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Abstract. Endorheic and arid regions around the world are suffering from serious drought problems. In this study, a drought 

forecasting system based on eight state-of-the-art climate models from North American Multi-Model Ensemble (NMME) 

and a Distributed Time-Variant Gain Hydrological Model (DTVGM) was established and assessed over the upstream and 10 

midstream of Heihe River basin (UHRB and MHRB), a typical arid endorheic basin. The 3-month Standardized Precipitation 

Index (SPI3) and 1-month Standardized Streamflow Index (SSI1) were used to capture meteorological and hydrological 

drought, and values below -1 indicate drought events. The skill of the forecasting systems was evaluated in terms of 

Anomaly Correlation (AC) and Brier score (BS) or Brier skill score (BSS). The predictability for meteorological drought 

was quantified using AC and BS with a “perfect model” assumption, referring to the upper limit of forecast skill. The 15 

hydrological predictability was to distinguish the role of initial hydrological conditions (ICs) and meteorological forcings, 

which was quantified by root-mean-square error (RMSE) within the ESP (Ensemble Streamflow Prediction) and reverse ESP 

framework. The UHRB and MHRB showed season-dependent meteorological drought predictability and forecast skill, with 

higher values during winter and autumn than that during spring. For hydrological forecasts, the forecast skill in the UHRB 

was higher than that in MHRB. Predicting meteorological droughts more than 2 months in advance became difficult because 20 

of complex climate mechanism. However, the hydrological drought forecasts could show some skills up to 3-6 lead months 

due to memory of ICs during cold and dry seasons. During wet seasons, there are no skillful hydrological predictions since 

lead-2 month because the dominant role of meteorological forcings. During spring, the improvement of hydrological drought 

predictions was the most significant as more streamflow was generated by seasonal snowmelt. Besides meteorological 
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forcings and ICs, human activities have reduced the hydrological variability and increased hydrological drought 25 

predictability during the wet seasons in the MHRB.  

1 Introduction 

Drought is among the most costly natural hazards in many parts of the world. It is defined as a prolonged period of 

below-average rainfall, leading to water shortages in soil and the hydrologic system. Drought can have a substantial effect on 

many sectors, such as agriculture, ecosystem and economy, and its impacts can vary from region to region. Mitigation of 30 

drought impact requires improved understanding of the predictability of drought and the capability to predict drought at 

sufficient lead times (Below et al., 2007; Sheffield and Wood, 2012; Smith and Katz, 2013). Statistical, dynamic and hybrid 

(statistical-dynamic) methods have been used for drought predictions (Mariotti et al., 2013; Hao et al., 2018; Mishra and 

Singh, 2011; Pozzi et al., 2013; Luo and Wood, 2007; Luo et al., 2008). The statistical method is based on the historical 

relationship between some aspects of drought and a number of predictors (e.g., large-scale climate signals). The dynamic 35 

method relies on the skill of state-of-the-art general circulation models (GCMs) or hydrologic models that represent physical 

processes linked with drought development. A hybrid method combines the statistical and dynamic methods, which has been 

shown to improve drought prediction in certain case studies (Pan et al., 2013; Schepen et al., 2016). However, drought 

remains one of the least understood natural hazards that are affected by many contributing factors, including meteorological 

anomalies, land-atmosphere interaction and human activities (Van Loon et al., 2016a, b), which makes accurate drought 40 

prediction a challenge (Hao et al., 2018).  

Recently, climate forecasts from the North American Multi-Model Ensemble (NMME; Kirtman et al., 2014) have been 

widely applied to drought predictions globally and regionally (Ma et al., 2015, 2017; Mo and Lyon, 2015; Thober and Kumar, 

2015; Yuan and Wood, 2013; Yuan, 2016). The NMME-based climate forecasts (e.g., precipitation and temperature) for 

hydrometeorological forecasts exhibit some improvement in skills over the reference forecasts such as climatology forecasts, 45 

persistence forecasts or ensemble streamflow prediction (ESP) (e.g., Ma et al., 2015, 2017; Mo and Lettenmaier, 2014; 

Shukla et al., 2016; Yuan, 2016). However, the improvement varies with different regions and seasons, and the understanding 

of its application in endorheic and semi-arid and arid basins remains poor. Endorheic regions cover ~11.4% of global land, 
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which are mostly located in semi-arid and arid regions (Li et al., 2018). The semi-arid and arid regions occupy 

approximately 40% of earth’s land surface, and show an accelerated expansion trend (Huang et al., 2016b). The fragile 50 

ecosystems in such regions are sensitive to climate change and human activities (Huang et al., 2016a). Therefore, the aim of 

this study is to fill the gaps in understanding drought predictions and predictability in endorheic and arid basins by 

addressing the following questions: 

(1) How do climate forecasts perform for meteorological and hydrological drought forecasting in an endorheic river basin? 

(2) How do meteorological forcings, initial hydrologic conditions and human activities influence hydrological 55 

predictability? 

Here, predictability is considered as the possible maximum forecast skill that a forecast system can achieve (Luo and Wood, 

2006). The Heihe River basin, which is a typical endorheic river basin in the semi-arid and arid region of Northwestern 

China, is selected in this study to address the above questions. The Heihe River basin is an important part of the historic Silk 

Road, and an important breadbasket in Northwestern China (Zhang et al., 2015). However, the basin is subject to serious 60 

drought problems historically and in recent decades related to climate change and intensified human activities (Zhang et al., 

2016). Therefore, it is crucial to develop a drought forecast system to promote the development of adapting strategies for 

sustainable water resource and ecological management in the Heihe River basin.  

The study is organized as follows: in section 2, we provide brief description of the study region and data used in this study; 

in section 3, we introduce the framework of the study and methods used; in section 4, we present the analysis results and 65 

discussion, followed by conclusions in section 5. Because few studies have focused on dynamic drought predictions based 

on GCMs and/or hydrological models in the region, this study will offer new clues for development of more accurate 

drought monitoring and forecasting system.  

2 Study area and data 

2.1 The Heihe River basin 70 

The Heihe River basin (HRB, Fig. 1) is the second largest inland river basin of China, located deep in the hinterland of 
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Eurasia. The river originates from north side of Qilian Mountain with drainage area of 128,900 km2 (37°41′- 42°42′N, 

96°42′- 102°00′E; Ma and Frank, 2006). The HRB has an apparent landscape, ecological and climate gradient from upstream 

to downstream. The landscape varies from glaciers and alpine biomes in the upstream to oases with irrigated agriculture in 

the midstream, to riparian ecosystems and vast Gobi desert in the downstream. Most precipitation is concentrated in the 75 

upstream during wet season (June-September). During spring and summer, as temperature rises, snow and glaciers melting 

and permafrost thawing generally occur. Most of streamflow in the HRB originates from precipitation, snowmelt, glaciers 

melting and permafrost thawing in the upstream mountains (Wang et al., 2008), which contribute approximately 71%, 25% 

and 4% for the total runoff (Li et al., 2018). Most water consumption happens in the midstream for human activities (e.g., 

agricultural irrigation). In this study, we focus on the upstream (UHRB) and midstream (MHRB) of HRB, as these two 80 

subbasins have drastic difference in terms of impacts of human activities on hydrological processes  

2.2 Data 

Daily temperature and precipitation data at 0.5° spatial resolution (Zhao and Zhu, 2015) are obtained for 1961-2016, which 

were interpolated using thin plate spline (TPS) and 3D geospatial information from 2472 meteorological stations by the 

National Meteorological Information Center, China Meteorological Administration (CMA) (Hutchinson, 1998a, 1998b). 85 

Hydrological data (1982-2011) used in this study was monthly streamflow datasets from Yingluoxia (YLX) and Zhengyixia 

(ZYX) hydrologic stations that are located at the outlet of UHRB and MHRB. The data for hydrological model (the 

Distributed Time-Variant Gain Hydrological Model (DTVGM) in this study) setup and calibration was mainly obtained from 

Chinese Academy of Sciences, Gansu Water Resources Bulletin, and Statistical Yearbooks, which is presented in Ma et al. 

(2018) in detail.  90 

Climate hindcasts data with 1° ×1° grids (Table 1) were obtained from the North American Multi-Model Ensemble 

(NMME; Kirtman et al., 2014) archive (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). Monthly precipitation, 

maximum, mean and minimum temperature data covering 1982-2010 were used for this study. The climate models with real 

time forecast were selected for drought forecasting. In this study, lead-1 month refers to forecasts initialized at the beginning 

of one month for itself, lead-2 is that for the next month.  95 

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/


5 

 

3 Methodology  

3.1 Meteorological and hydrological drought index 

To analyze meteorological and hydrological drought, Standardized Precipitation Index (SPI, McKee et al., 1993) and 

Standardized Streamflow Index (SSI, Vicente-Serrano et al., 2012) were used in this study. In the calculation, a probability 

distribution of monthly precipitation or streamflow for each month was generated and standardized using empirical 100 

Gringorten plotting position (Farahmand and AghaKouchak, 2015; Gringorten, 1963):  
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where n is the time span, i is the position of precipitation or streamflow time series sorted from smallest to largest, p(xi) is the 

corresponding empirical probability. Finally, normalization was taken to make the index comparable over time and space. 

For SPI in the upstream and midstream, catchment average precipitation in the upstream and midstream were used 105 

respectively. SSI in the upstream and midstream was calculated using streamflow at YLX (the outlet of the upstream) and 

streamflow difference between ZYX (the outlet of midstream) and YLX. SPI-3 and SSI-1 were selected to characterize the 

seasonal meteorological and hydrological droughts, respectively. We select SSI-1 for its good description of hydrological 

drought (e.g., Barker et al., 2016; Gustard et al., 1992; Huang et al., 2017; Ma et al., 2018). Nine different lead months 

forecasts are combined with observation to construct 3-months accumulated precipitation for computing SPI3. For example, 110 

for SPI3 in August, lead month 1 uses forecast at lead month 1 (August) combined with two months observation (June to 

July). Lead month 2 means the sum of forecasts at lead month 1-2 (July and August) and one month observation in June. 

Lead month 3 refers to forecasts at lead month 1-3 (June to August). In this study, drought is defined when the drought index 

value is below -1.  

3.2 Seasonal drought forecasting system 115 

In this study, meteorological drought forecasting was produced using NMME climate forecasts, and hydrological drought 

forecasting makes use of a hydrological model forced by NMME climate forecasts (Figure 2). To improve the forecast skill 

and drive the hydrological model, the NMME hindcasts were bias-corrected and downscaled using the “quantile mapping” 
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method (Wood et al., 2002). The 1-degree monthly NMME precipitation and temperature hindcasts were interpolated into 

0.5-degree with bilinear interpolation over the Heihe River basin. Then the cumulative distribution functions (CDFs) of 120 

NMME hindcasts and observations were constructed with all years except the target year (leave-one-out), and matched to 

remove model forecast bias. The daily hindcasts were then generated using a temporally downscaled technique by matching 

the monthly hindcasts with the daily samples from observations. In this approach (Luo and Wood, 2008), a randomly 

selected daily observation time series from the entire historical period (1961-2016) is used as a candidate for each member, 

and they are adjusted to match the predicted monthly values from the distributions obtained in the previous step. Finally, the 125 

0.5-degree bias-corrected daily hindcasts were bilinearly interpolated into 140 sub-basins to drive the hydrological model 

over the HRB. The last step is only necessary in this study as our hydrological model as described below runs on sub-basin 

scales instead of regular lat-lon grids.  

In this study, the Distributed Time-Variant Gain Hydrological Model (DTVGM; Mao et al., 2016) was used to simulate and 

predict streamflow. It is a distributed, catchment-based hydrological model with modules to simulate snow, runoff, 130 

streamflow routing, water-use and reservoir operation. Day Degree Factor (DDF) method is used to compute snowmelt. The 

runoff module is based on the water balance equation, and the routing is based on kinematic scheme (Ye et al., 2010, 2013). 

Three runoff components for each sub-basin, i.e., surface runoff, sub-surface runoff and base flow are computed based on 

precipitation, soil hydraulic parameters, and land cover parameters and sets of calibrated parameters (Ma et al., 2018; Ye et 

al., 2010). The human activities module, i.e., water-use and reservoir models, can be switched on or off to simulate real 135 

streamflow and naturalized streamflow. Here, water use includes irrigation water, industrial water and domestic water, which 

are derived from irrigation areas and irrigation quota, industrial GDP, and population distribution, respectively. The reservoir 

regulation rules are defined according to reservoir storage capacity and ecological flow during wet (June-September) and dry 

seasons. The DTVGM model has been calibrated with human activities model turned on using observed streamflow at YLX, 

Gaoya and ZYX stations. The DTVGM could capture the variations of streamflow well with Nash-Sutcliffe efficiency 140 

coefficient (NSE) values greater than 0.86 and 0.52 for the UHRB and MHRB during both calibration and validation periods, 

respectively. In the MHRB, except for input and structural errors, unrefined human activities module also increases the 

uncertainties of the hydrology model, leading to the NSE value lower than that in the UHRB. The detail description of 
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DTVGM model and its calibration process can be found in Mao et al. (2016) and Ma et al. (2018). Before making forecasts, 

the DTVGM was continuously run for the period of 1961-1981 to spin-up the hydrological model, and continuously driven 145 

by observed meteorological forcings from 1982 to 2010 to generate the offline initial hydrological conditions (ICs) for 

NMME-based and ESP-type forecast experiments. In this study, ESP (Ensemble Streamflow Prediction) forecasts (see 

section 3.4), which were based on ensemble of historical meteorological forcings, were used as a reference hydrological 

forecast.  

3.3 Forecast Verification 150 

The meteorological and hydrological drought forecast skills at 9 different lead months were evaluated using both 

deterministic and probabilistic metrics. The deterministic metric that we use is the anomaly correlation (AC; Wilks, 2011), 

which is calculated as:  
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where F’i is the anomaly for NMME hindcasts, and O’i is the anomaly for observations; for a given lead and target 155 

month/season and member, i is the target month/season, n is the time span (29 years in this study).  

The probabilistic metric that we use is the Brier score (BS; Wilks, 2011), which is the mean squared error of probability 

forecasts, considering that the observation is ok=1 if drought occurs, otherwise ok=0. The BS can be defined as: 
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where k means a numbering of the n forecast-event pairs, yk is the forecast probability. The BS is negatively oriented (0≤BS160 

≤1), with perfect forecast exhibiting BS=0. The Brier skill score (BSS; Wilks, 2011) is then calculated as: 

*BS

BS
1-BSS =                     (4) 

where BS* is the BS for the reference system. Positive BSS value indicates a better forecast, while negative value indicates a 

worse forecast than the reference system.  
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3.4 Experiment design for understanding the hydrological predictability 165 

With the calibrated DTVGM hydrological model, two experiments were carried out to distinguish the importance of initial 

hydrological conditions (ICs) and meteorological forcings in the hydrological forecasting. The first experiment is the 

Ensemble Streamflow Prediction (ESP), which was initialized at the beginning of each month during 1982-2010, with 28 

ensemble members of 9-month meteorological forcings taken from the same period without the target year. For example, the 

ESP simulation starting in January 1982 was initialized at the first day on January, and driven by 28 9-month meteorological 170 

forcings during January-September of 1983, 1984, …, 2010. The second experiment is the so-called reverse-ESP (revESP; 

Shukla and Lettenmaier, 2011; Shukla et al., 2013; Wood and Lettenmaier, 2008), which was driven by the observed 

meteorological forcings of the target year, but with 28 different ICs except the target year. For example, the revESP 

simulation starting in January 1982 was driven by the meteorological forcings during January-September of 1982, but 

initialized with hydrological conditions on January of 1982, 1984, …, 2010. 175 

To determine whether the meteorological forcings or ICs are more important in the hydrologic cycle, the RMSE ratio was 

calculated, which is defined as: 

revESP
RMSE

ESPRMSE
ratio RMSE =                   (5) 

where RMSEESP and RMSErevESP are the root mean square error (RMSE) for ESP and revESP. Here, the RMSE was calculated 

using the ensemble means of ESP and revESP. The RMSE ratio is lower than 1 when ICs play a more important role than the 180 

meteorological forcings in the hydrologic predictability, and the ratio is larger than 1 when the meteorological forcings 

dominate.  

4 Results and discussion  

4.1 The predictability and forecast skill for meteorological droughts 

To evaluate the performance of seasonal drought prediction system, we first examined the predictability and forecast skill of 185 

NMME meteorological predictions based on SPI3 series in terms of AC metric (Fig. 3). The red box refers to the AC for 

predictability, and the blue box is the AC for forecast skill. Here, predictability is defined by using a “perfect model” 
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assumption (Luo and Wood, 2006; Wang and Yuan, 2018), which considers one member of the ensemble as the 

“observation”, and the average of remaining members as prediction. The analysis is rotated through using all 88 ensemble 

members as the “observations”, and 88 values of AC are then calculated as the ensemble of predictability. For each season (3 190 

months), there are 29-year hindcasts leading to a sample size of 87, so a correlation of 0.21 is statistically significant using a 

95% significance interval.  

Meteorological predictability is higher than the forecast skill in terms of AC in most case (Fig. 3), indicating some room for 

improving the meteorological predictions. The meteorological predictability and forecast skill depend on the target season 

because of a strong seasonality for climate in the HRB. The predictability is higher in autumn and winter than that in summer 195 

and spring, which corresponds to higher forecast skill in autumn and winter. Most climate anomalies (i.e., SST anomaly) 

occur in winter and autumn, and SST is also a potentially important predictor (Becker et al., 2014). In addition, the climatic 

noise of monthly precipitation over China has obvious seasonal variation and it is greater in summer than in winter (Liu et al., 

2000). The multi-model ensemble mean skill, shown by the blue diamonds is generally located at the upper part of the 

distribution, indicating that the forecast skill of grand ensemble mean is higher than that of most members. It is not 200 

surprising that the SPI3 predictions perform well at the first two lead months, where one or two of the three months come 

from observations. However, as lead month increases beyond 2 months, both the predictability and forecast skill decrease 

significantly, where correlations of most of members are lower than 0.21.  

In fact, NMME climate predictions have lower predictability and forecast skill in the northwest inland areas of China, in 

comparison with Southeast monsoon regions (Ma et al., 2016). The HRB is located far from oceans and in the mid-latitude, 205 

and is little affected by sea surface temperature (SST) from oceans, especially equatorial oceans, which are the major source 

of predictability at seasonal time scale. Topographic influence on regional and local weather and climate cannot be resolved 

by GCMs, for example local ascending motion affected by Qinghai-Tibet plateau exists and has considerable impact on 

precipitation over the HRB (Sun et al., 2011). In addition, the joint extreme phases of climate oscillations instead of a single 

one could trigger extremes (e.g., drought) over the arid endorheic basin, and almost no climate models can capture the 210 

complex and multiple teleconnections (Shi et al., 2016).  

When defining a meteorological drought as SPI3 below -1, the results of predictability and forecast skill for meteorological 
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drought predictions are similar to that for SPI3 predictions. Figure 4 shows the BS for meteorological drought events in the 

upstream and midstream of Heihe River basin. AC of SPI3 reflects the forecast skill for both the dry spells and wet spells. 

The BS for the different months shows the forecast skill, which primarily aims at predicting drought events. It can be seen 215 

that the NMME-based meteorological droughts show higher predictability and forecast skill at the first two lead months, 

especially during October-January. The results indicate that the NMME-based SPI3 predictions could reasonably capture 

meteorological drought conditions at the first two lead months. 

4.2 The predictability and forecast skill for hydrological droughts 

Hydrological processes and predictions are more complex, especially in the MHRB. Figure 5 shows the performance of 220 

NMME for SSI1 predictions compared to ESP, which is assessed using the AC metric. The predictions from NMME and 

ESP experiments are verified against DTVGM offline simulations, driven by observed meteorological forcings and 

calibrated against observed streamflow at Yinglouxia, Gaoya and Zhengyixia stations. Ensemble hydrological predictions 

from NMME show less spread than ensemble meteorological predictions, especially in the cold seasons. Due to the memory 

of initial hydrologic conditions, hydrological predictions show less uncertainty than the corresponding meteorological 225 

forcings. There are notable differences in hydrological predictions between the upstream and midstream, with higher overall 

forecast skill in the upstream. Winter season shows the highest forecast skill, followed by autumn, spring and summer. 

During spring, NMME hydrological predictions show the most significant improvement over ESP, in spite of low forecast 

skill for precipitation predictions. During March-June, approximately 70% of streamflow is generated by seasonal snowmelt 

(Wang and Li, 1999). Therefore, hydrological predictions skill may also rely more on temperature predictions, which are 230 

generally more skillful than precipitation predictions (Becker et al., 2014; Shukla et al., 2016), and the accuracy of the initial 

hydrological condition in terms of snow amount. In summer, NMME hydrological predictions show some improvement 

compared to ESP in the upstream, especially at the first lead month. However, in the midstream, low forecast skills were 

detected at all lead months, which are likely due to poor precipitation predictions and effects from human activities. 

Predicting seasonal streamflow during summer in advance is difficult and both NMME and ESP exhibit weak skills. In 235 

autumn, lead time with good forecast skill could be up to 3 months in the upstream and 2 months in the midstream, which 
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are similar to meteorological predictions. In addition, NMME hydrological predictions also show improvement over ESP at 

the first 3-4 lead months. In winter, until lead-6 month, both ESP and NMME show skillful hydrology predictions due to 

more important role of initial conditions, which will be discussed in the later part of this section.  

To further evaluate the performance of NMME-based hydrological predictions compared with ESP for droughts (i.e., 240 

SSI1<-1), the BSS metric is used and shown in Fig. 6. The skill for hydrological drought predictions from NMME is higher 

than that from ESP during late spring. The improvement is even more clear for longer lead times (6-7 lead months), which 

may be linked with the higher skill in temperature forecast. In general, NMME outperforms ESP for the 1-4 lead months 

(with some exceptions), but the improvement is not obvious due to long memory of initial conditions during cold season and 

poor meteorological predictions during summer.  245 

As mentioned above, the forecast skill for NMME shows notable difference between meteorological and hydrological 

droughts during different seasons. That is because besides meteorological forcings, initial conditions also play an important 

role on hydrological predictions. Figure 7 shows the relative role of initial hydrological conditions (ICs) on hydrological 

predictability for different months and lead times over the upstream and midstream of Heihe River basin. During cold and 

dry seasons (October-March), the RMSE ratio is lower than 1 at the first 2-7 months, indicating that the hydrological initial 250 

conditions play a more important role on hydrological predictability up to 2-7 lead months. The maximum lead times where 

the ICs prevail over the meteorological forcings in the hydrological predictability could even up to 5-7 months during 

October-December. In general, as the lead time increases, the contribution of initial conditions decreases while that of the 

meteorological forcings gradually increases over the ICs. For the forecasts in April-August, the influence of ICs could not 

persist for 1 month, and the meteorological forcings significantly contribute to the hydrological predictability. This means 255 

that the ICs make more contribution on hydrological predictability during cold and dry season than that during warm and wet 

season. This helps to explain why hydrological predictions are more skillful in dry season than that in wet season.  

From the hydrological perspective, the MHRB is a human-dominant basin (Ma et al., 2018). To explore the influence of 

human activities on hydrological predictability, an additional experiment is conducted by turning off the human activities 

module in the hydrological model. The RMSE ratios of ESP and RevESP without human activities are then calculated, and 260 

the results are shown in Fig. 8. The impact of human activities is less noticable in the upstream because less human activities 
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are there. As for the midstream, without the impact of human activities, the RMSE ratio is less than 1 in the first lead month 

initialized in May and July-September (Fig. 8b). This indicates that the initial hydrological conditions have less variability in 

the wet seasons due to more human activities (e.g., irrigation and reservoir regulation), and human activities reduce the effect 

of ICs on hydrological predictability for 1 month. Therefore, the memory from ICs could only last for less than 1 month and 265 

would not contribute much to the hydrological predicting when human activities are the interference, which makes 

hydrological predictability rely more on meteorological prediction. In addition, the RMSE ratios in the midstream have a 

smaller spread for all forecast lead times when human activities are considered (Figs. 7b, 8b). This indicates that human 

activities reduce hydrologic variability between years, and could potentially increase the hydrological predictability. 

Considering droughts (i.e., dry conditions), human activities could also increase hydrological drought predictability mainly 270 

by reasonable reservoir regulation. When droughts happen, discharge from reservoir plans to increase to guarantee water 

supply for irrigation and ecological flow, which will decrease the hydrological variability during dry periods. Therefore, 

human activities can outweigh meteorological variability and play a more important role on hydrological predictability. The 

results are similar to Yuan et al. (2017), which found human interventions can outweigh the climate variability for the 

hydrological drought forecasting over the Yellow River basin.  275 

How do human activities influence hydrological drought forecast skill? Figures 9-10 show NMME-based hydrological 

drought forecast skill against ESP in terms of AC and BSS, when the human activities module is switched off. The forecast 

skill for NMME-based and ESP-based hydrological forecasts without influence of human activities (Fig. 9) are higher than 

that with human intervention (Fig. 5), especially in the midstream. The influence of human activities mainly occurs in the 

spring and early summer. Comparing Fig. 6 and Fig. 10 shows that NMME-based drought predictions have more skill 280 

improvement over the ESP-based predictions when human activities are involved. The improvement can be attained at lead 

times of 1-4 months in the winter, and longer lead times during April-September in the midstream. That means human 

activities have reduced the influence of ICs on hydrological drought predictions.  

5 Conclusions  

Understanding the performance of climate predictions at regional or global scales provides an important basis for the utility 285 
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and improvement of these products. In recent decades, drought prediction based on climate predictions at seasonal scales has 

improved significantly due to a range of global climate models (Hao et al., 2018). However, hydroclimatic drought 

prediction and predictability over an endorheic and arid basin that is affected by complex climate mechanism remains a 

grand challenge. A breakthrough in predicting hydroclimatic drought over endorheic basins can bring major improvements in 

the development of reliable drought monitoring and prediction systems at regional and global scales. In this study, the 290 

seasonal meteorological and hydrological drought predictability and forecast skill in the Heihe River basin (HRB), a typical 

endorheic and arid basin with distinctive characteristics from upstream to midstream, were presented in detail. Here, 

meteorological predictability refers to the upper limit of forecast skill using a “perfect model” assumption, while 

hydrological predictability is to quantify the role of initial hydrological conditions (ICs) and meteorological forcings. The 

meteorological drought forecasting system was based on bias-corrected and downscaled 88-member North American 295 

Multimodel Ensemble (NMME) climate hindcasts during 1982-2010, and the hydrological drought forecasting system was 

established using the Distributed Time-Variant Gain Hydrological Model (DTVGM) driven by the post-processed 

predictions. The NMME-based hydrological predictions were compared with the ESP-type predictions, verified by offline 

simulations to ignoring hydrological model structural errors. The DTVGM with human activities modules (i.e., reservoir 

module and water use module) has been well calibrated over 140 subbasins in the HRB based on observed streamflow at 3 300 

mainstream gauges and meteorological forcings for the period of 1981-2000. The Nash-Sutcliffe efficiency (NSE) at 

monthly scale were greater than 0.86 in the upstream during the calibration and validation periods. Given extensive 

irrigations and water diversions in the midstream, the NSE was greater than 0.52 indicating reasonable human activities 

module in the DTVGM hydrological model.  

For meteorological drought predictions, the upstream and midstream show higher meteorological drought predictability than 305 

forecast skill in terms of Anomaly Correlation (AC) and Brier score (BS). The forecast skill of grand NMME ensemble mean 

is higher than that of most individual member. The NMME climate predictions show statistically significant predictability 

and forecast skills for meteorological drought in the first 2 lead months, with higher values in autumn and winter. For the 

hydrological drought predictions, the upstream shows higher skill than the midstream in terms of AC and Brier Skill score 

(BSS), due to more complex hydrological process and human activities in the midstream. The highest forecast skill occurs 310 
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during winter and autumn, while the lowest skill exists during summer. During spring, the NMME-based hydrological 

predictions outperform ESP-type predictions up to 7 lead months, in spite of poor precipitation predictions. This may be due 

to more seasonal snowmelt contributed to the streamflow in spring, which rely on the temperature predictions. The 

NMME-based hydrological predictions show some improvement against ESP up to 2-3 months lead during autumn. The 

highest forecast skill in winter could continue up to 6 months probably due to long memory of hydrological conditions.  315 

Besides the ESP experiment, the reverse ESP was also conducted to investigate the relative role of initial conditions (ICs) on 

hydrological forecasting. The role of ICs could be more significant during the cold and dry seasons, for example, ICs prevail 

over the meteorological forcings up to 5-7 months during October-December, and 2-3 months during January-March. 

However, the meteorological forcings outweigh the ICs at all lead months during warm and wet seasons (April-September). 

That reasonably explains the season-dependent hydrological forecast skill and inconsistency between meteorology and 320 

hydrology. In addition, a comparative experiment was conducted to explore the effect of human activities on hydrological 

predictability, via removing human activities module from the DTVGM. Results show that human activities actually reduced 

the hydrological variability and increased the hydrological predictability during wet seasons (May and July-September) in 

the midstream. Therefore, the improvement of simulation of human activities could increase the hydrological drought 

forecast skill over a human-dominant basin. 325 

Although NMME-based forecasting system shows certain skill for meteorological and hydrological drought predictions, 

more efforts are needed to tackle issues in the following areas: (1) understanding the physical mechanisms that caused 

climate anomalies to improve climate models and the meteorological forecasting skill, as meteorological forcings play a 

dominant role on hydrological predictability during wet seasons; (2) The NSE value for the MHRB is greater than 0.52, 

which is still unsatisfactory. Unrefined human activities module in the hydrology model can lead to some uncertainties in the 330 

simulated streamflow and hydrological drought and thus the performance evaluation. For example, inaccurate calculations of 

irrigation water requirements and groundwater can increase errors in river flow and uncertainties in the influence of human 

activities on hydrological droughts. Therefore, refining the human activities processes in the hydrological forecasting system 

could facilitate the understanding of the hydrological predictions over the regions with vast human activities; (3) improving 

data assimilation and observation for initial hydrological conditions (e.g., snow and soil moisture), which could promote the 335 
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development of high-precision hydrological predictions. This needs more collaborations between scientists from different 

disciplines, including climate science, hydrology, agriculture, ecology and social economy.  
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Table 1. Information of NMME models. 

NMME models 

Spatial 

resolution 

Hindcast Member 

Max Lead 

months 

CMC1-CanCM3 Global, 1×1 1981-2010 10 12 

CMC2-CanCM4 Global, 1×1 1981-2010 10 12 

COLA-RSMAS-CCSM3 Global, 1×1 1982-2010 6 12 

COLA-RSMAS-CCSM4 Global, 1×1 1982-2010 9 12 

GFDL-CM2p1-aer04 Global, 1×1 1982-2010 10 12 

GFDL-CM2p5-FLOR-A06 Global, 1×1 1980-2010 12 12 

NASA-GMAO-062012 Global, 1×1 1981-2010 7 9 

NCEP-CFSv2 Global, 1×1 1982-2010 24 10 
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Figure 1. Geographical location of the study area (upstream and midstream of Heihe River basin) used in this study. The top 

panel shows the location of the entire Heihe River basin. The bottom panel shows the geographic distribution of 485 

hydrometeorological stations in the UHRB and MHRB.  
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Figure 2. Flow chart explaining seasonal meteorological and hydrological drought forecasting system. The numbers (1)-(5) 

refer to the steps for the development and assessment of a seasonal drought prediction system. 
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 490 

Figure 3. Anomaly correlation (AC) of forecast of seasonal SPI3. The red boxplots show the spread of predictability, and the 

blue boxplots show the spread of forecast skill for each ensemble member. The blue diamonds show the AC of the grand 

ensemble mean. The blue (red) crosses show the outliers for forecast skill (predictability). The dashed black line indicates the 

threshold (AC=0.21) of 95% confidence intervals calculated from t-test.  
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 495 

Figure 4. Brier score (BS) of NMME forecast for meteorological drought events. (a-b) Meteorological drought predictability 

in the upstream (a) and upstream (b); (c-d) Meteorological drought forecast skill in the upstream (c) and midstream (d). Here, 

a meteorological drought event happens when the SPI3 value is below -1. The BS is negatively oriented (0≤BS≤1), with 

perfect forecast exhibiting BS=0. The color from deep blue to deep red (0-0.4) means increasing BS values, i.e., decreasing 

predictability or forecast skill.  500 
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Figure 5. Anomaly correlation (AC) of forecast of seasonal SSI1. The red boxplots show the spread of AC of each member 

from NMME, and the blue boxplots show that from ESP. The blue (red) crosses show the outliers for NMME (ESP) forecast 

skill. The dashed black line indicates the threshold (AC=0.21) of 95% confidence intervals calculated from t-test. The 

predictions and simulations are carried out with human activities module switched on.  505 
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Figure 6. Brier Skill score (BSS) of NMME forecast for hydrological drought events. Here, a hydrological drought event 

happens when the SSI1 value is below -1. The reference forecasts are simulations from ESP experiment. The predictions and 

simulations are carried out with human activities module switched on.  



29 

 

 510 

Figure 7. The RMSE ratio (RMSEESP/RMSErevESP) as a function of start month and lead time over the upstream and 

midstream. The RMSEESP (RMSErevESP) is calculated between the SSI1 series from the offline simulation and that from the 

ESP (revESP) experiments with human activities module switched on.  
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Figure 8. The RMSE ratio (RMSEESP/RMSErevESP) as a function of start month and lead time over the upstream and 515 

midstream. The RMSEESP (RMSErevESP) is calculated between the SSI1 series from the offline simulation and that from the 

ESP (revESP) experiments with human activities module switched off.  
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Figure 9. Anomaly correlation (AC) of forecast of seasonal SSI1. The red boxplots show the spread of AC of each member 

from NMME, and the blue boxplots show that from ESP. The blue (red) crosses show the outliers for NMME (ESP) forecast 520 

skill. The dashed black line indicates the threshold (AC=0.21) of 95% confidence intervals calculated from t-test. The 

predictions and simulations are carried out with human activities module switched off.  
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Figure 10. Brier Skill score (BSS) of NMME forecast for hydrological drought events. Here, a hydrological drought event 

happens when the SSI1 value is below -1. The reference forecasts are simulations from ESP experiment. The predictions and 525 

simulations are carried out with human activities module switched off.  


