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Abstract. The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently

affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for wa-

ter managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or

statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and com-

pares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical5

approach.

Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accu-

racy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas

the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding

the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher10

sensitivity of model prediction performance to rainfall forecast quality.

Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of

reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space

and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can

be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model15

correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-

based hydrological models.
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1 Introduction

Drought is a type of natural hazard characterised by meteorological, hydrological, and water management conditions, affecting

many regions around the globe. Generally, it arises due to a shortage of water availability. A general valid or comprehensive

definition, however, is hardly achievable due to many different possible causes, complex relationships and feedbacks among

its determining factors and, consequently, different impacts on nature, society, and economy. As such, different categories can5

be distinguished ranging from meteorological (lack of rainfall) and hydrological (shortage of consumable water resources) to

agricultural (water deficit for crops or husbandry) and socio-economic droughts (not enough of income to pay water price).

For the characterisation of droughts, different statistics can be computed describing duration, frequency, and severity based on

various predictors and thresholds (Mishra and Singh, 2010).

The semiarid northeast of Brazil (NEB) is one of the world’s most densely populated dryland regions (Marengo et al.,10

2017). Its climate is characterised by a short rainy season with high interannual variability. As a consequence, already since

the colonisation in the 16th century, regularly occurring severe droughts causing famine and mass exodus have been reported.

Drought occurrence is primarily driven by Sea Surface Temperature (SST) anomalies in the eastern Pacific, i.e. the El Niño

Southern Oscillation (ENSO), and the northern tropical Atlantic region (i.e. the Tropical Atlantic SST Dipole) influencing the

location of the Inner Tropical Convergence Zone (ITCZ), which is the main source of rain during the rainy season in the NEB15

area (Hastenrath, 2012). Profound governmental actions for drought mitigation since the late 19th century resulted, among

others, in the construction of thousands of small reservoirs and several large dams for water storage and provision within the

dry season and during dry spells. Still, severe drought events might endanger water supply, such as happening in the current

series of drought years since 2012. Even the regular years (in terms of rainfall amount) of 2017 and 2018 were not able to

eliminate or significantly alleviate water scarcity, still resulting in filling states of the largest reservoirs of less than 10 % (for20

the current state of water provision and statistics of the state of Ceará see http://www.hidro.ce.gov.br and the drought monitor

http://msne.funceme.br). In addition, climate change is likely to aggravate water scarcity, calling for efficient strategies in the

management of water storages (de Araújo et al., 2004; Krol et al., 2006; Braga et al., 2013).

Reliable seasonal forecasting, i.e. forecasts of streamflow and reservoir storages for the upcoming rainy season, can be of

significant value for water managers (Sankarasubramanian et al., 2009). Accurate precipitation forecasts over several months25

are still a challenge for dynamical climate models. However, many dryland regions are located in areas with distinct dry and

rainy seasons, the latter often connected to large-scale atmospheric circulation patterns. Therefore, statistical models relating

meteorological or SST indices with streamflow or a combination of statistical and process-based models are applied in many

dryland regions in the world to provide seasonal forecasts (e.g. Schepen and Wang, 2015; Seibert et al., 2017; Sittichok et al.,

2018).30

For the northern NEB region, the high correlation of rainfall and droughts with SST anomalies in the eastern Pacific and

tropical Atlantic, together with correlation of pre-season rainfall offers a favourable setting for seasonal prediction (Souza Filho

and Lall, 2003; Sun et al., 2006; Hastenrath, 2012). Several studies exist for the area, typically employing one or several

(realisations of) General Circulation Models (GCMs) driven by SST predictions, downscaled to a finer scale by statistical
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or dynamical downscaling approaches, whose meteorological (especially rainfall) outputs are eventually used as forcing in

a hydrological model producing streamflow and/or reservoir level forecasts. For instance, Galvão et al. (2005), Block et al.

(2009), and Alves et al. (2012) employed different hydrological models of varying complexity to generate streamflow and/or

reservoir level predictions. While model performance over daily timescales was generally reported to be low, over longer

aggregation periods, such as at a monthly or seasonal scale, acceptable results could be achieved.5

In a recent study, Delgado et al. (2018b) investigated the use of a statistical relationship to provide seasonal reservoir level

predictions. They used the two GCMs ECHAM4.6 and ECMWF, the meteorological output of each downscaled by three

different statistical approaches, generating ensembles of wet-season (i.e. January to June) hindcasts for each year in the period

1981 to 2014. Based on these meteorological hindcasts, they calculated a number of meteorological drought indices which

are compared with observations to evaluate the skill of the predictions. Using reservoir storage as a target variable, they10

further computed hydrological drought indices and fitted a multivariate linear regression to predict these indices using the

meteorological indices as predictors. Even though there was variation among the GCM and downscaling combinations, the

occurrence of meteorological drought could mostly be predicted with skill. Furthermore, their relatively simple statistical

model was able to predict also hydrological droughts with skill. However, the absolute hindcast error was often not appreciably

better than climatology, i.e. the observed long term average of a variable.15

While being straightforward to apply and computationally advantageous, such statistical relationships, in contrast to process-

based hydrological models, do not represent underlying processes and are less flexible in terms of the output variable and their

spatial and temporal resolution. However, what remains is the question how to balance accuracy, operability, and usability

from the perspective of water managers and stakeholders. As such, this study complements the work of Delgado et al. (2018b),

employing a process-based hydrological instead of a statistical model. Thus, the aim is to present and evaluate a forecasting20

system, predicting seasonal reservoir levels and the occurrence of hydrological droughts for the Jaguaribe river basin, located

within the NEB region. Three different objectives are put to focus: First, the process-based hydrological model and the sta-

tistical model of Delgado et al. (2018b) shall be evaluated and compared in terms of reservoir level simulation performance.

Second, the process-based hydrological model as an operational forecasting tool is to be verified in a hindcast experiment.

Third, major sources of prediction and simulation errors in the modelling system are to be investigated. Thereby, the question25

whether the costly initialisation and use of a complex hydrological model is worthwhile in comparison to a much simpler

statistical relationship is to be answered and guidelines for further research and the improvement of the forecasting system

shall be given.

This study touches issues of Atmospherical Sciences, Hydrology and Water Resources Management. As terminology par-

tially differs, a clarification on certain terms used throughout the paper can be consulted in appendix, Sect. A.30

2 Study site

The study area comprises the Jaguaribe river basin in the state of Ceará, northeast Brazil (see Fig. 1). The catchment is of

crucial importance in terms of water supply for the whole state and has been intensively investigated in numerous studies (e.g.
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Bronstert et al., 2000; Gaiser et al., 2003; de Araújo et al., 2004; Krol et al., 2006; Mamede et al., 2012; van Oel et al., 2012;

de Figueiredo et al., 2016). It covers an area of about 70,000 km2 with a rural population of 2.7 million. Additionally, it is the

source of water for the metropolitan area of Fortaleza with further 2.6 million people (IPECE, 2016). Annual precipitation sums

up to, on average, 755 mm per year whereas 90 % of rainfall occurs within the rainy season between January and June. Potential

evapotranspiration is high with more than 2000 mm per year. The mean annual temperature is about 25 ◦C with little variation.5

Rainfall, however, is mostly convective with only a few events of high intensity per year and a strong inter-annual variation

caused by SST anomalies resulting in a northward shift of the ITCZ inducing recurrent droughts that can last over several years

(see also Sect. 1; Hastenrath, 2012; Marengo et al., 2017). As the geology is characterised by a primarily crystalline basement

with low-density fractures, water supply needs to be secured by surface water resources. Accordingly, thousands of small

and several large reservoirs were constructed. The small reservoirs are typically bordered by uncontrolled earth dams, mainly10

serving for water provision of rural population and livestock. Conversely, large so-called strategic reservoirs contain a barrage

with intake devices for active regulation, are sometimes also used for hydropower production, and serve as water ressources

for larger towns and cities and industrial farming. These settings cause meteorological droughts (lack of precipitation) and

hydrological droughts (lack of surface water) to be often out of phase (de Araújo and Bronstert, 2016; van Oel et al., 2018).

For the present study, the Jaguaribe catchment was subdivided into five sub-regions, named after the main tributary river or15

the major reservoir at its outlet: Banabuiú, Orós, Salgado, Castanhão, and Lower Jaguaribe (see Fig. 1 for their location).

3 Data and Methods

3.1 General workflow

The aim of this study is to elucidate the application potential of a process-based hydrological model for water ressources and

drought prediction. Consequently, hindcasts of reservoir volumes and hydrological drought indices shall be produced, driving20

the model by meteorological hindcasts. The general workflow is illustrated in Fig. 2.

A process-based hydrological model was first calibrated to observations and an initial model run conducted for the period of

1980 until 30 June 2014. This initialisation run was driven by observed meteorology and at each 1 January the storage volume

of each strategic reservoir was replaced by the observed value. Furthermore, if available, measured reservoir releases through a

dam’s intake devices were fed into the model in order to make use of as much information as available to produce simulations25

as realistic as possible. The first year of the run was used as a warm-up to bring the model states into equilibrium. At each

end of year, the model’s state variables, including soil moisture, groundwater, river, and small (i.e. non–strategic) reservoir

storages, were stored. This entire procedure is intended to mimic the conditions in a real forecast situation.

In a specific hindcast run, the model was then re-initialised with the saved model states and driven by hindcast meteorology.

These runs were conducted successively for the wet seasons (1 January to 30 June) of 1981 to 2014. The resulting strategic30

reservoir volumes were used to infer drought indices which were evaluated employing verification metrics. To distinguish

uncertainties from the meteorological hindcasts and in order to investigate mere model performance, the model runs were

performed in two ways: driven by observations (simulation mode) and meteorological hindcasts (hindcast mode).
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Figure 1. Overview over the Jaguaribe watershed (c) and location within Brazil (b) and South America (a). The five regions of interest (red

numbers) are: 1) Lower Jaguaribe, 2) Banabuiú, 3) Castanhão, 4) Orós, and 5) Salgado. Thin black lines in c) outline subbasins, computational

units within the model. Black dots are rainfall stations considered within the study. Background grid lines refer to the gridded meteorological

dataset of Xavier et al. (2016).

The runs were conducted for both the process-based model initialised and calibrated within this study and a statistical model,

which is a regression approach derived by Delgado et al. (2018b) for the same study area. Consequently, verification metrics

were calculated and analysed for both model approaches and both forcing modes.

In order to identify the strengths and weaknesses of the process-based model, the results of the simulation runs were further

analysed. In this context, the model output (reservoir storage) was stratified. The details of the individual processing steps are5

described in the following.

3.2 Data

To parametrise the hydrological model, various spatial data were obtained including a 90 m x 90 m SRTM digital eleva-

tion model (DEM), a soil map provided by the research institute for meteorology and water resources of the state of Ceará

(FUNCEME) along with soil parameters from a local database (Jacomine et al., 1973) from which the necessary model param-10

eters were calculated employing pedo-transfer functions, a landcover map from the Brazilian Ministry for the environment with
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Figure 2. Workflow for the generation and evaluation of hindcasts of hydrological drought indices.

parametrisations assembled by Güntner (2002), and a map of small and strategic reservoirs provided by FUNCEME. Reservoir

parameters were made available by the Company for Water Resources Management of Ceará (COGERH) and FUNCEME and

include the year of dam construction, storage capacity, and water level–lake area–storage volume relationships along with daily

resolution time series of water levels and artificial water release. A time series of daily precipitation for 380 stations within

and in close vicinity around the study area were provided by FUNCEME. Other daily meteorological time series needed by5

the model (relative humidity, air temperature, and incoming shortwave radiation) were derived from the gridded dataset (0.25°

× 0.25° resolution) of Xavier et al. (2016).

3.3 Meteorological hindcasts

Daily meteorological hindcast data for the period 1981 to 2014 used as input into the hydrological model stem from an ensemble

(20 members) of ECHAM4.6 GCM runs (Roeckner et al., 1996) which were bias corrected by Empirical Quantile Mapping10
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(EQM) (Boé et al., 2007; Gudmundsson et al., 2012). Although Delgado et al. (2018b) identified some deficiencies regarding

this product, there was no clear better performing alternative. In addition, ECHAM4.6 is already employed operationally by the

local water authority FUNCEME (Sun et al., 2006), and, in contrast to other seasonal forecast systems like those by ECMWF,

it comes without further costs for operational use, making it the candidate for future operational application. The 20 member

ensemble runs of ECHAM4.6 were conducted and results provided by FUNCEME. More information are given in Delgado5

et al. (2018b).

3.4 The process-based model

3.4.1 Introduction to WASA-SED

The hydrological model WASA-SED, version rev_257, was employed for the process-based hindcasts of reservoir volumes.

WASA-SED is a deterministic, process-based, semi-distributed, time-continuous hydrological model. The representation of10

hydrological processes focuses on dryland environments. A complex but efficient hierarchical spatial disaggregation scheme

allows for application over large scales up to an order of magnitude of 100,000 km2 (Güntner and Bronstert, 2004; Mueller

et al., 2010). Reservoirs can be simulated by treating large strategic reservoirs in an explicit manner while representing smaller

ones as lumped water bodies of different size classes to efficiently account for water retention of many small reservoirs in a

study region (Güntner et al., 2004). The model was developed for and successfully applied in the semiarid areas of northeastern15

Brazil (Medeiros et al., 2010; Krol et al., 2011; de Araújo and Medeiros, 2013; Medeiros et al., 2014) and used for other dryland

regions, such as in India (Jackisch et al., 2014) and Spain (Mueller et al., 2009, 2010; Bronstert et al., 2014).

3.4.2 Model parametrisation and calibration

The model was parametrised using the lumpR package for the statistical environment R (Pilz et al., 2017). This included

the delineation of catchment and model units, assembly, calculation, and checking of parameters, and the generation of the20

model’s input files. Meteorological data were interpolated to the respective spatial units (sub-basins). For rainfall, this step

used the Thiessen Polygon method as implemented in the Information System for Water Management and Allocation (SIGA)

(Barros et al., 2013). For the other meteorological variables, Inverse Distance Weighting (IDW) from the R package geostat

(Kneis, 2012) was used. Reservoir data were processed and prepared for the model. A total of 36 strategic reservoirs within the

study area was selected for explicit treatment in the model according to their size and importance for water management.25

The model was calibrated independently for each of the five regions in the study area (see Fig. 1). Calibrated output of up-

stream regions was used as boundary condition for downstream regions. Due to lack of data for Lower Jaguaribe, the calibrated

parameters of Castanhão were transferred. However, sufficient data were available for further analyses. The calibration period

spanned 2003 to 2010, which includes both wet (2004 and 2009) and dry (2005, 2007, and 2010) years.

Daily reservoir volume increase of the strategic outlet reservoir of a specific region was used as target variable as reservoir30

level measurements were assumed to be more reliable than streamflow observations. Streamflow in the area is highly variable

and rivers, especially in the downstream part of the catchment, are characterised by broad and dynamic cross sections and dense
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riparian vegetation inducing large uncertainties in streamflow measurements derived from rating curves. However, reservoir

management has a strong impact on reservoir dynamics and only a limited amount of data on artificial releases were available,

while there was even no information on overspill (which does not often occur at the large strategic reservoirs) and only rough

estimates of withdrawals. To minimize the impact on calibration, only positive volume variations (i.e. net reservoir volume

gain), which are effectively caused by runoff draining into the reservoirs, were considered for calibration. Therefore, daily5

net losses of volume, which are largely determined by such management influences, were set to zero and therefore effectively

excluded from the calibration. However, for region Salgado, streamflow measurements had to be used as this specific region

does not contain a strategic reservoir at its outlet.

In total, 15 parameters were chosen for calibration. As objective function, a modified version of the Nash–Sutcliffe Efficiency

(NSE) called Benchmark Efficiency (BE) following Schaefli and Gupta (2007) was employed. It is calculated as10

BE = 1−
∑N

t=1(qobs(t)− qsim(t))2∑N
t=1(qobs(t)− qbench(t))2

(1)

with t being the index of time containing N time steps within the calibration period, qobs are the observations, qsim the

simulations, and qbench, instead of being the average of the observations as in the traditional NSE, represents the mean of the

observations for every Julian day over all years within N (i.e. the mean annual cycle). In this way, a value of BE > 0 means the

model is able to reproduce the average yearly dynamics better than simply using statistics. Consequently, a value of BE = 115

signifies perfect agreement of simulations with measurements. Eventually, BE as performance measure employs a much stricter

criterion on simulated hydrological dynamics compared to using the NSE measure.

For calibration, the Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) implemented in the

R package ppso (Francke, 2017) was used. Since DDS was developed for computationally demanding hydrological models it is

able to obtain satisfying results within the order of 1,000 to 10,000 model calls. For this study, the number of calls was limited20

to 5,000 for every region which resulted in about 10,000 hours of CPU core processing time on a high performance cluster.

3.4.3 Analysis of simulation performance and influencing factors

An objective of this study is to analyse the simulation performance of the process-based model in more detail and to identify

possible influencing factors. Instead of using a single goodness of fit measure, as for automated calibration, different aspects of

model performance should be investigated. Therefore, the Kling–Gupta Efficiency (KGE) was chosen as performance measure25

along with its three components correlation, bias, and deviation of standard deviations of simulations and observations, see

upper part of Table 1. Like NSE and BE, KGE scales from minus infinity to one where one is the optimum value achieved for

maximum correlation (i.e. COR = 1) and no deviation of means and standard deviations. To assess which factors influence the

model performance, several candidate descriptors where selected which are presented in the lower section of Table 1. These

descriptors were tested for their capability to explain model performance in time and space in a regression approach by using30

these descriptors as predictors and the performance metrics as the response variable.

For the analysis, the calibration period 2003 to 2010 was used. Each response variable (i.e. performance metric) was calcu-

lated for each of the 36 strategic reservoirs located in the study area. Furthermore, each year was divided into a falling period,
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where the difference of reservoir levels for two consecutive days was negative, and a rising period where the difference was

greater than or equal to zero. For each reservoir, year, and period, the respective performance was computed and analysed

separately. This resulted in a total of 32 reservoirs times 8 years times two periods minus some missing observations, i.e. 484

values to be aggregated for each response variable. The predictors were either static and unique for each reservoir (upstream

catchment area Aup, reservoir capacity Vcap, number of upstream reservoirs nresup), region specific and dynamic as aggrega-5

tion over a certain amount of time (maximum daily precipitation Pmax, regional precipitation sum Preg , regional precipitation

over the last 12 months P12 and over the last 36 months P36) or a grouping variable by itself (reservoir level is currently rising

or falling ∆vol) (see also Table 1 for more information).

To identify predictor importances and their influence on the performance measures, a random forest analysis was conducted

using the R package party (version 1.3-1). In general, random forests consist of an ensemble of regression trees, where each10

tree was fitted using a bootstrap sample of the original training dataset and only a sub-sample of all available predictors. In that

way to overcome typical problems of traditional regression tree approaches, such as a high sensitivity to small changes in the

data and the likelihood of overfitting (Breiman, 2001). For this study, a refined random forest algorithm was employed, which

is better suited for predictors of different types (e.g. mixed categorical and continuous) and produces more robust measures of

predictor importance in case of correlated variables (Hothorn et al., 2006; Strobl et al., 2007, 2008).15

For each response variable, an individual random forest was built. Except for ∆vol (categorical), each predictor and response

variable was treated as numerical. To generate robust estimates of predictor importance, 1,000 tress were built per forest

(otherwise standard parameter values of the algorithm were used). The most important predictors for a certain response were

then distinguished by the importance measures, where it was explicitly accounted for correlation among the predictors. In order

to get an impression of the concrete effect of each predictor, the two leaf nodes with the highest and lowest median response20

values for each tree were identified. For these two nodes, the ranges of each numerical predictor (except ∆vol) were classified

into four groups ranging from small to large to facilitate visual investigation.

3.5 The statistical model: a regression approach

A goal of this study is to answer the question whether a complex process-based simulation model is worthwhile in comparison

to a much more convenient statistical approach. To achieve this, an regression approach introduced in Delgado et al. (2018b)25

for the same study area was employed. They fitted a multivariate linear regression (MLR) model individually for each sub-

region. As response variable for model fit monthly regional volume changes were used (approach M2 in Delgado et al., 2018b).

Possible predictors were meteorological drought indices (standardised precipitation index (SPI) and standardised precipitation–

evapotranspiration index (SPEI)) aggregated over time periods of 1, 12, and 36 months, respectively. The best model with

specific predictor selection for each sub-region was determined by employing a heuristic search algorithm. The resulting30

equations are presented in Table 2.

To generate hindcasts, the predictors of the equations (the SPI and SPEI values over different time horizons) were calculated

on a monthly scale to obtain monthly forecasts of regional reservoir volume changes for each rainy season of the hindcast period

(1981 to 2014). Regional storage volume values could then be obtained by successively adding predicted volume changes to

9



Table 1. Response and predictor variables used for the analyses of the process-based model performance.

Abbrev. Explanation

Responses

KGE Kling–Gupta Efficiency (Gupta et al., 2009): 1−
√

(COR− 1)2 + BIAS2 + VAR2

COR Pearson correlation of simulations y and observations o: cov(y,o)
σyσo

with cov being their covariance and σ their standard deviations

BIAS Deviation of means µ: µy

µo
− 1 ∈ [−1,∞)

VAR Deviation of variability: σy
σo
− 1 ∈ [−1,∞)

Predictors

Aup Upstream catchment area of the reservoir (km2)

Vcap Reservoir volume capacity (hm3)

nresup Number of upstream reservoirs (-)

∆vol Rising or falling period of reservoir volume (-)

Pmax Maximum regional daily precipitation sum over rising / falling period of a year (mm)

Preg Regional precipitation sum over rising / falling period of a year (mm)

P12 Regional precipitation sum over the entire previous year (mm)

P36 Regional precipitation sum over 36 months of the preceding years (mm)

Table 2. Regional equations used for the calculation of monthly volume changes with the statistical approach. Table extracted and extended

from Delgado et al. (2018b) (Table A1). Details and abbreviations see text.

Region Formula R2

Lower Jaguaribe 0.689 + 2.222SPI1 + 0.035 SPI36
SPI12

+ 2.116SPI1SPI12 + 1.075SPI12 SPI12
SPEI12

+ 0.286SPI1 SPI12
SPEI36

0.38

Orós 0.416 + 2.428SPEI1SPI1 + 2.233SPI1SPI12− 0.173SPI36 SPEI36
SPEI12

+ 4.197SPEI1 SPI12
SPEI12

− 0.003 SPEI36
SPEI12

SPI36
SPI12

0.36

Salgado −0.377 + 2.002 SPI12
SPEI12

+ 2.454SPEI1SPI1 + 2.600SPEI1SPI36 + 4.203 SPI12
SPEI12

SPEI1 + 0.314SPI1 SPI36
SPEI12

0.45

Castanhão 2.947 + 3.468SPI1− 1.147 SPI1
SPEI1

− 1.270 SPI1
SPEI1

SPEI36− 0.791SPI1 SPI36
SPEI12

+ 1.412SPEI12 SPI36
SPEI36

0.21

Banabuiú 4.812 + 4.638SPI1− 13.853SPI12− 2.293SPI12SPEI36 + 15.317SPEI12 SPI36
SPEI36

− 0.341 SPI36
SPEI36

SPI12
SPEI36

0.23

the measured value of December of the previous year, which served as a base value for each rainy season. Even though the

shown model fits for monthly volume changes were rather poor (low R2 values in Table 2), the derived absolute reservoir level

values were in good agreement with measurements (Delgado et al., 2018b).

To compare the mere simulation performances, both the process-based and the statistical model were first driven by observed

meteorology to exclude the effect of the downscaled GCM runs. In a second step, the two approaches were evaluated for real5

hindcasts.
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3.6 Drought hindcasting

3.6.1 Hydrological drought quantification

As water stored in surface reservoirs is of primary importance to water supply, hydrological drought indices based on surface

reservoir filling level appear to be the most adequate choices to identify and characterise hydrological droughts in the study

area. Thus, in line with Delgado et al. (2018b), for the quantification of hydrological droughts the regionally and monthly5

aggregated reservoir storage was defined as drought indicator:

It =

∑Rj

i=1V
i
t∑Rj

i=1V
i
cap

(2)

with t being the time index, V i
t the volume stored in reservoir i of a certain region Rj (i.e. one of the five sub-regions of interest

illustrated in Fig. 1), and V i
cap the storage capacity of that reservoir. This metric was calculated for each of the five regions of

interest (R) and each month of the hindcast period (wet seasons, January to June, of 1981 to 2014). For each month the last10

daily value was taken.

A drought was then defined as

Dt =

1 if It < q0.3

0 if It ≥ q0.3

(3)

where D = 1 denotes drought, D = 0 indicates no drought, and q0.3 is the 0.3 quantile of I over the hindcast period. The

definition of q0.3 is based on the choice of local decision makers who defined this value as warning threshold for reservoir15

scarcity. In Sect. 5.1 the impact of this decision will be discussed. The threshold was applied to each region individually and,

thus, resulted in regionally different drought thresholds. As such, the results of this study will be comparable to the work of

Delgado et al. (2018b).

3.6.2 Verification of drought hindcasts

Hindcasts of reservoir volumes (V i
t ) and, consequently, the hydrological drought index (It) were verified employing the Root20

Mean Square Error (RMSE), the Relative Operating Characteristic Skill Score (ROCSS), and the Brier Skill Score (BSS).

Definitions and discussions of the various forecast verification metrics can be found in textbooks such as Wilks (2005). In the

following, short explanations for each selected measure shall be given.

The RMSE is a deterministic measure and was derived by calculating the root of squared differences of hindcasts and

observations averaged over all values of the hindcast period:25

RMSE =

√√√√ 1

N

N∑
t=1

(Ift − Iot )2 (4)

where N is the number of forecasted time steps and the superscripts f and o denote forecast and observation, respectively.

It was calculated multiple times by using as Ift each GCM member individually and, in addition, the median of members as

11



deterministic value. The metric quantifies the average magnitude of hindcast errors in units of the target variable, i.e. in this

case regional reservoir storage in percent points, and is therefore useful for the interpretation of suitability of the model for

water managers who rely on accurate forecasts of volumes to coordinate reservoir operation. As such, the RMSE refers to the

attribute of accuracy. The lower the RMSE, the lower the forecast error and the higher the accuracy.

The Relative Operating Characteristic Skill Score (ROCSS) quantifies the ability of a model to correctly discriminate be-5

tween events and non-events. In this context, an event is defined as a hydrological drought which, in turn, is distinguished by

the drought index falling below the 0.3 quantile (q0.3) as explained above. The ROCSS is based on the ROC curve which plots

the probability of event detection against the false alarm rate for different thresholds of forecast probability defining an event.

Taking the Area Under the Curve (AUC) of this graph, the skill score can be calculated as

ROCSS = 2 ·AUC− 1 (5)10

The value ranges between −1 and 1 with values lower than or equal to zero indicating the false alarm rate being greater than

or equal to the probability of event detection and, thus, the model having no skill. A value of one represents the highest score,

i.e. the model is able to predict every event and non-event correctly. As such, the ROCSS is a measure for event resolution of

probabilistic forecasts.

The Brier Score (BS) measures the mean squared error of probabilistic forecasts and indirectly contains information about15

reliability, resolution, and the variability of observations (the latter being commonly referred to as uncertainty). As such it can

be calculated as

BS =
1

N

N∑
t=1

(Df
t −Do

t )2. (6)

The corresponding skill score (BSS) compares the BS of a forecast model with that of a simple reference forecast, in our case

climatology:20

BSS = 1− BS
BSreference

(7)

with BSreference = 0.3, corresponding to q0.3, the initially defined long-term average probability of drought occurrence (as

described above). It follows that BSS ∈ (−∞,1] and a forecast model having skill relative to the reference model if BSS > 0.

4 Results

4.1 Comparison of model performance in simulation mode25

Figure 3 compares the performances of the process-based and statistical model in simulating relative regional reservoir storage

driven by observed meteorology. The regional RMSE varies between 5 and 18 percent points whereas for the whole catchment

both modelling approaches achieve a result of about 13 percent points. Overall, the performance differences between the two

models are small for all regions. Only for Salgado the statistical model shows a lower RMSE compared to the process-based

12
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Figure 3. Comparison of accuracy in predicting relative reservoir storage for the process-based and statistical model in simulation mode

(i.e. run with observed forcing). The underlying analysis period comprises monthly values of the rainy season (January to June) over the

hindcast period (observations available since 1986 until 2014 with some data gaps in between, resulting in a maximum of 174 values for

each sub-region).

model and the difference among the two approaches is largest (6 percent points). For all other regions, the process-based

model exhibits a slightly higher accuracy, and the inter-regional ranking is equal for both approaches. Generally speaking, both

models show a comparable performance, suggesting they are equally suitable for their application in hindcast mode.

4.2 Comparison of model performance in hindcast mode

The uppermost panel of Fig. 4 shows that in hindcast mode, the accuracy in terms of RMSE considerably decreases when5

compared to simulation mode for both types of models. However, in contrast to the situation in simulation mode, the statistical

approach outperforms the process-based model for all regions. While for the statistical model, deterioration in terms of RMSE

is generally less than 10 percent points, the process-based model achieves significantly lower accuracy with increasing RMSE

by up to almost 30 percent points. This degradation of model performance in hindcast mode for the process-based model is

especially pronounced for the Banabuiú region.10
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The lower two panels of Fig. 4, however, demonstrate that both approaches are able to generate drought hindcasts with skill.

The resolution of event hindcasting of the two models (i.e. the ROCSS) is very similar combined over the whole catchment.

Regional differences are more pronounced but still negligible. For some regions the process-based, for other regions the sta-

tistical model performs slightly better. The BSS, while also indicating skill, shows lower performance values which can be

attributed to lacks in accuracy (as already indicated by RMSE) and reliability.5

An attribute plot, as the one presented in Fig. 5, can reveal more details on that issue. Therein, the predicted probability

of drought occurrence (obtained from the outcomes of individual ensemble members) is plotted against the relative frequency

of observed drought occurrences (solid lines) together with the relative prediction frequency of a certain forecast probability

interval (dotted lines). It demonstrates several verification attributes including resolution (the flatter the solid lines, the less

resolution), reliability (agreement with the gray diagonal line), sharpness (dotted coloured lines), and skill (values within the10

gray region contribute positively to BSS; for unclear terms see appendix Sect. A or consult textbooks such as Wilks (2005)).

Apparently, predictions from both models contain skill except for low forecast probabilities where both models contribute

negatively to BSS. Furthermore it can be seen that both approaches exhibit problems in terms of reliability. Specifically,

forecast probabilities are too low compared to observed occurrences, which is generally denoted as underforecasting. This

observation appears to be a bit more pronounced for the process-based than for the statistical model. That also holds true for15

sharpness, as the statistical approach shows slightly more confidence for higher forecast probabilities, i.e. the relative frequency

of maximum forecast probability is higher.

4.3 Model performance attribution

4.3.1 Hindcasts

The monthly aggregated accuracy of the hindcasts, i.e. performance with increasing lead time, is shown in Fig. 6. Overall, the20

hindcast error (i.e. RMSE) increases with lead time (i.e. progression of the wet season), even when using observed forcing.

The statistical approach generally produces better hindcasts. Its RMSEs differ only little from runs with observed forcing. Also

the increase of RMSE with lead time is very similar. For the process-based model, hindcasts deviate clearly from observation

based results (as was already shown in Fig. 4). The error increases much stronger over the hindcast horizon. However, its

RMSE values reach a plateau at about 40 percent points in March. Generally, it can be seen that aggregating the ensemble25

members by using the median of reservoir storage hindcasts (solid lines) is usually a better choice than most of the single

ensemble members (distributions shown as boxplots). The spread of ensemble member results differ for the two approaches.

These ranges are clearly larger for the process-based model in January and February, but comparable for the other months.

In Fig. 7 prediction accuracy is assessed for different wetness conditions (i.e. dry, normal, wet) over different accumulation

time periods for rainfall. Again, when driven by meteorological hindcasts, the statistical approach performs best with relatively30

small differences to results obtained using observed forcing. Under wet conditions, irrespective of the rainfall accumulation

period, the error is highest for most settings. The only exception from this pattern shows the process-based model driven by
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Figure 4. Model performance in hindcast mode for the two model approaches. In the top panel, horizontal dashed lines in the bars mark the

results obtained with observed forcing (simulation mode, as in Fig. 3). Note that for RMSE low values indicate a better performance while

for ROCSS and BSS higher values are favoured.

hindcasts. Here, the error under dry preconditions increases with increasing rainfall accumulation length while the performance

under wet preconditions improves with longer accumulation length.

4.3.2 Process-based simulation performance

In the preceding subsections it was shown that the process-based model does not outperform the statistical approach. Moreover,

in hindcast mode, the process-based model often achieved worse performance measures, especially in terms of accuracy. This5

subsection therefore aims at the identification of deficit causes by analysing the results of process-based model calibration and

potential influencing factors of simulation performance in more detail.
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Figure 5. Attribute plot of drought hindcasts aggregated over the whole study area. Values within the gray region contribute positively to the

Brier Skill Score (BSS). For details on the interpretation of the plot see text.

Regional calibration performance of the process-based model is summarised in Table 3. A good overall agreement of sim-

ulated and observed reservoir dynamics in terms of BE values could be achieved during calibration. However, PBIAS as a

performance metric not used in the calibration shows, on the one hand, acceptable values of no more than 12 % but, on the

other hand, a consistent slight overestimation of reservoir level dynamics. It can be further observed that a good BE value does

not correlate with a low PBIAS.5

To gain more insight into process-based model performance and its influencing factors, a random forest analysis was con-

ducted. Figure 8 illustrates the importance of each potential predictor for different performance metrics. Apparently, overall

model performance (here measured via KGE) primarily depends on the wetness preconditions (P36). While reservoir size

(Vcap) plays only a minor role for the overall performance metric KGE, it clearly affects correlation and bias. (Mis-)match of

standard deviation (VAR), however, is mainly determined by both wetness conditions and reservoir size. Overall, long reach-10

ing antecedent wetness condition (P36) is more important than the conditions of the preceding 12 months (P12) and reservoir

capacity (Vcap) is dominant over upstream catchment area (Aup) although the latter not being negligible. The current rainfall
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Figure 6. RMSE of regional reservoir storage hindcasts with increasing forecast horizon / lead time. Monthly values are obtained by ag-

gregation over the full analysis period (1986 to 2014) for a specific month. Each box reflects the distribution of the 20 ensemble members.

Coloured solid lines refer to the ensemble median taken as deterministic forecast and analysed individually.

conditions in terms of intensity (Pmax) and sum over a rising / falling period (Preg) as well as whether it is a reservoir level

increase or decrease period (∆vol), and the number of upstream reservoirs (nresup), show little or no explanatory value for any

of the performance measures.

To analyse the specific influence of predictors on the response variables, Fig. 9 relates the values of the most influential

predictors to the corresponding performance measures. This is done by plotting the occurrences of predictor categories in the5

highest and smallest valued leaf nodes of all regression trees within the random forest. It shows that under dry preconditions

(P36 = min) there is a tendency for underestimation of standard deviations (VAR = min), i.e. a less variable reservoir stor-

age series than observed, but a better a better overall performance (KGE = max). On the other hand, under wet conditions,

especially for larger upstream catchments (Aup = high), results tend to show an overestimation of variability (VAR = max),

whereas under dry conditions in small catchments, variability is more often underestimated. For small reservoirs correlation is10

mostly low. It should be noted, however, that relationships cannot always be clearly distinguished. For instance, a low precipi-

tation sum over the preceding year (P12) may result in both a high and a low KGE value whereas very low precipitation over

the preceding 3 years (P36) only led to a high KGE. Furthermore, there is no relationship between reservoir capacity and KGE.
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Figure 7. RMSE of regional reservoir level hindcasts for different antecedent wetness conditions. Wetness is expressed by three different

accumulation horizons of rainfall (1, 12, and 36 months; left, centre, right). Each box reflects the distribution of the 20 ensemble members.

Coloured solid lines refer to the ensemble median taken as deterministic forecast and analysed individually.

Table 3. Results of regional calibration of the process-based model. BE refers to Benchmark Efficiency (Eq. 1) and was used for calibration;

PBIAS is percent bias, i.e. the average tendency for over- or underestimation of simulations in comparison to observations. For Lower

Jaguaribe, no observations at the catchment outlet were available.

Region BE PBIAS (%)

Banabuiú 0.84 11.78

Orós 0.76 0.92

Salgado 0.79 7.37

Castanhão 0.76 6.93

Lower Jaguaribe [no obs.] [no obs.]

5 Discussion

5.1 Robustness of performance metrics

There are two important algorithmic parameters affecting drought predictions of this study. One is the threshold of drought

definition, i.e. the quantile of drought index observations specifying a drought, which was set to 0.3 as commonly used in

the study area among water managers. This choice affects the performance values of BSS and ROCSS. The other is the5
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number of probability bins into which hindcasts are grouped for further analysis, affecting ROCSS but not BSS as BS was

herein calculated without probability binning (see Eq. 6). Figure 10 illustrates the sensitivity of verification attributes to the

two parameters. It shows that a higher drought threshold results in a more evenly running curve while a smaller threshold of

0.2 tends to be better oriented towards the reliability line and appears more variable (Fig. 10 a). This might result from the

necessarily lower number of values of smaller thresholds. However, altogether general conclusions remain untouched, namely5

underforecasting and the statistical being superior to the process-based model. Regarding the number of probability bins (Fig.

10 b), a larger value leads to a more variable curve. This effect can be attributed to the decreasing number of values per bin

with increasing number of bins. For this study, it was decided to use a value of seven as it appears to be the best compromise

between sufficient data availability per bin and an adequate number of bins for further calculations (namely ROCSS). Even

so affecting the values of ROCSS and partly BSS (not shown), it can be concluded that the somewhat arbitrary decision on a10

certain drought threshold and the number of bins, as long as reasonable values are chosen, does not affect the general results

of the analysis.

The RMSE as accuracy measure is free of such decision parameters but is admittedly influenced in a different way. With the

target variable (relative regional reservoir filling) ranging from 0 to 100 percent points, the actual maximum value tends to be
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Figure 9. Relative distribution of predictor class occurrences within the largest and smallest valued leaf nodes aggregated over all regression

trees of the random forest for each response variable. Shown are only the most important predictors.

smaller during wet periods: the observed value (which is usually greater than zero) effectively causes the metric to be limited

to about 40 to 50 percent points. This effect is reflected as the apparent performance plateau for the process-based model in

Fig. 6 and is also likely to affect the results presented in Fig. 7. The effect that, when driven by hindcasts, the process-based

model exhibits larger errors under dry than under wet conditions, can at least partially attributed to this issue. In contrast,

when models are driven by observations, it seems reasonable that model simulation performance is generally better under dry5

conditions (Fig. 7). However, as no threshold effects can be observed and the RMSE values are always considerably lower for

the statistical model, this effect should not influence general conclusions of the model comparison.

5.2 Model comparison

In terms of simulation accuracy when driven by observations and for drought event prediction in the hindcast mode, both

models perform equally well. Hindcast accuracy, however, is substantially lower for the process-based approach. This result10

is well in line with findings of other studies that simple statistical model approaches often perform equally well or even better
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Figure 10. Reliability plots for different settings of (a) drought thresholds and (b) number of probability bins. Solid lines refer to the values

used in this study. The gray 1:1 lines in each plot illustrate perfect reliability for comparison.

than complex process-based prediction systems, especially in tropical regions due to well exploitable correlations among

meteorological and hydrological variables (Block and Rajagopalan, 2009; Hastenrath, 2012; Sittichok et al., 2018). It has

to be noted, however, that the process-based approach with the WASA-SED model achieved acceptable results on monthly

(hindcasts) and even daily (calibration metrics) time scales whereas former studies in NEB reported passable results only

aggregated over seasonal scales (Galvão et al., 2005; Block et al., 2009; Alves et al., 2012).5

The reason for the discrepancy of model ranking between simulation and hindcast mode can be attributed to the different

model structures. To illustrate this, Fig. 11 shows the average monthly changes of regional reservoir storage for the different

models and modes in comparison to observations. For the simulation mode (dashed lines) it can be seen that the process-based

model, though exhibiting a constant overestimation, all in all is well in line with observations. The statistical model, however,

shows a more or less constant storage change over the whole simulation horizon, resulting in over- and underestimations and,10

eventually, a good overall simulation performance (see Fig. 3). In hindcast mode (solid lines), for the process-based model the

overestimation of storage change is much more pronounced and the peak shifted from April to March. Although the statistical

model now more realistically exhibits seasonal dynamics, the general pattern still appears too smooth, which effectively results

in less deviation from observations than the output of the process-based model (Fig. 4). This indicates a strong influence of

precipitation forcing on the process-based model while the statistical approach generally reacts more damped on rainfall input.15
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Figure 11. Monthly changes of regional reservoir storage averaged over all regions, years, and hindcast members for the two models and

application modes in comparison to observations.

Consequently, deficiencies in this forcing affect the process-based model much more. This, in addition to the plateau effect

discussed in Sect. 5.1, explains the more diverse RMSE values among the hindcast realisations for the process-based model at

the beginning of the rainy season when reservoirs are filling up (Fig. 6) and the higher RMSE under antecedent dry conditions

(Fig. 7 middle and right panels). In contrast, for the statistical model, the general patterns of RMSE over different lead times or

under different antecedent moisture conditions do not change in hindcast mode when compared to simulation mode. The issue5

of uncertainties arising from defective precipitation forcing will be later on discussed in more detail.

Despite the lower prediction performance, the process-based approach still provides benefits over the statistical model. This

includes the potential access and investigation of multiple spatially distributed hydrological variables with daily resolution,

such as evapotranspiration, runoff generation, or streamflow, which were generated during the model runs. This clearly excels

over the statistical model, which only yielded predictions of a single target variable. Another advantage is that model output is10

not only provided in a regionally and monthly aggregated manner, as for the statistical approach, but for all individual strategic

reservoirs in the area as daily time series. Figure 12 illustrates that accuracies of individual reservoirs exhibit a slightly larger

variation, but the RMSE’s of individual reservoirs are at a similar level as when regionally aggregated. This suggests that most

of the single reservoirs can be modelled with a comparable performance as the regionally aggregated values.

A further advantage of a model such as WASA-SED is that underlying processes are directly represented. As such it can be15

of higher value to water managers interested not only in streamflow or reservoir level forecasts but also in the investigation of

process behaviour or assessments under changing boundary conditions. Therein the model could be used in scenario analyses,

such as climate change impact assessment, or sensitivity analyses of, for instance, uncertain meteorological input to detect
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Figure 12. Comparison of accuracies of the process-based model for different spatial aggregation levels on a monthly time scale.

critical streamflow or reservoir stages. Furthermore, the model is transferable and can be easily applied in different regions and

over different spatial and temporal scales, only limited by computational resources and available input data.

5.3 Deficiencies of the process-based simulation approach

To improve the performance of the process-based model it is first necessary to identify sources for simulation inaccuracies.

It was shown that the process-based model achieved regionally different performances. A comparison of Fig. 3 and Table5

3 reveals that regional bias during the calibration period is in compliance with the ranking of regional simulation errors.

Moreover, although exhibiting the highest BE value, region Banabuiú is characterised by the largest bias during calibration and

highest simulation and hindcast errors. As the latter is observed for both the process-based and statistical approaches, the reason

is suspected to originate from uncertainties in observations, i.e. precipitation measurements within the region, or defective

reservoir level acquisition. The reason for Salgado region being out of the general pattern for the process-based model certainly10

originates from the different calibration procedure applied here, namely the use of streamflow measurements in contrast to

reservoir dynamics as for the other regions. In addition, the region is distinct from other parts of the catchment in terms of

environmental settings such as larger groundwater influence and sedimentary plateaus in the headwater area. Conversely, the
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transfer of the calibrated parameters from Castanhão to the Lower Jaguaribe region seems justifiable as the simulation error

was small. Overall, reservoir size largely influences both simulated storage time series and bias. Model performance, however,

appears to be not superior for large reservoirs. Moreover, wetness condition in terms of antecedent rainfall sums over the last

36 months is of major importance, i.e. dry conditions lead to the best model performance in terms of KGE. The latter is not

surprising as rainfall in the study area is extremely heterogeneous both in space and time, usually characterised by convective5

heavy precipitation events with short durations. Thus, prolonged periods without rain constitute a spatially more homogenous

input. Conversely, the aggregation of rainfall to daily sums and interpolation over subbasin units, on average covering an area

of about 700 km2, must necessarily induce uncertainties. The assimilation of observed reservoir filling states at the beginning

of each hindcast season is therefore a reasonable approach to improve predictions and compensate for preceding rainfall input

uncertainties during the initialisation run.10

5.4 Potential improvements

There are several options to make use of the findings of this study and improve the forecast system in upcoming applications. In

the presented study, observed reservoir level data were assimilated into the process-based model to correct the initial conditions

for the hindcast runs by simply replacing model states by measurements. For assimilation, more formal approaches already

exist such as the rich families of Kalman and particle filtering approaches (e.g. Liu and Gupta, 2007; Komma et al., 2008;15

Vrugt et al., 2013; Sun et al., 2016; Yan et al., 2017). These, however, require a profound quantification of both simulation and

observation uncertainties and, thus, many additional information and, moreover, significantly higher expenses in terms of data

preparation, processing, and model application. Nevertheless, they hold the potential to better account for uncertainties in the

observations, which were disregarded in this study, despite being considerable.

Pre-processing schemes in the context of hydrological forecasting usually focus on the improvement of rainfall predictions20

used as main drivers for hydrological models (e.g. Kelly and Krzysztofowicz, 2000; Reggiani and Weerts, 2008; Verkade et al.,

2013). This is partly already included in the downscaling scheme applied to GCM products but may as well be further extended.

The importance of rainfall forcing on model results, especially for the process-based approach, was already addressed above.

A further comparison of the statistical properties (distribution of daily sums, dry/wet spell lengths) of rainfall hindcasts used

in this study with observations revealed large discrepancies. Some preliminary tests suggested these to be responsible for the25

decreased accuracy of the process-based model hindcasts (not shown). In comparison to observations, the hindcasts contain

(i) a general shift of rainfall seasonality towards the first months of the rainy season; (ii) a much lower frequency of both

wet and dry periods for spell lengths up to 4 days; (iii) a lower frequency of low daily rainfall values while the number of

large precipitation events is overestimated and daily extreme values are much higher; (iv) a much higher probability that a dry

day follows a dry day and the probability that a wet day follows a wet day is often underestimated. These findings indicate30

a high potential for improvement in future applications in the study area. As a first starting point, monthly bias of hindcasts

per region was corrected and both models were re-run. Figure 13 shows that this relatively simple procedure already results in

a considerable decrease of RMSE for the process-based model, even though it is still higher than for the statistical approach.

The improvement of drought forecast performance in terms of BSS and ROCSS is thereby less pronounced than the increase
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Figure 13. As Fig. 4 but driving hindcasts with additional bias-correction of precipitation on the monthly scale (dotted boxes).

of accuracy. For the statistical model, performance metrics hardly change, which can be attributed to the smoothing effects of

its model structure on regional reservoir storage identified in a previous subsection (Fig. 11).

In addition to pre-processing, post-processing approaches directly tackle the correction of streamflow forecasts by statistical

means including bias correction or the estimation of an error model applied to predictions (e.g. Krzysztofowicz and Kelly,

2000; Todini, 2008; Bourdin et al., 2014; Roulin and Vannitsem, 2014). Especially when focussing on extreme events, such5

as floods or droughts, the adequate characterisation of model residuals exhibits a large potential when incorporated into the

correction of simulations and predictions (Farmer and Vogel, 2016). While being still an active field of research, such means

are routinely applied in operational streamflow forecasting and, in addition to rainfall correction, could further improve model

performance.

The parametrisation of the process-based model could be further improved by the use of more and different data sources.10

This includes, for instance, the use of satellite data to infer spatially distributed reservoir information with greater detail and
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more accuracy as currently available. The study area has already been of interest in ongoing research (Delgado et al., 2018a)

and past studies (Heine et al., 2014) addressing that issue. In addition, management plans as well as data on water abstraction

and reallocation from the larger reservoir should be included in the model but were not available for the present study. Another

opportunity is to increase rainfall input resolution in the model to better account for sub-daily and spatially heterogeneous

precipitation. This could be done by improving the current spatial scaling of rainfall in the model to account for heterogeneous5

patterns and to make use of RADAR rainfall data recently made available in the area.

The combination of multiple models may provide further benefits in cases where different models show strengths in different

aspects of performance (e.g. Block and Rajagopalan, 2009; Schepen and Wang, 2015). However, within this work the two

employed model approaches, with respect to simulation performance achieved almost equal results and did not diverge in

aspects such as lead time and antecedent moisture conditions. Thus, the combination of the two models analysed in this study10

is not expected to provide benefits.

6 Conclusions

The aim of this work was to explore options for a seasonal forecasting system of regional reservoir volume and drought

occurrence with lead times up to 6 months for the semiarid northeast of Brazil. In this context, the performance of a complex

process-based hydrological model was evaluated against a much simpler statistical model developed by Delgado et al. (2018b)15

given the same meteorological forcing. The study pursued three objectives:

First, the two modelling approaches were to be investigated in terms of mere simulation performance, i.e. when driven

by meteorological observations. It turned out that both models performed almost equally well. However, regional differences

exist where the process-based model achieved slightly better results in four out of five sub-regions. Furthermore, regional

performance ranking of both models was equal in four regions. This suggests that data uncertainty of meteorological input or20

reservoir level observations exceeds model structural uncertainties and dictates simulation performance in the study area.

Second, the process-based model was to be verified as prediction tool in a hindcast experiment and evaluated against the

statistical approach. In comparison to simulation runs with observed forcing, hindcast performance of the process-based model

dropped significantly while the performance of the statistical approach decreased only to a small degree. This can be explained

by the structure of the statistical approach which generally reacts more damped on precipitation inputs. Although this exhibits25

less realistic intra-seasonal dynamics than for the process-based model, performance metrics were eventually superior as un-

certainties from precipitation hindcasts could not propagate as much to the model output. However, apart from reservoir level

predictions, forecasting of mere drought occurrence works almost equally well for both approaches. The two models exhibit

satisfying event resolution while slight deficiencies in terms of underforecasting were detected regarding the reliability of the

hindcasts.30

The third and last objective was to identify the major sources for simulation and hindcast deficiencies and provide guide-

lines for further improvement. In general, both models achieve better results under dry than under wet (pre-)conditions. An

attempt to identify potential predictors of model performance for the process-based model revealed that reservoir size and

26



antecedent rainfall conditions explain most of the variance of the performance metrics while variables such as current precipi-

tation amount and daily precipitation intensity are of surprisingly low importance. However, hardly any clear patterns could be

identified in which way predictors influence performance measures and, as such, no direct means could be derived, in which

way the structure of the process-based model could be improved to achieve better simulation results. Also regarding the hind-

casts, precipitation was identified as the most significant source of uncertainty. It was found that rainfall hindcasts from the5

downscaled GCM show statistical properties significantly distinct from observations. Therefore, simple approaches, such as

the tested monthly regional bias correction, already result in improved hindcast accuracies. Future studies should also consider

the use of more sophisticated means of pre-processing as well as post-processing approaches, such as forecast error modelling,

or innovative data assimilation and data fusion approaches to correct erroneous model states.

So, what is the added value of a process-based hydrological model? When it comes to reservoir level or mere drought event10

prediction on regionally and monthly aggregated scales, a statistical model proved to be the better option, as computational

effort is much lower and the model is easier to apply. Nevertheless, we advocate the application of a proper process-based

hydrological model in case predictions on finer spatial (e.g. for individual reservoirs) and temporal scales or even more in-

formation, such as evapotranspiration or various runoff generation and concentration variables, are required. As such, only by

applying a process-based hydrological model, decision makers and stakeholders can be supported to detect and understand15

hydrological changes in their catchments in order to make reasonable and sustainable decisions. However, further research is

needed to increase the accuracy of important model drivers, i.e., in the case of dryland regions such as northeastern Brazil,

first and foremost precipitation. We expect that the use of new data products, such as RADAR and satellite data along with

traditional data from rainfall stations with sub-daily resolution, in combination with innovative methods of data assimilation

and data fusion provide opportunities to improve forecast accuracy of process-based hydrological models. Only in that way the20

time and effort of their application can be justified and allow for the exploitation of their advanced capabilities.

Code and data availability. Meteorological observations (except precipitation) are available from http://careyking.com/data-downloads/.

Precipitation as well as raw data of meteorological hindcasts need to be requested from FUNCEME. DEM raw data can be obtained via

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (tiles [horizontal/vertical]: 28/13, 28/14, 29/13, and 29/14). Reservoir data can be ac-

cessed at http://www.hidro.ce.gov.br or requested from FUNCEME. Land cover and soil maps are not publicly available.25

The WASA-SED model is available at https://github.com/TillF/WASA-SED. Scripts to investigate or reproduce experiments, analyses,

and compilation of plots can be accessed at https://github.com/tpilz/paper_drought_prediction_brazil.

Appendix A: Terminology

The word forecast generally refers to model based estimations of future meteorological or hydrological variables such as

precipitation, streamflow, or reservoir level. The term prediction, in this article like in many others, can be used synonymously30

to forecast. With hindcast we specifically denote retrospective forecasts, i.e. predictions issued for a period in the past building

only on data available up to the time of start of the model run. The results are then compared with observations. In some
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occasions, the terms forecast and hindcast might be used interchangeably. In contrast to predictions or hindcasts, we denote

model simulations as model runs driven by observations instead of forecasts of model forcing.

Many of the notions discussed in this article refer to the field of forecast verification. While being standard in Atmospherical

Sciences, some terms are less common for the hydrological community and thus will be briefly explained in the following. For

more information, the reader is generally referred to textbooks such as Wilks (2005). The analysis of drought hindcasts will5

focus on their quality, i.e. the correspondence of such hindcasts with observations. This quality as defined by Murphy (1993)

can be described in terms of nine different aspects of which five will be addressed explicitly in this study: accuracy as the

average agreement of forecast–observation pairs which is as such inversely proportional to the error; reliability which, in the

case of probabilistic drought forecasts, quantifies the average correspondence of forecast probabilities and observed drought

occurrences; resolution evaluating the ability of a model to correctly predict an event; sharpness describing the variability of10

forecasts of a model; and skill comparing the ability of a model with a much simpler reference model, such as climatology

(which is the observed long term average of a specific variable) or persistence (i.e., no change of a variable or the pattern of a

quantity over the forecast period).

Furthermore, we distinguish process-based from statistical models. The former are rather complex computer programmes

combining a set of mathematical equations (simple, linear up to complex differential equations), which can be derived from15

first order principles, e.g conservation of mass and energy. The aim here is to represent, up to a certain degree of abstraction,

the governing sub-processes of the hydrological cycle and their interactions. They compute estimates of the unknown variables

(e.g. river discharge, soil moisture, reservoir storage) as a reaction to a set of input or driving variables (e.g. precipitation, solar

radiation, water abstraction). In this paper, the underlying process-based hydrological model refers to the WASA-SED model

which is described in Sect. 3.4.1. The latter, on the other hand, rely on purely empirical relationships between one or more20

predictors and the target variable, often consisting of only a single equation, typically obtained by regression. Consequently, the

regression model of Delgado et al. (2018b), which is used for model intercomparison in this study, is referred to as statistical

model or statistical approach throughout this work.
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