throughout the manuscript. 

J. Vrugt(16): Page 5, Line 24: “maximum posterior parameter values” – this is rather awkward wording as 

it literally means – the largest posterior parameter values. And it is not clear what this means either as 

each dimension of the target distribution will have a maximum posterior value – but all these maxima 

combined are unlikely to make up an actual posterior sample. Instead, what the authors should use is 

“maximum a-posteriori density (MAP) parameter values” – that is – the parameter values that maximize 

the product of the prior density and the likelihood.  

AC(16): We assume that the referee means Page 8, Line 24 instead of Page 5, Line 24. What we 

mean by this is the single parameter vector that is associated with the largest posterior 

probability density of all the points in the parameter sample. As we are not referring to marginal 

posterior densities, this can hardly be misunderstood in the way the referee argues. However it 

certainly makes sense to add the word “density” to “maximum posterior”. 

In the next version we will change the wording “maximum posterior parameter values” to 

“parameter values at the maximum posterior density” 

J. Vrugt(17): Eq. (15) and (16) list the flux and water balance equations used by the hydrologic model – 

but equally important what numerical solution method is used to solve these equations? I assume that 

the authors have used an implicit solution with time-variable integration step? Solution maintains mass 

balance? 

AC(17): We very much agree with the referee. This information should be provided. 

We will include more explanations and references to the numerical scheme used for integrating 

the equations in the next version. 

J. Vrugt(18): Page 12, Line 5: Why are these model parameters held constant? Why are they not part of 

the inference – this would be much stronger in my view. If held constant, then how does one know the 

assumed values are reasonable for the catchment of interest? Note, if I look at the equations then m, 

alpha and beta must have a large impact on the simulated model output. Hence, unless these 

parameters have a strong physical underpinning I do not see why one would keep them fixed in the 

present work. Certainly, the values of m, alpha and beta will affect the residual analysis. 

AC(18): We agree that in principle, it is always desirable to infer more parameters. The 

mentioned parameters were kept fixed to keep the hydrological model parsimonious. Fixing 

some of the parameters is commonly done in hydrological bucket models, for example, the 



widely used GR4J model has 4 parameters that are inferred, which is equal to the number of 

hydrological parameters we infer in this study, and it has other parameters that are kept fixed, 

including the parameter that is equivalent to “beta” in this study. “m” can be seen as a 

smoothing parameter, and m=0.01 means that there is close to full evaporation as long as the 

reservoir Su is not empty. “alpha=2” was found to lead to reasonable results in both the 

investigated catchments and was fixed because of its potential interactions with kf. We do admit 

that we do not know if the fixed values of “beta” and “m” are ideal for the investigated 

catchments. Since we reached good fits with at least some error models in both catchments, we 

would argue that the values of “beta” and “m” are proven to be reasonable. Often when 

applying a hydrological model to a catchment, we do not really know whether the model is 

perfectly appropriate for that catchment and we cannot infer all the (potentially many) 

parameters of the model. Also, systematic errors are common in practice, so we do not want to 

avoid them here by overly complex models. One could argue that this limits the transferability of 

the results to other, more complex models. One could also argue that we should have tested 

different hydrological models, more catchments and more temporal resolutions to obtain more 

generalizable results. However, the focus of this paper is on the method development, which 

allows only for a limited amount of application case studies and comparisons. 

We will include the above mentioned explanations as to why those parameters were kept fixed in 

the next version, but we will not additionally include model runs where those parameters are 

fitted. 

J. Vrugt(19): The authors do not consider highly relevant work by Scharnagl et al. (2015) published in 

HESS: Inverse modeling of in situ soil water dynamics: accounting for heteroscedastic, autocorrelated, 

and non-Gaussian distributed residuals. This work also used a Student distribution for the conditional 

density of the residuals – and combined this with the template function of Fernandez and Steel (1998) to 

enable treatment of skewed residual distributions. Given the similarities with the work presented in this 

paper I think it is important for the authors to consider the listed work of Scharnagl et al.  

AC(19): We agree that the work of Scharnagl et al. is related to the topic of this study and we 

were not aware of it, since it was not published as a final paper in HESS. Their “Likelihood 2” uses 

a skewed Student t-Distribution, but they use it to describe the probability density of the 

innovations, like Schoups and Vrugt (2010), not the probability density of the observed 

streamflow, as is done in this study. A difference to Schoups and Vrugt (2010) is that Scharnagl et 

al. (2015) apply the autocorrelated process to the standardized residuals, as the correction 

suggested by Evin et al. (2013). However, this approach does not give satisfying results in that 

case. Then, the relevance of “Likelihood 3” in Scharnagl et al. (2015) for predictive application 

was correctly questioned by one of the referees. 

We will include a reference to that discussion in the next version of the manuscript. We will say 

which aspects of the approach of Scharnagl et al. (2015) are similar to this study, but we will also 

highlight the important differences. 



J. Vrugt(20): Eq. (18) – does this function satisfy the laws of total expectation and total variance? This is a 

concern not typically addressed in the hydrological literature – but the paper by Hernandez-Lopez in 

HESS (2017) makes some important points regarding preservation of expectation and variance of the 

error model. 

AC(20): The Law of Total Expectation and the Law of Total Variance are statistical theorems. 

There is no way of violating them for any correctly formulated probabilistic model. We are 

formulating a joint probability density of discharge at all observations points in equation (8) 

conditional on the output of the deterministic model. The choice and parameterization of the 

discharge distribution does not change the validity of fundamental statistical theorems. For this 

reason, the consideration of heteroscedasticity by Eq. (18) cannot lead to a violation of the Total 

Laws. Note that we carefully transform the distribution assumed for “eta” to the distribution of 

“Q” in equation (7); not doing this carefully could be a potential source of error and could lead to 

a violation of statistical theorems. 

Why do Hernandez-Lopez (2015) state that the fulfillment of statistical theorems must be 

guaranteed by eliminating parameters from MCMC sampling and calculating them from the 

other components of the sample point (section 4.4 in their paper)? This argument is based on a 

fundamental misinterpretation of a statistical equation that is valid, if correctly interpreted. 

Their derivation of equation (22) resp. (B9) in appendix B demonstrates, that this equation links 

the parameters  and , the error variance, the discharge variance and expectation for an error 

model with fixed parameters  and  (see equation B5 where this assumption is used). In 

Bayesian inference,  and  become random variables and equation (22) is no longer valid (it 

would contain a sum of random and non-random variables [the expectation and the variance of 

a random variable are not random]). Applying this invalid equation is the first problem of their 

approach. The second problem is that the Laws of total Expectation and Variance are integral 

equations over a multivariate distribution. They have no meaning for individual sampling points 

to which they apply them. The full sample will fulfill the statistical theorems as a result of the 

consistency of the approach and without explicit enforcement. 

The more interesting question is whether the expectation of the probabilistic model for a given 

deterministic model output is equal to this deterministic model output. Our framework makes 

the formulation of such models possible (e.g. a lognormal distribution with mean equal to the 

deterministic model output). This seems at the first sight a desirable property of the model as it 

guarantees mass conservation (if the deterministic model conserves mass). Unfortunately, our 

experience with such error model formulations were unsatisfactory. In cases in which the model 

output is very small, even small observations errors can lead to observations that are orders of 

magnitude larger than the output of the deterministic model and would thus require an 

extremely strongly skewed distribution. The consequence of such extremely skewed 

distributions would be that for each “large observation” a very large number of very small 

observations would be needed to keep the mean (as these observations cannot be much smaller 

than a small output of the hydrological model). In our experience, such distributions lead to 

unsatisfactory fits. Thus, the non-negativity of discharge observations (for non-tidal rivers) 



makes it practically nearly impossible to keep mass balances at very low discharge if there is a 

considerable observation error. 

In the revised version, we will add a short paragraph to mention this problem which may also not 

have gained sufficient attention in the literature. 

As for the Law of Total Expectation and Variance, we felt it unnecessary to state the fulfillment 

of any laws of probability in the paper as this is a property of any correctly formulated model. 

J. Vrugt(21): I am wondering whether readability of the paper would improve if the section on error 

models is placed directly after the likelihood section. Indeed, the likelihood contains tau – which is then 

defined (among others) in the error model section. 

AC(21): We agree with this suggestion. 

We will change the order of the sections in the next version of the manuscript. 

J. Vrugt(22): Page 11, Line 16: What has happened to the index time in the formulation of Qdet? It 

appears on the left-hand side but does not appear on the right-hand side. Also, what are Qs and Qf? 

These entities are introduced but they are not discussed nor do they appear elsewhere in the paper?  

AC(22): We agree that the arguments “t” and “” should also appear on the right hand side of 

the equation and that Qs and Qf should be mentioned in the text. They are the fast and the slow 

flow components of the model, respectively, and are given by Eq. (15) and illustrated in Fig. 1.  

The next version of the manuscript will be changed accordingly. 

J. Vrugt(23): At this point I am wondering why the authors are not using the more common terminology 

of P(.) for prior distribution and L(.|.) for likelihood function.  

AC(23): Only when the output of the probabilistic model is replaced by the observed data for 

inference, we obtain the likelihood as a function of the parameters given the observed data. The 

likelihood function is therefore crucial for inference. It is hardly possible to formulate this 

function directly. This is why scientists formulate probabilistic models as probability distributions 

of outcomes given parameters and only afterwards get the likelihood function by substituting 

the observations for the outcomes. For this reason, it does not make sense to use L when 

formulating the probabilistic model. We then preferred to stay with the notation when 

substituting the observations to avoid unnecessary confusion. We recognize that this distinction 

was not entirely consistent throughout the manuscript. 

We will modify the text to more clearly distinguish the terms “probability distribution of 

observations conditional on parameters” and “likelihood function” (of the parameters) after 

substituting the observations. 

J. Vrugt(24): Figure 6 – the values of eta show a strong temporal correlation for error model E2 and E3. 

Would it be possible to plot, in some way, the decorrelated eta values (with serial correlation removed). 



AC(24): What we could plot is the deviation of eta from its expected value (given the previous 

eta) as a function of time, which could be interpreted as decorrelated eta values. 

We will include such a plot in the Appendix in the next version. 

J. Vrugt(25): In general, it may be useful if the authors include a plot of the marginal posterior 

distributions of the model parameters and nuisance variables. As it stands it is difficult to determine 

which parameters are well defined and which variables are not well defined by inference against the 

measured data (for one or more error models). In fact, the authors could compute the KL divergence of 

the prior and posterior distributions for each error model. In any case, it would be good to have insights 

on how well the parameters and nuisance variables are defined. Do their posterior distributions extend 

over the entire prior ranges, or are they limit to a small region inside the prior distribution? Note, Figure 

6 goes a long way but is difficult to interpret as the matrix plot is rather small and the x-ranges are scaled 

according to the posterior uncertainty. 

AC(25): We agree that these would be useful plots. 

We will include some plots of the priors and the posteriors in the appendix, and we will compute 

the KL divergence and include that information in the appendix, too. 

J. Vrugt(26): Figures 3 and 4: I find these results a bit difficult to interpret. The color/symbol coding is not 

necessarily clear – making it difficult to interpret the findings. I am sure the authors can find a way of 

plotting from which the main results are directly visible. Then, again, other readers may like to digest this 

plot.  

AC(26): We agree that the plots are a bit crowded and can be difficult to interpret. 

We will try to make these plots more easily interpretable by changing some of the symbols or by 

summarizing some of the dimensions. 

J. Vrugt(27): Figure 5: Difficult to see the differences between the three panels. Would it be possible to 

enlarge the horizontal length of each of the subplots? Right now, the measured data interacts too much 

with the grey region, particularly when the posterior prediction/simulation uncertainty is small.  

AC(27): We will enlarge the panels of Figure 5 horizontally. Additionally, we will also enlarge the 

panels of Figures 6 and 9. 

J. Vrugt(28): Note, the authors use the wording “prediction” – one could argue though that what is 

presented are simulations as the rainfall for the next is assumed known when simulating streamflow 

values.  

AC(28): We agree that what is input and what is predicted is a matter of systems boundaries. 

Thus, all predictions are conditional on some inputs. As we are dealing with hydrological and not 

(also) with climatological models, we still think that prediction should not lead to 

misunderstandings. 



To clarify our system boundaries, we will modify the text at several places to clearly state that we 

are only dealing with hydrological models that predict discharge based on given rainfall. 

J. Vrugt(29): Page 24, Line 9 – 12: Is this not due in large part because of ignoring the laws of total 

expectation and total variance? Per my previous comment on this topic.  

AC(29): As we are not ignoring the laws of total expectation and of total variance, this cannot be 

the reason (see our reply to comment 20). When looking at the time series of 𝜂 in Fig. 9, using a 

constant autocorrelation time would obviously not be adequate as there are much shorter-term 

fluctuations during rainfall periods than during recessions. It is also clear from a hydrological 

point of view that (irregular) rainfall destroys the very strong autocorrelation structure we see 

during recession periods. The point of non-stationary autocorrelation was also raised by Th. 

Wöhling as referee comment 5 (Hydrol. Earth Syst. Sci. Discuss., 12, C831–C841, 2015) on the 

manuscript by Scharnagl et al. (2015) that was mentioned by the referee. This said, it is also clear 

that non-constant autocorrelation is not the only deficit of our deterministic and probabilistic 

models and further research is needed to further improve an adequate uncertainty description 

of hydrological models. However, the consideration of non-constant autocorrelation was a point 

that, in our view, has not been sufficiently discussed in the hydrological literature so far and we 

hope to contribute to stimulating this topic. 

J. Vrugt(30): I think a weakness of this paper is that the authors do not compare their findings against 

another likelihood function. In the introduction section, the authors discuss strength and limitations of 

previously used/developed likelihood functions – they use this as justification for their own approach. 

Yet, my own practical experience suggests that a simple AR-1 likelihood would already do quite a 

reasonable job. This likelihood is easy to include in the present paper. What is more, the authors should 

consider the generalized likelihood function – it is argued that this likelihood has a limitation because of 

the treatment of serial correlation on non-standardized residuals – this is easy to remedy in practice. 

Then, the argument of analytic tractability I do not really follow (Page 3, Line 22). 

AC(30): The paper does systematically compare multiple likelihood functions. They were all 

implemented with the same framework, to ensure comparability, but they rest on fundamentally 

different assumptions. For example, likelihood E2 is a “simple AR-1 likelihood”. It is clearly shown 

in the paper that its performance is very bad in the considered case studies. We see no necessity 

to test another, similar version of a simple AR1 model. As for the generalized likelihood function, 

we agree that a comparison with the presented framework would be interesting and useful. 

However, since both approaches are frameworks with considerable flexibility, a meaningful 

comparison would require to test a large number of probabilistic models covering a reasonable 

range of different assumptions with both frameworks. This would go clearly beyond the scope of 

this study. Since we do not attempt that comparison, we do not argue that the presented 

framework leads to better results than the generalized likelihood function, but only repeat the 

concerns that have been raised by Evin et al. (2013) about the generalized likelihood. Then, we 

do not completely understand what the referee means by “easy to remedy in practice”. It is not 

obvious for us how the shortcomings documented in Evin et al. (2013) could be overcome since 

this would require a new approach that would have to be theoretically developed and tested 



with a practical application. As we understand it, what comes closest to the generalized 

likelihood function, including corrections of the mentioned shortcomings, is the “Likelihood 2” in 

the submitted manuscript of Scharnagl et al. (2015). There, a heavy-tailed distribution is 

assumed for the innovations of the stochastic process describing the residuals, as in the 

generalized likelihood, but the autocorrelated process is applied to the transformed residuals, as 

suggested by Evin et al. (2013). However, also Scharnagl et al. (2015) obtain heavily biased 

results when assuming constant autocorrelation in a case where it was not appropriate to 

assume so. Specifically, we would suspect that the generalized likelihood function, after 

addressing the concerns of Evin et al. (2013), might also benefit a lot from considering non-

stationary correlation, which might lead to similar results as presented in this study. This would 

certainly be a very interesting potential future study. 

We will expand page 3, line 22 and page 5, line 10 by including more explanations about the 

benefits of specifying the distributional assumptions in the intuitive space of streamflow as 

compared to the abstract space of transformed residuals or innovations of transformed residuals. 

J. Vrugt(31): Would the inference not lead to more realistic results if the authors augment their 

likelihood with an error model for the rainfall data? This would carry another set of nuisance variables / 

hyper parameters (depending in large part on the choice of rainfall prior) but make the inference more 

robust.  

AC(31): We agree that this is another important aspect for quantifying uncertainty of 

hydrological models. We consider such approaches, which try to distinguish between different 

sources of uncertainty explicitly, as another class of approaches that come with their own 

benefits and shortcomings. This study intentionally focused on an approach to describe the total 

uncertainty in a lumped way, which minimizes the number of error model parameters and 

avoids the potential identifiability problems associated with estimating input errors. 

J. Vrugt(32): Just a thought – but is nonstationary the right wording in the present application of the 

likelihood function? If tau does vary between rainfall and dry periods – but these two values of tau 

repeat themselves in the future (e.g. are constant) – then one may argue that overall the residual time 

series is a stationary time series. Tau just differs between rainfall and non-rainfall days. 

AC(32): We acknowledge that we chose a very simplistic non-stationary pattern. We would still 

call it non-stationary because of the high potential we see in relaxing the assumption of 

stationary autocorrelation in general, preferably also with more complex patterns. 

J. Vrugt(33): Overall, I think the author should better recognize the highly related work of Scharnagl 

(2015) published in the same journal (HESS). Indeed, this paper used the Student distribution with the 

Fernandez and Steel template function for skew. 

AC(33): See comment 19. 


