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Abstract 12 

Conventional flood risk methods typically focus on estimation at a single location, which can be 13 

inadequate for civil infrastructure systems such as road or railway infrastructure. This is because rainfall 14 

extremes are spatially dependent, so that to understand overall system risk it is necessary to assess the 15 

interconnected elements of the system jointly. For example, when designing evacuation routes it is 16 

necessary to understand the risk of one part of the system failing given that another region is flooded or 17 

exceeds the level at which evacuation becomes necessary. Similarly, failure of any single part of a road 18 

section (e.g., a flooded river crossing) may lead to the wider system’s failure (i.e. the entire road 19 

becomes inoperable). This study demonstrates a spatially dependent Intensity-Duration-Frequency 20 

framework that can be used to estimate flood risk across multiple catchments, accounting for 21 

dependence both in space and across different critical storm durations. The framework is demonstrated 22 

via a case study of a highway upgrade, comprising five river crossings. The results show substantial 23 

differences in conditional and unconditional design flow estimates, highlighting the importance of 24 

taking an integrated approach. There is also a reduction in the estimated failure probability of the overall 25 

system compared with the case where each river crossing is treated independently. The results 26 

demonstrate the potential uses of spatially dependent Intensity-Duration-Frequency methods and 27 

suggest the need for more conservative design estimates to take into account conditional risks.  28 
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1. Introduction 29 

Methods for quantifying the flood risk of civil infrastructure systems such as road and rail networks 30 

require considerably more information compared to traditional methods that focus on flood risk at a 31 

point. For example, the design of evacuation routes requires the quantification of the risk that one part 32 

of the system will fail at the same time that another region is flooded or exceeds the level at which 33 

evacuation becomes necessary. Similarly, a railway route may become impassable if any of a number 34 

of bridges are submerged, such that the ‘failure probability’ of that route becomes some aggregation of 35 

the failure probabilities of each individual section. Successful estimation of flood risk in these systems 36 

therefore requires recognition both of the networked nature of the civil infrastructure system across a 37 

spatial domain, as well as the spatial and temporal structure of flood-producing mechanisms (e.g. storms 38 

and extreme rainfall) that can lead to system failure (e.g., Leonard et al. (2014), Seneviratne et al. 39 

(2012), Zscheischler et al. (2018)).  40 

One way to estimate such flood probabilities is to directly use information contained in historical 41 

streamflow data. For example, annual maximum streamflow at two locations might be assumed to 42 

follow a bivariate generalized extreme value distribution (Favre et al., 2004; Wang, 2001; Wang et al., 43 

2009), which can then be used to estimate both conditional probabilities (e.g. the probability that one 44 

river is flooded given that the other river level exceeds a specified threshold) and joint probabilities 45 

(e.g. the probability that one or both rivers are flooded). Several frameworks have been demonstrated 46 

based directly on streamflow observations, including functional regression (Requena et al., 2018), 47 

multisite copulas (Renard and Lang, 2007), and spatial copulas (Durocher et al., 2016). However, in 48 

many instances continuous streamflow data are unavailable or insufficient at the locations of interest, 49 

or the catchment conditions have changed such that historical streamflow records as unrepresentative 50 

of likely future risk. For these situations, rainfall-based methods are often more appropriate. 51 

There are two primary classes of rainfall-based methods to estimate flood probability. The first  uses 52 

continuous rainfall data (either historical or generated) to compute continuous streamflow data using a 53 

rainfall-runoff model (Boughton and Droop, 2003; Cameron et al., 1999; He et al., 2011; Hegnauer et 54 

al., 2014; Pathiraja et al., 2012), with flood risk then estimated based on the simulated streamflow time 55 
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series. This method is computationally intensive and given the challenge of reproducing a wide variety 56 

of statistics across many scales, can have difficulties in modelling the dependence of extremes. Most 57 

spatial rainfall models operate at the daily timescale (Bárdossy and Pegram, 2009; Baxevani and 58 

Lennartsson, 2015; Bennett et al., 2016b; Hegnauer et al., 2014; Kleiber et al., 2012; Rasmussen, 2013), 59 

whereas many catchments respond at sub-daily timescales. This is likely because the capacity of space-60 

time rainfall models to simulate the statistics of sub-daily rainfall remains a challenging research 61 

problem (Leonard et al., 2008), although one approach is to exploit the relative abundance of data at 62 

the daily scale, then apply a downscaling model to reach sub-daily scales (Gupta and Tarboton, 2016). 63 

Continuous simulation is receiving ongoing attention and increasing application, yet there remain 64 

limitations when applying these models in many practical contexts. 65 

The second rainfall-based method proceeds by applying probability calculations on rainfall, to construct 66 

‘Intensity-Duration-Frequency’ (IDF) curves, which are then translated to a runoff event of equivalent 67 

probability either via empirical models such as the rational method to estimate peak flow rate 68 

(Kuichling, 1889; Mulvaney, 1851), or via event-based rainfall-runoff models that are able to simulate 69 

the full flood hydrograph (Boyd et al., 1996; Chow et al., 1988; Laurenson and Mein, 1997). Regional 70 

frequency analysis is one type of method to estimate IDF values, where the precision of at-site estimates 71 

is improved by pooling data from sites in the surrounding region (Hosking and Wallis, 1997). These 72 

methods can be combined with spatial interpolation methods to estimate parameters for any ungauged 73 

location of interest (Carreau et al., 2013). To determine an effective mean depth of rainfall over a 74 

catchment with the same exceedance probability as at a gauge location, the pointwise estimate of 75 

extreme rainfall is multiplied by an areal reduction factor (ARF) (Ball et al., 2016). However, such 76 

methods do not account for information on the spatial dependence of extreme rainfall—whether for a 77 

single storm duration, or for the more complex case of different durations across a region (Bernard, 78 

1932; Koutsoyiannis et al., 1998). The underlying independence assumption prevents these approaches 79 

from being applied to estimate conditional or joint flood risk at multiple points in a catchment or across 80 

several catchments, as would be required for a civil infrastructure system. 81 
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Although multivariate approaches can be tailored to estimate conditional and joint probabilities of 82 

extreme rainfall for specific situations (e.g., Kao and Govindaraju (2008), Wang et al. (2010), Zhang 83 

and Singh (2007)), the development of a unified methodology that integrates with existing IDF-based 84 

flood estimation approaches remains elusive. This is particularly challenging given that it is not only 85 

necessary to account for dependence of rainfall across space, but also to account for dependence across 86 

storm burst durations, as different parts of the system may be vulnerable to different critical duration 87 

storm events. To this end, max-stable process theory has been demonstrated to represent storm-level 88 

dependence (de Haan, 1984; Schlather, 2002) and used to calculate conditional probabilities for a spatial 89 

domain (Padoan et al., 2010). Max-stable process has also been used to represent the co‐occurrence of 90 

extreme daily rainfall in the French Mediterranean region (Blanchet and Creutin, 2017). Copulas 91 

including the extremal-t copula (Demarta and McNeil, 2005), and the Husler-Reiss copula (Hüsler and 92 

Reiss, 1989) have also been used to model rainfall dependence.  93 

This study applies a max-stable approach with an emphasis on practical flood estimation problems. To 94 

this end, any proposed approach needs to account for: 95 

1. The spatial dependence of rainfall ‘events’ both for single durations, and also across multiple 96 

different durations. This was addressed by Le et al. (2018b), who linked a max-stable model 97 

with the duration-dependent model of Koutsoyiannis et al. (1998), to create a model that could 98 

be used to reflect dependencies between nearby catchments of different sizes. 99 

2. The asymptotic properties of spatial dependence as the events become increasingly extreme, 100 

given the focus of many flood risk estimation methods on rare flood events. Recent evidence is 101 

emerging that rainfall has an asymptotically independent characteristic (Le et al., 2018a; 102 

Thibaud et al., 2013), which means that the level of the rainfall’s dependence reduces with an 103 

increasing return period (Wadsworth and Tawn, 2012). The requirement of asymptotic 104 

independence indicates that inverted max-stable models are preferable over max-stable models.  105 

This study adapts the methods developed by Le et al. (2018b) to inverted max-stable models to derive 106 

spatially-dependent IDF estimates and ARFs as the basis for transforming rainfall into flood flows. The 107 

approach is demonstrated on a highway system spanning 20 km with five separate river crossings.  108 
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The case study is designed to address two related questions: (i) “What flood flow needs to be used to 109 

design a bridge that will fail on average only once on average every 𝑀 times  given that a neighbouring 110 

catchment is flooded?”; and (ii) “What is the probability that the overall system fails given that each 111 

bridge is designed to a specific exceedance probability event (e.g., the 1% annual exceedance 112 

probability event)?” The method for resolving these questions represents a new approach to estimate 113 

flood risk for engineering design, by focusing attention on the risk of the entire system, rather than the 114 

risk of individual system elements in isolation. 115 

In the remainder of the paper, Section 2 emphasises the need for spatially dependent IDF estimates in 116 

flood risk design, followed by Section 3 which outlines the case study and data used. Section 4 explains 117 

the implementation of the framework, including a method for analysing the spatial dependence of 118 

extreme rainfall across different durations. Results on the behaviour of floods due to the spatial and 119 

duration dependence of rainfall extremes, are provided in Section 5. Conclusions and discussion follow 120 

in Section 6. 121 

2. The need for spatially dependent IDF estimates in flood risk estimation 122 

The main limitation of conventional methods of flood risk estimation is that they isolate bursts of 123 

rainfall and break the dependence structure of extreme rainfall. Figure 1 demonstrates a traditional 124 

process of estimating at-site extreme rainfall for two locations (gauge 1, gauge 2) and three durations 125 

(1, 3, and 5 hr) (Stedinger et al., 1993). The process first involves extracting the extreme burst of rainfall 126 

for each site, duration and year from the continuous rainfall data, and then fitting a probability 127 

distribution (such as the Generalised Extreme Value (GEV) distribution) to the extracted data. Figure 1 128 

demonstrates that, through the process of converting the continuous rainfall data to a series of discrete 129 

rainfall ‘bursts’, this process breaks the dependence both with respect to duration and space. Firstly, the 130 

duration dependence is broken by extracting each duration separately, whereas for the hypothetical 131 

storm in Fig. 1 it is clear that the annual maxima from some of the extreme bursts come from the same 132 

storm. Secondly, the spatial dependence is broken because each site is analysed independently. Again, 133 

for the hypothetical storm of Fig. 1 it can be seen that the 5 hr storm has occurred at the same time 134 

across the two catchments, and this information is lost in the subsequent probability distribution curves. 135 
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Lastly, there is cross-dependence in space and duration. For example, the 1 hr extreme from gauge 2 136 

occurs at the same time as the 5 hr extreme from gauge 1. This may be relevant if there are two 137 

catchments with times of concentration matching 1 hr and 5 hr respectively, which can arise where 138 

catchments are neighbouring or nested. 139 

 140 

Figure 1. Illustration of process to estimate rainfall extremes for each individual location in conventional flood risk 141 

approach, the upper panel is for gauge 1 and the lower panel is for gauge 2. 142 

Having obtained the IDF estimates for individual locations in Fig. 1, the next step is commonly to 143 

convert this to spatial IDF maps by interpolating results between gauged locations. Figure 2 shows 144 

hypothetical IDF maps from individual sites, with a separate spatial contour map usually provided for 145 

each storm burst duration. In a conventional application the respective maps are used to estimate the 146 

magnitude of extreme rainfall over catchments for a specified time of concentration. The IDF estimates 147 

are combined with an areal reduction factor (ARF) to determine the volume of rainfall over a region 148 

(since rainfall is not simultaneously extreme at all locations over the region). However, because the 149 

spatial dependence was broken in the IDF analysis, the ARFs come from a separate analysis and are an 150 

attempt to correct for the broken spatial relationship within a catchment (Bennett et al., 2016a). Lastly, 151 

the rainfall volume over the catchment is combined with a temporal pattern (i.e. the distribution of the 152 
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rainfall hyetograph within a single ‘storm burst’) and input to a runoff model to simulate flood-flow at 153 

a catchment’s outlet. Where catchment flows can be considered independently this process has been 154 

acceptable for conventional design, but because this process does not account for dependence across 155 

durations and across a region, it is not possible to address problems that span multiple catchments, as 156 

with civil infrastructure systems. 157 

 158 

 159 

Figure 2. Illustration of map of return level and how to use it in estimating flood flow in conventional flood risk estimates 160 

approach. 161 

The process in Fig. 1 breaks out the dependence of the observed rainfall, which makes the conventional 162 

approach unable to analyse the dependence of flooding at two or more separate locations. Instead, this 163 

paper advocates for spatially dependent IDF estimates that are developed by retaining the dependence 164 

of observed rainfall in the estimation of extremal rainfall. By applying spatially dependent IDF 165 

estimates to a rainfall-runoff model, it becomes possible to represent the dependence of flooding 166 

between separate locations. 167 

3. Case study and data 168 
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The region chosen for the case study is in the mid north coast region of New South Wales, Australia. 169 

This region has been the focus of a highway upgrade project and has an annual average daily traffic 170 

volume on the order of 15,000 vehicles along the existing highway. The upgrade traverses a series of 171 

coastal foothills and floodplains for a total length of approximately 20 km. The project’s major river 172 

crossings consist of extensive floodplains with some marsh areas. 173 

The case study has five main catchments that are numbered in sequence in Fig. 3: (1) Bellinger, (2) 174 

Kalang River, (3) Deep Creek, (4) Nambucca and (5) Warrell Creek. The area and time of concentration 175 

of these catchments is summarised in Table 1, with the latter estimated using the ratio of the flow path 176 

length and average flow velocity (SKM, 2011). The Deep Creek catchment has a time of concentration 177 

of 8 hr, while the other four catchments have much longer times of concentration, ranging from 27 to 178 

38 hr. The differing durations indicate that it is necessary to consider spatial dependence across this 179 

range of durations to estimate joint and conditional flood risk. The spatial dependence across rainfall 180 

durations is expected to be lower than across a single duration, since short- and long-rain events are 181 

often driven by different meteorological mechanisms (Zheng et al., 2015). However some spatial 182 

dependence is still likely to be present, given that extremal rainfall in the region is strongly associated 183 

with ‘east coast low’ systems off the eastern coastline, whereby extreme hourly rainfall bursts are often 184 

embedded in heavy multi-day rainfall events. 185 
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 186 

Figure 3. Map of the case study in New South Wales, Australia. The black dots indicate the rainfall gauges (G. 1 to G. 7), 187 

the red line indicates the Pacific Highway upgrade project, and the blue lines indicate the main river network. The numbers 188 

from one to five indicate the locations of the main river crossings. 189 

Table 1. Summary of case study catchments properties. 190 

No. Catchment Area 

(km2) 

Time of concentration (hour)  

1 Bellinger 772 37 

2 Kalang River 341 33 

3 Deep Creek 92 8 

4 Nambucca (upper) 1020 38 

5 Warrell Creek 294 27 

The black circles in Fig. 3 represent the sub-daily rain stations used for this study. There were seven 191 

sub-daily stations selected, with 35 years of record in common for the whole region. The data was 192 

available at a 5 minute interval and aggregated to longer durations. For convenience in comparing the 193 

times of concentration between the catchments, this study assumes a time of concentration of 9 hr for 194 

the Deep Creek catchment, while identical times of concentration of 36 hr are assumed for the other 195 

four catchments. 196 

  197 
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4. Methodology 198 

This section describes the method used to estimate the conditional and joint probabilities of streamflow 199 

for civil infrastructure systems based on rainfall extremes, with the sequence of steps illustrated in Fig. 200 

4. The overall aim is to estimate rainfall exceedance probabilities and corresponding flow estimates that 201 

account for dependence across multiple catchments. The generalized Pareto distribution (GPD) is used 202 

as the marginal distribution to fit to observed rainfall above some large threshold for all durations at 203 

each location (Section 4.1). An extremal dependence model is required to evaluate conditional and joint 204 

probabilities. Here, an inverted max-stable process is used with dependence not only in space but also 205 

in duration (Section 4.2). The fitted model is evaluated in a range of contexts, including the construction 206 

of joint and conditional return level maps. The derivation of areal reduction factors and joint rainfall 207 

estimates are made with the assistance of simulations based on the fitted model (Section 4.3). An event-208 

based rainfall-runoff model is employed in Section 4.4 to transform extremal design rainfalls to 209 

corresponding flows. 210 

 211 

Figure 4. The flow chart for the overall methodology. 212 

4.1. Marginal model for rainfall  213 

This study defines extremes as those greater than some threshold 𝑢. For large 𝑢, the distribution of 𝑌 214 

conditional on 𝑌 > 𝑢 may be approximated by the generalized Pareto distribution (GPD) (Pickands, 215 

1975; Davison and Smith, 1990; Thibaud et al., 2013): 216 

𝐺(𝑦) = 1 − {1 +
(𝑦 − 𝑢)

𝜎𝑢
}

−1 ⁄

,     𝑦 > 𝑢,                                  (1) 217 

1. Fit marginal model to 
extremes above a threshold  

2. Fit dependence model  

Z1 

Z2 

3. Evaluate extremal 

catchment rainfall 

4. Evaluate 

extremal flows  

Dep 

Dist. Dep 

Dist. 

Within duration 

Between durations 

Independent IDF maps 

Conditional IDF maps 

Areal reduction factors 

Joint rainfall estimates  
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defined on {𝑦: 1 + (𝑦 − 𝑢) 𝜎𝑢⁄ > 0} where 𝜎𝑢 > 0 and −∞ <  < +∞ are scale and shape 218 

parameters, respectively. The probability that a level y is exceeded is Φ𝑢{1 − 𝐺(𝑦)}, where Φ𝑢 =219 

Pr (𝑌 > 𝑢). 220 

The selection of the appropriate threshold 𝑢 involves a trade-off between bias and variance. A threshold 221 

that is too low leads to bias because the GPD approximation is poor. A threshold too high leads to high 222 

variance because of a small number of excesses. Two diagnostic tests are used to determine the 223 

appropriate threshold 𝑢: the mean residual life plot and the parameter estimate plot (Coles, 2001; 224 

Davison and Smith, 1990). These methods use the stability property of a GPD, so that if a GPD is valid 225 

for all excesses above 𝑢, then excesses of a threshold greater than 𝑢 should also follow a GPD (Coles 226 

(2001). To construct IDF maps across the region, the parameters of the GPD are interpolated across the 227 

region using a thin plate spline with covariates of longitude and latitude. Though more detailed 228 

modelling of covariates could be used to improve estimates (Le et al. (2018b), the interpolation used 229 

here is sufficient for demonstrating the overall method.  230 

4.2. Dependence model for spatial rainfall 231 

Consider rainfall as a stationary stochastic process 𝑍𝑖 associated with a location 𝑥𝑖 and a specific 232 

duration (the notation is simplified from 𝑍(𝑥𝑖) to 𝑍𝑖). An important property of dependence in the 233 

extremes is whether or not two variables are likely/unlikely to co-occur as the extremes become rarer, 234 

as this can significantly influence the estimate of frequency for flood events of large magnitude. This 235 

is referred to as asymptotic dependence/independence, respectively. For the case of asymptotic 236 

independence, the dependence structure becomes weaker as the extremal threshold increases, which is 237 

defined as lim
𝑧→∞

𝑃{𝑍1 > 𝑧|𝑍2 > 𝑧} = 0 for all 𝑥1 ≠ 𝑥2. The spatial extent of a rainfall event with 238 

asymptotically independent extremes will diminish as its rarity increases. This study uses an 239 

asymptotically independent model, of which multiple types are valid including the Gaussian copula 240 

(Davison et al., 2012) and inverted max-stable processes (Wadsworth and Tawn, 2012). The inverted 241 

max-stable model was ultimately selected in this study to provide consistency earlier research (Le et 242 

al., 2018a), in which it was demonstrated to preserve the spatial properties of extreme rainfall in an 243 

Australian context, including the property of asymptotic independence. Thibaud et al. (2013) also 244 
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compared the inverted max-stable model with a Gaussian copula in a case study in Switzerland, and 245 

identified that the inverted max-stable model was appropriate.  246 

The dependence structure of the inverted max-stable process is represented by the pairwise residual tail 247 

dependence coefficient (Ledford and Tawn, 1996). For a generic continuous process 𝑍𝑖 for a given 248 

duration and associated with a specific location 𝑥𝑖, the empirical pairwise residual tail dependence 249 

coefficient 𝜂 for each pair of locations (𝑥1, 𝑥2) is  250 

𝜂(𝑥1, 𝑥2) = lim
𝑧→∞

log𝑃{𝑍2 > 𝑧}

log𝑃{𝑍1 > 𝑧, 𝑍2 > 𝑧}
.                                             (2) 251 

The value of 𝜂 ∈ (0,1] indicates the level of extremal dependence between 𝑍1 and 𝑍2 (Coles et al., 252 

1999), with lower values indicating lower dependence. An example of how to calculate the residual tail 253 

dependence coefficient is provided in Appendix A for a sample dataset. To estimate the dependence 254 

structure of an inverted max-stable model, the theoretical residual tail dependence coefficient function 255 

is fitted to its empirical counterpart. Here the residual tail dependence coefficient function is assumed 256 

to only depend on the Euclidean distance between two locations ℎ = ‖𝑥1 − 𝑥2‖. The theoretical 257 

residual tail dependence coefficient function for the inverted Brown-Resnick model is given as: 258 

𝜂(ℎ) =
1

2Φ{√
𝛾(ℎ)
2 }

,                                                                 (3) 259 

where Φ is the standard normal cumulative distribution function, ℎ is the distance between two 260 

locations, and 𝛾(ℎ) belongs to the class of variograms 𝛾(ℎ) = ‖ℎ‖𝛽 𝑞⁄  for 𝑞 > 0 and 𝛽 ∈ (0,2). The 261 

model is fitted to the empirical residual tail dependence coefficient by modifying parameters 𝑞 and 𝛽 262 

until the sum of squared errors is minimized. 263 

When the extreme rainfall at location 𝑥1 and 𝑥2 are of different durations, the dependence is less than 264 

when the extremes are of the same duration. For example, at a single location (h = 0), when the duration 265 

is the same, the rainfall values are identical and have perfect dependence, but when the duration of 266 

extremes are different the values are not identical and the dependence is less. An adjustment needs to 267 
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be made to the theoretical pairwise residual tail dependence coefficient function when extreme rainfalls 268 

have different durations.  269 

Following Le et al. (2018b), an adjusted approach is used by adding a nugget to the variogram as: 270 

𝛾𝑎𝑑.(ℎ) = ℎ
𝛽 𝑞⁄ + 𝑐(𝐷 − 𝑑)/𝑑,                                                     (4) 271 

where ℎ, 𝛽, and 𝑞 are the same as those in Eq. (3); 𝑑 is the duration (in hours); 0 < 𝑑 ≤ 𝐷, where 𝐷 is 272 

the maximum duration of interest (e.g. 𝐷 =  36 hr for the case study described in this paper); and 𝑐 is 273 

a parameter to adjust dependence according to duration. This adjustment is intended to condition the 274 

behaviour of shorter duration extremes on a 𝐷-hour extreme of specified magnitude. It is constructed 275 

to reflect the fact that when compared to a 𝐷-hour extreme, a shorter duration results in less extremal 276 

dependence. Cases involving conditioning of longer periods on shorter periods (such as a 36 hr extreme 277 

given a 9 hr extreme has occurred) can also use the relationship in Eq. (4), but with different parameter 278 

values. 279 

To fit the inverted max-stable process for all pairs of durations at locations 𝑥1 and 𝑥2 (i.e. 36 hr and 12 280 

hr, 36 hr and 9 hr, 36 hr and 6 hr, 36 hr and 2 hr, 36 hr and 1 hr), the theoretical pairwise residual tail 281 

dependence coefficient function in Eq. (3) is used with the adjusted variogram from Eq. (4) where the 282 

parameters 𝛽 and 𝑞 are first obtained from the fitted results of the case of identical 36 hr durations at 283 

location 𝑥1 and 𝑥2. The parameter 𝑐 is obtained by a least square fit of the residual tail dependence 284 

coefficient across all durations. 285 

4.3. Simulation based estimation of areal and joint rainfall 286 

The dependence model specification in the previous section enables the calculation of joint and 287 

conditional probabilities (Appendix B). Therefore, in addition to traditional IDF return level maps that 288 

are based on independence between locations and durations, it is possible to account for the coincidence 289 

of rainfall within the region. Current design procedures using IDF estimates are event-based and rely 290 

on ancillary steps to reconstruct elements of the design storm that were broken during the estimation 291 

procedure. One critical element is the areal reduction factor (ARF), which can also be estimated by 292 

using the dependence model. ARFs are used to adjust rainfall at a point (such as the centroid of a 293 
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catchment) to an effective mean rainfall over the catchment with equivalent probability of exceedance 294 

(Ball et al., 2016; Le et al., 2018a). ARFs can be estimated from observed rainfall data, but it is difficult 295 

to extrapolate them for long return periods from observations with just 35 years of record for this study. 296 

To deal with this difficulty and to analyse the asymptotic behaviour of ARFs, Le et al. (2018a) proposed 297 

a framework to simulate ARFs using the same inverted-max stable process model adopted here. The 298 

simulation procedure from Le et al. (2018a) is summarised according to two steps. In the first step, the 299 

theoretical residual tail dependence coefficient function in Eq. (3) is fitted to observed rainfall for the 300 

duration of interest to obtain the variogram parameters 𝑞 > 0 and 𝛽 ∈ (0,2). The inverted Brown-301 

Resnick process is obtained from a simulation of the Brown-Resnick process using the algorithm of 302 

Dombry et al. (2016) over a spatial domain. In the second step, the simulation in step 1 is transformed 303 

from unit Fréchet margins to the rainfall scaled margins (inverse transformation of Eq. (B.1) in 304 

Appendix B). For rainfall magnitudes above the threshold the generalised Pareto distribution in Eq. (1) 305 

is used, and below the threshold the empirical distribution is used. The empirical distributions at 306 

ungauged sites are derived from the nearest gauged sites and using the interpolated response surface of 307 

the GPD threshold parameter.  308 

An advantage of the simulation approach is that it can reflect the proportion of dry days in the empirical 309 

distribution by making the simulated rainfall contain zero values (Thibaud et al., 2013). Another 310 

advantage is that the use of empirical distributions guarantees that the marginal distributions of 311 

simulated rainfall below the threshold match the observed marginal distributions. There may be a 312 

drawback by forcing the simulated rainfall to have the same extremal dependence structure for both 313 

parts below and above the threshold, which may not be true for non-extreme rainfall. However, the 314 

dependence structure of non-extreme rainfall contributes insignificantly to extreme events (Thibaud et 315 

al., 2013) and is unlikely to affect the results. 316 

For calculating ARFs, the simulation is implemented separately for spatial rainfall of 36 and 9 hrs 317 

duration. ARFs are calculated for each duration and different return periods, which can be found in the 318 

supplementary material (Fig. S1 and S2). Figure S1 and S2 provide relationships between ARFs and 319 

area (in km2) for different return periods for the case study catchments simulated using the inverted 320 
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Brown-Resnick process over equally sized grid points. The relationships are interpolated to obtain the 321 

ARFs for each subcatchment.  322 

The recommended approach for estimating the overall failure probability of a system is demonstrated 323 

by considering a hypothetical traffic system with multiple river crossings at locations. If there is a one-324 

to-one correspondence between extreme rainfall intensity over a catchment and flood magnitude, the 325 

overall failure probability will be approximately equal to the probability that there is at least one river 326 

crossing whose contributing catchment has rainfall extremes exceeding the design level, which can be 327 

estimated using simulations of the spatial rainfall model. Given the different times of concentration in 328 

each catchment, the simulation must account for extremes of different durations. Specifically, the 329 

covariance matrix of the simulation procedure provided by Dombry et al. (2016) is calculated from the 330 

variogram in Eq. (3). The covariance element for a pair of locations with the same duration (e.g. 36 and 331 

36 hr) is calculated from the variogram of identical durations for 36 and 36 hr. The covariance element 332 

for a pair of locations with different durations, for example 36 and 9 hr, is calculated from the variogram 333 

across durations for 36 and 9 hr. A set of 10,000 years simulated rainfall is generated from the fitted 334 

model to calculate the overall failure probability of a highway section (Eq. B.5). The process is repeated 335 

100 times to estimate the average failure probability, under the assumption that all river crossings of 336 

the highway are designed to the same individual failure probability. 337 

4.4. Transforming rainfall extremes to flood flow 338 

To estimate flood flow from rainfall extremes, the Watershed Bounded Network Model (WBNM) 339 

(Boyd et al., 1996), is employed. WBNM calculates flood runoff from rainfall hyetographs that 340 

represent the relationship between the rainfall intensity and time (Chow et al., 1988). It divides the 341 

catchment into subcatchments, allowing hydrographs to be calculated at various points within the 342 

catchment, and allowing the spatial variability of rainfall and rainfall losses to be modelled. It separates 343 

overland flow routing from channel routing, allowing changes to either or both of these processes, for 344 

example in urbanised catchments. The rainfall extremes are estimated at the centroid of the catchment, 345 

and are converted to average spatial rainfall using the simulated ARFs described in Section 4.3. Design 346 
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rainfall hyetographs are used to convert the rainfall magnitude to absolute values through the duration 347 

of a storm following standard design guidance in Australia (Ball et al., 2016). 348 

Hydrological models (WBNM) for the case study area were developed and calibrated in previous 349 

studies (WMAWater, 2011). Hydrological model layouts for the Bellinger, Kalang River, Nambucca, 350 

Warrell and Deep Creek catchments can be found in the supplementary material (Fig. S3 to S5). 351 

5. Results  352 

5.1. Evaluation of model for space-duration rainfall process 353 

A GPD with an appropriate threshold was fitted to the observed rainfall data for 36 hr and 9 hr durations, 354 

and the Brown-Resnick inverted max-stable process model was calibrated to determine the spatial 355 

dependence. 356 

Analysis of the rainfall records led to the selection of a threshold of 0.98 for all records as reasonable 357 

across the spatial domain and the GPD was fitted to data above the selected threshold. Figure 5 shows 358 

QQ plots of the marginal estimates for a representative station for two durations (36 and 9 hr). Overall 359 

the quality of fitted distributions is good and plots for all other stations can be found in the 360 

supplementary material (Fig. S6 and S7). 361 

 362 

Figure 5. QQ plots for the fitted GPD at one representative station, dotted lines are the 95% confidence bounds, and the 363 

solid diagonal line indicates a perfect fit. 364 
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The inverted max-stable process across different durations was calibrated to determine dependence 365 

parameters. The theoretical pairwise residual tail dependence coefficient function between two 366 

locations (𝑥1 and 𝑥2) was calculated based on Eq. (3) and Eq. (4), and the observed pairwise residual 367 

tail dependence coefficient 𝜂 was calculated using Eq. (2). Figure 6 shows the pairwise residual tail 368 

dependence coefficients for the Brown-Resnick inverted max-stable process versus distance. The black 369 

points are the observed pairwise residual tail dependence coefficients, while the red lines are the fitted 370 

pairwise residual tail dependence coefficient functions. A coefficient equal to 1 indicates complete 371 

spatial dependence, and a value of 0.5 indicates complete spatial independence. The top-left panel 372 

shows the dependence between 36 hr extremes across space, with the distance h = 0 corresponding to 373 

“complete dependence”. It also shows the dependence decreasing with increasing distance. Figure 6 374 

indicates that the model has a reasonable fit to the observed data given the small number of dependence 375 

parameters. Although the theoretical coefficient (red line) does not perfectly match at long distances, 376 

the main interest for this case study is in short distances, including at ℎ = 0 for the case of dependence 377 

between two different durations at the same location. 378 

The remaining panels of Fig. 6 show the dependence of 36 vs. 9 hr extremes, 36 vs. 6 hr extremes, and 379 

36 vs. 3 hr extremes, with the latter two duration combinations not being used directly in the study but 380 

nonetheless showing the model performance across several durations. As expected, the dependence 381 

levels are weaker compared with 36 vs. 36 hr extremes at the same distance, especially at zero distance. 382 

This is expected, as extremes of different durations are more likely to arise from different storm events 383 

compared to storms of the same duration.  384 
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 385 

Figure 6. Plots of pairwise residual tail dependence coefficient (TDC) against distance for 36 hr extremes and 36 hr 386 

extremes (top left), for 36 hr extremes and 9 hr extremes (top right), for 36 hr extremes and 6 hr extremes (bottom left), and 387 

for 36 hr extremes and 3 hr extremes (bottom right). The black points are estimated residual tail dependence coefficients for 388 

pairs of sub-daily stations, and the red lines are theoretical residual tail dependence coefficient function. 389 

5.2. Estimating conditional rainfall return levels and corresponding conditional flows for evacuation 390 

route design 391 

The recommended approach for estimating conditional rainfall extremes is demonstrated by considering 392 

a hypothetical evacuation route across location 𝑥2, given a flood occurs at location 𝑥1, evaluated using 393 

Eq. (B.4). This approach is applied to a case study of the Pacific Highway upgrade project that contains 394 

five main river crossings (from Fig. 3). For evacuation purposes, we need to know “what is the 395 

probability that a bridge fails only once on average every 𝑀 times (e.g., 𝑀 = 10 for a one in 10 chance 396 

conditional event) when a neighbouring bridge is flooded?” This section provides the conditional 397 

estimates for two pairs of neighbouring bridges in the case study that have the shortest Euclidean 398 

distances, i.e. pairs (𝑥1, 𝑥2) and (𝑥2, 𝑥3). The comparisons of unconditional and conditional maps are 399 

given in Fig. 7 and Fig. 8, and the corresponding unconditional and conditional flows are given in Fig. 400 

9.  401 
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The left panel of Fig. 7 provides the pointwise 10-year unconditional return level map over the case 402 

study area for 36 hr rainfall extremes. The value at the location of interest—the blue star (the centroid 403 

of Bellinger catchment)—is around 260 mm. The right panel of Fig. 7 indicates that when accounting 404 

for the effect of a 20-year event for 36 hr rainfall extremes happening at the location of the red star (the 405 

centroid of Kalang River catchment), the pointwise one in 10 chance conditional return level at the blue 406 

star rises to around 453 mm (i.e., 1.74 times the unconditional value). 407 

 408 

  Figure 7. Pointwise 10-year unconditional return level map (mm) for 36 hr extremes (left), and pointwise one in 10 chance 409 

conditional return level map (mm) for 36 hr extremes given a 20-year event for 36 hr extremes happen at location of the red 410 

star for the centroid of Kalang River catchment (right). The colour scales are the same for comparison. 411 

Figure 8 provides similar plots to Fig. 7 for another pair of locations having different durations of 412 

rainfall extremes due to different times of concentration in each catchment. Here, the location of interest 413 

is the centroid of the Deep Creek catchment (the blue star in Fig. 8) and the conditional point is the 414 

centroid of the Kalang River catchment (the red star in Fig. 8). The pointwise 10-year unconditional 415 

and one in 10 chance conditional return levels at the location of the blue star are 134 mm and 194 mm, 416 

respectively. The relative difference between the conditional and unconditional return levels is only 417 

1.45 times, compared with 1.74 times for the case in Fig. 7. This is because the pair of locations in Fig. 418 

8 has a longer distance than those in Fig. 7, so that the dependence level is weaker. Moreover, the 419 

location pair in Fig. 8 was analysed for different durations (between 36 and 9 hr extremes), which has 420 
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weaker dependence than the case of the equivalent durations in Fig. 7 (between 36 and 36 hr), based on 421 

Fig. 6. 422 

 423 

 Figure 8. Pointwise 10-year unconditional return level map (mm) for 9 hr extremes (left), and pointwise one in 10 chance 424 

conditional return level map (mm) for 9 hr extremes, given a 20-year event for 36 hr extremes happens at location of the red 425 

star for the centroid of the Kalang River catchment (right). The colour scales are the same for comparison. 426 

The unconditional and conditional return levels were extracted at the centroid of each main catchment, 427 

and were converted to the absolute values of rainfall using a corresponding ARF and design storm 428 

hyetograph. The unconditional and conditional flood flows at the river crossing in the Bellinger 429 

catchment (corresponding to the unconditional and conditional rainfall extremes in Fig. 7) are given in 430 

Fig. 9 (left panel). Similar plots for the river crossing in the Deep Creek catchment (corresponding to 431 

the unconditional and conditional rainfall extremes in Fig. 8) are given in Fig. 9 (right panel). 432 

  433 
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Figure 9. Comparison between conditional flows (red line) and unconditional flows (black line). (left) At the river crossing  434 

in the Bellinger catchment (number 1 in Figure 3): conditional flow caused by an one in 10 chance conditional event for 36 435 

hr rainfall in considering the effect of a 20-year event for 36 hr rainfall occurring at the river crossing in the Kalang River 436 

catchment, and unconditional flow caused by a 10-year unconditional event for 36 hr. (right) At the river crossing in the 437 

Deep Creek catchment (number 3 in Figure 3): conditional flow caused by an one in 10 chance conditional event for 9 hr 438 

rainfall in considering the effect of a 20-year event for 36 hr rainfall occurring at the river crossing in the Kalang River 439 

catchment, and unconditional flow caused by a 10-year unconditional event for 9 hr rainfall.  440 

Fig. 9 presents peak flow for the Bellinger (left panel) and Deep Creek (right panel) catchments, 441 

indicating that the peak conditional flow at the river crossings is almost 2.0 and 1.7 times higher than 442 

the unconditional flow for the two catchments, respectively. This difference is a direct result of the 443 

conditional event having a higher rainfall magnitude than the unconditional event: given that there is 444 

an extreme event nearby, it is more likely for an extreme event to occur at a nearby location. If a bridge 445 

design were to take into account this extra criterion for the purposes of evacuation planning it would 446 

require the design to be at a higher level. 447 

5.3. Estimating the failure probability of the highway section based on the joint probability of rainfall 448 

extremes 449 

Figure 10 is a plot of the overall failure probability of the highway as a function of the failure probability 450 

of each individual river crossing (black). Similar relationships for the cases of complete dependence 451 

(blue) and independence (red) are also provided for comparison. For the case of complete dependence, 452 

when the whole region is extreme at the same time, the overall failure probability of the highway is 453 

equal to the individual river crossing failure probability and it represents the lowest overall failure 454 

probability. The worst case is complete independence where extremes do not happen together unless by 455 

random chance; this means the failure probability of the highway is much higher than that for individual 456 

river crossings. Taking into account the real dependence, there are some extremes that align and it seems 457 

from Fig. 10 that this is a relatively weak effect. As an example from Fig. 10, to design the highway 458 

with a failure probability of 1% annual exceedance probability (AEP), we would have to design each 459 

individual river crossing to a much rarer AEP of 0.25% (see green lines in Fig. 10). 460 

 461 
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 462 

 463 

Figure 10. Relationship between system failure probability and individual element failure probability in % annual 464 

exceedance probability (% AEP). The black colour is for the case study, the red colour is for the case of independence, and 465 

the blue colour is for the case of complete dependence. The green lines help to interpolate the individual element failure 466 

probability from a given system failure probability of 1%. Both horizontal axis and vertical axis are constructed at a double 467 

log scale for viewing purposes. 468 

6. Discussion and Conclusions 469 

Hydrological design that is based on IDF estimates has conventionally focussed on separate estimation 470 

at single locations. Such an approach can lead to the misspecification of wider system risk of flooding 471 

since weather systems exhibit dependence in space, time and across storm durations, which can lead to 472 

the coincidence of extremes. A number of methods have been developed to address the problem of 473 

antecedent moisture within a single catchment, by accounting for the temporal dependence of rainfall 474 

at locations of interest through loss parameters or sampling rainfall patterns (Rahman et al., 2002). 475 

However, there have been fewer methods that account for the spatial dependence of rainfall across 476 
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multiple catchments, due in part to the complexity of representing the effects of spatial dependence in 477 

risk calculations. Different catchments can have different times of concentration, so spatial dependence 478 

may also imply the need to consider dependence across different durations of extreme rainfall bursts.  479 

Recent and ongoing advances in modelling spatial rainfall extremes provide an opportunity to revisit 480 

the scope of hydrological design. Such models include a max-stable model fitted using a Bayesian 481 

hierarchical approach (Stephenson et al., 2016), max-stable and inverted max-stable models (Nicolet et 482 

al., 2017; Padoan et al., 2010; Russell et al., 2016; Thibaud et al., 2013; Westra and Sisson, 2011) and 483 

latent-variable Gaussian models (Bennett et al., 2016b). The ability to simulate rainfall over a region 484 

means that hydrological problems need not be confined to individual catchments, but may cover 485 

multiple catchments. Civil infrastructure systems such as highways, railways or levees are such 486 

examples, since the failure of any one element may lead to overall failure of the system. Alternatively, 487 

where there is a network, the failure of one element may have implications for the overall system to 488 

accommodate the loss, by considering alternative routes. With models of spatial dependence and 489 

duration dependence of extremes, there is a new and improved ability to address these problems 490 

explicitly as part of the design methodology. 491 

This paper demonstrated an application for evaluating conditional and joint probabilities of flood at 492 

different locations. This was achieved with two examples: (i) the design of a river crossing that will fail 493 

once on average every 𝑀 times given that its neighbouring river crossing is flooded; and (ii) estimating 494 

the probability that a highway section, which contains multiple river crossings, will fail based on the 495 

failure probability of each individual river crossing. Due to the lack of continuous streamflow data and 496 

sub-daily limitations of rain-based continuous simulation, this study used an event-based method of 497 

conditional and joint rainfall extremes to estimate the corresponding conditional and joint flood flows. 498 

The spatial rainfall was simulated using an asymptotically independent model, which was then used to 499 

estimate conditional and joint rainfall extremes. Although this study focused on the inverted max-stable 500 

model to simulate the extreme rainfall process, other methods such as the Gaussian copula may also be 501 

appropriate and should be considered in future applications. 502 
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An empirical method was obtained from the framework of Le et al. (2018b) to make an asymptotically 503 

independent model—the inverted max-stable process—able to capture the spatial dependence of rainfall 504 

extremes across different durations. The fitted residual tail dependence coefficient function showed that 505 

the model can capture the dependence for different pairs of durations. For our example, the highest ratio 506 

of the one in 10 chance conditional event (in considering the effect of a 20-year event rainfall occurring 507 

at the conditional location) to the 10-year unconditional event was 1.74, for the two catchments having 508 

the strongest dependence (Fig. 7). The corresponding conditional flows were then estimated using a 509 

hydrological model WBNM and shown to be strongly related to the ratio of conditional and 510 

unconditional rainfall extremes (Fig. 9). 511 

The joint probability of rainfall extremes for all catchments and for all possible pairs of catchments in 512 

the case study area was estimated empirically from a set of 10,000 years of simulated rainfall extremes, 513 

repeated 100 times to estimate the average value. The results showed that there were differences in the 514 

failure probability of the highway after taking into account the rainfall dependence, but the effect was 515 

not as emphatic as with the case of conditional probabilities. The difference in the failure probability 516 

became weaker as the return period increased, which is consistent with the characteristic of 517 

asymptotically independent data (Ledford and Tawn, 1996; Wadsworth and Tawn, 2012). A 518 

relationship was demonstrated (Fig. 10) to show how the design of the overall system to a given failure 519 

probability requires the design of each individual river crossing to a rarer extremal level than when each 520 

crossing is considered in isolation. For the case study example, it would be necessary to design each of 521 

the five bridges to a 0.25% AEP event in order to obtain a system failure probability of 1%.  522 

There is a need to reimagine the role of intensity-duration-frequency relationships. Conventionally they 523 

have been developed as maps of the marginal rainfall in a point-wise manner for all locations and for a 524 

range of frequencies and durations. The increasing sophistication of mathematical models for extremes, 525 

computational power and interactive graphics abilities of online mapping platforms means that analysis 526 

of hydrological extremes could significantly expand in scope. With an underlying model of spatial and 527 

duration dependence between the extremes, it is not difficult to conceive of digital maps that 528 

dynamically transform from the marginal representation of extremes to the corresponding 529 
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representation conditional extremes after any number of conditions are applied. This transformation is 530 

exemplified by the differences between left and right panels in Fig. 7 and Fig. 8. Enhanced IDF maps 531 

would enable a very different paradigm of design flood risk estimation, breaking away from analysing 532 

individual system elements in isolation and instead emphasizing the behaviour of entire system.  533 
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Appendix A. Calculation of empirical tail dependence coefficient 534 

To illustrate how Eq. (2) in the manuscript is calculated, consider a set of 𝑛 = 10 observed values at 535 

the two locations: 𝑍1 and 𝑍2 (see Table A1). First, 𝑍1 and 𝑍2 are converted to empirical cumulative 536 

probability estimates via the Weibull plotting position formula 𝑃 = 𝑗 (𝑛 + 1)⁄  where 𝑗 is ranked index 537 

of a data point giving 𝑃1 and 𝑃2 (see Table A1). 538 

Table A1. Observed data 𝑍1 and 𝑍2 and corresponding empirical cumulative probabilities 𝑃1 and 𝑃2. 539 

𝒁𝟏 𝒁𝟐 𝑷𝟏 𝑷𝟐 

5 10 0.455 0.909 

9 1 0.818 0.091 

1 7 0.091 0.636 

2 6 0.182 0.545 

10 4 0.909 0.364 

3 3 0.273 0.273 

8 9 0.727 0.818 

6 2 0.545 0.182 

4 8 0.364 0.727 

7 5 0.636 0.455 

Assume that interest is in values above a threshold 𝑢 satisfying 𝑃𝑢 = 0.5, in other words, 𝑃{𝑍2 > 𝑢} =540 

𝑃{𝑃2 > 𝑃𝑢} = 0.5. In this case we have only one pair, at the index of 7, that satisfy both 𝑃1 and 𝑃2 are 541 

greater than 𝑃𝑢 = 0.5, thus 𝑃{𝑍1 > 𝑢, 𝑍2 > 𝑢} = 𝑃{𝑃1 > 𝑃𝑢, 𝑃2 > 𝑃𝑢} = 1 10⁄ = 0.1. The calculation 542 

of the empirical tail dependence coefficient is then 543 

𝜂(𝑥1, 𝑥2) =
log𝑃{𝑍2 > 𝑢}

log𝑃{𝑍1 > 𝑢, 𝑍2 > 𝑢}
=

log𝑃{𝑃2 > 𝑃𝑢}

log𝑃{𝑃1 > 𝑃𝑢, 𝑃2 > 𝑃𝑢}
=
log(0.5)

log(0.1)
= 0.301.            (𝐴. 1) 544 

  545 
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Appendix B Estimate of conditional and joint probabilities of rainfall extremes 546 

The unit Fréchet transformation is given as 547 

𝑧 =

{
 
 

 
 (𝑙𝑜𝑔 {1 − Φ𝑢 (1 +

(𝑦−𝑢)

𝜎𝑢
)
−1 ⁄

})
−1

𝑦 > 𝑢, 𝜉 ≠ 0

−(𝑙𝑜𝑔 {1 − Φ𝑢𝑒𝑥𝑝 (−
𝑦−𝑢

𝜎𝑢
)
−1 ⁄

})
−1

𝑦 > 𝑢, 𝜉 = 0

−{𝑙𝑜𝑔𝐹(𝑦𝑖)}
−1  𝑦 ≤ 𝑢

 (B.1) 548 

where 𝑦 is the original marginal value and 𝑧 is the Fréchet transformed value and all other parameters 549 

correspond to the GPD specified in Section 4.1. For values below the threshold, F is the empirical 550 

distribution function of 𝑦, 𝐹(𝑦𝑖) = 𝑖/(𝑛 + 1)  where 𝑖 is the rank of 𝑦𝑖 and 𝑛 is the total number of data 551 

points. 552 

The conditional probability 𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} is obtained from the bivariate inverted max-stable 553 

process cumulative distribution function (CDF) in unit Fréchet margins (Thibaud et al., 2013), which 554 

is given as: 555 

𝑃{𝑍1 ≤ 𝑧1, 𝑍2 ≤ 𝑧2} = 1 − exp {−
1

𝑔1
} − exp {−

1

𝑔2
} + exp[−𝑉{𝑔1, 𝑔2}],           (𝐵. 2) 556 

where 𝑔1 = −1 log{1 − exp(−1 𝑧1⁄ )}⁄ , 𝑔2 = −1 log{1 − exp(−1 𝑧2⁄ )}⁄ , and the exponent measure 557 

𝑉 (Padoan et al., 2010) is defined as: 558 

𝑉{𝑔1, 𝑔2} = −
1

𝑔1
Φ{
𝑎

2
+
1

𝑎
𝑙𝑜𝑔

𝑔2
𝑔1
} −

1

𝑔2
Φ{
𝑎

2
+
1

𝑎
𝑙𝑜𝑔

𝑔1
𝑔2
}.                   (𝐵. 3) 559 

In Eq. (B.3), Φ is the standard normal cumulative distribution function, 𝑎 = √2𝛾𝑎𝑑.(ℎ) with 𝛾𝑎𝑑.(ℎ) is 560 

the variograms that was mentioned in the explanation of Eq. (3). 561 

In unit Fréchet margins, the relationship between the return level 𝑧 and the return period 𝑇 (in number 562 

of observations) is given as 𝑧 = −1/𝑙𝑜𝑔(1 − 1/𝑇), and the conditional probability for the max-stable 563 

process can then be estimated using: 564 

𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} = 𝑇1 [
1

𝑇1
− exp (−

1

𝑧2
) + 𝑃{𝑍1 ≤ 𝑧1, 𝑍2 ≤ 𝑧2}],        (𝐵. 4) 565 



28 
 

where 𝑇1 is the return period (in number of observations for 36 hr rainfall) corresponding to the return 566 

level 𝑧1. It is also noted that in this paper 𝑍1 and 𝑍2 were taken as threshold exceedances, so the return 567 

period 𝑇1 should be in the number of observations, which is equivalent to a 𝑇1 243⁄ −year return period 568 

because there are 243 observations for 36 hr rainfall in a year.  569 

The probability that there is at least one location that has an extreme event exceeding a given threshold 570 

can be calculated based on the addition rule for the union of probabilities, as: 571 

𝑃(𝑍1 > 𝑧1 or…or 𝑍𝑁 > 𝑧𝑁) =∑𝑃(𝑍𝑖 > 𝑧𝑖)

𝑁

𝑖=1

−∑𝑃(𝑍𝑖 > 𝑧𝑖 , 𝑍𝑗 > 𝑧𝑗)

𝑖<𝑗

+⋯ 572 

+(−1)𝑁−1𝑃(𝑍1 > 𝑧1, … , 𝑍𝑁 > 𝑧𝑁),                                                       (𝐵. 5) 573 

where 𝑁 is the number of locations. 574 

For the case of dependent variables, the joint probability for only two locations 𝑃{𝑍1 > 𝑧1, 𝑍2 > 𝑧2} 575 

can be easily obtained from the bivariate CDF for inverted max-stable process in Eq. (B.2). However, 576 

for the case of multiple locations (five different locations for this paper), it is difficult to derive the 577 

formula for this probability because there are dependences between extreme events at all locations. So 578 

this probability is empirically calculated from a large number of simulations of the dependent model 579 

(see the description of the simulation procedure for an inverted max-stable process in Section 4.3). 580 

For the case that all the events are independent, the joint probability for independent variables is broken 581 

down as the product of the marginals, and the conditional probability is equivalent to the marginal 582 

probability. When applying Eq. (B.5) for independent variables, the joint probability is therefore 583 

calculated by 𝑃(𝑍1 > 𝑧1, … , 𝑍𝑁 > 𝑧𝑁) = 𝑃(𝑍1 > 𝑧1)…𝑃(𝑍𝑁 > 𝑧𝑁). 584 
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