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Response to the Reviewer #1 

This manuscript describes the application of a correlation model for spatially dependent rainfall and 
hydrological response of four subcatchments that can cause flooding of a highway. The road is blocked 
if either of flows from the four subcatchments exceeds a critical threshold. The probability of system 
failure (road blockage) thus depends on the exceedance probability of four thresholds by four correlated 
stochastic variables.  

Although the scientific methods that are used in this study may not be entirely new, the explanation of 
spatial dependency of rainfall and application to a practical case study are very clear and a pleasure to 
read. After reading this manuscript, a decision maker should understand that it is important to take this 
correlation into account. 

I have only one specific comment: the core of the technical approach I would consider to be the correlation 
model, i.e. the Brown-Resnick inverted max-stable process. This method is not explained at all. Instead, 
the authors choose to refer to literature. Although a fully detailed description of the B-R algorithm may be 
too much, it would be good if the essence of this method is explained briefly. 

 

Response: Thank you very much for your suggestion. Although a full explanation of the B-R model is 
very long and technical and well-covered in other papers, we have provided a brief summary of the main 
technique through the inclusion of a high-level algorithm in the next version of the manuscript.1 

  

                                                           
1 Line 241: “An example of an asymptotically independent model is the inverted max-stable process (Wadsworth and Tawn, 
2012). A general description of all continuous inverted max-stable processes that have standard exponential margins on a 
spatial domain 𝑋 is  

Ω̃(𝑥) = min
𝑘≥1

𝑈𝑘 𝑊𝑘⁄ ,      𝑥 ∈ 𝑋,                                                 (2)  

where 𝑈𝑘  are points of a unit Poisson process on (0, ∞) and the 𝑊𝑘(𝑥) are independent replicas of a continuous, non-

negative stochastic process 𝑊(𝑥) in the spatial domain 𝑋, with 𝐸{𝑊(𝑥)} = 1 for all 𝑥 ∈ 𝑋. 
It is convenient to work with a simple inverted max-stable process with unit Fréchet margins, because the marginal distribution 

can easily be transformed back to the GPD scale. To transform the process Ω̃(𝑥) to unit Fréchet margins, the following 
transformation is used: 

Ω(𝑥) = −
1

log{1 − 𝑒−Ω̃(𝑥)}
,      𝑥 ∈ 𝑋,                                                (3)  

then Ω(𝑥) is an asymptotically independent process with unit Fréchet margins.” 



Response to the Reviewer #2 

The manuscript describes a statistical framework based on an inverted max-stable process allowing to 
account for the spatial dependence of rainfall across durations. Application is made for a case study in 
New South Wales, Australia. Using the proposed framework, the author are able to compute conditional 
and joint return levels of rainfall. Through the use of rainfall ARFs and of an hydrological model, that 
authors also derive conditional and joint return levels of river flows. Finally the authors derive the failure 
probability of a highway section, defined as the probability that flood magnitude at any of the five river 
crossings exceeds a given threshold, assuming a 1-1 correspondence between flood magnitude and 
rainfall over a catchment. 

Main comments: The article is well written and mainly clear. The two risk applications of Section 5.1 and 
5.2 are very interesting, particularly 5.2 (failure probability of a highway section) which seems to me to 
be more related to “real” issues than 5.1. The subject is absolutely worth publishing in HESS. However I 
raise below a couple of major issues to be addressed before publication: 

 

Response: Thank you for your comments. We respond in detail below (your comments in italic font and 
our responses in normal font). 

 

Major comment #1: 

The use of “Intensity-Duration-Frequency curves” in the title seems at the moment misleading. I would 
have expected from this expression to see e.g. joint or conditional IDF curves at a given 
station/catchment, i.e. the IF curves for several durations. Here actually only one duration is used for 
every catchment – basically the concentration time of the catchment. So I’d be tempted to replaced “IDF” 
in the title (and the text) by “return levels”. 

Response: As the reviewer comments, the use of “Intensity-Duration-Frequency curves” suggests plots 
of IF with respect to duration, which we have not shown, and we instead showed return level maps. We 
propose to use “Intensity-Duration-Frequency relationships” in the title, since the method involves these 
three elements, but hopefully avoids the suggestion of traditional IDF curves.  

The model can produce IDF curves at any given location as well as exceedance relationships of a 
conditional distribution. We have provided here an additional figure showing this relationship across 
multiple durations based on the example in Figure 10 of the existing manuscript which focused only on 
the 9-hour to 36 hour conditional relationship. 



 

Figure R1. The exceedance relationship of a conditional distribution across multiple durations based on the example in 

Figure 8 in the manuscript. The blue line is the relationship between 10-year unconditional return levels (at the location of 

the blue star in Figure 8) and durations, and the red line is the relationship between one in 10 chance conditional return levels 

(at the location of the blue star in Figure 8) and durations, given a 20-year event for 36 hr extremes happens at location of the 

red star (in Figure 8) for the centroid of the Kalang River catchment. 

 

Major comment #2: 

I’m puzzled about the GPD fits. If I understood correctly, GPD are fitted to 9 and 36 hr rainfall 
exceedances. If moving windows are considered, then there is a very strong auto-correlation for both the 
9 and 36 hr rainfall values. Have you taken this into account in the fits? A declustering method should be 
applied. This may be the reason why the fits for 36 hr extremes are usually poorer than for 9 hr extremes 
(see Figs S5 and S6). 

Response: Thank you. We did not consider moving windows; instead, we used restricted time periods 
for 36 hr rainfall (e.g. 01/01 00:00 to 02/01 12:00; 02/01 12:00 to 04/01 00:00; …). The use of a restricted 
estimates avoids the need for declustering to undo the effect of a moving window. We used a conversion 
factor of 1.13 to account for the difference between sliding (unrestricted) d hr rainfall maxima and 
restricted d hr maxima. This value is based on guidance from Australian Rainfall and Runoff (where Table 
2.3.4. from Green et al. (2016) gives the 24-hr factor as 1.15 and the 48-hr factor as 1.11).  

Inside the 36 hr period we also restricted the period for 9 hr rainfall (e.g. 01/01 00:00 to 01/01 09:00; 
01/01 09:00 to 01/01 18:00; …). This is to align concurrent occurrences of 36 hr and 9 hr rainfall when 
analysing the spatial dependence across durations. We also used a conversion factor of 1.13 for this 
period (Figure 5 from Jakob et al., (2005) suggests the fitted conversion factor is relatively stable). 

Regarding the fits to the 36 hours extremes, the shape parameter of the GEV has greater uncertainty for 
some sites (e.g.Fig S5, site 3, 36 hours) which can be seen in the deviations of the observed points from 



gumbel quantiles. Explanation for variability is unclear to us, but we do not consider it is related to 
temporal dependence in the extremes. 

References used for this response: 

Green J, Johnson F, Beesley C, The C, 2016, Chapter 3. Design Rainfall, Book 2 in Australian Rainfall 
and Runoff - A Guide to Flood Estimation, Commonwealth of Australia    

Jakob D., Taylor B.F. and Xuereb K.C. (2005). A Pilot Study to Explore Methods for Deriving Design 
Rainfalls for Australia - Part 1., HRS No. 10, Hydrometeorological Advisory Service, Bureau of 
Meteorology, June 2005, (59 pp). http://www.bom.gov.au/water/designRainfalls/hrs10.shtml 

Major comment #3: 

The part regarding the ARFs seems obscure to me (Section 4.5). Basically I isn’t clear tome what the 
ARF allow for. I interpret between the lines that they allow to transform point return levels to spatial return 
levels over a catchment. However the way ARFs are described is very confusing to me. For example l. 
346 states that “the rainfall extremal estimates need to be converted to the average spatial rainfall using 
an ARF”. First I don’t understand what are the “rainfall estimates” (rainfall return levels?). Second I guess 
that “ average spatial rainfall” should be “spatial rainfall return levels”. I recommend clarifying Section 4.5 
and part of the Introduction dealing with ARFs. 

Response: Areal reduction factors (ARFs) were employed to make the adjustment of rainfall depth at a 
point for a given return level estimate, to an effective (mean) depth over a catchment with the same 
probability of exceedance as that of the point extreme (Le et al., 2018). 

We have clarified the text relating to the explanation of ARFs based on your observations.2 

References used for this response: 

Le, P. D., Davison, A. C., Engelke, S., Leonard, M., and Westra, S.: Dependence properties of spatial 
rainfall extremes and areal reduction factors, Journal of Hydrology, 565, 711-719, 
https://doi.org/10.1016/j.jhydrol.2018.08.061, 2018. 

 

 

Major comment #4: 

Expressions such as “10-year conditional return level map given a 20-year event happen at x” are 
confusing to me. Wouldn’t it be less confusing to say this is the levels. expected to occur on average 
once every 3650 times when a 20-year event happen at x. The “10-year” is misleading to me in that case 
due to the conditioning. 

Response:  

On review, we agree that this terminology of return periods is misleading. Our general design intent is 
introduced as: “What flood flow needs to be used to design a bridge that will fail only once on average 
every M times that a neighbouring catchment is flooded?” However, we then suggested that if M=10 this 

                                                           
2 Line 332: “Before transforming extreme rainfall to flood flow through an event-based model, areal reduction factors (ARFs) 
were employed to make the adjustment of rainfall depth at a point (i.e. the centroid of a catchment) for a given return level 
estimate, to an effective (mean) depth over a catchment with the same probability of exceedance as the single point (Ball et 
al., 2016; Le et al., 2018a).” 



implies a 10-year event. On review, we see the use of return periods is confused and are grateful the 
reviewer has raised the matter.  

For the example of daily events (365 days per year), a 10% exceedance of a conditional distribution 
cannot be used to imply there were 10 years equivalent or 3650 instances – because the condition only 
applies to a subset of days. As the reviewer has indicated, a descriptive frequency is more transparent 
and we will remove all instances referring to conditional “return periods”. We have exclusively retained 
descriptive phrases such as “once on average every M times” or “one in M chance” in discussion, figure 
labels and figure captions.  

 

Major comment #5: 

I’m confused with the reference to “annual maxima”, whereas the article considers peaks-over-threshold. 
For example Fig 1 illustrates the case of annual maxima (GEV), which is not the case here. L. 421-423 
talks about annual maxima instead of exceedances. 

Response: Thank you for pointing this out. We use the peaks-over-threshold model in this paper. So we 
have fixed the text in L. 421-423, they should be exceedances. We used Fig 1 to shows the limitation of 
the conventional method so the fact that Fig 1 illustrates the case of annual maxima (GEV) is correct. 

 

Major comment #6: 

I haven’t understood what is the AEP of Fig 12 and 13. I guess it would be clearer to replace AEP by 
return periods. 

Response: The reviewer is correct that it is not clear what an AEP means for a conditional distribution 
(as with Major comment #4 for return periods). For example, a 10% chance of exceedance in a conditional 
distribution is not a 10% annual exceedance. For this reason, Fig. 12 is confusing and we have removed 
it along with associated discussion. The use of AEP in Fig. 13 is correct and we still retain it. 

 

Minor comment #1: 

l. 111: Le et al → no brackets. 

Response: Thank you. We have fixed this. 

 

Minor comment #2: 

l. 113 AFR → ARF 

Response: We have fixed this. Thanks. 

 

Minor comment #3: 

l. 116-117: I may be clearer to exemplify (i) in terms of evacuation route design as you do in Section 5.1. 



Response: The phrase in question is: “What flood flow needs to be used to design a bridge that will fail 
only once on average every M times that a neighbouring catchment is flooded?”  

As with the response to major comment #4, we have addressed the main ambiguity by removing the 
invalid reference to return periods. Whereas the evacuation route is a general example, phrasing the 
research question this way allows us to introduce the need for a probability into the design specification.  

Minor comment #4: 

Fig. 3: add the station numbers 1, 2, 3... 

Response: We have fixed this. Thanks. 

 

Minor comment #5: 

Fig. 4 estimate conditional rainfall → estimate conditional probability rainfall 

Response: We have fixed this. Thanks. 

 

Minor comment #6: 

l. 277: where → to be removed 

Response: We have fixed this. Thanks. 

 

Minor comment #7: 

l. 294-296: why don’t you estimate all parameters (beta, q, c) together? 

Response: This method is adopted from the paper of Le et al. (2018). If we fit all parameters (𝑏𝑒𝑡𝑎, 𝑞, 
and 𝑐) jointly, there will be a bias in the estimated 𝑐 parameter because of the dominance of data points 
at longer distances, which underestimates the tail dependence coefficients at short distances. The main 
interest is in short distances, especially at ℎ = 0 for the case of dependence between two different 
durations at the same location (see Figure 8 in the manuscript). Therefore, we estimate beta and 𝑞 first, 

and then we use fitted 𝑏𝑒𝑡𝑎 and 𝑞 to estimate 𝑐. 

References used for this response: 

Le, P. D., Leonard, M., and Westra, S.: Modeling Spatial Dependence of Rainfall Extremes Across 
Multiple Durations, Water Resources Research, 54, 2233-2248, doi:10.1002/2017WR022231, 2018. 

 

Minor comment #8: 

l. 333-334 it is also noted .. 9 hrs → is it useful here? 

Response: Yes, it is useful because it indicates that we need to analyse extreme rainfall for different 
durations. 



 

Minor comment #9: 

Section 4.5: to be rewritten to clarify the ARFs as said above 

Response: Thank you. We have clarified this. 

 

Minor comment #10: 

l. 346: rainfall estimates: what are they? 

Response: Thank you. We mean the extreme rainfall intensities at a given location, quantile and duration. 
We have fixed this in the updated manuscript. 

 

Minor comment #11: 

l. 353-354: the BR process → for what duration? With which parameters? 

Response: In this paper, we need to calculate areal reduction factors for rainfall of 36 h and 9 h, so we 
only need to do the simulations for 36 h and 9 h separately. The parameters used are those for the 
variograms in Eq. (3) for rainfall of each durations, which is 𝛾(ℎ) = ‖ℎ‖𝛽 𝑞⁄  for 𝑞 > 0 and 𝛽 ∈ (0,2). 
So we need to fit Eq. (3) separately to observed rainfall of 36 hr and 9 hr to get the fitted parameters. We 
have provided the explanation for this in the revised version of the manuscript.3 

 

Minor comment #12: 

l. 360: empirical distributions → I’m confused here. If you use empirical distributions below the threshold, 
how can you have rainfall at ungauged sites (maps)? 

Response: Thank you for your comment. The empirical distributions at ungauged sites are derived 
through the following steps: 

- Step 1: We use a response surface for threshold for the case study catchments based on 
covariates including longitude and latitude. 

- Step 2: We use the data of the nearest gauged sites and extract the empirical distributions of 
rainfall below the interpolated threshold in Step 1. 

This method is not perfect, but we think that this is acceptable for this study, and for studies of extremes 
in general because the non-extremes contribute insignificantly (Thibaud et al., 2013). We have improved 
the explanation in the revised version of the manuscript.4 

References used for this response: 

                                                           
3 Line 341: “The simulation procedure for spatial rainfall for a given duration is implemented in two steps. In the first step, the 
theoretical residual tail dependence coefficient function in Eq. (5) is fitted to observed rainfall for the duration of interest to 
obtain the variogram parameters 𝑞 > 0 and 𝛽 ∈ (0,2).” 
4 Line 349: “The empirical distributions at ungauged sites are derived from the nearest gauged sites using a response surface 
(latitude and longitude covariates) to spatially interpolate the threshold.” 



Thibaud, E., Mutzner, R., and Davison, A. C.: Threshold modeling of extreme spatial rainfall, Water 737 
Resources Research, 49, 4633-4644, 2013. 

 

Minor comment #13: 

l. 373: multiple durations → Is the algorithm of Dombry still applicable in this case? I’m not sure to see 
how it works for multiple durations. 

Response: Yes, we think the algorithm of Dombry works properly for multiple durations in the following 
way. The covariance matrix of the simulation procedure provided by Dombry is calculated from the 
variogram in Eq. (4) of our paper. The covariance element for a pair of locations with the same duration 
(e.g. 36 and 36 hr) is calculated from the variogram of identical durations for 36 and 36 hr. The covariance 
element for a pair of locations with different durations (e.g. 36 and 9 hr) is calculated from the variogram 
across durations for 36 and 9 hr. 

References used for this response: 

Dombry, C., Engelke, S., and Oesting, M.: Exact simulation of max-stable processes, Biometrika, 103, 
303-317, 2016. 

Minor comment #14: 

l. 373 in this case... pair of locations → I don’t understand it at all. What covariance matrix are you talking 
about? 

Response: This comment follows from minor comment #13, indicating that we have been ambiguous in 
this part of the method. We will improve the text to be clearer about how the covariance matrix is 
constructed. 

 

Minor comment #15: 

l. 378 rainfall hyetographs → what rainfall are you talking about? Spatial rainfall over the catchments? 

Response: In event-based design methods, template rainfall hyetographs are applied to the areal rainfall 
total of a catchment for a specified frequency and duration. We have added a brief explanation and 
reference to design guidelines in the revised version of the manuscript.5 

 

Minor comment #16: 

Fig. 6: is it useful here? It could be in the supplementary material. 

Response: We will move it to the supplementary material. 

 

Minor comment #17: 

                                                           
5 Line 377: “WBNM calculates flood runoff from rainfall hyetographs that represent the relationship between the rainfall 
intensity and time (Chow et al., 1988).” 



l. 385 & 387: hydrological models → hydrological model layouts 

Response: We will fix this when revising the manuscript. 

 

Minor comment #18: 

l. 398: did you apply declustering before estimating the GPDs? 

Response: In short, we used estimates based on restricted totals (rather than a moving window) and did 
not apply declustering. Please also see our response to your major comment #2.  

 

Minor comment #19: 

Fig. 7 and SM: there is a huge difference between the extremes at the different stations, e.g. station 2 vs 
station 6. Could you comment on this? Also what method did you use to produce the confidence bands? 

Response: Yes, there is a difference between the extremes at different stations. We can comment on 
this in the paper. We appreciate it is possible to improve the spatial model with additional covariates 
(and/or additional data such as daily rainfall observations), but the fidelity of the spatial model is not the 
main focus of the paper. We feel that the case study is sufficiently plausible to introduce the idea of 
conditional and joint relationships in hydrologic design.  

We used the CAR package in R (qqPlot function). This function produces the confidence bands based 
on the SEs of the order statistics of an independent random sample (Fox, 2015). 

References used for this response: 

Fox, J., 2015. Applied regression analysis and generalized linear models. Sage Publications. 

 

Minor comment #20: 

l. 421-423: I’m lost here. Do you fit the BR process to annual maxima or exceedances? 

Response: Thank you for pointing this out. We fit the BR process to exceedances. We have addressed 
this in the updated manuscript.6 

 

Minor comment #21: 

Caption of Fig 8: Abbreviation TDC is useless 

Response: Thanks, we have fixed this. 

 

                                                           
6 Line 419: “This is expected, as the dependence at the same site between exceedances at different durations will be lower 
than between exceedances at the same duration. This is because exceedances of different durations may arise from different 
storm events (Zheng et al., 2015).” 



Minor comment #22: 

Fig. 9: I don’t understand how you get the maps. For this you need the marginal distribution of rainfall at 
every pixel. How do you get this? 

Response: We get the response surface for the marginal distribution parameters of rainfall at every pixel 
using a thin plate spline regression against longitude and latitude. We unintentionally omitted these 
details in the original version, but have included them in the updated manuscript.7 

 

Minor comment #23: 

l. 469: average spatial rainfall: I’m confused. How can you transform return levels to averages? 

Response: We use areal reduction factors ARFs for this conversion and will clarify the text. ARFs a 
standard design method used to transform an intensity of extreme rainfall at a point to an average rainfall 
intensity over a spatial domain with an equivalent probability of exceedance (Ball et al., 2016; Myers, 
1980; Omolayo, 1993; Shaw et al., 2011; Siriwardena and Weinmann, 1996).  

References used for this response: 

Ball, J. et al., 2016. Australian Rainfall and Runoff: A Guide to Flood Estimation. © Commonwealth of 
Australia (Geoscience Australia). 

Myers, V.A., 1980. A methodology for point-to-area rainfall frequency ratios. In: Zehr, R.M. (Ed.), Dept. 
of Commerce, National Oceanic and Atmospheric Administration, National Weather Service. Silver 
Spring, Md. 

Omolayo, A.S., 1993. On the transposition of areal reduction factors for rainfall frequency estimation. J. 
Hydrol. 145 (1), 191–205. https://doi.org/10.1016/0022-1694(93) 90227-Z. 

Shaw, S.B., Royem, A.A., Riha, S.J., 2011. The relationship between extreme hourly precipitation and 
surface temperature in different hydroclimatic regions of the United States. J. Hydrometeorol. 12 (2), 
319–325. https://doi.org/10.1175/2011jhm1364.1. 

Siriwardena, L., Weinmann, P., 1996. Derivation of areal reduction factors for design rainfalls in Victoria 
for Rainfall Durations 18–120 hours. Report, 96(4): 60. 

 

Minor comment #24: 

Fig. 11 at the river crossing: which crossing are you talking about? There are several. 

Response: Thanks, we have clarified it in the updated manuscript. 

 

Minor comment #25: 

                                                           
7 Line 438: “In order to obtain the maps in Fig. 7 and Fig. 8, a thin plate spline regression against longitude and latitude was 
employed to build the response surface for the marginal distribution parameters of rainfall at every pixel.” 

https://doi.org/10.1016/0022-1694(93)
https://doi.org/10.1175/2011jhm1364.1


l. 495-497: Although Fig 11 … not part of the method → I don’t understand these two sentences. What 
do you mean by “this is not a physical timing difference”? 

Response: This text means that our method focuses on the peak of the conditional design hydrograph 
and does not consider the difference in the timing of the peak. We have improved the explanation to 
clarify this.8 

 

Minor comment #26: 

Fig. 12: I don’t understand the AEP. Wouldn’t it be clearer with return periods instead of AEP? 

Response: As with major comment #6, we consider that AEP is a confused term for the conditional 
probability in Fig. 12. We have removed this figure and associated discussion. 

 

Minor comment #27: 

l. 511: extreme rainfall intensity → over a catchment? 

Response: Thanks, we have fixed this. 

 

Minor comment #28: 

l. 520: and → as a function of? 

Response: Thanks, we have fixed this. 

 

Minor comment #29: 

Fig. 13: as for Fig. 12, would be clearer to show return periods in the x-axis? 

Response: Unlike minor comment #26 focussed on Fig. 12, we think the term “annual exceedance 
probability” (AEP) is straightforward when applied to the joint probability shown in Fig. 13. The AEP and 
return period are interchangeable as an inverse relationship, but we expect some readers are more 
familiar with the terminology of return periods. We have audited our use of these terms throughout the 
manuscript and will apply a consistent terminology.  

 

Minor comment #30: 

Caption of Fig. 13: please explain what are the green segments 

                                                           
8 Line 494: “Although Fig. 9 shows a difference in terms of the time taken to reach the peak flows, the two design hydrographs 
are separate and this is not a physical timing difference.” 



Response: The green segments are to indicate the interpolation of the individual element failure 
probability to a system failure probability (discussion line 530). We have added this detail to the figure 
caption so the description is self contained.9 

 

Minor comment #31: 

l. 529: 1% annual exceedance prob → 1% AEP 

Response: Thank you. We have fixed this. 

 

Minor comment #32: 

l. 573: 1.74 → I guess this number depends on the considered levels 

Response: Yes, this number depends on the pair of locations that we analyse the conditional probability 
as well as the considered levels, so we have added a clarification of the considered levels in the revised 
version of the manuscript.10 

 

Minor comment #33: 

l. 611: inverted max-stable → inverted max-stable process 

Response: Thank you, we will fix it when revising the manuscript. 

 

Minor comment #34: 

Fig. S1: I don’t understand the figure. Could you please explain what a given point represents? Given 
Table 1, I would have expected to have points at A=91, 294, 341, 771, 1020, which is not the case. 

Response: Fig. S1 provides relationships between areal reduction factors (ARFs) and area (in km2) for 
different return periods for the case study catchments. These relationships are calculated through the 
simulation of inverted Brown-Resnick process over equally sized grid points. To get the ARFs for each of 
subcatchments in the case study (corresponding to area A=91, 294, 341, 771, 1020), we need to 
interpolate these relationships. We will improve the explanation in the revised version of the manuscript. 

  

                                                           
9 Line 527: “The green lines help to interpolate the individual element failure probability from a given system failure probability 
of 1%. Both horizontal axis and vertical axis are constructed at a double log scale for viewing purposes.” 
10 Line 567: “for the two catchments having the strongest dependence (Fig. 7). The corresponding conditional flows were then 
estimated using a hydrological model WBNM and shown to be strongly related to the ratio of conditional and unconditional 
rainfall extremes (Fig. 9).” 



Response to the Reviewer #3 

In general, the paper is well written. However, I have some concerns regarding the real contribution 
(novelty), connection with the literature and in particular with copula studies, as well as comparison with 
other models. Main comments: 

 

Response: Thank you for your comments. We respond in detail below (your comments in italic font and 
our responses in normal font). 

 

Major comment #1: 

1. Some important papers related to the topic are missing and more importantly the comparison with 
them not only in terms of results but also in terms of advantages and drawbacks (e.g. Bardossy and 
Pegram, 2009, Durocher et al. 2016 and Requena et al. 2018). 

Response: Thank you for the suggestion. We have added discussion on these paper to the revised 
manuscript.11 

 

Major comment #2: 

2. Regarding the issues motivating the study: the first one seems to be already fixed by Le et al. 2018b 
(as indicated on page 5), and the second issue is not clear (seems to be written as a statement not as 
an issue). 

Response: Thank you for pointing this out. The second issue relates to the spatial properties of 
asymptotic dependence (explored in Le et al., 2018a). While these two issues have been separately 
addressed in previous papers, the contribution is to show how to combine the methods to solve a realistic 
design problem.  

References used for this response: 

Le, P. D., Davison, A. C., Engelke, S., Leonard, M., and Westra, S.: Dependence properties of spatial 
rainfall extremes and areal reduction factors, Journal of Hydrology, Submitted, 2018a. 

Le, P. D., Leonard, M., and Westra, S.: Modeling Spatial Dependence of Rainfall Extremes Across 
Multiple Durations, Water Resources Research, 54, 2233-2248, 2018b. 

 

 

 

                                                           
11 Line 59: “Most rainfall models operate at the daily timescale (Bárdossy and Pegram, 2009; Baxevani and Lennartsson, 
2015; Bennett et al., 2016b; Hegnauer et al., 2014; Kleiber et al., 2012; Rasmussen, 2013), whereas many catchments 
respond at subdaily timescales.” 
Line 47: “Several frameworks have been demonstrated based directly on streamflow observations, including functional 
regression (Requena et al., 2018), multisite copulas (Renard and Lang, 2007), and spatial copulas (Durocher et al., 2016).” 



Major comment #3: 

3. The topic can also be closely related to regional frequency analysis or estimation at ungauged basins. 
The authors did not make this connection or show the difference. In the first case (similarity or 
connection), a huge literature exists and should be considered. 

Response: Thanks for your comment. We have discussed differences to regional frequency analysis and 
methods of estimation in the revised manuscript.12  

  

                                                           

12 Line 72: “Regional frequency analysis is one type of method to estimate IDF curves, where the precision of at-site estimates 

is improved by pooling data from sites in the surrounding region (Hosking and Wallis, 1997). These methods can be combined 

with spatial interpolation methods to estimate parameters for any ungauged location of interest (Carreau et al., 2013). To 

determine an effective mean depth of rainfall over a catchment with the same exceedance probability as at a gauge location, 

the pointwise estimate of extreme rainfall is multiplied by an areal reduction factor (ARF) (Ball et al., 2016). However, such 

methods do not account for information on the spatial dependence of extreme rainfall—whether for single storm duration, or 

for the more complex case of different durations across a region (Bernard, 1932; Koutsoyiannis et al., 1998). The lack of 

dependence prevents these approaches from being applied to estimate conditional or joint flood risk at multiple points in a 

catchment or across several catchments, as would be required for a civil infrastructure system.” 



Major comment #4: 

4. The paper focused on a case study (a given set of data). However, the effect of some factors on the 
performance of the model as not discussed and not studied: for instance, and not limited to, the 
dimensionality (number of sites) and the size of the subgroups. 

Response:  

Thanks for your comment. This is beyond the scope of the current study.  

 

Major comment #5: 

5. An important missing element from the paper is the notion of copulas which is the most important when 
dealing with dependence. There is a huge literature in both hydrology and statistics (even in spatial 
dependence). I’m surprised to not see it in the paper. 

Response: We have added literature on copulas into the revised manuscript.13 

 

Major comment #6: 

6. In section 4: why the GPD is used directly without model selection procedure? Why it is the same for 
all sites? The GPD is usually asymptotically justified which is not enough (and less justified in hydrology 
because of the sample sizes) and does not depend on the data at hand. It should be considered as a 
distribution among others (like GEV for block extremes). 

Response: Thank you for this comment. We used the GPD because, in contrast to block maxima, it 
allows us to consider concurrent rainfall extremes and therefore enables the study of dependence. The 
intention in this paper is not to work through repetitive fitting of different distributions, but to demonstrate 
a plausible method based on joint rainfall extremes for the design of linear infrastructure. The same 
distribution is used at each site with variation at each site carried by the parameters. The marginal model 
adopted is not perfect, but it is plausible, and sufficient for the intent of showing the application of rainfall 
dependence to design. 

 

Major comment #7: 

7. Lines 245-248: please provide other alternative models and justify the choice of your model. 

Response: Thank you. We have added justification of the choice of the Brown-Resnick model in the 
revised manuscript. For example, Le et al. (2018a) show it has better performance than the extremal-t 
model.14  

                                                           
13 Line 91: “Copulas including the extremal-t copula (Demarta and McNeil, 2005), and the Husler-Reiss copula (Hüsler and 
Reiss, 1989) have also been used to model rainfall dependence.” 
14 Line 253: “From Eq. (2), different models for 𝑊 give different inverted max-stable processes. There are two popular and 
easily-simulated classes of model for the inverted max-stable processes: the Brown-Resnick model (Asadi et al., 2015; Huser 
and Davison, 2013; Kabluchko et al., 2009; Oesting et al., 2017), and extremal-t model (Opitz, 2013). This study uses the 
Brown-Resnick form of equations from the family of an inverted max-stable process because Le et al. (2018a) showed it has 
better performance than the extremal-t model.” 



 

Le, P. D., Davison, A. C., Engelke, S., Leonard, M., and Westra, S.: Dependence properties of spatial 
rainfall extremes and areal reduction factors, Journal of Hydrology, Submitted, 2018a. 

 

Major comment #8: 

8. The assumption, on page 11 line 215, is it reasonable? Is it verified in your case study? 

Response: Thank you very much. The assumption of AEP neutrality in rainfall-runoff design is a standard 
assumption when using IDF curves. While the assumption is in widespread use, it is not without limitation 
as this issue was explored in to the following two papers. 

 

Bennett, B., Leonard, M., Deng, Y., & Westra, S. (2018). An empirical investigation into the effect of 
antecedent precipitation on flood volume. Journal of Hydrology, 567, 435-445. 

Rahman, A., Weinmann, P. E., Hoang, T. M. T., & Laurenson, E. M. (2002). Monte Carlo simulation of 
flood frequency curves from rainfall. Journal of Hydrology, 256(3-4), 196-210. 

 

Major comment #9: 

9. How the hydrological model (ex. WBNM) is integrated in the steps of fig 4? 

Response: The hydrological model (i.e. WBNM) is used to transform the conditional rainfall to conditional 
flow. A label has been added in the revised version of the manuscript to show this (on the arrow between 
the see the squares for Section 4.5 and Section 4.6 in the top-right of Figure 4).  

 

Minor comment #1: 

1. Fig 4: Why in the independent model, no fitting is required? What it means? 

Response: Thank you for pointing this out. The term “the independent model” here is not clear. We have 
changed it to “the case of independence” and have clarified that we mean the case where rainfall 
extremes occur independently in space. 

 

Minor comment #2: 

2. Sentence from lines 237-240 is long and not clear. Please consider reformulating. 

Response: Thank you. We have reworded these sentences in the revised manuscript.15 

 

                                                           
15 Line 232: “Without loss of generality it can be assumed that the margins of 𝑍 have a unit Fréchet distribution. An important 
property of dependence in the extremes is whether or not two variables are likely/unlikely to co-occur as the extremes become 
rarer, as this can significantly influence the estimate of frequency for flood events of large magnitude.” 



Minor comment #3: 

3. Page 13: this text requires to be more accurate about the terms and notation. 

Response: Thank you very much. We have clarified this text in the revised manuscript.  

 

Minor comment #4: 

4. Lines 287-290: is this case not covered by equation 4? 

Response: Thank you. We will rewrite this comment on equation 4. We have clarified that the equation 
can be used for both cases.  

 

Minor comment #5: 

5. All text in page 16 and part of page 17 seems trivial and does not worth all this space. Other more 
important information deserve this space. 

Response: We have removed this material, which will create significantly more space.  

 

Minor comment #6:  

6. It is not clear in section 4.6 if the authors consider one hydrological model (WBNM) or other models 
(see for instance lines 376 and 384). 

Response: Thank you for your comment. There is only one type of model (WBNM), but different 
configurations for each catchment. We have clarified this in the revised text.16  

 

Minor comment #7:  

7. Line 408 : how you can say the model has reasonable fit? Based on what? And compared to what? 

Response: Thank you. We have more explicitly indicated that the comment on fitting relates to Figure 8 
(Figure 6 in the updated version). We have also emphasized that the main feature of the model shown in 
these figures is the relationship at h=0, for the case of dependence between two different durations at 
the same location.17  

 

Minor comment #8:  

8. Line 538 : I’m not sure about this statement. It is not true in many situations. 

                                                           
16 Line 385: “Hydrological models (WBNM) for the case study area were developed and calibrated (WMAWater, 2011).” 
17 Line 411: “Figure 6 indicates that the model has a reasonable fit to the observed data given the small number of dependence 
parameters. Although the theoretical coefficient (red line) does not perfectly at long distances, the main interest is in short 
distances, especially at ℎ = 0 for the case of dependence between two different durations at the same location.” 



Response: Thank you for your comment. We have restricted our commentary to conventional 
hydrological design that is based on IDF curves, which is more defensible than the original comment 
which was too general. By construction IDF curves are focused are point-wise estimators of extremes, 
thus a given design is focused on independent application of univariate statistics. 
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Abstract 13 

Conventional flood risk methods typically focus on estimation at a single location, which is 14 

inadequate for civil infrastructure systems such as road or railway infrastructure. This is because 15 

rainfall extremes are spatially dependent, so that to understand overall system risk it is necessary to 16 

assess the interconnected elements of the system jointly. For example, when designing evacuation 17 

routes it is necessary to understand the risk of one part of the system failing given that another region 18 

is flooded or exceeds the level at which evacuation becomes necessary. Similarly, failure of any single 19 

part of a road section (e.g., a flooded river crossing) may lead to the wider system’s failure (i.e. the 20 

entire road becomes inoperable). This study demonstrates a spatially dependent Intensity-Duration-21 

Frequency curve framework that can be used to estimate flood risk across multiple catchments, 22 

accounting for dependence both in space and across different critical storm durations. The framework 23 

is demonstrated via a case study of a highway upgrade, comprising five bridge crossings where the 24 

upstream contributing catchments each have different times of concentration. The results show that 25 

conditional and unconditional design flows can differ by a factor of two, highlighting the importance 26 

of taking an integrated approach. There is also a reduction in the failure probability of the overall 27 

system compared with the case of no spatial dependence between storms. The results demonstrate the 28 
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potential uses of spatially dependent Intensity-Duration-Frequency curves and suggest the need for 29 

more conservative design estimates to take into account conditional risks.  30 
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1. Introduction 31 

Methods for quantifying the flood risk of civil infrastructure systems such as road and rail networks 32 

require considerably more information compared to traditional methods that focus on flood risk at a 33 

point. For example, the design of evacuation routes requires the quantification of the risk that one part 34 

of the system will fail at the same time that another region is flooded or exceeds the level at which 35 

evacuation becomes necessary. Similarly, a railway route may become impassable if any of a number 36 

of bridges are submerged, such that the ‘failure probability’ of that route becomes some aggregation 37 

of the failure probabilities of each individual section. Successful estimation of flood risk in these 38 

systems therefore requires recognition both of the networked nature of the civil infrastructure system 39 

across a spatial domain, as well as the spatial and temporal structure of flood-producing mechanisms 40 

(e.g. storms and extreme rainfall) that can lead to system failure (e.g., Leonard et al. (2014)storms and 41 

extreme rainfall) that can lead to system failure (e.g., Leonard et al. (2014), Seneviratne et al. 42 

(2012)Seneviratne et al. (2012), Zscheischler et al. (2018)Zscheischler et al. (2018)).  43 

One way to estimate such flood probabilities is to directly use information contained in historical 44 

streamflow data. For example, annual maximum streamflow at two locations might be assumed to 45 

follow a bivariate generalized extreme value distribution (Favre et al., 2004; Wang, 2001; Wang et al., 46 

2009)(Favre et al., 2004; Wang, 2001; Wang et al., 2009), which can then be used to estimate both 47 

conditional probabilities (e.g. the probability that one river is flooded given that the other river level 48 

exceeds a specified threshold) and joint probabilities (e.g. the probability that one or both rivers are 49 

flooded). However, continuous streamflow data are often not available at the locations most relevant 50 

to the civil infrastructure system in question, or the catchment conditions have changed to a degree 51 

that reflects historical streamflow records as unrepresentative of likely future risk. Thus, direct 52 

application of streamflow data for flood risk quantification in civil infrastructure systems does not 53 

represent a viable approach for the majority of situations., which can then be used to estimate both 54 

conditional probabilities (e.g. the probability that one river is flooded given that the other river level 55 

exceeds a specified threshold) and joint probabilities (e.g. the probability that one or both rivers are 56 

flooded). Several frameworks have been demonstrated based directly on streamflow observations, 57 
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including functional regression (Requena et al., 2018), multisite copulas (Renard and Lang, 2007), 58 

and spatial copulas (Durocher et al., 2016). However, this paper focuses on rainfall-based methods, as 59 

in many instances continuous streamflow data are unavailable or insufficient at the locations of 60 

interest, or the catchment conditions have changed such that historical streamflow records as 61 

unrepresentative of likely future risk.  62 

To deal with these difficulties, two alternativeovercome common limitations of streamflow data, 63 

rainfall-based approaches are commonly used. The firstOne method uses continuous rainfall data 64 

(either historical or generated) to compute continuous streamflow data using a rainfall-runoff model 65 

(Boughton and Droop, 2003; Cameron et al., 1999; He et al., 2011; Hegnauer et al., 2014; Pathiraja et 66 

al., 2012),(Boughton and Droop, 2003; Cameron et al., 1999; He et al., 2011; Hegnauer et al., 2014; 67 

Pathiraja et al., 2012), with flood risk then estimated based on the simulated streamflow time series. 68 

This method is computationally intensive and given the challenge of reproducing a wide variety of 69 

statistics across many scales, can have difficulties in modelling the dependence of extremes. Most 70 

rainfall models operate at the daily timescale (Baxevani and Lennartsson, 2015; Bennett et al., 2016b; 71 

Hegnauer et al., 2014; Kleiber et al., 2012; Rasmussen, 2013),(Bárdossy and Pegram, 2009; Baxevani 72 

and Lennartsson, 2015; Bennett et al., 2016b; Hegnauer et al., 2014; Kleiber et al., 2012; Rasmussen, 73 

2013), whereas many catchments respond at subdaily timescales. The capacity of space-time rainfall 74 

models to simulate the statistics of sub-daily rainfall remains a challenging research problem (Leonard 75 

et al., 2008).(Leonard et al., 2008). One approach is to exploit the relative abundance of data at the 76 

daily scale, then apply a downscaling model to reach subdaily scales (Gupta and Tarboton, 77 

2016).(Gupta and Tarboton, 2016). Continuous simulation is receiving ongoing attention and 78 

increasing application, yet there remain limitations when applying these models in many practical 79 

contexts. 80 

TheA second rainfall-based approach proceeds by conducting theapplying probability calculations on 81 

rainfall, to construct ‘Intensity-Duration-Frequency’ (IDF) curves, which are then translated to a 82 

runoff event of equivalent probability via either empirical models such as the Rationalrational method 83 

to estimate peak flow rate (Kuichling, 1889; Mulvaney, 1851)(Kuichling, 1889; Mulvaney, 1851) to 84 
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estimate peak flow rate,, or via event-based rainfall-runoff models that are able to simulate the full 85 

flood hydrograph (Boyd et al., 1996; Chow et al., 1988; Laurenson and Mein, 1997)(Boyd et al., 86 

1996; Chow et al., 1988; Laurenson and Mein, 1997). Currently IDF curves are estimated either at a 87 

point location, or are estimated over a spatial domain by multiplication with an areal reduction factor 88 

(ARF) to convert point rainfall to spatially averaged rainfall of an equivalent exceedance probability 89 

(Ball et al., 2016); this information then can be used to estimate either peak flow or the flood 90 

hydrograph at any point location within a catchment. However, such methods do not account for 91 

information on the spatial dependence of extreme rainfall—whether for single storm duration across a 92 

region, or for the more complex case of different durations across a region (Bernard, 1932; 93 

Koutsoyiannis et al., 1998). This prevents these approaches from being applied to estimate conditional 94 

or joint flood risk at multiple points in a catchment or across several catchments as would be required 95 

for a civil infrastructure system.  96 

Although tailored multivariate approaches can be applied to estimate conditional and joint 97 

probabilities of extreme rainfall for specific situations (e.g., Kao and Govindaraju (2008), Wang et al. 98 

(2010), Zhang and Singh (2007)), the development of a unified methodology that integrates with 99 

existing IDF-based flood estimation approaches remains elusive. This is particularly challenging 100 

given that it is not only necessary to preserve dependence of rainfall across space, but also to account 101 

for dependence across storm burst durations, as different parts of the system may be vulnerable to 102 

different critical duration storm events. To this end, arguably the most promising recent research 103 

direction has been the application of max-stable process theory that is able to represent storm-level 104 

dependence (de Haan, 1984; Schlather, 2002). This has been applied on a spatial domain by Padoan et 105 

al. (2010), who calculated conditional probabilities for a spatial domain located in United States. 106 

However, to ensure that this general approach can be applied for practical flood estimation problems, 107 

two further problems need to be overcome: 108 

1. The approach needs to not only account for spatial dependence for rainfall ‘events’ of a single 109 

duration (e.g. the field of annual maximum daily rainfall data), but must also account for 110 

dependence across multiple durations. This was addressed by Le et al. (2018b), who linked 111 
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the max-stable model of Brown and Resnick (1977) and Kabluchko et al. (2009) with the 112 

duration-dependent model of Koutsoyiannis et al. (1998), in order to create a model that could 113 

be used to reflect dependencies between nearby catchments of different sizes. 114 

2. Given that often the interest is in rare flood events, the model needs to capture appropriate 115 

asymptotic properties of spatial dependence as the events become increasingly extreme. 116 

Recent evidence is emerging that rainfall has an asymptotically independent characteristic (Le 117 

et al., 2018a; Thibaud et al., 2013), which means that the level of the rainfall’s dependence 118 

reduces with an increasing return period (Wadsworth and Tawn, 2012). This implies that 119 

inverted max-stable models, which are asymptotically independent, are likely to be preferable 120 

as an approach for representing spatially dependent IDF information. An added benefit of 121 

correctly representing asymptotic dependence is that information on areal reduction factors 122 

can be obtained directly from the model, rather than estimating ARF information 123 

independently from the computation of the IDF curves. 124 

This study addresses both these issues by demonstrating the application of the inverted max-stable 125 

process to estimate joint and conditional probabilities of flood-producing rainfall in the form of 126 

spatially dependent IDF curves. This approach adapts the methods developed by (Le et al., 2018b) to 127 

inverted max-stable models, and then uses the derived spatially-dependent IDF curves combined with 128 

the extracted information on AFRs as the basis for transforming the rainfall into flood flows.. 129 

Regional frequency analysis is one type of method to estimate IDF curves, where the precision of at-130 

site estimates is improved by pooling data from sites in the surrounding region (Hosking and Wallis, 131 

1997). These methods can be combined with spatial interpolation methods to estimate parameters for 132 

any ungauged location of interest (Carreau et al., 2013). To determine an effective mean depth of 133 

rainfall over a catchment with the same exceedance probability as at a gauge location, the pointwise 134 

estimate of extreme rainfall is multiplied by an areal reduction factor (ARF) (Ball et al., 2016). 135 

However, such methods do not account for information on the spatial dependence of extreme 136 

rainfall—whether for single storm duration, or for the more complex case of different durations across 137 

a region (Bernard, 1932; Koutsoyiannis et al., 1998). The lack of dependence prevents these 138 
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approaches from being applied to estimate conditional or joint flood risk at multiple points in a 139 

catchment or across several catchments, as would be required for a civil infrastructure system. 140 

Although multivariate approaches can be tailored to estimate conditional and joint probabilities of 141 

extreme rainfall for specific situations (e.g., Kao and Govindaraju (2008), Wang et al. (2010), Zhang 142 

and Singh (2007)), the development of a unified methodology that integrates with existing IDF-based 143 

flood estimation approaches remains elusive. This is particularly challenging given that it is not only 144 

necessary to preserve dependence of rainfall across space, but also to account for dependence across 145 

storm burst durations, as different parts of the system may be vulnerable to different critical duration 146 

storm events. To this end, max-stable process theory has been demonstrated to represent storm-level 147 

dependence (de Haan, 1984; Schlather, 2002) and used to calculate conditional probabilities for a 148 

spatial domain (Padoan et al., 2010). Copulas including the extremal-t copula (Demarta and McNeil, 149 

2005), and the Husler-Reiss copula (Hüsler and Reiss, 1989) have also been used to model rainfall 150 

dependence.   151 

This study applies a max-stable approach with an emphasis on practical flood estimation problems: 152 

1. The approach needs to account for, not only the spatial dependence of rainfall ‘events’ of a 153 

single duration, but also the dependence across multiple durations. This was addressed by Le 154 

et al. (2018b), who linked the max-stable model of Brown and Resnick (1977) with the 155 

duration-dependent model of Koutsoyiannis et al. (1998), to create a model that could be used 156 

to reflect dependencies between nearby catchments of different sizes. 157 

2. Given that often the interest is in rare flood events, the model needs to capture appropriate 158 

asymptotic properties of spatial dependence as the events become increasingly extreme. 159 

Recent evidence is emerging that rainfall has an asymptotically independent characteristic (Le 160 

et al., 2018a; Thibaud et al., 2013), which means that the level of the rainfall’s dependence 161 

reduces with an increasing return period (Wadsworth and Tawn, 2012). The requirement of 162 

asymptotic independence indicates that inverted max-stable models are preferable over max-163 

stable models.  164 
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This study adapts the methods developed by Le et al. (2018b) to inverted max-stable models to derive 165 

spatially-dependent IDF curves and ARFs as the basis for transforming rainfall into flood flows. The 166 

approach is demonstrated on a highway system spanning 20 km with five separate bridge crossings, 167 

and with the contributing catchment at each crossing having a different time of concentration.  168 

The case study is designed to address two related questions: (i) “What flood flow needs to be used to 169 

design a bridge that will fail only once on average every 𝑀 times (e.g., 𝑀 = 10 for a 10-year event) 170 

that a neighbouring catchment is flooded?”; and (ii) “What is the probability that the overall system 171 

fails given that each bridge is designed to a specific exceedance probability event (e.g., the 1% annual 172 

exceedance probability event)?” The method for resolving these questions represents a new paradigm 173 

in which to estimate flood risk for engineering design, by focusing attention on the risk of the entire 174 

system, rather than the risk of individual system elements in isolation. 175 

In the remainder of the paper, Section 2 emphasises the need for spatially dependent IDF curves in 176 

flood risk design, followed by Section 3 which outlines the case study and data used. Section 4 177 

explains the methodology of the framework, including a method for analysing the spatial dependence 178 

of extreme rainfall across different durations. It also includes an algorithm with which to use that 179 

information in estimating the conditional and joint probabilities of floods. The results, and a 180 

discussion on the behaviour of flood due to the spatial and duration dependence of rainfall extremes, 181 

are provided in Section 5. Conclusions and recommendations follow in Section 6. 182 

2. The need for spatially dependent IDF curves in flood risk estimation 183 

The main limitation of conventional methods of flood risk estimation is that they isolate bursts of 184 

rainfall and break the dependence structure of extreme rainfall. Figure 1 demonstrates a traditional 185 

process of estimating at-site extreme rainfall for two locations (gauge 1, gauge 2) and three durations 186 

(1, 3, and 5 hr) (Stedinger et al., 1993)(Stedinger et al., 1993). The process first involves extracting 187 

the extreme burst of rainfall for each site, duration and year from the continuous rainfall data, and 188 

then fitting a probability distribution (such as the Generalised Extreme Value (GEV) distribution) to 189 

the extracted data. Figure 1 demonstrates that, through the process of converting the continuous 190 

rainfall data to a series of discrete rainfall ‘bursts’, this process breaks both the dependence with 191 
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respect to duration and space. Firstly, the duration dependence is broken by extracting each duration 192 

separately, whereas for the hypothetical storm in Fig. 1 it is clear that the annual maxima from some 193 

of the extreme bursts come from the same storm. Secondly, the spatial dependence is broken because 194 

each site is analysed independently. Again, for the hypothetical storm of Fig. 1 it can be seen that the 195 

5 hr storm has occurred at the same time across the two catchments, and this information is lost in the 196 

subsequent probability distribution curves. Lastly, there is cross-dependence in space and duration. 197 

For example, the 1 hr extreme from gauge 2 occurs at the same time as the 5 hr extreme from gauge 1. 198 

This may be relevant if there are two catchments with times of concentration matching 1 hr and 5 hr 199 

respectively, where catchments are neighbouring or nested. 200 

 201 

Figure 1. Illustration of process to estimate rainfall extremes for each individual location in conventional flood risk 202 

approach, the upper panel is for gauge 1 and the lower panel is for gauge 2. 203 

Having obtained the IDF curves for individual locations in Fig. 1, the next step is commonly to 204 

convert this to spatial IDF maps by interpolating results between gauged locations. Figure 2 shows 205 

hypothetical IDF curves from individual sites, with a separate spatial contour map usually provided 206 

for each storm burst duration. In a conventional application the respective maps are used to estimate 207 

the magnitude of extreme rainfall over catchments for a specified time of concentration. The IDF 208 
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curves are combined with an areal reduction factor (ARF) to determine the volume of rainfall over a 209 

region (since rainfall is not simultaneously extreme at all locations over the region). However, 210 

because the spatial dependence was broken in the analysis of IDF curves, the ARF come from a 211 

separate analysis and are an attempt to correct for the broken spatial relationship within a catchment 212 

(Bennett et al., 2016a)(Bennett et al., 2016a). Lastly, the rainfall volume over the catchment is 213 

combined with a temporal pattern and input to a runoff model to simulate flood-flow at a catchment’s 214 

outlet. Where catchment flows can be considered independently this process has been acceptable for 215 

conventional design, but because this process does not account for dependence across durations and 216 

across a region, it is not possible to address problems that span multiple catchments, as with civil 217 

infrastructure systems. 218 

 219 

 220 

Figure 2. Illustration of map of return level and how to use it in estimating flood flow in conventional flood risk estimates 221 

approach. 222 

The process in Fig. 1 breaks out the dependence of the observed rainfall, which makes the 223 

conventional approach unable to analyse the dependence of flooding at two or more separate 224 

locations. Instead, this paper advocates for spatially dependent IDF curves which are developed by 225 
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retaining the dependence of observed rainfall in the estimation of extremal rainfall. By applying 226 

spatially dependent IDF curves to a rainfall-runoff model, the dependence of flooding between 227 

separate locations can be achieved. 228 

3. Case study and data 229 

The region chosen for the case study is in the mid north coast region of New South Wales, Australia. 230 

This region has been the focus of a highway upgrade project and has an annual average daily traffic 231 

volume on the order of 15,000 vehicles along the existing highway. The upgrade traverses a series of 232 

coastal foothills and floodplains for a total length of approximately 20 km. The project’s major river 233 

crossings consist of extensive floodplains with some marsh areas. 234 

The case study has five main catchments that are numbered in sequence in Fig. 3: (1) Bellinger, (2) 235 

Kalang River, (3) Deep Creek, (4) Nambucca and (5) Warrell Creek. The area and time of 236 

concentration of these catchments is summarised in Table 1, with the latter estimated using the ratio 237 

of the flow path length and average flow velocity (SKM, 2011)(SKM, 2011). The Deep Creek 238 

catchment has a time of concentration of 8.3 hr, while the other four catchments have much longer 239 

times of concentration, ranging from 27.8 to 38.9 hr. These require the estimates of spatial 240 

dependence across different durations of rainfall extremes. Although the spatial dependence across 241 

rainfall durations would be expected to be lower than across a single duration, since short- and long-242 

rain events are often driven by different meteorological mechanisms (Zheng et al., 2015)(Zheng et al., 243 

2015), it is nonetheless likely that some level of spatial dependence would exist and need to be 244 

integrated into the risk calculations. This is particularly of relevance given extremal rainfall in this 245 

region is strongly associated with ‘east coast low’ systems off the eastern coastline, whereby extreme 246 

hourly rainfall bursts are often embedded in heavy multi-day rainfall events.  247 
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 248 

 249 

Figure 3. Map of the case study in New South Wales, Australia. The black dots indicate the rainfall gauges, (G. 1 to G. 7), 250 

the red line indicates the Pacific Highway upgrade project, and the blue lines indicate the main river network. The numbers 251 

from one to five indicate the locations of the main river crossings. 252 

Table 1. Summary of properties for catchments in the case study. 253 

No. Catchment Area Raw time of concentration 
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(ha) (hour)  

1 Bellinger 77150 37 

2 Kalang River 34140 33 

3 Deep Creek 9180 8 

4 Nambucca (upper) 102015 38 

5 Warrell Creek 29440 27 

The black circles in Fig. 3 represent the sub-daily rain stations used for this study. There were 7 sub-254 

daily stations selected, with 35 years of record in common for the whole region. The data was 255 

available at a 5 minute interval and aggregated to longer durations. For convenience in comparing the 256 

times of concentration between the catchments, this study assumes a time of concentration of 9 hr for 257 

the Deep Creek catchment, while identical times of concentration of 36 hr are assumed for the other 258 

four catchments. 259 

  260 
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4. Methodology 261 

This section provides the method used to estimate the conditional and joint probabilities of flood for 262 

civil infrastructure systems based on rainfall extremes, which is explained according to the steps 263 

shown in Fig. 4. First, the generalized Pareto distribution (GPD) is used as marginal distribution to fit 264 

to observed rainfall for all duration at each locations (Section 4.1). After that, an inverted max-stable 265 

process is introduced and then fitted to rainfall extremes of identical or different durations (Sections 266 

4.2 & 4.3). The conditional and joint probabilities of rainfall are then estimated in Section 4.4, which 267 

is followed by the simulation to calculate areal reduction factor (ARF) in Section 4.5. An event-based 268 

rainfall-runoff model is employed in Section 4.6 to transform conditional rainfall to conditional flows. 269 

With an assumption ofthat there is a one-to-one correspondence between rainfall intensity and flow 270 

rate, the joint flood probability for the case study is equal to the joint probability of rainfall. An 271 

analysis for the independent model (the case of complete independence) is also implemented for 272 

comparison. 273 

 274 

 275 
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Figure 4. The flow chart for the overall methodology. 276 

4.1. Marginal model for rainfall  277 

This study defines extremes as those greater than some threshold 𝑢. For large 𝑢, the distribution of 𝑌 278 

conditional on 𝑌 > 𝑢 may be approximated by the generalized Pareto distribution (GPD) (Davison 279 

and Smith, 1990; Pickands, 1975; Thibaud et al., 2013)(Pickands, 1975; Davison and Smith, 1990; 280 

Thibaud et al., 2013): 281 

𝐺(𝑦) = 1 − {1 +
(𝑦 − 𝑢)

𝜎𝑢
}

−1 ⁄

,     𝑦 > 𝑢,                                  (1) 282 

defined on {𝑦: 1 + (𝑦 − 𝑢) 𝜎𝑢⁄ > 0} where 𝜎𝑢 > 0 and −∞ <  < +∞ are scale and shape 283 

parameters, respectively. The probability that a level y is exceeded is then Φ𝑢{1 − 𝐺(𝑦)}, where 284 

Φ𝑢 = Pr (𝑌 > 𝑢). 285 

The selection of the appropriate threshold 𝑢 involves a trade-off between bias and variance. A 286 

threshold that is too low leads to bias because the GPD approximation is poor. A threshold too high 287 

leads to high variance because of a small number of excesses. Two diagnostic tests are used to 288 

determine the appropriate threshold 𝑢: the mean residual life plot and the parameter estimate plot 289 

(Coles, 2001; Davison and Smith, 1990)(Coles, 2001; Davison and Smith, 1990). These methods use 290 

the stability property of a GPD, so that if a GPD is valid for all excesses above 𝑢, then excesses of a 291 

threshold greater than 𝑢 should also follow a GPD. Detailed guidance of these methods can be found 292 

in Coles (2001). 293 

4.2. Dependence model for spatial rainfall 294 

Consider rainfall as a stationary stochastic process 𝑍𝑖 associated with a location 𝑥𝑖 in a region of 295 

interest. Models (the notation for spatial extremes often use the conventionthe stochastic process is 296 

simplified from 𝑍(𝑥𝑖) to 𝑍𝑖). Without loss of transforming marginal values to generality it can be 297 

assumed that the margins of 𝑍 have a unit Fréchet distribution. An important property of dependence 298 

in the extremes is whether or not two variables are likely/unlikely to co-occur as the extremes become 299 

rarer, as this can significantly influence the estimate of frequency for flood events of large magnitude. 300 
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This is referred to as asymptotic dependence/independence, respectively. For the case of asymptotic 301 

independence, the dependence structure becomes weaker as the extremal threshold increases, which is 302 

formally defined as lim
𝑧→∞

𝑃{𝑍1 > 𝑧|𝑍2 > 𝑧} = 0 for all 𝑥1 ≠ 𝑥2. The spatial extent of a rainfall event 303 

with asymptotically independent extremes will diminish as its rarity increases. 304 

An example of an asymptotically independent model is the inverted max-stable process (Wadsworth 305 

and Tawn, 2012)(Wadsworth and Tawn, 2012). This study uses the Brown-Resnick form of equations 306 

from the family of an inverted max-stable process, and has been widely studied elsewhere (Asadi et 307 

al., 2015; Huser and Davison, 2013; Kabluchko et al., 2009; Oesting et al., 2017).. A general 308 

description of all continuous inverted max-stable processes that have standard exponential margins on 309 

a spatial domain 𝑋 is  310 

Ω̃(𝑥) = min
𝑘≥1

𝑈𝑘 𝑊𝑘⁄ ,      𝑥 ∈ 𝑋,                                                 (2)  311 

where 𝑈𝑘 are points of a unit Poisson process on (0, ∞) and the 𝑊𝑘(𝑥) are independent replicas of a 312 

continuous, non-negative stochastic process 𝑊(𝑥) in the spatial domain 𝑋, with 𝐸{𝑊(𝑥)} = 1 for all 313 

𝑥 ∈ 𝑋. 314 

It is convenient to work with a simple inverted max-stable process with unit Fréchet margins, because 315 

the marginal distribution can easily be transformed back to the GPD scale. To transform the process 316 

Ω̃(𝑥) to unit Fréchet margins, the following transformation is used: 317 

Ω(𝑥) = −
1

log{1 − 𝑒−Ω̃(𝑥)}
,      𝑥 ∈ 𝑋,                                                (3)  318 

then Ω(𝑥) is an asymptotically independent process with unit Fréchet margins. 319 

From Eq. (2), different models for 𝑊 give different inverted max-stable processes. There are two 320 

popular and easily-simulated classes of model for the inverted max-stable processes: the Brown-321 

Resnick model (Asadi et al., 2015; Huser and Davison, 2013; Kabluchko et al., 2009; Oesting et al., 322 

2017), and extremal-t model (Opitz, 2013). This study uses the Brown-Resnick form of equations 323 

from the family of an inverted max-stable process because Le et al. (2018a) showed it has better 324 

performance than the extremal-t model. 325 
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4.3. Fitting the dependence model 326 

One simple way to calibrate dependence models is to fit them to data by matching a suitable statistic. 327 

The dependence structure of the inverted max-stable process is represented by the pairwise residual 328 

tail dependence coefficient (Ledford and Tawn, 1996)(Ledford and Tawn, 1996). 329 

For a generic continuous process 𝑍𝑖 associated with a specific location 𝑥𝑖  the empirical pairwise 330 

residual tail dependence coefficient 𝜂 for each pair of locations (𝑥1, 𝑥2) is  331 

𝜂(𝑥1, 𝑥2) = lim
𝑦→∞

log𝑃{𝑍2 > 𝑧}

log𝑃{𝑍1 > 𝑧, 𝑍2 > 𝑧}
.                                             (24) 332 

The value of 𝜂 ∈ (0,1] indicates the level of extremal dependence between 𝑍1 and 𝑍2 (Coles et al., 333 

1999)(Coles et al., 1999), with lower values indicating lower dependence. An example of how to 334 

calculate the residual tail dependence coefficient is provided in Appendix A for a sample dataset.  335 

To estimate the dependence structure of an inverted max-stable model, the theoretical residual tail 336 

dependence coefficient function is usually fitted to its empirical counterpart. Here the residual tail 337 

dependence coefficient function is assumed to only depend on the Euclidean distance between two 338 

locations ℎ = ‖𝑥1 − 𝑥2‖. The theoretical residual tail dependence coefficient function for the inverted 339 

Brown-Resnick model is given as: 340 

𝜂(ℎ) =
1

2Φ {√𝛾(ℎ)
2 }

,                                                                 (35) 341 

where Φ is the standard normal cumulative distribution function, ℎ is the distance between two 342 

locations, and 𝛾(ℎ) belongs to the class of variograms 𝛾(ℎ) = ‖ℎ‖𝛽 𝑞⁄  for 𝑞 > 0 and 𝛽 ∈ (0,2). The 343 

models are then fitted to the empirical residual tail dependence coefficients by modifying parameters 344 

𝑞 and 𝛽 until the sum of squared errors is minimized. 345 

In the case that extreme rainfall at locations 𝑥1 and 𝑥2 are of identical duration (i.e. both 36 hr), then 346 

the inverted max-stable process is fitted to the observations by minimizing the sum of the squared 347 

errors of the residual tail dependence coefficients. This information can be directly applied to the case 348 

where two catchments have a similar time of concentration owing to their similar shape and size. 349 
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However, there are many instances when two catchments of interest will have differing times of 350 

concentration; in particular, when the extreme rainfall at location 𝑥1 and 𝑥2 are of different durations 351 

(e.g., 36 hr and 9 hr), the dependence is less than the case of 36 hr and 36 hr. This observation is 352 

evident when considering the special case of a single location, i.e. the same point is considered twice, 353 

at a distance of ℎ = 0. For the case where the duration is the same where, the rainfall values are 354 

identical and have perfect dependence, but when the duration of extremes are different the values are 355 

not identical and the dependence is less. Therefore, an adjustment needs to be made to ensure that the 356 

theoretical pairwise residual tail dependence coefficient function suitably represents the observed 357 

pairwise residual tail dependence coefficients for the case of extreme rainfalls of different durations.  358 

Following Le et al. (2018b),Following Le et al. (2018b), an adjusted approach is used by adding a 359 

nugget to the variograms as: 360 

𝛾𝑎𝑑.(ℎ) = ℎ𝛽 𝑞⁄ + 𝑐(𝐷 − 𝑑)/𝑑,                                                     (46) 361 

where ℎ, 𝛽, and 𝑞 are the same as those in Eq. (35); 𝑑 is the duration (in hours); 0 < 𝑑 ≤ 𝐷, where 𝐷 362 

is the maximum duration of interest (e.g. 𝐷 =  36 hr for the case study described in this paper); and 𝑐 363 

is a parameters to adjust dependence according to duration. This adjustment is intended to condition 364 

the behaviour of shorter duration extremes on a 𝐷-hour extreme of a specified magnitude. It is 365 

constructed to reflect the fact that when compared to a 𝐷-hour extreme, a shorter duration results in 366 

less extremal dependence. Cases involving conditioning of longer periods on shorter periods (such as 367 

a 36 hr extreme given a 9 hr extreme has occurred) would require a different can also use the 368 

relationship in Eq. (6), but with different parameter values. 369 

To fit the inverted max-stable process for all pairs of durations at locations 𝑥1 and 𝑥2 (i.e. 36 hr and 370 

12 hr, 36 hr and 9 hr, 36 hr and 6 hr, 36 hr and 2 hr, 36 hr and 1 hr), the theoretical pairwise residual 371 

tail dependence coefficient function in Eq. (35) is used with the adjusted variogram from Eq. (46) 372 

where the parameters 𝛽 and 𝑞 are first obtained from the fitted results of the case of identical 36 hr 373 

durations at location 𝑥1 and 𝑥2. The parameter 𝑐 is obtained by a least square fit of the residual tail 374 

dependence coefficient across all durations. 375 
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4.4. Estimate of conditional and joint probabilities of rainfall extremes 376 

The conditional probability 𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} is obtained from the bivariate inverted max-stable 377 

process cumulative distribution function (CDF) in unit Fréchet margins (Thibaud et al., 2013), which 378 

is given as: 379 

𝑃{𝑍1 ≤ 𝑧1, 𝑍2 ≤ 𝑧2} = 1 − exp {−
1

𝑔1
} − exp {−

1

𝑔2
} + exp[−𝑉{𝑔1, 𝑔2}],           (7) 380 

where 𝑔1 = − 1 log{1 − exp(− 1 𝑧1⁄ )}⁄ , 𝑔2 = − 1 log{1 − exp(− 1 𝑧2⁄ )}⁄ , and the exponent measure 381 

𝑉 (Padoan et al., 2010) is defined as: 382 

𝑉{𝑔1, 𝑔2} = −
1

𝑔1
Φ {

𝑎

2
+

1

𝑎
𝑙𝑜𝑔

𝑔2

𝑔1
} −

1

𝑔2
Φ {

𝑎

2
+

1

𝑎
𝑙𝑜𝑔

𝑔1

𝑔2
}.                   (8) 383 

In Eq. (8), Φ is the standard normal cumulative distribution function, 𝑎 = √2𝛾𝑎𝑑.(ℎ) with 𝛾𝑎𝑑.(ℎ) is 384 

the variograms that was mentioned in the explanation of Eq. (6). 385 

In unit Fréchet margins, the relationship between the return level 𝑧 and the return period 𝑇 is given as 386 

𝑧 = −1/𝑙𝑜𝑔(1 − 1/𝑇), and the conditional probability for the max-stable process can then be 387 

estimated using: 388 

𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} = 𝑇1 [
1

𝑇1
− exp (−

1

𝑧2
) + 𝑃{𝑍1 ≤ 𝑧1, 𝑍2 ≤ 𝑧2}],        (9) 389 

where 𝑇1 is the return period corresponding to the return level 𝑧1. 390 

This section introduces general concepts for evaluating a conditional probability and a joint 391 

probability for a bivariate case. A detailed method is then presented for estimating the conditional 392 

probability and the joint probability for the realistic case of rainfall extremes. 393 

Figure 5 illustrates a bivariate case for two locations 𝑥1 and 𝑥2 as a scatterplot of events at two 394 

locations. The extremes are delineated for each location according to a specified threshold (e.g. 395 

u = 0.98 percentile) and to distinguish them, colour coding and different symbols have been used. The 396 

four regions have been labelled for ease of reference: (A) only 𝑍2 extreme events but not 𝑍1, (B) both 397 

𝑍1 and 𝑍2   extreme, (C) only 𝑍1 extreme events but not 𝑍2, and (D) non-extreme events. 398 
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 399 

Figure 5. Illustration of general concept of probabilities for a bivariate case. 𝑍1 and 𝑧1 indicate stochastic process Z and a 400 

threshold at location 𝑥1; 𝑍2 and 𝑧2 indicate stochastic process Z and a threshold at location 𝑥2. 401 

To explain how the joint and conditional probabilities are calculated, their definitions are provided in 402 

Table 2 with reference to the regions of Fig. 5. Rather than consider the specific case of a theoretical 403 

model of extremal rain (e.g. inverted max stable), Table 2 presents these concepts more simply using 404 

only two variables and with generic probability estimates. Equations for both dependence and 405 

independence are provided in Table 2.  406 

Table 2. Definition of joint and conditional probabilities and how to calculate them for the case of bivariate independent and 407 

dependent variables. 408 

Case Definition       Calculation 

1. Conditional 

prob. dependent 
𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} = 𝑃(𝐵) {𝑃(𝐵) + 𝑃(𝐶)}⁄  

2. Conditional 

prob. independent 
𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} = 𝑃{𝑍2 > 𝑧2} = 𝑃(𝐴) + 𝑃(𝐵) 

3. Joint prob. 

dependent 
𝑃{𝑍1 > 𝑧1, 𝑍2 > 𝑧2} = 𝑃(𝐵) 

4. Joint prob. 

independent 
𝑃{𝑍1 > 𝑧1, 𝑍2 > 𝑧2} = 𝑃{𝑍1 > 𝑧1} × 𝑃{𝑍2 > 𝑧2} = {𝑃(𝐵) + 𝑃(𝐶)}{𝑃(𝐴) + 𝑃(𝐵)} 

Case 1: Conditional probability can be defined as the joint probability divided by the marginal 409 

probability 𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} = 𝑃{𝑍1 > 𝑧1, 𝑍2 > 𝑧2} 𝑃{𝑍1 > 𝑧1}⁄ . For the dependent case, the 410 

relationship is 𝑃(𝐵) {𝑃(𝐵) + 𝑃(𝐶)}⁄ . Using these concepts, equations for the conditional probability 411 

of the inverted max-stable process have been derived in literature and are summarised in Appendix B. 412 
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The detailed formulae are of the same nature as those in Table 2, and are used in this study to estimate 413 

conditional maps for return periods once the model has been fitted to all durations. 414 

Case 2: Using the definition of 𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} = 𝑃{𝑍1 > 𝑧1, 𝑍2 > 𝑧2} 𝑃{𝑍1 > 𝑧1}⁄  for the 415 

independent case results in the exceedance probability for 𝑍2, which is 𝑃(𝐴) + 𝑃(𝐵) (since intuitively 416 

𝑍1 has no effect on exceedances of 𝑍2). 417 

Case 3: For the case of dependent variables the joint exceedance is defined by 𝑃(𝐵). For the case of 418 

only two locations, the probability that there is at least one location that has an extreme event 419 

exceeding a given threshold is calculated as 𝑃{𝑍1 > 𝑧1 or 𝑍2 > 𝑧2} = 𝑃{𝑍1 > 𝑧1} + 𝑃{𝑍2 > 𝑧2} −420 

𝑃{𝑍1 > 𝑧1, 𝑍2 > 𝑧2}. Here, 𝑃{𝑍1 > 𝑧1, 𝑍2 > 𝑧2} can be easily obtained from the bivariate CDF for 421 

inverted max-stable process in Eq. (B.1). However, for the case of multiple locations (five different 422 

locations for this paper), it is difficult to derive the formula for this probability because there are 423 

dependences between extreme events at all locations. So this probability is empirically calculated 424 

from a large number of simulations of the dependent model (see the description of the simulation 425 

procedure for an inverted max-stable process in Section 4.5). It is also noted that the case study 426 

contains five catchments, which have approximate times of concentration of either 36 hr or 9 hrs. 427 

Case 4: Joint probability for The joint probability for independent variables is broken down as the 428 

product of the marginals. The exceedance probability for 𝑍1 is 𝑃(𝐵) + 𝑃(𝐶) and the exceedance 429 

probability for 𝑍2 is 𝑃(𝐴) + 𝑃(𝐵), and by definition their independent product will result in the joint 430 

probability. In order to compare with a situation of no spatial dependence of rainfall extremes, theThe 431 

probability that there is at least one location that has an extreme event exceeding a given threshold for 432 

the case that all of events are independent can be calculated based on the addition rule for the union of 433 

probabilities, as: 434 

𝑃(𝑍1 > 𝑧1 or … or 𝑍𝑁 > 𝑧𝑁) = ∑ 𝑃(𝑍𝑖 > 𝑧𝑖)

𝑁

𝑖=1

− ∑ 𝑃(𝑍𝑖 > 𝑧𝑖 , 𝑍𝑗 > 𝑧𝑗)

𝑖<𝑗

+ ⋯ 435 

+(−1)𝑁−1𝑃(𝑍1 > 𝑧1, … , 𝑍𝑁 > 𝑧𝑁),                                                       (510) 436 
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where 𝑵𝑵 is the number of locations, and 𝑷(𝒁𝟏 > 𝒛𝟏, … , 𝒁𝑵 > 𝒛𝑵) = 𝑷(𝒁𝟏 > 𝒛𝟏) … 𝑷(𝒁𝑵 >437 

𝒛𝑵)𝑷(𝒁𝟏 > 𝒛𝟏, … , 𝒁𝑵 > 𝒛𝑵) = 𝑷(𝒁𝟏 > 𝒛𝟏) … 𝑷(𝒁𝑵 > 𝒛𝑵), because all of the events are 438 

independent. 439 

4.5. Areal reduction factor estimation and simulation procedure for spatial rainfall 440 

Before being transformed to flood flow through an event-based model, the rainfall extremal estimates 441 

need to be converted to the average spatial rainfall using an areal reduction factor (ARF) (Ball et al., 442 

2016).transforming extreme rainfall to flood flow through an event-based model, areal reduction 443 

factors (ARFs) were employed to make the adjustment of rainfall depth at a point (i.e. the centroid of 444 

a catchment) for a given return level estimate, to an effective (mean) depth over a catchment with the 445 

same probability of exceedance as the single point (Ball et al., 2016; Le et al., 2018a). ARFs can be 446 

estimated from observed rainfall data, but it is difficult to extrapolate ARFs for long return periods 447 

from observations with just 35 years of record for this study. To deal with this difficulty and to 448 

analyse the asymptotic behaviour of ARFs, Le et al. (2018a)Le et al. (2018a) proposed a framework to 449 

simulate ARFs for long return periods by using an inverted max-stable process, which is applied here 450 

for durations of 36 and 9 hrs. 451 

The simulation procedure for spatial rainfall for a given duration is implemented in two steps. In the 452 

first step, the Brown-Resnick process with unit Fréchet margins theoretical residual tail dependence 453 

coefficient function in Eq. (5) is fitted to observed rainfall for the duration of interest to obtain the 454 

variogram parameters 𝑞 > 0 and 𝛽 ∈ (0,2). The Brown-Resnick process with unit Fréchet margins is 455 

then simulated using the algorithm of Dombry et al. (2016)Dombry et al. (2016) over a spatial domain 456 

(whether specific locations of interest or grid points), and thenand the inverted Brown-Resnick 457 

process with unit Fréchet margins is obtained through Eq. (4) and Eq. (5) in Le et al. (2018a).(2) and 458 

Eq. (3). In the second step, the spatial rainfall processes are obtained by transforming the simulation 459 

of the inverted Brown-Resnick process in step 1 is transformed from unit Fréchet margins to the 460 

rainfall scaled margins using the GP. For rainfall magnitudes above the threshold the generalised 461 

Pareto distribution in Eq. (1) for rainfall magnitude above the threshold(1) is used, and below the 462 

threshold the empirical distribution for rainfall magnitude below the threshold. is used. The empirical 463 
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distributions at ungauged sites are derived from the nearest gauged sites using a response surface 464 

(latitude and longitude covariates) to spatially interpolate the threshold.  465 

An advantage of this approach is that it can reflect the proportion of dry days in the empirical 466 

distribution by making the simulated rainfall contain zero values (Thibaud et al., 2013)(Thibaud et al., 467 

2013). Another advantage is that this approach guarantees that the marginal distributions of simulated 468 

rainfall below the threshold matches the observed marginal distributions. There may be a drawback of 469 

this approach by forcing the simulated rainfall to have the same extremal dependence structure for 470 

both parts below and above the threshold, which may not be true for non-extreme rainfall. However, 471 

the dependence structure of non-extreme rainfall contributes insignificantly to extreme events 472 

(Thibaud et al., 2013)(Thibaud et al., 2013) and is unlikely to affect the results. 473 

For calculating ARFs, the simulation is implemented separately for spatial rainfall of 36 and 9 hrs 474 

duration. After the simulated spatial rainfall for 36 and 9 hrs are respectively obtained, ARFs are 475 

calculated for each duration and different return periods, which can be found in the supplementary 476 

material (Fig. S1 and S2). When the interest is in the joint probability of rainfall extremes of different 477 

durations (see Case 3 in Section 4.4), the simulation of spatial rainfall should be implemented across 478 

multiple durations. In this case, each term of the covariance matrix is calculated from the dependence 479 

structure of the corresponding pair of locations.  Figure S1 and S2 provide relationships between 480 

ARFs and area (in km2) for different return periods for the case study catchments. These relationships 481 

are calculated through the simulation of inverted Brown-Resnick process over equally sized grid 482 

points. The relationships are interpolated to obtain the ARFs for each of subcatchments 483 

(corresponding to respective areas 91 km2, 294 km2, 341 km2, 771 km2, 1020 km2). When the interest 484 

is in the joint probability of rainfall extremes of different durations, the simulation of spatial rainfall 485 

should be implemented across multiple durations. In this case, each term of the covariance matrix is 486 

calculated from the dependence structure of the corresponding pair of locations. In detail, the 487 

covariance matrix of the simulation procedure provided by Dombry et al. (2016) is calculated from 488 

the variogram in Eq. (6). The covariance element for a pair of locations with the same duration (e.g. 489 

36 and 36 hr) is calculated from the variogram of identical durations for 36 and 36 hr. The covariance 490 
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element for a pair of locations with different durations (e.g. 36 and 9 hr) is calculated from the 491 

variogram across durations for 36 and 9 hr. 492 

4.6. Transforming rainfall extremes to flood flow 493 

To estimate flood flow from rainfall extremes, the Watershed Bounded Network Model (WBNM) 494 

(Boyd et al., 1996)(Boyd et al., 1996), is employed in this study. WBNM calculates flood runoff from 495 

rainfall hyetographs. that represent the relationship between the rainfall intensity and time (Chow et 496 

al., 1988). It divides the catchment into subcatchments, allowing hydrographs to be calculated at 497 

various points within the catchment, and allowing the spatial variability of rainfall and rainfall losses 498 

to be modelled. It separates overland flow routing from channel routing, allowing changes to either or 499 

both of these processes, for example in urbanised catchments. The rainfall extremes are estimated at 500 

the centroid of the catchment, and are converted to average spatial rainfall using the simulated ARFs 501 

described in Section 4.5 before estimation of the rainfall hyetographs. 502 

Hydrological models (WBNM) for the case study area were developed and calibrated by engineering 503 

consultants (WMAWater, 2011)(WMAWater, 2011). As an example, Fig. 6 provides details of the 504 

hydrological modelsHydrological model layouts for the Bellinger catchment and , Kalang River 505 

catchment in the North. The plots for details of the hydrological models for the, Nambucca basin in 506 

the South, Warrell and the Deep Creek catchment in the Eastcatchments can be found in the 507 

supplementary material (Fig. S3 and S4to S5). 508 Formatted: Font: 9 pt
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 509 

Figure 6. Hydrological model layout for Bellinger catchment and Kalang River catchment. The blue lines are the river 510 

network, and the red line is the Pacific Highway upgrade project. 511 

5. Results and discussion 512 

5.1. Evaluation of model for space-duration rainfall process 513 

A GPD with an appropriate threshold was fitted to the observed rainfall data for 36 hr and 9 hr 514 

durations, and the Brown-Resnick inverted max-stable process model was calibrated to determine the 515 

spatial dependence. 516 

Analysis of the rainfall records led to the selection of a threshold of 0.98 for all records as reasonable 517 

across the spatial domain and the GPD was fitted to data above the selected threshold. Figure 75 518 

shows QQ plots of the marginal estimates for a representative station for two durations 36 and 9 hr. 519 

Overall the quality of fitted distributions is good and plots for all other stations can be found in the 520 

supplementary material (Fig. S5S6 and S7). 521 
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 522 

Figure 75. QQ plots for the fitted GPD at one representative station, dotted lines are the 95% confidence bounds, and the 523 

solid diagonal line indicates a perfect fit. 524 

The inverted max-stable process across different durations was calibrated to determine dependence 525 

parameters. The theoretical pairwise residual tail dependence coefficient function between two 526 

locations (𝑥1 and 𝑥2) was calculated based on Eq. (35) and Eq. (46), and the observed pairwise 527 

residual tail dependence coefficient 𝜂 was calculated using Eq. (2). The model has a reasonable fit to 528 

the observed data given the small number of dependence parameters.(4). Figure 86 shows the pairwise 529 

residual tail dependence coefficients for the Brown-Resnick inverted max-stable process versus 530 

distance. The black points are the observed pairwise residual tail dependence coefficients, while the 531 

red lines are the fitted pairwise residual tail dependence coefficient functions. A coefficient equal to 1 532 

indicates complete spatial dependence, and a value of 0.5 indicates complete spatial independence. 533 

The top-left panel shows the dependence between 36 hr extremes across space, with the distance h = 0 534 

corresponding to “complete dependence”. It also shows the dependence decreasing with increasing 535 

distance. Figure 6 indicates that the model has a reasonable fit to the observed data given the small 536 

number of dependence parameters. Although the theoretical coefficient (red line) does not perfectly at 537 

long distances, the main interest is in short distances, especially at ℎ = 0 for the case of dependence 538 

between two different durations at the same location. 539 
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The remaining panels of Fig. 86 show the dependence of 36 vs. 9 hr extremes, 36 vs. 6 hr extremes, 540 

and 36 vs. 3 hr extremes, with the latter two duration combinations not being used directly in the 541 

study but nonetheless showing the model performance across several durations. As expected, the 542 

dependence levels are weaker compared with 36 vs. 36 hr extremes at the same distance, especially at 543 

thezero distance of 0. This is expected, as the dependence at the same site between annual 544 

maximaexceedances at different durations will be lower than between annual maximaexceedances at 545 

the same duration. This is because the annual maximaexceedances of different durations may arise 546 

from different storm events (Zheng et al., 2015). 547 

 548 

Figure 86. Plots of pairwise residual tail dependence coefficient (TDC) against distance for 36 hr extremes and 36 hr 549 

extremes (top left), andfor 36 hr extremes and 9 hr extremes (top right), for 36 hr extremes and 96 hr extremes (bottom left), 550 

and for 36 hr extremes and 3 hr extremes (bottom right). The black points are estimated residual tail dependence coefficients 551 

(TDC) for pairs of sub-daily stations, and the red lines are theoretical residual tail dependence coefficient (TDC) function. 552 

5.2. Estimating conditional rainfall extremes and corresponding conditional flows for evacuation 553 

route design 554 
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The recommended approach for estimating conditional rainfall extremes is demonstrated by 555 

considering a hypothetical evacuation route across location 𝑥2, given a flood occurs at location 𝑥1, 556 

evaluated using Eq. (B.39). This approach is applied to a case study of the Pacific Highway upgrade 557 

project that contains five main river crossings (from Fig. 3). For evacuation purposes, we need to 558 

know “what is the probability that a bridge fails only once on average every 𝑀 times (e.g., 𝑀 = 10 559 

for a 10-yearan one in 10 chance conditional event) that its neighbouring bridge is flooded?” This 560 

section provides the conditional estimates for two pairs of neighbouring bridges in the case study that 561 

have the shortest Euclidean distances, i.e. pairs (𝑥1, 𝑥2) and (𝑥2, 𝑥3). The comparisons of 562 

unconditional and conditional maps are given in Fig. 97 and Fig. 108, and the corresponding 563 

unconditional and conditional flows are given in Fig. 11.9. In order to obtain the maps in Fig. 7 and 564 

Fig. 8, a thin plate spline regression against longitude and latitude was employed to build the response 565 

surface for the marginal distribution parameters of rainfall at every pixel.  566 

The left panel of Fig. 97 provides the pointwise 10-year unconditional return level map over the case 567 

study area for 36 hr rainfall extremes. The value at the location of interest—the blue star (the centroid 568 

of Bellinger catchment)—is around 260 mm. The right panel of Fig. 97 indicates that when 569 

accounting for the effect of a 20-year event for 36 hr rainfall extremes happening at the location of the 570 

red star (the centroid of Kalang River catchment), the pointwise one in 10-year chance conditional 571 

return level at the blue star rises to around 453 mm (i.e., 1.74 times the unconditional value). 572 

 573 
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  Figure 97. Pointwise 10-year unconditional return level map (mm) for 36 hr extremes (left), and pointwise one in 10-year 574 

chance conditional return level map (mm) for 36 hr extremes given a 20-year event for 36 hr extremes happen at location of 575 

the red star for the centroid of Kalang River catchment (right). The colour scales are the same for comparison. 576 

Figure 108 provides similar plots to Fig. 97 for another pair of locations having different durations of 577 

rainfall extremes due to different times of concentration in each catchment. Here, the location of 578 

interest is the centroid of the Deep Creek catchment (the blue star in Fig. 108) and the conditional 579 

point is the centroid of the Kalang River catchment (the red star in Fig. 108). The pointwise 10-year 580 

unconditional and one in 10 chance conditional return levels at the location of the blue star are 134 581 

mm and 194 mm, respectively. The relative difference between the conditional and unconditional 582 

return levels is only 1.45 times, compared with 1.74 times for the case in Fig. 97. This is because the 583 

pair of locations in Fig. 108 has a longer distance than those in Fig. 97, so that the dependence level is 584 

weaker. Moreover, the location pair in Fig. 108 was analysed for different durations (between 36 and 585 

9 hr extremes), which has weaker dependence than the case of the equivalent durations in Fig. 97 586 

(between 36 and 36 hr), based on Fig. 86. 587 

 588 

 Figure 108. Pointwise 10-year unconditional return level map (mm) for 9 hr extremes (left), and pointwise one in 10-year 589 

chance conditional return level map (mm) for 9 hr extremes, given a 20-year event for 36 hr extremes happens at location of 590 

the red star for the centroid of the Kalang River catchment (right). The colour scales are the same for comparison. 591 

The unconditional and conditional return levels are transformed to flood flows via the hydrological 592 

model WBNM previously calibrated to each catchment (WMAWater, 2011)(WMAWater, 2011). The 593 
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unconditional and conditional return levels were extracted at the centroid of each main catchment, 594 

which were then converted to the average spatial rainfall using an areal reduction factor (ARF). The 595 

corresponding unconditional and conditional flood flows at the river crossing in the Bellinger 596 

catchment (corresponding to the unconditional and conditional rainfall extremes in Fig. 97) are given 597 

in Fig. 119 (left panel). Similar plots for the river crossing in the Deep Creek catchment 598 

(corresponding to the unconditional and conditional rainfall extremes in Fig. 108) are given in Fig. 599 

119 (right panel). 600 

  601 

Figure 119. Comparison between conditional flows (red line) and unconditional flows (black line). (left) At the river 602 

crossing  in the Bellinger catchment: (number 1 in Figure 3): conditional flow caused by aan one in 10 yearchance 603 

conditional event for 36 hr rainfall in considering the effect of a 20 -year event for 36 hr rainfall occurring at the river 604 

crossing in the Kalang River catchment, and unconditional flow caused by a 10-year unconditional event for 36 hr. (right) At 605 

the river crossing in the Deep Creek catchment (number 3 in Figure 3): conditional flow caused by an one in 10 chance 606 

conditional event for 9 hr rainfall in considering the effect of a 20-year event for 36 hr rainfall occurring at the river crossing 607 

in the Kalang River catchment, and unconditional flow caused by a 10 year unconditional event for 36 hr. (right) At the river 608 

crossing in the Deep Creek catchment: conditional flow caused by a 10 year conditional event for 9 hr rainfall in considering 609 

the effect of a 20 year event for 36 hr rainfall occurring at the river crossing in the Kalang River catchment, and 610 

unconditional flow caused by a 10 -year unconditional event for 9 hr rainfall.  611 

The left panel of Fig. 119 indicates that the peak conditional flow at the river crossing in the Bellinger 612 

catchment is almost 2.0 times higher than that for unconditional flow. The time taken to reach to the 613 

peaks is the same for both cases. This is because this river crossing is affected by a large region with a 614 

long time of concentration (36 hr); the impact of rainfall losses on the hydrograph is insignificant. 615 

This difference is a direct result of the conditional relationship being more stringent than the 616 
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unconditional relationship. Given that there is an existing extreme event nearby, it is more likely for 617 

an extreme event to occur at another location of interest in the region. If a bridge design were to take 618 

into account this extra criterion for the purposes of evacuation planning it would require the design to 619 

be at a higher level. 620 

Shown in the right panel in Fig. 119, the peak of the conditional flow at the river crossing in the Deep 621 

Creek catchment occurred earlier, and is around 1.7 times higher than that for the unconditional flow. 622 

This is due to the fact that the river crossing in Deep Creek covers a small region with a short time of 623 

concentration (9 hr) and the impact of rainfall losses on the hydrograph is significant.  624 

Although Fig. 119 shows a difference in terms of the time taken to reach the peak flows, the two 625 

design hydrographs are separate and this is not a physical timing difference. The relevant feature of 626 

the conditional design hydrograph is the peak, and timing information is not a part of the method.  627 

The difference between the maximum discharge of conditional and unconditional flows at the river 628 

crossing in the Bellinger catchment is shown in Fig. 12 for the case of a 20-year event occurring in the 629 

Kalang River catchment nearby. The relationship with AEP indicates that the difference between the 630 

maximum discharge of conditional and unconditional flows decreases when AEP increases, and that 631 

the difference approaches zero when the AEP increases to above 50% (i.e. a 2-year return period). 632 

 633 
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Figure 12. Plot for peak of conditional flow (red points) caused by conditional flood-producing rainfall and peak of 634 

unconditional flow (black points) for different annual exceedance probabilities (AEP) at the river crossing in the Bellinger 635 

catchment. This plot considers the effect of a 20-year event occurring at the river crossing in the Kalang River catchment. 636 

5.3. Estimating the failure probability of the highway section based on the joint probability of 637 

rainfall extremes 638 

The recommended approach for estimating the overall failure probability of a system is demonstrated 639 

by considering a hypothetical traffic system with multiple river crossings at locations 𝑥1, … , 𝑥𝑁. If 640 

there is a one-to-one correspondence between extreme rainfall intensity over a catchment and flood 641 

magnitude, the overall failure probability will be approximately equal to the probability that there is at 642 

least one river crossing whose contributing catchment has rainfall extremes exceeding the design 643 

level, which can be estimated using a large number of simulations from the spatial rainfall model. 644 

This approach is applied to the Pacific Highway upgrade project containing five river crossings. A set 645 

of 10,000 year simulated rainfall (Section 4.5) is generated from the fitted model (Section 5.1) to 646 

calculate the overall failure probability of the highway section. This process is repeated 100 times to 647 

estimate the average failure probability, under the assumption that all river crossings are designed to 648 

the same individual failure probability. 649 

Figure 1310 is a plot of the overall failure probability of the highway andas a function of the failure 650 

probability of each individual river crossing (black). Similar relationships for the cases of complete 651 

dependence (blue) and complete independence (red) are also provided for comparison. For the case of 652 

complete dependence, when the whole region is extreme at the same time, the overall failure 653 

probability of the highway is equal to the individual river crossing failure probability and it represents 654 

the best case. (the lowest overall failure probability). The worst case is complete independence where 655 

extremes do not happen together unless by random chance; this means the failure probability of the 656 

highway is much higher than that for individual river crossings. Taking into account the real 657 

dependence, there are some extremes that align and it seems from the Fig. 1310 that this is a relatively 658 

weak effect. As an example from Fig. 1310, to design the highway with a failure probability of 1% 659 



 

33 
 

annual exceedance probability (AEP),, we would have to design each individual river crossing to a 660 

much rarer AEP of 0.25% (see green lines in Fig. 1310). 661 

 662 

 663 

 664 

Figure 1310. Relationship between system failure probability and individual element failure probability in % annual 665 

exceedance probability (% AEP). The black colour is for the case study, the red colour is for the case of complete 666 

independence, and the blue is for the case of complete dependence. The green lines help to interpolate the individual element 667 

failure probability from a given system failure probability of 1%. Both horizontal axis and vertical axis are constructed at a 668 

double log scale for viewing purposes. 669 

6. Discussion and Conclusions 670 

Hydrological design, that is based on IDF curves, has conventionally focussed on individual 671 

catchments and individual extremes. Such an approach can lead to an underestimation of wider 672 

system risk of flooding since weather systems exhibit dependence in space and time, which can lead 673 
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to the coincidence of extremes. A number of methods have been developed to address the problem of 674 

antecedent moisture within a single catchment, by accounting for the temporal dependence of rainfall 675 

at locations of interest through loss parameters or sampling rainfall patterns (Rahman et al., 676 

2002)(Rahman et al., 2002). However, there have been fewer methods that account for the spatial 677 

dependence of rainfall across multiple catchments, due in part to the complexity of representing the 678 

effects of spatial dependence in risk calculations. Different catchments can have different times of 679 

concentration, so spatial dependence may also imply the need to consider dependence across different 680 

durations of extreme rainfall bursts.  681 

Recent and ongoing advances in modelling spatial rainfall extremes provide an opportunity to revisit 682 

the scope of hydrological design. Such models include a max-stable model fitted using a Bayesian 683 

hierarchical approach (Stephenson et al., 2016)(Stephenson et al., 2016), max-stable and inverted 684 

max-stable models (Nicolet et al., 2017; Padoan et al., 2010; Russell et al., 2016; Thibaud et al., 2013; 685 

Westra and Sisson, 2011)(Nicolet et al., 2017; Padoan et al., 2010; Russell et al., 2016; Thibaud et al., 686 

2013; Westra and Sisson, 2011) and latent-variable Gaussian models (Bennett et al., 2016b)(Bennett 687 

et al., 2016b). The ability to simulate rainfall over a region means that hydrological problems need not 688 

be confined to individual catchments, but may cover multiple catchments. Civil infrastructure systems 689 

such as highways, railways or levees are such examples, since the failure of any one element may lead 690 

to overall failure of the system. Alternatively, where there is a network, the failure of one element 691 

may have implications for the overall system to accommodate the loss, by considering alternative 692 

routes. With models of spatial dependence and duration dependence of extremes there is a new and 693 

improved ability to address these problems explicitly as part of the design methodology. 694 

This paper demonstrated an application for evaluating conditional and joint probabilities of flood at 695 

different locations. This was achieved with two examples: (i) the design of a river crossing that will 696 

fail once on average every 𝑀 times given that its neighbouring river crossing is flooded; and (ii) 697 

estimating the probability that a highway section, which contains multiple river crossings, will fail 698 

based on the failure probability of each individual river crossing. Due to the lack of continuous 699 

streamflow data and subdaily limitations of rain-based continuous simulation, this study used an 700 
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event-based method of conditional and joint rainfall extremes to estimate the corresponding 701 

conditional and joint flood flows. The spatial rainfall was simulated using an asymptotically 702 

independent model, which was then used to estimate conditional and joint rainfall extremes. An 703 

empirical method was obtained from the framework of Le et al. (2018b)An empirical method was 704 

obtained from the framework of Le et al. (2018b) to make an asymptotically independent model—the 705 

inverted max-stable process—able to capture the spatial dependence of rainfall extremes across 706 

different durations. The fitted residual tail dependence coefficient function showed that the model can 707 

capture the dependence for different pairs of durations. For our example, the highest ratio of the one 708 

in 10 chance conditional event (in considering the effect of a 20-year event rainfall occurring at the 709 

conditional location) to the 10-year unconditional extremesevent was 1.74, for the two catchments 710 

having the strongest dependence (Fig. 97). The corresponding conditional flows were then estimated 711 

using a hydrological model WBNM and shown to be strongly related to the ratio of conditional and 712 

unconditional rainfall extremes (Fig. 119). 713 

The joint probability of rainfall extremes for all catchments and for all possible pairs of catchments in 714 

the case study area was estimated empirically from a set of 10,000 years of simulated rainfall 715 

extremes, repeated 100 times to estimate the average value. The results showed that there were 716 

differences in the failure probability of the highway after taking into account the rainfall dependence, 717 

but the effect was not as emphatic as with the case of conditional probabilities. The difference in the 718 

failure probability became weaker as the return period increased, which is consistent with the 719 

characteristic of asymptotically independent data (Ledford and Tawn, 1996; Wadsworth and Tawn, 720 

2012)(Ledford and Tawn, 1996; Wadsworth and Tawn, 2012). A relationship was demonstrated (Fig. 721 

1310) to show how the design of the overall system to a given failure probability requires the design 722 

of each individual river crossing to a rarer extremal level than when each crossing is considered in 723 

isolation. For the case study example, it would be necessary to design each bridge to a 0.25% AEP 724 

event in order to obtain a system failure probability of 1%.  725 

There is a need to reimagine the role of intensity-duration-frequency curves. Conventionally they 726 

have been developed as maps of the marginal rainfall in a point-wise manner for all locations and for 727 
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a range of frequencies and durations. The increasing sophistication of mathematical models for 728 

extremes, computational power and interactive graphics abilities of online mapping platforms means 729 

that analysis of hydrological extremes could significantly expand in scope. With an underlying model 730 

of spatial and duration dependence between the extremes, it is not difficult to conceive of digital maps 731 

that dynamically transform from the marginal representation of extremes to the corresponding 732 

representation conditional extremes after any number of conditions are applied. This transformation is 733 

exemplified by the differences between left and right panels in Fig. 97 and Fig. 108. Enhanced IDF 734 

maps would enable a very different paradigm of design flood risk estimation, breaking away from 735 

analysing individual system elements in isolation to emphasize the behaviour of entire system.  736 
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Appendix A. Calculation of empirical tail dependence coefficient 738 

To illustrate how Eq. (24) in the manuscript is calculated, consider a set of 𝑛 = 10 observed values at 739 

the two locations:𝑍1 = 𝑐(5,9,1,2,10,3,8,6,4,7); 𝑍1 and 𝑍2 = 𝑐(10,1,7,6,4,3,9,2,8,5). (see Table A1). 740 

First, 𝑍1 and 𝑍2 are converted to empirical cumulative probability estimates via the Weibull plotting 741 

position formula 𝑃 = 𝑗 (𝑛 + 1)⁄  where 𝑗 is ranked index of a data point giving 𝑃1 = 𝑐(0.455,742 

0.818, 0.091, 0.182, 0.909, 0.273, 0.727, 0.545, 0.364, 0.636) and 𝑃2 = 𝑐(0.909, 0.091, 0.636,743 

0.545, 0.364, 0.273, 0.818, 0.182, 0.727, 0.455).  and 𝑃2 (see Table A1). 744 

Table A1. Observed data 𝑍1 and 𝑍2 and corresponding empirical cumulative probabilities 𝑃1 and 𝑃2. 745 

𝒁𝟏 𝒁𝟐 𝑷𝟏 𝑷𝟐 

5 10 0.455 0.909 

9 1 0.818 0.091 

1 7 0.091 0.636 

2 6 0.182 0.545 

10 4 0.909 0.364 

3 3 0.273 0.273 

8 9 0.727 0.818 

6 2 0.545 0.182 

4 8 0.364 0.727 

7 5 0.636 0.455 

Assume that interest is in values above a threshold 𝑢 = 0.5, in other words, 𝑃{𝑍2 > 𝑧} =746 

𝑃{𝑃2 > 𝑢} = 0.5. In this case we have only one pair, at the index of 7, that satisfy both 𝑃1 and 𝑃2 are 747 

greater than 𝑢 = 0.5, thus 𝑃{𝑍1 > 𝑧, 𝑍2 > 𝑧} = 𝑃{𝑃1 > 𝑢, 𝑃2 > 𝑢} = 1 10⁄ = 0.1. The calculation of 748 

the empirical tail dependence coefficient is then 749 

𝜂(𝑥1, 𝑥2) =
log𝑃{𝑍2 > 𝑧}

log𝑃{𝑍1 > 𝑧, 𝑍2 > 𝑧}
=

log𝑃{𝑃2 > 𝑢}

log𝑃{𝑃1 > 𝑢, 𝑃2 > 𝑢}
=

log(0.5)

log(0.1)
= 0.301.            (𝐴. 1) 750 

Appendix B. Equations for bivariate conditional and joint probabilities for inverted max-stable 751 

In the context of this study, the conditional probability 𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} is obtained from the 752 

bivariate inverted max-stable process cumulative distribution function (CDF) in unit Fréchet margins 753 

(Thibaud et al., 2013), which is given as: 754 

𝑃{𝑍1 ≤ 𝑧1, 𝑍2 ≤ 𝑧2} = 1 − exp {−
1

𝑔1
} − exp {−

1

𝑔2
} + exp[−𝑉{𝑔1, 𝑔2}],           (𝐵. 1) 755 
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where 𝑔1 = − 1 log{1 − exp(− 1 𝑧1⁄ )}⁄ , 𝑔2 = − 1 log{1 − exp(− 1 𝑧2⁄ )}⁄ , and the exponent measure 756 

𝑉 (Padoan et al., 2010) is defined as: 757 

𝑉{𝑔1, 𝑔2} = −
1

𝑔1
Φ {

𝑎

2
+

1

𝑎
𝑙𝑜𝑔

𝑔2

𝑔1
} −

1

𝑔2
Φ {

𝑎

2
+

1

𝑎
𝑙𝑜𝑔

𝑔1

𝑔2
}.                   (𝐵. 2) 758 

In Eq. (B.2), Φ is the standard normal cumulative distribution function, 𝑎 = √2𝛾𝑎𝑑.(ℎ) with 𝛾𝑎𝑑.(ℎ) 759 

is the variograms that was mentioned in the explanation of Eq. (4) in the manuscript. 760 

In unit Fréchet margins, the relationship between the return level 𝑧 and the return period 𝑇 is given as 761 

𝑧 = −1/𝑙𝑜𝑔(1 − 1/𝑇), and the conditional probability for the max-stable process can then be 762 

estimated using: 763 

𝑃{𝑍2 > 𝑧2|𝑍1 > 𝑧1} = 𝑇1 [
1

𝑇1
− exp (−

1

𝑧2
) + 𝑃{𝑍1 ≤ 𝑧1, 𝑍2 ≤ 𝑧2}],        (𝐵. 3) 764 

where 𝑇1 is the return period corresponding to the return level 𝑧1. 765 
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