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Abstract. The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently
affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for wa-
ter managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or
statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and com-
pares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical
approach.

Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accu-
racy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas
the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding
the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher
sensitivity of model prediction performance to rainfall forecast quality.

Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of
reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space
and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can
be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model
correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-

based hydrological models.
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1 Introduction

Drought is a type of natural hazard characterised by meteorological, hydrological, and water management conditions, affecting
many regions around the globe. Generally, it arises due to a shortage of water availability. A general valid or comprehensive
definition, however, is hardly achievable due to many different possible causes, complex relationships and feedbacks among
its determining factors and, consequently, different impacts on nature, society, and economy. As such, different categories can
be distinguished ranging from meteorological (lack of rainfall) and hydrological (shortage of consumable water resources) to
agricultural (water deficit for crops or husbandry) and socio-economic droughts (not enough of income to pay water price).
For the characterisation of droughts, different statistics can be computed describing duration, frequency, and severity based on
various predictors and thresholds (Mishra and Singh, 2010).

The semiarid northeast of Brazil (NEB) is one of the world’s most densely populated dryland regions (Marengo et al.,
2017). Its climate is characterised by a short rainy season with high interannual variability. As a consequence, already since
the colonisation in the 16th century, regularly occurring severe droughts causing famine and mass exodus have been reported.
Drought occurrence is primarily driven by Sea Surface Temperature (SST) anomalies in the eastern Pacific, i.e. the El Nifio
Southern Oscillation (ENSO), and the northern tropical Atlantic region (i.e. the Tropical Atlantic SST Dipole) influencing the
location of the Inner Tropical Convergence Zone (ITCZ), which is the main source of rain during the rainy season in the NEB
area (Hastenrath, 2012). Profound governmental actions for drought mitigation since the late 19th century resulted, among
others, in the construction of thousands of small reservoirs and several large dams for water storage and provision within the
dry season and during dry spells. Still, severe drought events might endanger water supply, such as happening in the current
series of drought years since 2012. Even the regular years (in terms of rainfall amount) of 2017 and 2018 were not able to
eliminate or significantly alleviate water scarcity, still resulting in filling states of the largest reservoirs of less than 10 % (for
the current state of water provision and statistics of the state of Ceard see http://www.hidro.ce.gov.br and the drought monitor
http://msne.funceme.br). In addition, climate change is likely to aggravate water scarcity, calling for efficient strategies in the
management of water storages (de Araujo et al., 2004; Krol et al., 2006; Braga et al., 2013).

Reliable seasonal forecasting, i.e. forecasts of streamflow and reservoir storages for the upcoming rainy season, can be of
significant value for water managers (Sankarasubramanian et al., 2009). Accurate precipitation forecasts over several months
are still a challenge for dynamical climate models. However, many dryland regions are located in areas with distinct dry and
rainy seasons, the latter often connected to large-scale atmospheric circulation patterns. Therefore, statistical models relating
meteorological or SST indices with streamflow or a combination of statistical and process-based models are applied in many
dryland regions in the world to provide seasonal forecasts (e.g. Schepen and Wang, 2015; Seibert et al., 2017; Sittichok et al.,
2018).

For the northern NEB region, the high correlation of rainfall and droughts with SST anomalies in the eastern Pacific and
tropical Atlantic, together with correlation of pre-season rainfall offers a favourable setting for seasonal prediction (Souza Filho
and Lall, 2003; Sun et al., 2006; Hastenrath, 2012). Several studies exist for the area, typically employing one or several

(realisations of) General Circulation Models (GCMs) driven by SST predictions, downscaled to a finer scale by statistical
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or dynamical downscaling approaches, whose meteorological (especially rainfall) outputs are eventually used as forcing in
a hydrological model producing streamflow and/or reservoir level forecasts. For instance, Galvao et al. (2005), Block et al.
(2009), and Alves et al. (2012) employed different hydrological models of varying complexity to generate streamflow and/or
reservoir level predictions. While model performance over daily timescales was generally reported to be low, over longer
aggregation periods, such as at a monthly or seasonal scale, acceptable results could be achieved.

In a recent study, Delgado et al. (2018b) investigated the use of a statistical relationship to provide seasonal reservoir level
predictions. They used the two GCMs ECHAM4.6 and ECMWEF, the meteorological output of each downscaled by three
different statistical approaches, generating ensembles of wet-season (i.e. January to June) hindcasts for each year in the period
1981 to 2014. Based on these meteorological hindcasts, they calculated a number of meteorological drought indices which
are compared with observations to evaluate the skill of the predictions. Using reservoir storage as a target variable, they
further computed hydrological drought indices and fitted a multivariate linear regression to predict these indices using the
meteorological indices as predictors. Even though there was variation among the GCM and downscaling combinations, the
occurrence of meteorological drought could mostly be predicted with skill. Furthermore, their relatively simple statistical
model was able to predict also hydrological droughts with skill. However, the absolute hindcast error was often not appreciably
better than climatology, i.e. the observed long term average of a variable.

While being straightforward to apply and computationally advantageous, such statistical relationships, in contrast to process-
based hydrological models, do not represent underlying processes and are less flexible in terms of the output variable and their
spatial and temporal resolution. However, what remains is the question how to balance accuracy, operability, and usability
from the perspective of water managers and stakeholders. As such, this study complements the work of Delgado et al. (2018b),
employing a process-based hydrological instead of a statistical model. Thus, the aim is to present and evaluate a forecasting
system, predicting seasonal reservoir levels and the occurrence of hydrological droughts for the Jaguaribe river basin, located
within the NEB region. Three different objectives are put to focus: First, the process-based hydrological model and the sta-
tistical model of Delgado et al. (2018b) shall be evaluated and compared in terms of reservoir level simulation performance.
Second, the process-based hydrological model as an operational forecasting tool is to be verified in a hindcast experiment.
Third, major sources of prediction and simulation errors in the modelling system are to be investigated. Thereby, the question
whether the costly initialisation and use of a complex hydrological model is worthwhile in comparison to a much simpler
statistical relationship is to be answered and guidelines for further research and the improvement of the forecasting system
shall be given.

This study touches issues of Atmospherical Sciences, Hydrology and Water Resources Management. As terminology par-

tially differs, a clarification on certain terms used throughout the paper can be consulted in appendix, Sect. A.

2 Study site

The study area comprises the Jaguaribe river basin in the state of Ceard, northeast Brazil (see Fig. 1). The catchment is of

crucial importance in terms of water supply for the whole state and has been intensively investigated in numerous studies (e.g.
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Bronstert et al., 2000; Gaiser et al., 2003; de Aratjo et al., 2004; Krol et al., 2006; Mamede et al., 2012; van Oel et al., 2012;
de Figueiredo et al., 2016). It covers an area of about 70,000 km? with a rural population of 2.7 million. Additionally, it is the
source of water for the metropolitan area of Fortaleza with further 2.6 million people (IPECE, 2016). Annual precipitation sums
up to, on average, 755 mm per year whereas 90 % of rainfall occurs within the rainy season between January and June. Potential
evapotranspiration is high with more than 2000 mm per year. The mean annual temperature is about 25 °C with little variation.
Rainfall, however, is mostly convective with only a few events of high intensity per year and a strong inter-annual variation
caused by SST anomalies resulting in a northward shift of the ITCZ inducing recurrent droughts that can last over several years
(see also Sect. 1; Hastenrath, 2012; Marengo et al., 2017). As the geology is characterised by a primarily crystalline basement
with low-density fractures, water supply needs to be secured by surface water resources. Accordingly, thousands of small
and several large reservoirs were constructed. The small reservoirs are typically bordered by uncontrolled earth dams, mainly
serving for water provision of rural population and livestock. Conversely, large so-called strategic reservoirs contain a barrage
with intake devices for active regulation, are sometimes also used for hydropower production, and serve as water ressources
for larger towns and cities and industrial farming. These settings cause meteorological droughts (lack of precipitation) and
hydrological droughts (lack of surface water) to be often out of phase (de Aratijo and Bronstert, 2016; van Oel et al., 2018).
For the present study, the Jaguaribe catchment was subdivided into five sub-regions, named after the main tributary river or

the major reservoir at its outlet: Banabuid, Or6s, Salgado, Castanhdo, and Lower Jaguaribe (see Fig. 1 for their location).

3 Data and Methods
3.1 General workflow

The aim of this study is to elucidate the application potential of a process-based hydrological model for water ressources and
drought prediction. Consequently, hindcasts of reservoir volumes and hydrological drought indices shall be produced, driving
the model by meteorological hindcasts. The general workflow is illustrated in Fig. 2.

A process-based hydrological model was first calibrated to observations and an initial model run conducted for the period of
1980 until 30 June 2014. This initialisation run was driven by observed meteorology and at each 1 January the storage volume
of each strategic reservoir was replaced by the observed value. Furthermore, if available, measured reservoir releases through a
dam’s intake devices were fed into the model in order to make use of as much information as available to produce simulations
as realistic as possible. The first year of the run was used as a warm-up to bring the model states into equilibrium. At each
end of year, the model’s state variables, including soil moisture, groundwater, river, and small (i.e. non—strategic) reservoir
storages, were stored. This entire procedure is intended to mimic the conditions in a real forecast situation.

In a specific hindcast run, the model was then re-initialised with the saved model states and driven by hindcast meteorology.
These runs were conducted successively for the wet seasons (1 January to 30 June) of 1981 to 2014. The resulting strategic
reservoir volumes were used to infer drought indices which were evaluated employing verification metrics. To distinguish
uncertainties from the meteorological hindcasts and in order to investigate mere model performance, the model runs were

performed in two ways: driven by observations (simulation mode) and meteorological hindcasts (hindcast mode).
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Figure 1. Overview over the Jaguaribe watershed (c) and location within Brazil (b) and South America (a). The five regions of interest (red
numbers) are: 1) Lower Jaguaribe, 2) Banabuid, 3) Castanhio, 4) Orés, and 5) Salgado. Thin black lines in ¢) outline subbasins, computational
units within the model. Black dots are rainfall stations considered within the study. Background grid lines refer to the gridded meteorological
dataset of Xavier et al. (2016).

The runs were conducted for both the process-based model initialised and calibrated within this study and a statistical model,
which is a regression approach derived by Delgado et al. (2018b) for the same study area. Consequently, verification metrics
were calculated and analysed for both model approaches and both forcing modes.

In order to identify the strengths and weaknesses of the process-based model, the results of the simulation runs were further
analysed. In this context, the model output (reservoir storage) was stratified. The details of the individual processing steps are

described in the following.
3.2 Data

To parametrise the hydrological model, various spatial data were obtained including a 90 m x 90 m SRTM digital eleva-
tion model (DEM), a soil map provided by the research institute for meteorology and water resources of the state of Ceard
(FUNCEME) along with soil parameters from a local database (Jacomine et al., 1973) from which the necessary model param-

eters were calculated employing pedo-transfer functions, a landcover map from the Brazilian Ministry for the environment with
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Figure 2. Workflow for the generation and evaluation of hindcasts of hydrological drought indices.

parametrisations assembled by Giintner (2002), and a map of small and strategic reservoirs provided by FUNCEME. Reservoir
parameters were made available by the Company for Water Resources Management of Ceard (COGERH) and FUNCEME and
include the year of dam construction, storage capacity, and water level-lake area—storage volume relationships along with daily
resolution time series of water levels and artificial water release. A time series of daily precipitation for 380 stations within
and in close vicinity around the study area were provided by FUNCEME. Other daily meteorological time series needed by
the model (relative humidity, air temperature, and incoming shortwave radiation) were derived from the gridded dataset (0.25°
x 0.25° resolution) of Xavier et al. (2016).

3.3 Meteorological hindcasts

Daily meteorological hindcast data for the period 1981 to 2014 used as input into the hydrological model stem from an ensemble

(20 members) of ECHAMA4.6 GCM runs (Roeckner et al., 1996) which were bias corrected by Empirical Quantile Mapping
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(EQM) (Boé et al., 2007; Gudmundsson et al., 2012). Although Delgado et al. (2018b) identified some deficiencies regarding
this product, there was no clear better performing alternative. In addition, ECHAMA4.6 is already employed operationally by the
local water authority FUNCEME (Sun et al., 2006), and, in contrast to other seasonal forecast systems like those by ECMWF,
it comes without further costs for operational use, making it the candidate for future operational application. The 20 member
ensemble runs of ECHAM4.6 were conducted and results provided by FUNCEME. More information are given in Delgado
et al. (2018b).

3.4 The process-based model
3.4.1 Introduction to WASA-SED

The hydrological model WASA-SED, version rev_257, was employed for the process-based hindcasts of reservoir volumes.
WASA-SED is a deterministic, process-based, semi-distributed, time-continuous hydrological model. The representation of
hydrological processes focuses on dryland environments. A complex but efficient hierarchical spatial disaggregation scheme
allows for application over large scales up to an order of magnitude of 100,000 km? (Giintner and Bronstert, 2004; Mueller
et al., 2010). Reservoirs can be simulated by treating large strategic reservoirs in an explicit manner while representing smaller
ones as lumped water bodies of different size classes to efficiently account for water retention of many small reservoirs in a
study region (Giintner et al., 2004). The model was developed for and successfully applied in the semiarid areas of northeastern
Brazil (Medeiros et al., 2010; Krol et al., 2011; de Aratijo and Medeiros, 2013; Medeiros et al., 2014) and used for other dryland
regions, such as in India (Jackisch et al., 2014) and Spain (Mueller et al., 2009, 2010; Bronstert et al., 2014).

3.4.2 Model parametrisation and calibration

The model was parametrised using the lumpR package for the statistical environment R (Pilz et al., 2017). This included
the delineation of catchment and model units, assembly, calculation, and checking of parameters, and the generation of the
model’s input files. Meteorological data were interpolated to the respective spatial units (sub-basins). For rainfall, this step
used the Thiessen Polygon method as implemented in the Information System for Water Management and Allocation (SIGA)
(Barros et al., 2013). For the other meteorological variables, Inverse Distance Weighting (IDW) from the R package geostat
(Kneis, 2012) was used. Reservoir data were processed and prepared for the model. A total of 36 strategic reservoirs within the
study area was selected for explicit treatment in the model according to their size and importance for water management.

The model was calibrated independently for each of the five regions in the study area (see Fig. 1). Calibrated output of up-
stream regions was used as boundary condition for downstream regions. Due to lack of data for Lower Jaguaribe, the calibrated
parameters of Castanhdo were transferred. However, sufficient data were available for further analyses. The calibration period
spanned 2003 to 2010, which includes both wet (2004 and 2009) and dry (2005, 2007, and 2010) years.

Daily reservoir volume increase of the strategic outlet reservoir of a specific region was used as target variable as reservoir
level measurements were assumed to be more reliable than streamflow observations. Streamflow in the area is highly variable

and rivers, especially in the downstream part of the catchment, are characterised by broad and dynamic cross sections and dense
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riparian vegetation inducing large uncertainties in streamflow measurements derived from rating curves. However, reservoir
management has a strong impact on reservoir dynamics and only a limited amount of data on artificial releases were available,
while there was even no information on overspill (which does not often occur at the large strategic reservoirs) and only rough
estimates of withdrawals. To minimize the impact on calibration, only positive volume variations (i.e. net reservoir volume
gain), which are effectively caused by runoff draining into the reservoirs, were considered for calibration. Therefore, daily
net losses of volume, which are largely determined by such management influences, were set to zero and therefore effectively
excluded from the calibration. However, for region Salgado, streamflow measurements had to be used as this specific region
does not contain a strategic reservoir at its outlet.

In total, 15 parameters were chosen for calibration. As objective function, a modified version of the Nash—Sutcliffe Efficiency

(NSE) called Benchmark Efficiency (BE) following Schaefli and Gupta (2007) was employed. It is calculated as

N (Gobs(t) — quim ()2
Ziil (qObs (t) - qbench(t))2

with ¢ being the index of time containing N time steps within the calibration period, g.;s are the observations, ¢, the

BE=1

(D

simulations, and gpencn, instead of being the average of the observations as in the traditional NSE, represents the mean of the
observations for every Julian day over all years within NV (i.e. the mean annual cycle). In this way, a value of BE > 0 means the
model is able to reproduce the average yearly dynamics better than simply using statistics. Consequently, a value of BE =1
signifies perfect agreement of simulations with measurements. Eventually, BE as performance measure employs a much stricter
criterion on simulated hydrological dynamics compared to using the NSE measure.

For calibration, the Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) implemented in the
R package ppso (Francke, 2017) was used. Since DDS was developed for computationally demanding hydrological models it is
able to obtain satisfying results within the order of 1,000 to 10,000 model calls. For this study, the number of calls was limited

to 5,000 for every region which resulted in about 10,000 hours of CPU core processing time on a high performance cluster.
3.4.3 Analysis of simulation performance and influencing factors

An objective of this study is to analyse the simulation performance of the process-based model in more detail and to identify
possible influencing factors. Instead of using a single goodness of fit measure, as for automated calibration, different aspects of
model performance should be investigated. Therefore, the Kling—Gupta Efficiency (KGE) was chosen as performance measure
along with its three components correlation, bias, and deviation of standard deviations of simulations and observations, see
upper part of Table 1. Like NSE and BE, KGE scales from minus infinity to one where one is the optimum value achieved for
maximum correlation (i.e. COR = 1) and no deviation of means and standard deviations. To assess which factors influence the
model performance, several candidate descriptors where selected which are presented in the lower section of Table 1. These
descriptors were tested for their capability to explain model performance in time and space in a regression approach by using
these descriptors as predictors and the performance metrics as the response variable.

For the analysis, the calibration period 2003 to 2010 was used. Each response variable (i.e. performance metric) was calcu-

lated for each of the 36 strategic reservoirs located in the study area. Furthermore, each year was divided into a falling period,
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where the difference of reservoir levels for two consecutive days was negative, and a rising period where the difference was
greater than or equal to zero. For each reservoir, year, and period, the respective performance was computed and analysed
separately. This resulted in a total of 32 reservoirs times 8 years times two periods minus some missing observations, i.e. 484
values to be aggregated for each response variable. The predictors were either static and unique for each reservoir (upstream
catchment area A,,;,, reservoir capacity V,,, number of upstream reservoirs n,.syp), region specific and dynamic as aggrega-
tion over a certain amount of time (maximum daily precipitation P,,,,, regional precipitation sum P, 4, regional precipitation
over the last 12 months P;5 and over the last 36 months P5¢) or a grouping variable by itself (reservoir level is currently rising
or falling A, ,;) (see also Table 1 for more information).

To identify predictor importances and their specific influence on the performance measures, a random forest analysis was
conducted using the R package party (version 1.3-1). In general, random forests consist of an ensemble of regression trees,
where each tree is fitted using a bootstrap sample of the training dataset and only a sub-sample of all available predictors. This
eliminates typical problems of traditional regression tree approaches, such as a high sensitivity to small changes in the data and
the likelihood of overfitting (Breiman, 2001). For this study, a refined random forest algorithm was employed, which is better
suited for predictors of different types (e.g. mixed categorical and continuous) and produces more robust measures of predictor
importance in case of correlated predictor variables (Hothorn et al., 2006; Strobl et al., 2007, 2008).

For each response variable, an individual random forest was built. Except for A,,,; (categorical), each predictor and response
variable was treated as numerical. To generate robust estimates of predictor importance, 1,000 regression tress were built
per forest (otherwise standard parameter values of the algorithm were used). The most influential predictors for a certain
response were then distinguished by an importance measure, which in this study was derived by permuting the values of
each predictor and measuring the difference in prediction accuracy of the random forest before and after permutation (also
termed permutation importance in contrast to the often used Gini importance or mean decrease in impurity). In addition, the
permutation of predictor values was done by accounting for potential correlation among predictor variables (hence termed
conditional permutation importance) as suggested by Strobl et al. (2008).

In order to get an impression of the concrete effect of each predictor instead of the mere variable importance, the two leaf
nodes with the highest and lowest median response values for each tree were identified. For these two nodes, the ranges of each

numerical predictor (except A,,;) were classified into four groups ranging from small to large to facilitate visual investigation.
3.5 The statistical model: a regression approach

A goal of this study is to answer the question whether the application of a complex process-based simulation model is worth-
while in comparison to a much more convenient statistical approach to generate seasonal forecasts of reservoir storage and
drought indices. To achieve this, the regression model of Delgado et al. (2018b), which was developed for the same study
area, was employed. They fit a multivariate linear regression (MLR) model individually for each of the sub-regions also de-
fined in this study. As response variable, regional volume changes were used (approach M2 in Delgado et al., 2018b). As
possible predictors, meteorological drought indices (standardised precipitation index (SPI) and standardised precipitation—

evapotranspiration index (SPEI)) aggregated over time periods of 1, 12, and 36 months, respectively, were considered in their
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Table 1. Response and predictor variables used for the analyses of the process-based model performance.

Abbrev.  Explanation

Responses

ing—Gupta cienc upta et al., 1= — + +
KGE Kling-Gupta Efficiency (Gup 1., 2009): 1 — 1/(COR — 1)2 + BIAS? + VAR?

cov(y,0)
oyoo

COR Pearson correlation of simulations y and observations o: with cov being their covariance and o their standard deviations
BIAS Deviation of means p: Z—y —1le[-1,0)

VAR Deviation of variability: 7% — 1 € [-1,00)

Predictors
Aup Upstream catchment area of the reservoir (km?)
Veap Reservoir volume capacity (hm3)

Nresup Number of upstream reservoirs (-)

Aol Rising or falling period of reservoir volume (-)

Prax Maximum regional daily precipitation sum over rising / falling period of a year (mm)
Preg Regional precipitation sum over rising / falling period of a year (mm)

P2 Regional precipitation sum over the entire previous year (mm)

Psg Regional precipitation sum over 36 months of the preceding years (mm)

study. To account for correlation among predictors, ratios of predictors exhibiting significant correlation to each other were
used. Genetic optimisation with respect to the Akaike information criterion (AIC) was employed to determine the specific
predictors for each sub-region. To enforce model parsimony, not more than five predictors should be used in the regression
equation. For the model fit, all available observations within the analysis period were used (monthly values from 1986 to 2014,
less a few missing values). The resulting equations are presented in Table 2.

To generate hindcasts, the predictors of the equations (the SPI and SPEI values over different time horizons) were calculated
on a monthly scale to obtain monthly forecasts of regional reservoir volume changes for each rainy season of the hindcast pe-
riod. Regional storage volume values could then be obtained by successively adding predicted volume changes to the measured
value of December of the previous year, which served as a base value for each rainy season. Even though the shown model fits
for monthly volume changes were rather poor (low R? values in Table 2), the derived absolute reservoir level values were in
good agreement with measurements (Delgado et al., 2018b).

To compare the mere simulation performances, both the process-based and the statistical model were first driven by observed
meteorology to exclude the effect of the downscaled GCM runs. In a second step, the two approaches were evaluated for real

hindcasts.

10
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Table 2. Regional equations used for the calculation of monthly volume changes with the statistical approach. Table extracted and extended

from Delgado et al. (2018b) (Table A1l). Details and abbreviations see text.

Region Formula R?

Lower Jaguaribe ~ 0.689 +2.222SPI, +0.035 322 + 2.116 SPLi SPLi2 + 1.075SPLi2 Gt + 0.286 SPL iz 0.38
Orés 0.416 4 2.428 SPEI, SPI, + 2.233SPI; SPL12 — 0.173 SPls6 it + 4.197 SPEL gpd2 — 0.003 37528 S52¢ 0.36
Salgado —0.377 + 2.002 5512 + 2.454SPEL SPI + 2.600 SPEL SPI3 + 4.203 5312 SPEL + 0.314 SP gzt 0.45
Castanhdo 2.947 + 3.468 SPI, — 1.147 Gl — 1.270 55 SPEI36 — 0.791 SPL g + 1.412SPEL 2 i 0.21
Banabuid 4.812 4 4.638SPI; — 13.853SPl1s — 2.293SPL12SPEI36 + 15.317SPEL2 gt — 0.341 gpae SH12 0.23

3.6 Drought hindcasting
3.6.1 Hydrological drought quantification

As water stored in surface reservoirs is of primary importance to water supply, hydrological drought indices based on surface
reservoir filling level appear to be the most adequate choices to identify and characterise hydrological droughts in the study
area. Thus, in line with Delgado et al. (2018b), for the quantification of hydrological droughts the regionally and monthly

aggregated reservoir storage was defined as drought indicator:

Rj yri
I _ Z'L:l‘/t
t— R; .
S,V
=1 " cap

with ¢ being the time index, V}* the volume stored in reservoir i of a certain region R; (i.e. one of the five sub-regions of interest

(@)

illustrated in Fig. 1), and Vciap the storage capacity of that reservoir. This metric was calculated for each of the five regions of
interest (1?) and each month of the hindcast period (wet seasons, January to June, of 1981 to 2014). For each month the last
daily value was taken.

A drought was then defined as

1 if I; < qdo.3
D, = 3)
0 if Iy > qos
where D =1 denotes drought, D = 0 indicates no drought, and ¢ 3 is the 0.3 quantile of I over the hindcast period. The
definition of qq 3 is based on the choice of local decision makers who defined this value as warning threshold for reservoir
scarcity. In Sect. 5.1 the impact of this decision will be discussed. The threshold was applied to each region individually and,
thus, resulted in regionally different drought thresholds. As such, the results of this study will be comparable to the work of
Delgado et al. (2018Db).

11
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3.6.2 Verification of drought hindcasts

Hindcasts of reservoir volumes (V%) and, consequently, the hydrological drought index (I;) were verified employing the Root
Mean Square Error (RMSE), the Relative Operating Characteristic Skill Score (ROCSS), and the Brier Skill Score (BSS).
Definitions and discussions of the various forecast verification metrics can be found in textbooks such as Wilks (2005). In the
following, short explanations for each selected measure shall be given.

The RMSE is a deterministic measure and was derived by calculating the root of squared differences of hindcasts and

observations averaged over all values of the hindcast period:

N
1
RMSE =, | +- >l 1) 4)

t=1
where N is the number of forecasted time steps and the superscripts f and o denote forecast and observation, respectively.
It was calculated multiple times by using as Iif each GCM member individually and, in addition, the median of members as
deterministic value. The metric quantifies the average magnitude of hindcast errors in units of the target variable, i.e. in this
case regional reservoir storage in percent points, and is therefore useful for the interpretation of suitability of the model for
water managers who rely on accurate forecasts of volumes to coordinate reservoir operation. As such, the RMSE refers to the
attribute of accuracy. The lower the RMSE, the lower the forecast error and the higher the accuracy.

The Relative Operating Characteristic Skill Score (ROCSS) quantifies the ability of a model to correctly discriminate be-
tween events and non-events. In this context, an event is defined as a hydrological drought which, in turn, is distinguished by
the drought index falling below the 0.3 quantile (gg.3) as explained above. The ROCSS is based on the ROC curve which plots
the probability of event detection against the false alarm rate for different thresholds of forecast probability defining an event.

Taking the Area Under the Curve (AUC) of this graph, the skill score can be calculated as
ROCSS =2-AUC -1 (5)

The value ranges between —1 and 1 with values lower than or equal to zero indicating the false alarm rate being greater than
or equal to the probability of event detection and, thus, the model having no skill. A value of one represents the highest score,
i.e. the model is able to predict every event and non-event correctly. As such, the ROCSS is a measure for event resolution of
probabilistic forecasts.

The Brier Score (BS) measures the mean squared error of probabilistic forecasts and indirectly contains information about
reliability, resolution, and the variability of observations (the latter being commonly referred to as uncertainty). As such it can

be calculated as

N
1 A
— f 0\2
BSfN;(Dt — D)2 (6)
The corresponding skill score (BSS) compares the BS of a forecast model with that of a simple reference forecast, in our case
climatology:
BS
BSS=1— — 7
Bsreference ( )
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with BSieference = 0.3, corresponding to ¢g 3, the initially defined long-term average probability of drought occurrence (as

described above). It follows that BSS € (—o0, 1] and a forecast model having skill relative to the reference model if BSS > 0.

4 Results
4.1 Comparison of model performance in simulation mode

Figure 3 compares the performances of the process-based and statistical model in simulating relative regional reservoir storage
driven by observed meteorology. The regional RMSE varies between 5 and 18 percent points whereas for the whole catchment
both modelling approaches achieve a result of about 13 percent points. Overall, the performance differences between the two
models are small for all regions. Only for Salgado the statistical model shows a lower RMSE compared to the process-based
model and the difference among the two approaches is largest (6 percent points). For all other regions, the process-based
model exhibits a slightly higher accuracy, and the inter-regional ranking is equal for both approaches. Generally speaking, both

models show a comparable performance, suggesting they are equally suitable for their application in hindcast mode.
4.2 Comparison of model performance in hindcast mode

The uppermost panel of Fig. 4 shows that in hindcast mode, the accuracy in terms of RMSE considerably decreases when
compared to simulation mode for both types of models. However, in contrast to the situation in simulation mode, the statistical
approach outperforms the process-based model for all regions. While for the statistical model, deterioration in terms of RMSE
is generally less than 10 percent points, the process-based model achieves significantly lower accuracy with increasing RMSE
by up to almost 30 percent points. This degradation of model performance in hindcast mode for the process-based model is
especially pronounced for the Banabuit region.

The lower two panels of Fig. 4, however, demonstrate that both approaches are able to generate drought hindcasts with skill.
The resolution of event hindcasting of the two models (i.e. the ROCSS) is very similar combined over the whole catchment.
Regional differences are more pronounced but still negligible. For some regions the process-based, for other regions the sta-
tistical model performs slightly better. The BSS, while also indicating skill, shows lower performance values which can be
attributed to lacks in accuracy (as already indicated by RMSE) and reliability.

An attribute plot, as the one presented in Fig. 5, can reveal more details on that issue. Therein, the predicted probability
of drought occurrence (obtained from the outcomes of individual ensemble members) is plotted against the relative frequency
of observed drought occurrences (solid lines) together with the relative prediction frequency of a certain forecast probability
interval (dotted lines). It demonstrates several verification attributes including resolution (the flatter the solid lines, the less
resolution), reliability (agreement with the gray diagonal line), sharpness (dotted coloured lines), and skill (values within the
gray region contribute positively to BSS; for unclear terms see appendix Sect. A or consult textbooks such as Wilks (2005)).
Apparently, predictions from both models contain skill except for low forecast probabilities where both models contribute

negatively to BSS. Furthermore it can be seen that both approaches exhibit problems in terms of reliability. Specifically,
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Figure 3. Comparison of accuracy in predicting relative reservoir storage for the process-based and statistical model in simulation mode
(i.e. run with observed forcing). The underlying analysis period comprises monthly values of the rainy season (January to June) over the
hindcast period (observations available since 1986 until 2014 with some data gaps in between, resulting in a maximum of 174 values for

each sub-region).

forecast probabilities are too low compared to observed occurrences, which is generally denoted as underforecasting. This
observation appears to be a bit more pronounced for the process-based than for the statistical model. That also holds true for
sharpness, as the statistical approach shows slightly more confidence for higher forecast probabilities, i.e. the relative frequency

of maximum forecast probability is higher.
4.3 Model performance attribution

4.3.1 Hindcasts

The monthly aggregated accuracy of the hindcasts, i.e. performance with increasing lead time, is shown in Fig. 6. Overall, the
hindcast error (i.e. RMSE) increases with lead time (i.e. progression of the wet season), even when using observed forcing.
The statistical approach generally produces better hindcasts. Its RMSEs differ only little from runs with observed forcing. Also
the increase of RMSE with lead time is very similar. For the process-based model, hindcasts deviate clearly from observation

based results (as was already shown in Fig. 4). The error increases much stronger over the hindcast horizon. However, its
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Figure 4. Model performance in hindcast mode for the two model approaches. In the top panel, horizontal dashed lines in the bars mark the
results obtained with observed forcing (simulation mode, as in Fig. 3). Note that for RMSE low values indicate a better performance while

for ROCSS and BSS higher values are favoured.

RMSE values reach a plateau at about 40 percent points in March. Generally, it can be seen that aggregating the ensemble
members by using the median of reservoir storage hindcasts (solid lines) is usually a better choice than most of the single
ensemble members (distributions shown as boxplots). The spread of ensemble member results differ for the two approaches.
These ranges are clearly larger for the process-based model in January and February, but comparable for the other months.

In Fig. 7 prediction accuracy is assessed for different wetness conditions (i.e. dry, normal, wet) over different accumulation
time periods for rainfall. Again, when driven by meteorological hindcasts, the statistical approach performs best with relatively
small differences to results obtained using observed forcing. Under wet conditions, irrespective of the rainfall accumulation

period, the error is highest for most settings. The only exception from this pattern shows the process-based model driven by
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hindcasts. Here, the error under dry preconditions increases with increasing rainfall accumulation length while the performance

under wet preconditions improves with longer accumulation length.
4.3.2 Process-based simulation performance

In the preceding subsections it was shown that the process-based model does not outperform the statistical approach. Moreover,

5 in hindcast mode, the process-based model often achieved worse performance measures, especially in terms of accuracy. This

subsection therefore aims at the identification of deficit causes by analysing the results of process-based model calibration and
potential influencing factors of simulation performance in more detail.

Regional calibration performance of the process-based model is summarised in Table 3. A good overall agreement of sim-

ulated and observed reservoir dynamics in terms of BE values could be achieved during calibration. However, PBIAS as a

10 performance metric not used in the calibration shows, on the one hand, acceptable values of no more than 12 % but, on the
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Figure 6. RMSE of regional reservoir storage hindcasts with increasing forecast horizon / lead time. Monthly values are obtained by ag-
gregation over the full analysis period (1986 to 2014) for a specific month. Each box reflects the distribution of the 20 ensemble members.

Coloured solid lines refer to the ensemble median taken as deterministic forecast and analysed individually.

other hand, a consistent slight overestimation of reservoir level dynamics. It can be further observed that a good BE value does
not correlate with a low PBIAS.

The random forest analysis brought more insight into process-based model performance and its influencing factors. Figure 8
illustrates the importance of each potential predictor for different performance metrics. Apparently, overall model performance
(here measured via KGE) primarily depends on the wetness preconditions (FPs6). While reservoir size (V.q,) plays only a
minor role for the overall performance metric KGE, it clearly affects correlation and bias. (Mis-)match of standard deviation
(VAR), however, is mainly determined by both wetness conditions and reservoir size. Overall, long reaching antecedent wetness
condition (Ps¢) is more important than the conditions of the preceding 12 months (P;2), and reservoir capacity (Veqp) is
dominant over upstream catchment area (A,,;,), although the latter is not negligible. The current rainfall conditions, in terms of
intensity (Py,q,) and sum over a rising / falling period (P,¢4), Whether it is a reservoir level increase or decrease period (A1),
and the number of upstream reservoirs (1, csup) show little or no explanatory value for any of the performance measures.

To analyse the specific influence of predictors on the response variables, Fig. 9 relates the values of the most influential
predictors to the corresponding performance measures. This is done by plotting the occurrences of predictor categories in the
highest and smallest valued leaf nodes of all regression trees within the random forest. It shows that under dry preconditions
(P3¢ = min) there is a tendency for underestimation of standard deviations (VAR = min), i.e. a less variable reservoir stor-
age series than observed, but a better a better overall performance (KGE = max). On the other hand, under wet conditions,

especially for larger upstream catchments (A, = high), results tend to show an overestimation of variability (VAR = max),
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Table 3. Results of regional calibration of the process-based model. BE refers to Benchmark Efficiency (Eq. 1) and was used for calibration;
PBIAS is percent bias, i.e. the average tendency for over- or underestimation of simulations in comparison to observations. For Lower

Jaguaribe, no observations at the catchment outlet were available.

Region BE PBIAS (%)
Banabuit 0.84 11.78
Orés 0.76 0.92
Salgado 0.79 7.37
Castanhio 0.76 6.93
Lower Jaguaribe  [no obs.] [no obs.]

whereas under dry conditions in small catchments, variability is more often underestimated. For small reservoirs correlation is
mostly low. It should be noted, however, that relationships cannot always be clearly distinguished. For instance, a low precipi-
tation sum over the preceding year (P;2) may result in both a high and a low KGE value whereas very low precipitation over

the preceding 3 years (FP54) only led to a high KGE. Furthermore, there is no relationship between reservoir capacity and KGE.
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Figure 8. Predictor importances for each response variable determined by the random forest approach. In this case conditional permutation

importance was used, see Sect. 3.4.3.

5 Discussion
5.1 Robustness of performance metrics

There are two important algorithmic parameters affecting drought predictions of this study. One is the threshold of drought
definition, i.e. the quantile of drought index observations specifying a drought, which was set to 0.3 as commonly used in
the study area among water managers. This choice affects the performance values of BSS and ROCSS. The other is the
number of probability bins into which hindcasts are grouped for further analysis, affecting ROCSS but not BSS as BS was
herein calculated without probability binning (see Eq. 6). Figure 10 illustrates the sensitivity of verification attributes to the
two parameters. It shows that a higher drought threshold results in a more evenly running curve while a smaller threshold of
0.2 tends to be better oriented towards the reliability line and appears more variable (Fig. 10 a). This might result from the
necessarily lower number of values of smaller thresholds. However, altogether general conclusions remain untouched, namely
underforecasting and the statistical being superior to the process-based model. Regarding the number of probability bins (Fig.

10 b), a larger value leads to a more variable curve. This effect can be attributed to the decreasing number of values per bin
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with increasing number of bins. For this study, it was decided to use a value of seven as it appears to be the best compromise
between sufficient data availability per bin and an adequate number of bins for further calculations (namely ROCSS). Even
so affecting the values of ROCSS and partly BSS (not shown), it can be concluded that the somewhat arbitrary decision on a
certain drought threshold and the number of bins, as long as reasonable values are chosen, does not affect the general results
of the analysis.

The RMSE as accuracy measure is free of such decision parameters but is admittedly influenced in a different way. With the
target variable (relative regional reservoir filling) ranging from 0 to 100 percent points, the actual maximum value tends to be
smaller during wet periods: the observed value (which is usually greater than zero) effectively causes the metric to be limited
to about 40 to 50 percent points. This effect is reflected as the apparent performance plateau for the process-based model in
Fig. 6 and is also likely to affect the results presented in Fig. 7. The effect that, when driven by hindcasts, the process-based
model exhibits larger errors under dry than under wet conditions, can be at least partially attributed to this issue. In contrast,

when models are driven by observations, it seems reasonable that model simulation performance is generally better under dry
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used in this study. The gray 1:1 lines in each plot illustrate perfect reliability for comparison.

conditions (Fig. 7). However, as no threshold effects can be observed and the RMSE values are always considerably lower for

the statistical model, this effect should not influence general conclusions of the model comparison.
5.2 Model comparison

In terms of simulation accuracy when driven by observations and for drought event prediction in the hindcast mode, both
models perform equally well. Hindcast accuracy, however, is substantially lower for the process-based approach. This result
is well in line with findings of other studies that simple statistical model approaches often perform equally well or even better
than complex process-based prediction systems, especially in tropical regions due to well exploitable correlations among
meteorological and hydrological variables (Block and Rajagopalan, 2009; Hastenrath, 2012; Sittichok et al., 2018). It has
to be noted, however, that the process-based approach with the WASA-SED model achieved acceptable results on monthly
(hindcasts) and even daily (calibration metrics) time scales whereas former studies in NEB reported passable results only
aggregated over seasonal scales (Galvao et al., 2005; Block et al., 2009; Alves et al., 2012).

The reason for the discrepancy of model ranking between simulation and hindcast mode can be attributed to the different
model structures. To illustrate this, Fig. 11 shows the average monthly changes of regional reservoir storage for the different

models and modes in comparison to observations. For the simulation mode (dashed lines) it can be seen that the process-based
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Figure 11. Monthly changes of regional reservoir storage averaged over all regions, years, and hindcast members for the two models and

application modes in comparison to observations.

model, though exhibiting a constant overestimation, all in all is well in line with observations. The statistical model, however,
shows a more or less constant storage change over the whole simulation horizon, resulting in over- and underestimations and,
eventually, a good overall simulation performance (see Fig. 3). In hindcast mode (solid lines), for the process-based model the
overestimation of storage change is much more pronounced and the peak shifted from April to March. Although the statistical
model now more realistically exhibits seasonal dynamics, the general pattern still appears too smooth, which effectively results
in less deviation from observations than the output of the process-based model (Fig. 4). This indicates a strong influence of
precipitation forcing on the process-based model while the statistical approach generally reacts more damped on rainfall input.
Consequently, deficiencies in this forcing affect the process-based model much more. This, in addition to the plateau effect
discussed in Sect. 5.1, explains the more diverse RMSE values among the hindcast realisations for the process-based model at
the beginning of the rainy season when reservoirs are filling up (Fig. 6) and the higher RMSE under antecedent dry conditions
(Fig. 7 middle and right panels). In contrast, for the statistical model, the general patterns of RMSE over different lead times or
under different antecedent moisture conditions do not change in hindcast mode when compared to simulation mode. The issue
of uncertainties arising from defective precipitation forcing will be later on discussed in more detail.

Despite the lower prediction performance, the process-based approach still provides benefits over the statistical model. This
includes the potential access and investigation of multiple spatially distributed hydrological variables with daily resolution,
such as evapotranspiration, runoff generation, or streamflow, which were generated during the model runs. This clearly excels
over the statistical model, which only yielded predictions of a single target variable. Another advantage is that model output is

not only provided in a regionally and monthly aggregated manner, as for the statistical approach, but for all individual strategic
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reservoirs in the area as daily time series. Figure 12 illustrates that accuracies of individual reservoirs exhibit a slightly larger
variation, but the RMSE’s of individual reservoirs are at a similar level as when regionally aggregated. This suggests that most
of the single reservoirs can be modelled with a comparable performance as the regionally aggregated values.

A further advantage of a model such as WASA-SED is that underlying processes are directly represented. As such it can be
of higher value to water managers interested not only in streamflow or reservoir level forecasts but also in the investigation of
process behaviour or assessments under changing boundary conditions. Therein the model could be used in scenario analyses,
such as climate change impact assessment, or sensitivity analyses of, for instance, uncertain meteorological input to detect
critical streamflow or reservoir stages. Furthermore, the model is transferable and can be easily applied in different regions and

over different spatial and temporal scales, only limited by computational resources and available input data.
5.3 Deficiencies of the process-based simulation approach

To improve the performance of the process-based model it is first necessary to identify sources for simulation inaccuracies.
It was shown that the process-based model achieved regionally different performances. A comparison of Fig. 3 and Table

3 reveals that regional bias during the calibration period is in compliance with the ranking of regional simulation errors.
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Moreover, although exhibiting the highest BE value, region Banabuid is characterised by the largest bias during calibration and
highest simulation and hindcast errors. As the latter is observed for both the process-based and statistical approaches, the reason
is suspected to originate from uncertainties in observations, i.e. precipitation measurements within the region, or defective
reservoir level acquisition. The reason for Salgado region being out of the general pattern for the process-based model certainly
originates from the different calibration procedure applied here, namely the use of streamflow measurements in contrast to
reservoir dynamics as for the other regions. In addition, the region is distinct from other parts of the catchment in terms of
environmental settings such as larger groundwater influence and sedimentary plateaus in the headwater area. Conversely, the
transfer of the calibrated parameters from Castanhdo to the Lower Jaguaribe region seems justifiable as the simulation error
was small. Overall, reservoir size largely influences both simulated storage time series and bias. Model performance, however,
appears to be not superior for large reservoirs. Moreover, wetness condition in terms of antecedent rainfall sums over the last
36 months is of major importance, i.e. dry conditions lead to the best model performance in terms of KGE. The latter is not
surprising as rainfall in the study area is extremely heterogeneous both in space and time, usually characterised by convective
heavy precipitation events with short durations. Thus, prolonged periods without rain constitute a spatially more homogenous
input. Conversely, the aggregation of rainfall to daily sums and interpolation over subbasin units, on average covering an area
of about 700 km?, must necessarily induce uncertainties. The assimilation of observed reservoir filling states at the beginning
of each hindcast season is therefore a reasonable approach to improve predictions and compensate for preceding rainfall input

uncertainties during the initialisation run.
5.4 Potential improvements

There are several options to make use of the findings of this study and improve the forecast system in upcoming applications. In
the presented study, observed reservoir level data were assimilated into the process-based model to correct the initial conditions
for the hindcast runs by simply replacing model states by measurements. For assimilation, more formal approaches already
exist such as the rich families of Kalman and particle filtering approaches (e.g. Liu and Gupta, 2007; Komma et al., 2008;
Vrugt et al., 2013; Sun et al., 2016; Yan et al., 2017). These, however, require a profound quantification of both simulation and
observation uncertainties and, thus, many additional information and, moreover, significantly higher expenses in terms of data
preparation, processing, and model application. Nevertheless, they hold the potential to better account for uncertainties in the
observations, which were disregarded in this study, despite being considerable.

Pre-processing schemes in the context of hydrological forecasting usually focus on the improvement of rainfall predictions
used as main drivers for hydrological models (e.g. Kelly and Krzysztofowicz, 2000; Reggiani and Weerts, 2008; Verkade et al.,
2013). This is partly already included in the downscaling scheme applied to GCM products but may as well be further extended.
The importance of rainfall forcing on model results, especially for the process-based approach, was already addressed above.
A further comparison of the statistical properties (distribution of daily sums, dry/wet spell lengths) of rainfall hindcasts used
in this study with observations revealed large discrepancies. Some preliminary tests suggested these to be responsible for the
decreased accuracy of the process-based model hindcasts (not shown). In comparison to observations, the hindcasts contain

(i) a general shift of rainfall seasonality towards the first months of the rainy season; (ii) a much lower frequency of both
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wet and dry periods for spell lengths up to 4 days; (iii) a lower frequency of low daily rainfall values while the number of
large precipitation events is overestimated and daily extreme values are much higher; (iv) a much higher probability that a dry
day follows a dry day and the probability that a wet day follows a wet day is often underestimated. These findings indicate
a high potential for improvement in future applications in the study area. As a first starting point, monthly bias of hindcasts
per region was corrected and both models were re-run. Figure 13 shows that this relatively simple procedure already results in
a considerable decrease of RMSE for the process-based model, even though it is still higher than for the statistical approach.
The improvement of drought forecast performance in terms of BSS and ROCSS is thereby less pronounced than the increase
of accuracy. For the statistical model, performance metrics hardly change, which can be attributed to the smoothing effects of
its model structure on regional reservoir storage identified in a previous subsection (Fig. 11).

In addition to pre-processing, post-processing approaches directly tackle the correction of streamflow forecasts by statistical
means including bias correction or the estimation of an error model applied to predictions (e.g. Krzysztofowicz and Kelly,
2000; Todini, 2008; Bourdin et al., 2014; Roulin and Vannitsem, 2014). Especially when focussing on extreme events, such
as floods or droughts, the adequate characterisation of model residuals exhibits a large potential when incorporated into the
correction of simulations and predictions (Farmer and Vogel, 2016). While being still an active field of research, such means
are routinely applied in operational streamflow forecasting and, in addition to rainfall correction, could further improve model
performance.

The parametrisation of the process-based model could be further improved by the use of more and different data sources.
This includes, for instance, the use of satellite data to infer spatially distributed reservoir information with greater detail and
more accuracy as currently available. The study area has already been of interest in ongoing research (Delgado et al., 2018a)
and past studies (Heine et al., 2014) addressing that issue. In addition, management plans as well as data on water abstraction
and reallocation from the larger reservoir should be included in the model but were not available for the present study. Another
opportunity is to increase rainfall input resolution in the model to better account for sub-daily and spatially heterogeneous
precipitation. This could be done by improving the current spatial scaling of rainfall in the model to account for heterogeneous
patterns and to make use of RADAR rainfall data recently made available in the area.

The combination of multiple models may provide further benefits in cases where different models show strengths in different
aspects of performance (e.g. Block and Rajagopalan, 2009; Schepen and Wang, 2015). However, within this work the two
employed model approaches, with respect to simulation performance achieved almost equal results and did not diverge in
aspects such as lead time and antecedent moisture conditions. Thus, the combination of the two models analysed in this study

is not expected to provide benefits.

6 Conclusions

The aim of this work was to explore options for a seasonal forecasting system of regional reservoir volume and drought

occurrence with lead times up to 6 months for the semiarid northeast of Brazil. In this context, the performance of a complex
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Figure 13. As Fig. 4 but driving hindcasts with additional bias-correction of precipitation on the monthly scale (dotted boxes).

process-based hydrological model was evaluated against a much simpler statistical model developed by Delgado et al. (2018b)
given the same meteorological forcing. The study pursued three objectives:

First, the two modelling approaches were to be investigated in terms of mere simulation performance, i.e. when driven
by meteorological observations. It turned out that both models performed almost equally well. However, regional differences
exist where the process-based model achieved slightly better results in four out of five sub-regions. Furthermore, regional
performance ranking of both models was equal in four regions. This suggests that data uncertainty of meteorological input or
reservoir level observations exceeds model structural uncertainties and dictates simulation performance in the study area.

Second, the process-based model was to be verified as prediction tool in a hindcast experiment and evaluated against the
statistical approach. In comparison to simulation runs with observed forcing, hindcast performance of the process-based model
dropped significantly while the performance of the statistical approach decreased only to a small degree. This can be explained

by the structure of the statistical approach which generally reacts more damped on precipitation inputs. Although this exhibits
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less realistic intra-seasonal dynamics than for the process-based model, performance metrics were eventually superior as un-
certainties from precipitation hindcasts could not propagate as much to the model output. However, apart from reservoir level
predictions, forecasting of mere drought occurrence works almost equally well for both approaches. The two models exhibit
satisfying event resolution while slight deficiencies in terms of underforecasting were detected regarding the reliability of the
hindcasts.

The third and last objective was to identify the major sources for simulation and hindcast deficiencies and provide guide-
lines for further improvement. In general, both models achieve better results under dry than under wet (pre-)conditions. An
attempt to identify potential predictors of model performance for the process-based model revealed that reservoir size and
antecedent rainfall conditions explain most of the variance of the performance metrics while variables such as current precipi-
tation amount and daily precipitation intensity are of surprisingly low importance. However, hardly any clear patterns could be
identified in which way predictors influence performance measures and, as such, no direct means could be derived, in which
way the structure of the process-based model could be improved to achieve better simulation results. Also regarding the hind-
casts, precipitation was identified as the most significant source of uncertainty. It was found that rainfall hindcasts from the
downscaled GCM show statistical properties significantly distinct from observations. Therefore, simple approaches, such as
the tested monthly regional bias correction, already result in improved hindcast accuracies. Future studies should also consider
the use of more sophisticated means of pre-processing as well as post-processing approaches, such as forecast error modelling,
or innovative data assimilation and data fusion approaches to correct erroneous model states.

So, what is the added value of a process-based hydrological model? When it comes to reservoir level or mere drought event
prediction on regionally and monthly aggregated scales, a statistical model proved to be the better option, as computational
effort is much lower and the model is easier to apply. Nevertheless, we advocate the application of a proper process-based
hydrological model in case predictions on finer spatial (e.g. for individual reservoirs) and temporal scales or even more in-
formation, such as evapotranspiration or various runoff generation and concentration variables, are required. As such, only by
applying a process-based hydrological model, decision makers and stakeholders can be supported to detect and understand
hydrological changes in their catchments in order to make reasonable and sustainable decisions. However, further research is
needed to increase the accuracy of important model drivers, i.e., in the case of dryland regions such as northeastern Brazil,
first and foremost precipitation. We expect that the use of new data products, such as RADAR and satellite data along with
traditional data from rainfall stations with sub-daily resolution, in combination with innovative methods of data assimilation
and data fusion provide opportunities to improve forecast accuracy of process-based hydrological models. Only in that way the

time and effort of their application can be justified and allow for the exploitation of their advanced capabilities.

Code and data availability. Meteorological observations (except precipitation) are available from http://careyking.com/data-downloads/.
Precipitation as well as raw data of meteorological hindcasts need to be requested from FUNCEME. DEM raw data can be obtained via
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (tiles [horizontal/vertical]: 28/13, 28/14, 29/13, and 29/14). Reservoir data can be ac-

cessed at http://www.hidro.ce.gov.br or requested from FUNCEME. Land cover and soil maps are not publicly available.
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The WASA-SED model is available at https://github.com/TillF/WASA-SED. Scripts to investigate or reproduce experiments, analyses,
and compilation of plots can be accessed at https://github.com/tpilz/paper_drought_prediction_brazil.

Appendix A: Terminology

The word forecast generally refers to model based estimations of future meteorological or hydrological variables such as
precipitation, streamflow, or reservoir level. The term prediction, in this article like in many others, can be used synonymously
to forecast. With hindcast we specifically denote retrospective forecasts, i.e. predictions issued for a period in the past building
only on data available up to the time of start of the model run. The results are then compared with observations. In some
occasions, the terms forecast and hindcast might be used interchangeably. In contrast to predictions or hindcasts, we denote
model simulations as model runs driven by observations instead of forecasts of model forcing.

Many of the notions discussed in this article refer to the field of forecast verification. While being standard in Atmospherical
Sciences, some terms are less common for the hydrological community and thus will be briefly explained in the following. For
more information, the reader is generally referred to textbooks such as Wilks (2005). The analysis of drought hindcasts will
focus on their quality, i.e. the correspondence of such hindcasts with observations. This quality as defined by Murphy (1993)
can be described in terms of nine different aspects of which five will be addressed explicitly in this study: accuracy as the
average agreement of forecast—observation pairs which is as such inversely proportional to the error; reliability which, in the
case of probabilistic drought forecasts, quantifies the average correspondence of forecast probabilities and observed drought
occurrences; resolution evaluating the ability of a model to correctly predict an event; sharpness describing the variability of
forecasts of a model; and skill comparing the ability of a model with a much simpler reference model, such as climatology
(which is the observed long term average of a specific variable) or persistence (i.e., no change of a variable or the pattern of a
quantity over the forecast period).

Furthermore, we distinguish process-based from statistical models. The former are rather complex computer programmes
combining a set of mathematical equations (simple, linear up to complex differential equations), which can be derived from
first order principles, e.g conservation of mass and energy. The aim here is to represent, up to a certain degree of abstraction,
the governing sub-processes of the hydrological cycle and their interactions. They compute estimates of the unknown variables
(e.g. river discharge, soil moisture, reservoir storage) as a reaction to a set of input or driving variables (e.g. precipitation, solar
radiation, water abstraction). In this paper, the underlying process-based hydrological model refers to the WASA-SED model
which is described in Sect. 3.4.1. The latter, on the other hand, rely on purely empirical relationships between one or more
predictors and the target variable, often consisting of only a single equation, typically obtained by regression. Consequently, the
regression model of Delgado et al. (2018b), which is used for model intercomparison in this study, is referred to as statistical

model or statistical approach throughout this work.
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