
Details of revision based on comments from referees 

This documents how we addressed the comments in the revised manuscript. The original review 
comments are in black, and our responses in red. We also made additional textual revision throughout 
the text. 
 
RC1 

The paper compares the KGE, NSE and a peak flow signature as objective function for the calibration of 2 
hydrological models. The paper is well written and clear. However, it does not lead to new results, and 
the suggestion to abandon NSE in favour of KGE is not well motivated. These points are further 
elaborated below. 
 
The authors are strongly in favour of KGE vs NSE, as clearly appears from statements such as “Squared 
error metrics, such as Nash Sutcliffe Efficiency (NSE) and Mean Square Error (MSE), have historically been 
thought to be useful to reduce simulation errors associated with high flow values (Oudin et al., 2006; 
Price et al., 2012; Seiller et al., 2017; de Boer-Euser et al., 2017). Although Gupta et al. (2009) showed 
theoretically how and why the use of NSE and other MSE-based metrics for calibration results 
in the underestimation of peak flow events, our experience indicates that this notion continues to persist 
almost a decade later”.  
 
One cannot expect NSE to have properties that it is not designed to have, and it would be fair to use 
such metric in a way that is meaningful and that reflects the theory behind it.  
 
The use of sum of squared errors and its rescaled variants is common in statistics, and can be related to 
precise assumptions about the error.  In particular, such objective functions follow the assumption of 
Normal, zero mean, iid residuals. This is among the simplest assumptions one can make, although often 
inappropriate, as widely discussed. The properties of a model calibrated using NSE should be considered 
within the context of this theory. The fact that a deterministic model calibrated using NSE will 
underestimate the variability of the flow is NOT a design flaw of the NSE. It is a characteristic that 
follows from theory. From theory one can also easily see that it comes to no surprise that the statistics 
of the deterministic model don’t match the statistics of the observed data. They will not match by 
design. In particular, if the assumption behind squared error metrics is that Qobs=Qmod+eps (with eps 
N(0,sigma)), it is obvious that the statistics of Qmod are different from the statistics of Qobs. The 
statistics of Qobs should be compared to the statistics of Qmod+eps. This explains also why, for 
example, var(Qobs)>var(Qmod). Of course it is, since var(Qobs)=var(Qmod +err)= var(Qmod)+var(err). I 
can see that the approach of correctly comparing modelled and observed statistics (ie accounting 
for the error) is almost never followed in the community. This has led to the wrong perception that NS 
and related metrics somehow don’t work. 
 
Therefore, before recommending to switch to other metrics, I would propose the ‘old’ metrics be tested 
fairly. Based on this, I have the following suggestions for this paper: Don’t provide poorly grounded 
indications such as that “squared error type metrics are not suitable for model calibration when the 
application requires robust high flow performance”. NSE and KGE are based on different assumptions, 
and they should be compared fairly. Even if the KGE results into better performance, one should still 
note that NSE can be related to properties of the errors, which can be tested and changed if necessary 
(e.g. one can use the NSE of the sqrt of the flow to reduce heteroscedasticity).  



 
At present I don’t see the novelty of this paper. Most of the statements about the perceived qualities of 
KGE (part of them debatable, as I explained), are already given in other papers. Conclusion 1 is expected 
by design of the calibration metrics. Conclusion 2 is unclear. Conclusion 3 is highly debatable as 
explained. 
 
References: 
 
Farmer, W. H., and R. M. Vogel (2016), On the deterministic and stochastic use of 
hydrologic models, Water Resour. Res., 52, 5619–5633, doi:10.1002/2016WR019129. 
 
Kavetski, D., F. Fenicia, P. Reichert, and C. Albert (2018), Signature-Domain Calibration 
of Hydrological Models Using Approximate Bayesian Computation: Theory and 
Comparison to Existing Applications, Water Resour Res, 54(6), 4059-4083. 
 
We very much appreciate comments coming from different perspective related to modeled flow metrics. 
We completely agree with the main comment – that sum-of-squared error metrics commonly used in 
optimization reduce the variance by design, and representing the flow statistical moments and extremes 
requires stochastically simulating the error term. We carefully reviewed the paper by Famer and Vogel 
(2016) who discuss about the stochastic estimation of model errors and effect of residuals on high flow 
metrics. The ideas illustrated in the Farmer and Vogel (2016) paper help us better frame our contribution.  
 
In the revised discussion section (section 5.2 P8-9), we analyze the distributions of errors for models 
calibrated using three objective functions (KGE/NSE/APFB), as well as examining the flow time series 
metrics (mean and variability) and high flow metrics for deterministic KGE/NSE/APFB calibrated flow and 
ensemble flows based on stochastically generated error added to respective calibrated streamflow 
simulations. As you see in the discussion, we observe that the ensemble of residual reintroduced flows 
does improve the metrics (mean, variances, and high flow statistics) regardless of residual distribution of 
the deterministic flow. However, the dynamical property (i.e., temporal pattern) deteriorates due to lack 
of temporal correlation in the synthetic flow sequences. The method for stochastic residual generation 
uses random sampling based on flow magnitudes and requires incorporation of auto correlation 
properties.  
 
While we can arrive at similar conclusions to Farmer and Vogel (2016), we feel that obtaining improved 
deterministic flow simulation through model calibration is important because of improvement of 
application specific flow metrics through improving the magnitude, variability, temporal correlation. And 
we feel that impacts of performance metric choice on deterministic flow metrics are still not well 
appreciated by the broader community. We hope that our paper provides additional explanations of 
unintended consequences of model calibration decisions. 
 
We have slightly revised the conclusions in the revised manuscript.  Our main point however still remains 
– alternatives to sum-of-squared error metrics can improve the deterministic component of the model 
simulations, especially for high flows. This is important since most hydrologic modeling applications only 
consider the deterministic component.  
 
  



RC2 

1 OVERALL RECOMMENDATION 
 
The manuscript addresses the important topic of the choice of calibration metrics (CM) to be used for 
rainfall-runoff modeling, and presents results obtained on 492 US catchments. I found the paper 
interesting, including relevant references. If the presented results are not highly original, the paper is, in 
his present form, an excellent illustration of the limitation of the use of Nash and Sutcliffe efficiency metric 
(NSE, 1970) for model calibration. Nevertheless, I do have major comments on the used dataset, the 
applied methodology and the discussion part. Thus, I recommend to accept the manuscript in HESS with 
major revisions detailed below. 
 
2. GENERAL COMMENTS 
 
2.1 Description of the studied catchments 
Even though the objective of such “large-sample hydrology paper” is not to present results obtained on a 
limited number of catchments having the same hydrometeorological characteristics but to have general 
conclusions on rainfall-runoff modeling, I think the diversity of the studied catchments has to be 
addressed and quantified. 
 
This description is lacking right now in the paper. A presentation of the general characteristics of the 
studied catchments should be added in the paper, in order to understand the variability of catchments 
characteristics (catchment area, runoff coefficient, mean annual solid precipitation, etc.), especially in the 
context of flood modeling: what are different flood processes and dynamics included within this 
catchments sets (flash floods, snowmelt floods, rain-on-snow floods, groundwater floods, etc.)? 
Moreover, the timestep considered in the two rainfall-runoff models is not stated in the paper and should 
be mentioned. Are the models working at daily timestep? Is this timestep consistent with the flood 
dynamics of every studied catchment? 
 
Yes, one of main objectives of large sample basin study is to generalize the conclusions drawn regarding 
hydrologic modeling evaluations (Gupta et al 2014).  This manuscript used a subset (492 out of 671) the 
catchments presented by Addor et al., (2018), who describe in detail the variability of 
climate/geophysical/hydrologic characteristics for the 671 US catchments.  Our basin selections are also 
spread over the CONUS; therefore, distributions of basin characteristics are similar to Addor et al., (2018).  
We decided to avoid repetitive summaries and figures.   
 
We looked at spatial pattern of the model skills in addition to the distributions (See Figs R1 and R2).  There 
is little distinct spatial pattern in the APFB (%bias Qpeak in Fig R2).  This indicates that catchment 
characteristics have less effects than the performance metrics P6, L25.  We mentioned this text in L-235-
236 (not shown in Figures in the revised manuscript).  
 
As for the time step, we performed daily simulation for calibration in this study as we stated in P5, L10.  
Though calibrated parameter values may not be consistent for different temporal resolutions, the trend 
in calibration performances across the different performance metrics should be preserved regardless of 
the time steps. Moreover, the theory of algebraic decomposition of NSE is independent of the time step.   
 
 



 
Figure R1. %bias of annual peak flow (APFB) distribution from VIC model calibrated with NSE 
 

 



Figure R2. Improvement of %bias of annual peak flow (APFB) over NSE calibration for KGE and APFB 
calibrations. The model is VIC.  Red indicate the KGEs or APFB improve over NSE APFB while blue indicate 
the opposite.   
 
2.2 Split-sample test 
For every catchment, the calibration and validation periods are the same time-periods, 1999-2008 and 
1989-1999, respectively. I think that performing a basic split and sample test (Klemeš, 1986) on each 
catchment would be particularly interesting in this context, especially to address temporal (in)stability of 
parameter sets obtained with particular CM (topic partially addressed page 6, line 12). 
 
It may not be clear enough in the text but we did use a split-sample method i.e., calibration period during 
1999-2008 and evaluation during 1989-1999 (P4, Line 29-31 in original manuscript).  The exception is the 
evaluation of annual peak flow error where we combined the two periods (P6, Line 24 in original 
manuscript) to have increased sample size.  Please see the slightly revised version on P5, L12-14.    
 
2.3 List of the studied CM 
The paragraph listing the studied CM (page 5, lines 5 to 16) is unclear and would be 
easier to understand if a list (or table) of the five studied CM was added. 
 
We re-wrote the paragraph listing the metrics used for calibration and some descriptions in P 5, L 21– 
30.  
 
2.4 “Application-specific” or “hydrologic signature”? 
From page 5 to the end of the paper, APFB is named as an “application-specific” metric, while being 
introduced as an “hydrologic signature” (see definition of “hydrologic signature” in the paper 
introduction, page 2 lines 10 to 24) in the paper objective presentation. What is the difference between 
an “application specific” and a “hydrologic signature” CM in this context? Finally, is APFB an “application 
specific” or an “hydrologic signature” CM? Could you address this point? 
 
We clarified the difference in the definition between “hydrologic signature” and “application-specific 
metric”. The “hydrologic signature” is a metric derived from hydrologic variable time series to imply how 
a specific hydrologic process behaves, as expressed by the model simulation (or observation) for better 
understanding of the processes. So, it is process-oriented metric. Please see P2, L13-19. On the other 
hand, while the “application-specific metric” can be a hydrologic signature, it is a metric used by water 
managers for specific decision-making.  Therefore, it can be simple bias of monthly or annual time series, 
which can be used for long term hydroclimate assessment purpose (not worry about hourly, or daily 
variability). Please see P2, L29-33.  The hydrologic signature can be used as an application specific metric 
(please see P2, L33-35.  
 
2.5 Impact of the KGE scaling factors 
The limited impact of the different KGE scaling factors used in the paper is very little discussed, while 
being particularly interesting. This point has to be discussed in the paper. Moreover, why not trying 
another combination with a larger variability ratio scaling factor, such as (Sr=1, Saplha=20, Sbeta=1), to 
assess a potential significant improvement of annual peak flow bias? What about another test with 
(Sr=0.1, Saplha=1, Sbeta=0.1) or even (Sr=0, Saplha=1, Sbeta=0)? 
 
We actually tested a few extreme cases: (Sr=1, Saplha=10, Sbeta=1) and (Sr=0, Saplha=1, Sbeta=0).  It did 
not show improvement of annual peak flow.  These results (all the statistics) did not change significantly 



(statistically at 95%) from the case (Sr=1, Saplha=5, Sbeta=1) as shown below.  No textual change has been 
made for this concern.   
 

 
 

 
 
2.6 Figures 
In general, the presentation of the figures could be improved for a better understanding: 
 
- The performance metrics plotted have different names in the axis labels and in the figure legends (e.g. 
it is not explicit that “%biasFHV” is equal to “percentage bias of flow volume above 80 percentile flow 
duration curve” in the Figure 4) ; 
 



- The name/typography of several performance metrics is changing over figures (“%bias Qpeak” on 
Figure 2 but “%biasQpeak” on Figure 4) ; - Why not using Greek letters in Figure 2 x-axis? 
 
- The link between the five CM and the figure legend is never clearly stated, and for example, the reader 
has to guess that “kge_2alpha” is equal to (Sr=1, Saplha=2, Sbeta=1). 
 
- How boxplots have been constructed? What are the outlier points plotted below and over the 
boxplots? 
 
We corrected the figures based on the above comments. We use APFB to denote percent bias in annual 
peak flow (%bias Qpeak) 
 
3 SPECIFIC COMMENTS 
1. Page 4, line 27: please change (Maurel et al., 2002) into Maurel et al. (2002). 
 
We corrected the above error in L-176. 
 
2. Page 13, figure 2: please state in the figure legend that results presented in this figure are obtained 
with the VIC model. 
 
We corrected the above issue in Figure 2 caption. 
 
 
4 REFERENCES 
Klemeš, V., 1986. Operational testing of hydrological simulation models. Hydrological 
Sciences Journal 31, 13. https://doi.org/10.1080/02626668609491024. 
 
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models 
part I – A discussion of principles. Journal of Hydrology 10, 282–290. 
https://doi.org/10.1016/0022-1694(70)90255-6. 
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Abstract 19 
Calibration is an essential step for improving the accuracy of simulations generated using 20 

hydrologic models, and a key modeler decision is the selection of the performance metric to be 21 
optimized. It has been common to used squared error performance metrics, or normalized variants 22 
such as Nash-Sutcliffe Efficiency (NSE), based on the idea that their squared-error nature will 23 
emphasize the estimation of high flows. However, we find conclude that NSE-based model 24 
calibrations actually result in poor reproduction of high flow events, such as the annual peak flows 25 
that are used for flood frequency estimation. Using three different types of performance metrics, we 26 
calibrate two hydrological models at daily step, the “Variable Infiltration Capacity” model (VIC) and 27 
the “mesoscale Hydrologic Model” (mHM) and evaluate their ability to simulate high flow events for 28 
492 basins throughout the contiguous United States. The metrics investigated are (1) NSE, (2) Kling-29 
Gupta Efficiency (KGE) and its variants, and (3) Annual Peak Flow Bias (APFB), where the latter is 30 
an application-specific “hydrologic signature” metric that focuses on annual peak flows. As expected, 31 
the application specific APFB metric produces the best annual peak flow estimates; however, 32 
performance on other high flow related metrics is poor. In contrast, the use of NSE results in annual 33 
peak flow estimates that are more than 20% worse, primarily due to the tendency of NSE to result in 34 
underestimation of observed flow variability. MeanwhileOn the other hand, the use of KGE results 35 
in annual peak flow estimates that are better than from NSE owing to improved flow time series 36 
metrics (mean and variance), with only a slight degradation in performance with respect to other 37 
related metrics, particularly when a non-standard weighting of the components of KGE is used. 38 
EnsembleEnsembles of the Sstochastically generated ensemble simulations stochastically generated 39 
based on remaining residuals canshow ability to recoverimprove some of the metrics regardless of 40 
the deterministictheir performances of theduring the model calibration processs. However, it should 41 
beis emphasized that gettingobtaining the correct fidelity of streamflow dynamics of from the 42 
deterministically calibrated models areis still important andforas it may improvee the high flow 43 
metrics (for the right reasons). Overall this work highlights the need for a fuller deeper understanding 44 
of performance metric behavior and design in relation to the desired goals of model calibration.       45 

  46 
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1 Introduction 47 
[1] Computer-based hydrologic, land-surface, and water balance models are used extensively to 48 
generate continuous long-term hydrologic simulations in support of water resources management, 49 
planning and decision making. Such models contain many empirical parameters that cannot be 50 
estimated directly from available observations, hence the need for parameter inference by means of 51 
the indirect procedure known as calibration (Gupta et al. 2006). In general, all such models require 52 
some degree of calibration to maximize their ability to adequately reproduce the observed dynamics 53 
of system response (e.g., streamflow).  54 
[2] A key decision in model calibration is the choice of performance metric (also known as 55 
“objective function”) that measures the goodness of fit between the model simulation and system 56 
observations, because the performance metric can substantially affect the quality of the calibrated 57 
model simulations. The most widely used performance metrics are based on comparisons of simulated 58 
and observed response time series, including the Mean Squared Error (MSE), Nash-Sutcliffe 59 
Efficiency (NSE; a normalized version of MSE) and Root Mean Squared Error (RMSE; a 60 
transformation of MSE). Many previous studies have examined different variants of these metrics 61 
(e.g., see Oudin et al. 2006; Kumar et al. 2010; Price et al. 2012; Pushpalatha et al. 2012; Wöhling 62 
et al. 2013; Garcia et al. 2017), including their application to transformations of the system response 63 
time series to emphasize performance for specific flow regimes (e.g. use of logarithmic 64 
transformation to target low flows), or using combinations of different metrics to obtain balanced 65 
performance on different flow regimes.  66 
[3] As an alternative to metrics that measure the distance between response time series, the class of 67 
‘hydrologic signature’ metrics (e.g., Olden and Poff 2003; Shamir et al 2005; Gupta et al 2008; 68 
Yilmaz et al. 2008; Westerberg and McMillan 2015; Westerberg et al. 2016; Addor et al. 2017) has 69 
been gaining popularity for hydrologic model calibration (Westerberg et al. 2011; Yadav et al. 2007; 70 
Shafii and Tolson 2015; Kavetski et al. 2018). A hydrologic signature is a statistic metric that 71 
quantifies a targeted property or behavior of a hydrologic time series (e.g., that of a specific portion 72 
such as peaks, recessions, water balance, flow variability, flow correlation structure, etc.), in such a 73 
way that it is informative regarding a specific hydrologic process of a catchment (Yilmaz et al. 2008).  74 
[4] The use of hydrologic signatures to form metrics for model calibration requires selecting a full 75 
set of appropriate signature properties that are relevant to all of the aspects of system behavior that 76 
are of interest in a given situation. As discussed by Gupta et al (2008), the use of multiple hydrologic 77 
signatures for model calibration involves the use of multi-objective optimization (Gupta et al. 1998) 78 
in which a trade-off among the ability to optimize different signature metrics must be resolved. This 79 
means that, in the face of model structural errors, it is typically impossible to simultaneously obtain 80 
optimal performance on all of the metrics (in addition to the practical difficulty of determining the 81 
position of the high dimensional Pareto front). Further, if only a small subset of signature metrics is 82 
used for calibration, the model performance in terms of the non-included metrics can suffer (Shafii 83 
and Tolson 2015). The result of calibration using a multi-objective approach is a Pareto-set of 84 
parameters, where different locations in the set emphasize different degrees of fit to the different 85 
hydrological signatures. 86 
[5] In general, water resources planners focus on achieving maximum accuracy in terms of specific 87 
hydrologic properties and will therefore select metrics that target the requirements of their specific 88 
application while accepting (if necessary) reduced model skill in other aspects. For example, in 89 
climate change impact assessment studies, reproduction of monthly or seasonal streamflow is 90 
typically more important than behaviors at finer temporal resolutions, and so hydrologists typically 91 
use monthly rather than daily error metrics (Elsner et al. 2010, 2014). Therefore, the hydrologic 92 
model is often optimized for a specific target metric that is the most relevant to the application. 93 
Hereafter we call this metric is referred to as ‘application specific metric’. NoteIt is worth-noting that 94 
the application specific metric can be a hydrologic signature metric. For example, volume of high 95 
flow volume based on the flow duration curvewhich  volume based on flow duration curve 96 



4 
 

characterizecharacterizes the surface flow processes and and may be interest for estimation of flood 97 
frequency.   98 
[6] In this study, we examine how the formulation of the performance metric used for model 99 
calibration affects the overall functioning of system response behaviors generated by hydrologic 100 
models, with a particular focus on high flow characteristics. The specific research questions addressed 101 
in this paper are:  102 

(1) How do commonly used time-series based performance metrics perform compared to the use 103 
of an application specific (hydrologic signature) metric? 104 

(2) To what degree does use of an application specific (hydrologic signature) metric result in 105 
reduced model skill in terms of other metrics not directly used for model calibration? 106 

[7] We address these questions by studying the high flow characteristics and flood frequency 107 
estimates for a diverse range of 492 catchments across the Contiguous United States (CONUS) 108 
generated by two models: the mesoscale Hydrologic Model (mHM; Samaniego et al. 2010; Kumar 109 
et al. 2013) and the Variable Infiltration Capacity (VIC; Liang et al. 1994) model. Our focus on high 110 
flow estimation is motivated by: (a) their importance to a wide range of hydrologic applications 111 
related to high flow characteristics (e.g., flood forecasting, flood frequency analysis), their relevance 112 
to historical change and future projections (Wobus et al. 2017); and (b) persistent lack of community-113 
wide awareness of the pitfalls associated with use of squared error type metrics for high flow 114 
estimation. Specifically, we compared and contrasted the model simulation results of the calibration 115 
using based on metric  (1) NSE, (2) Kling-Gupta Efficiency (KGE) and its variants, and (3) Annual 116 
Peak Flow Bias (APFB) – with focus on understanding and evaluating the appropriateness of different 117 
metrics to capture observed high flow behaviors across a diverse range of U.S. basins. We also 118 
perform and discuss the implications of the choice of different calibration metrics based on stochastic 119 
ensemble simulations generated based on remaining model residuals. 120 
[8][7]  121 
[9][8] The remainder of this paper is organized as follows. Section 2 shows how the use of NSE for 122 
model calibration is counter-intuitively problematic when focusing on for high flow estimation. This 123 
part of the study is motivated by our experience with CONUS-wide annual peak flow estimates and 124 
serves to motivate the need for our large-sample study (Gupta et al. 2014). Section 3 describes the 125 
data, models and calibration strategy adopted. Section 4 then presents the results followed by 126 
discussion in Section 5. Concluding remarks are provided in Section 6. 127 

2 Motivation  128 
[10][9] The earliest development of a metric used for model development is by (Nash and Sutcliffe 129 
(1970), who proposed assessing Mean Square Error (MSE) relative to the observation mean; Nash 130 
Sutcliffe Efficiency (NSE). A key motivation was to quantify how well the updated model outputs 131 
performed when compared against a simple benchmark (the observation mean). Since then, such 132 
Squared squared error metrics, such as Nash Sutcliffe Efficiency (NSE) and Mean Square Error 133 
(MSE), have been predominantly used for model evaluation as well as for model calibration. 134 
historically Furthermore, MSE-based metrics have been thought to be useful in model calibration to 135 
reduce simulation errors associated with high flow values, because these metrics typically magnify 136 
the errors in higher flows more than in the lower flows due to the fact that the errors tend to be 137 
heteroscedastic(Oudin et al. 2006; Price et al. 2012; Seiller et al. 2017; de Boer-Euser et al. 2017). 138 
Although Gupta et al. (2009) showed theoretically how and why the use of NSE and other MSE-139 
based metrics for calibration results in the underestimation of peak flow events, our experience 140 
indicates that this notion continues to persist almost a decade later (Oudin et al. 2006; Price et al. 141 
2012; Seiller et al. 2017; de Boer-Euser et al. 2017). Via an algebraic reformulation of NSE into 142 
‘mean error’, ‘variability error’, and ‘correlation’ terms, Gupta et al. (2009) demonstrate that use of 143 
NSE for calibration will underestimate the response variability by a proportion equal to the achievable 144 
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correlation between the simulated and observed responses; i.e., the only situation in which variability 145 
is not underestimated only inis the ideal but unachievable situation one when the correlation is 1.0. 146 
They further show that this resultsthe consequence is in a tendency to underestimate high flows while 147 
overestimating low flows (see Fig 3 in Gupta et al 2009).  148 
[11][10] Our recent large sample calibration study (Mizukami et al. 2017) made us strongly 149 
aware of the practical implications of this problem associated with the use of NSE for model 150 
calibration. Figure 1 illustrates the bias in the model’s ability to reproduce high flows when calibrated 151 
with NSE. The plot shows distributions of annual peak flow bias at 492 Hydro-Climate Data Network 152 
(HCDN) basins across the CONUS for the VIC model using with three different parameter sets 153 
determined by Mizukami et al. (2017). Note that the collated parameter set is a patchwork quilt of 154 
partially calibrated parameter sets, while the other two sets were obtained via calibration with NSE 155 
using the observed data at each basin. The results clearly demonstrate the strong tendency to 156 
underestimate annual peak flows at the vast majority of the basins (although calibration at individual 157 
basins results in less severe underestimation than the other cases). Figures 1(b-d) show clearly that 158 
annual peak bias is strongly related to variability error, but not to mean error (i.e., water balance 159 
error). Even though the calibrations resulted in statistically unbiased results over the sample of basins, 160 
there is a strong tendency to severely underestimate annual peak flow due to fact that NSE results in 161 
poor statistical simulation of variability. Clearly, the use of NSE-like metrics for model calibration is 162 
problematic for the estimation of high flows and extremes. However, improving only simulated flow 163 
variability may not improve high flow estimates in time.  It likely also requires improvement of the 164 
mean state and daily correlation. 165 
[12][11] In general, it is impossible to improve the simulation of flow variability (to improve 166 
high flow estimates) without simultaneously affecting the mean and correlation properties of the 167 
simulation. To provide a way to achieve balanced improvement of simulated mean flow, flow 168 
variability, and daily correlation, Gupta et al. (2009) proposed the Kling-Gupta Efficiency (KGE) as 169 
a weighted combination of the three components that appear in the theoretical NSE decomposition 170 
formula, and showed that this formulation improves flow variability estimates. KGE is expressed as: 171 

𝐾𝐺𝐸 = 1 −'[𝑆*(𝑟 − 1)]/ + [𝑆1(𝛼 − 1)]/ + 3𝑆4(𝛽 − 1)6
/

	𝛼 = 𝜎9 𝜎:; , 𝛽 = 𝜇9 𝜇:;
                Eq. (1) 172 

where Sr, Sa and Sb are user specified scaling factors for the correlation (r), variability ratio (a), and 173 
mean ratio (b) terms; ss and so are the standard deviation values for the simulated and observed 174 
responses respectively, and µs and µo are the corresponding mean values.  In a balanced formulation, 175 
Sr, Sa and Sb are all set to 1.0. By changing the relative sizes of the Sr, Sa or Sb weights, the calibration 176 
can be altered to more strongly emphasize the reproduction of flow timing, statistical variability, or 177 
long-term water balance. 178 
[13][12] The results of the Mizukami et al. (2017) large sample study motivated us to carry out 179 
further experiments to investigate how the choice of performance metric affects the estimation of 180 
peak and high flow. Here, we examine the extent to which altering the scale factors in KGE can result 181 
in improved high flow simulations compared to NSE. We also examine the results provided by use 182 
of an application specific metric, here taken as the %bias in annual peak flows. 183 

3 Models, Datasets and Methods 184 
[14][13] We used two hydrologic models; VIC and mHM. The VIC model, which includes 185 
explicit soil-vegetation-snow processes, has been used for a wide range of hydrologic applications, 186 
and has recently been evaluated in large-sample predictability benchmark studyies (Newman et al. 187 
2017). The mHM model has been shown to provide robust hydrologic simulations over both Europe 188 
and the US (Kumar et al. 2013a; Rakovec et al. 2016a) and is currently being used in application 189 
studies (Samaniego et al. 2018). We use daily observed streamflow data at the HCDN basins and 190 
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daily basin meteorological data from Maurer et al. (2002) for the period 1980 through 2008, as 191 
compiled by the CONUS large sample basin dataset over a wide range of climate regimes (Addor et 192 
al. 2017; Newman et al. 2014).  Interested readers may refer to Addor et al. 2017 and Newman et al. 193 
2014 for more details and insights into different physiographic and hydro-climatic chcaracteristics of 194 
the study basins. The use of thise large sample dataset helps to obtain moreis recommended to obtain  195 
general and statistically robust conclusions (Gupta et al. 2014).  Both models are run at a daily time 196 
scalestep, and each of themmodel is calibrated separately Each of the models was independently 197 
calibrated at daily step to each of the for each of the 492 HCDN study basins (see Fig. 1a for the basin 198 
locations) across the CONUS domain using several different performance metrics. We use observed 199 
streamflow data at the HCDN basins for the period 1980 through 2008, and daily basin meteorological 200 
data from Maurer et al. (2002), as compiled by the large sample basin dataset (Addor et al. 2017; 201 
Newman et al. 2014). The use of this large sample dataset helps to obtain more general and 202 
statistically robust conclusions (Gupta et al. 2014). We split use a split-sample approach (Klemes 203 
1986) for the model evaluation. Tthe hydrometeorological data is split into a calibration period 204 
(October 1, 1999 - September 30, 2008) and an evaluation period (October 1, 1989 - September 30, 205 
1999), and usedwith a prior 10-year warm-up when computing the statistics for each period. 206 
[15][14] The model parameters calibrated for each model are the same as previously discussed: 207 
VIC (Mizukami et al. 2017; Newman et al. 2017) and mHM (Rakovec et al. 2016a,b). Although 208 
alternative calibration parameter sets have also been used by others, particularly for VIC (Newman et 209 
al., 2017), the purpose of this study is purely to examine the effects of performance metrics used for 210 
calibration, and not to obtain “optimal” parameter sets. Each model wasis identically configured for 211 
each of the 492 basins, and b. Both models used the same set of underlying physiographical and 212 
meteorological datasets, so that performance differences can be attributed mainly to the strategy used 213 
to obtain the parameter estimates.  214 
[16][15] Optimization was is performed using the Dynamically Dimension Search (DDS; 215 
Tolson and Shoemaker 2007) algorithm. Five performance metrics were are used for the 216 
calibration/evaluation purpose: 1) KGE, 2) KGE-2a, 3) KGE-5a, and 4) APFB (Annual Peak flow 217 
bias) and 5) NSE. The first tthree metrics arebased on KGEs with different scaling factor 218 
combinations (Sr, Sa and Sb) = (1,1,1), (1,2,1), and (1,5,1) in Eq. (1), respectively; because variability 219 
is strongly correlated with annual peak-flow error (Fig. 1c), we explore the impact of rescaling the 220 
variability error term in Eq. (1).with varying scaling factors to emphasize different components, one 221 
being an application-specific high flow metric, The forth metric, APFB, isFor our application-specific 222 
high flow metric,  we use the Annual Peak Flow Bias (APFB) measure defined as:  223 

 APFB = 'B𝜇CDEFG9 𝜇CDEFG:⁄ − 1I
/
 (2) 224 

where 𝜇CDEFG9 is the mean of the simulated annual peak flow series and 𝜇CDEFG: is the mean of the 225 
observed annual peak flow series. and ourFinally, we took NSE is regard as a benchmark performance 226 
metric, and compared and contrasted the simulations based on other performance metrics being the 227 
NSE. For KGE, historically, the most common choice of scaling factor for hydrologic model 228 
calibration has been to set all of them to unity and, to the best of our knowledge, scaled KGE variants 229 
(i.e., with non-unity scaling factors) have not been well studied. 230 
Historically, tThe most common choice of KGE scaling factor for hydrologic model calibration has 231 
been to set all of them to unity. We applied the KGE in different variants (i.e., with non-unity scaling 232 
factors) which to best  and, to the best of our knowledge , scaled KGE variants (i.e., with non-unity 233 
scaling factors) have not been well studied so-far. Because variability is strongly correlated with 234 
annual peak-flow error (see Fig. 1c), we explore the impact of rescaling the variability error term in 235 
Eq. (1), by using three formulations of KGE with (Sr, Sa and Sb) = (1,1,1), (1,2,1), and (1,5,1). Note 236 
that this scaling is only used to define the performance metric used in model calibration; all 237 
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performance evaluation results shown in this paper use KGE computed with Sr, Sa and Sb all set to 238 
1.0. 239 

4 Results 240 

4.1 Overall Simulation Performance 241 
[17][16] First, we focus on the general overall performance for the daily streamflow 242 
performance simulations as measured by the performance metrics used. Figures 2 and 3 show the 243 
cumulative distributions of evaluation period the model skill during the evaluation period across the 244 
492 catchments in terms of KGE and its three components: (a) a (standard deviation ratio), (b) b 245 
(mean ratio), (c) r (linear correlation) for VIC (Fig. 2) and mHM (Fig. 3). Considering first the result 246 
obtained using KGE, . For both models, at the median values of the distributions, use of KGE 247 
improvesshow improvement in variability error score by approximately 20% over that obtained using 248 
the NSE-based calibration score (Figs. 2a and 3a); however, . Tthe plots, however, indicate a 249 
continued statistical tendency to underestimate observed flow variability even when the (1,5,1) 250 
component weighting is used in the scaled KGE based metric. The corresponding median a and r 251 
values obtained for KGE are: (a, r) = (0.83, 0.74) for VIC and (a, r) = (0.94, 0.82) for mHM. 252 
Interestingly, the VIC results are more sensitive than mHM to variations in the Sa weighting. For 253 
VIC, the variability estimate continues to improve with increasing Sa (median moves closer to 1.0), 254 
but simultaneously leads to overestimation of the mean values (b) and deterioration of correlation (r).  255 
[18][17] For both models, tThe use of APFB as a calibration metric yields poorer performance 256 
for both models, on all of the individual KGE components (wider distributions for a and b, and 257 
distribution of r shifted to the left), and consequently on the overall KGE value as well (distribution 258 
shifted to the left). In terms of performance as measured by NSE, the use of KGE with the original 259 
scaling factors (a =1) results in 3-10% lower NSE than those obtained when calibrating with the NSE 260 
-based calibration case (plots not shown). This is consistent with the expectation that an, because 261 
improvement in the variability error score (𝛼 closer to unity) is known to cause a reduction inleads to 262 
deterioration in the NSE optimalityscore. In general, all the calibration results from both models are 263 
consistent with the NSE-based calibration characteristics described in Gupta et al. (2009). 264 

4.2 High flow simulation performance 265 
[19][18] Next, we focus on the specific performance of the models in terms of simulation of 266 
high flows. As expected, use of the application-specific APFB metric (Eq. 2) leads to the best 267 
estimation of annual peak flows for both models (Figure 4 a and b), while use of NSE produces the 268 
worst peak flow estimates. Simply switching from NSE to KGE improves the percentage bias of peak 269 
flowAPFB by approximately 5% for VIC and 10% for mHM at the median value during evaluation. 270 
Improvement of APFB occur at over 85 % of 492 basins across CONUS for both models. Note that 271 
the inter-quartile range of the bias across the basins becomes larger for the evaluation period 272 
compared to the calibration period. This is even more pronounced when the bias of annual peak 273 
flowAPFB is used as the objective function (see the results from mHM; Figure 4 a and b), indicating 274 
that the application specific objective function results in overfitting, and consequently the model is 275 
less transferable in time than when the other metrics are used for calibration.  276 
[19] Figure 4 c and d show the high flow simulation performance in terms of another high flow 277 
related metric – the percent %bias of in the runoff volume of above the 80th  percentile of the daily 278 
flow duration curve (FHV; Yilmaz et al. 2008). Interestingly, FHV is not reproduced better by the 279 
APFB calibrations compared to the other objective functions, particularly for VIC. The implication 280 
is that, in this case, the application specific metric only provides better results for the targeted flow 281 
property characteristic (here the annual peak flow), but can result in poorer performance for other 282 
flow properties (even the closely related annual peak flow). While the mHM model calibrated with 283 
APFB does produce a nearly unbiased FHV estimate across the CONUS basins, the inter-quartile 284 
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range is much larger than that obtained using the other calibration metrics.  The VIC model 285 
basedmodel-based results also exhibit larger variability in the FHV bias across the study basins.  286 
[20]  287 

4.3 Implication for flood frequency estimation 288 
[21][20] Annual peak flow estimates are generally used directly in thefor flood frequency 289 
analysis. Figure 5 shows estimated daily flood magnitudes at three return periods (5-, 10-, 20-yr) 290 
using the five different sets of calibration results. Although many practical applications (e.g., 291 
floodplain mapping and water infrastructure designs) require estimates of higher extreme events, we 292 
focus on 20-yr (0.95 exceedance probability) for the highest extremes, given use of only 20-years of 293 
data for this study; this is to avoid the need for extrapolation of extreme events via theoretical 294 
distribution fitting. For this evaluation case (of annual flood magnitudes), we use the combined 295 
calibration and validation periods.  296 
[22][21] Figure 5 shows results that are consistent with Figure 4, although more outlier basins 297 
were are found to exist for estimates of flood magnitude at the three return periods. The KGE-based 298 
calibration improves flood magnitude estimates (compared to NSE) at all the three return periods for 299 
both models. In Particularparticularly, mHM especially exhibits a clear reduction of the bias by 10% 300 
at the median compared to the NSE calibration case. The APFB calibration further reduces the bias 301 
by 20% and 10% for VIC and mHM, respectively. However, regardless of the calibration metric, for 302 
both models the peak flows at all return periods are underestimated;  (although mHM underestimates 303 
the flood magnitudes to a lesser degree due to its smaller underestimation of annual peak flow 304 
estimates). Even though the %bias of annual peak flowAPFB is less than 5% at the median value for 305 
mHM calibrated with APFB (Figure 4), the 20-yr flood magnitude is underestimated by almost 20% 306 
at the median (Figure 5). Also, the degree of underestimation of flood magnitude becomes greater 307 
larger with longer return periods. 308 

5 Discussion 309 
[23] Overall, whileWhile  both models show fairly similar trends in skill for each performance metric 310 
used for calibration, it is clear from our large sample study of 492 basins that the absolute performance 311 
of VIC is always poorerrather inferior thanto that of mHM, irrespective of choice of evaluation metric. 312 
A full investigation ofn to why VIC does not perform as well asat the same level of mHM is clearly 313 
of interest, but  this is left for the future work. To improve the performance of VIC it may be necessary 314 
to perform rigorous sensitivity tests similar to comprehensive sensitivity studies that have included 315 
investigation of hard-coded parameters in other more complex models (e.g. Mendoza et al. 2015); 316 
Cuntz et al. 2016).  In Below, . 317 
[22] In this section we discuss  our results in the context of of the usage of different performance 318 
metrics, onin regard to remaining aspects of model errors, and suggestprovide suggestions for 319 
potential improvement of the high flow metricsimulations related metricss.  320 

5.1 Consideration of application specific metric 321 
[24] Although the annual peak flow estimates improve by switching calibration metrics from NSE 322 
to KGE, and KGE to APFB, the flood magnitudes are underestimated at all of the return periods 323 
examined no matter which performance metric is used for calibration, especially for VIC. While the 324 
𝐴𝑃𝐹𝐵 calibration improves, on average, the error of annual peak flow over the 20-year period, the 325 
flood magnitude estimates at several percentile or exceedance probability levels are based on 326 
estimated peak flow series. Therefore, improving only the bias does not guarantee accuracy of the 327 
flood magnitudes at a given return period. Following Gupta et al. (2009), events that are more extreme 328 
may be affected more severely by variability errors when examining the series of annual peak flows, 329 
particularly because this performance metric accounts only for annual peak flow bias. Figure 6 shows 330 
how the estimates of flood magnitudes at the 20-yr return period (top panels) and 5-yr return period 331 
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(bottom panels) are related to variability error and bias of annual peak flow estimates. As expected, 332 
the more extreme (20-yr return period) flood estimates are more strongly correlated with estimates of 333 
the variability of annual peak flows than with the 20-yr bias of the annual peak flow series. For the 334 
less extreme (5-yr return period) events, this trend is flipped and flood magnitude errors are more 335 
correlated with the bias.  336 
[23] Overall, while both models show fairly similar trends in skill for each performance metric used 337 
for calibration, it is clear from our large sample study of 492 basins that the absolute performance of 338 
VIC is always poorer than that of mHM, irrespective of choice of evaluation metric. A full 339 
investigation of why VIC does not perform as well as mHM is clearly of interest but is left for future 340 
work. To improve the performance of VIC it may be necessary to perform rigorous sensitivity tests 341 
similar to comprehensive sensitivity studies that include hard-coded parameters in other more 342 
complex models (e.g. Mendoza et al. 2015; Cuntz et al. 2016). 343 

5.2 Consideration of model residuals 344 

[24] The calibrated models do improve the flow metrics including both time series metrics (mean, 345 
variability, etc.) and/or application specific metrics, depending on the performance metrics used for 346 
the calibration. However, alwaysresiduals always remain after the model calibration because the 347 
calibrated model never reproduces the observations perfectly. Recently, Farmer and Vogel (2016) 348 
discussed the effects of neglecting residuals on estimates of flow metrics, particularly errors in 349 
statistical moments of flow time- series (mean, variance, skewness and so on). HereIn the context of 350 
this study for the high flow simulations , lets focusing on the flow variability (i.e., variance) 351 
component for observation and model simulations, which can expressed by which is related to high 352 
flow simulation, the following equation is considered: 353 

 Var(𝑜) = Var(𝑠 + 𝜀) = Var(𝑠) + Var(𝜀) + 2COV(𝑠, 𝜀	) (3) 354 

Wwhere, Var(X) is variance of X, and COV(X,Y) is covariance between X and Y, 𝑜 is the observed 355 
time series, 𝑠 is simulated time series from calibrated model and 𝜀 is time series of the residualthe 356 
residuals. The observation time series is can be expressed as the sum of the model simulation  and 357 
residual terms (denoted as �̂� = 𝑠 + 𝜀). As seen in Eq. (3), neglecting the residuals can still 358 
reproducematch the observed variability, only ifwhen the variance of the residuals is offset by 359 
covariance betweencovariance between the simulation and residuals i.e., COV(𝑠, 𝜀	). Off course, this 360 
condition may not be warrantedis not fulfilled (in real word simulation studies). From In our 361 
calibration results (as discussed above), the observed flow variability is underestimated for both 362 
models forin the majority of thethe  basinsstudy basins for anynearly all performance metrics 363 
(except APFB) used  for the calibration (Figure 2a and 3a).  364 
[25] To gain more insights into this topic, Here we examine how thestochastically treatment of 365 
thegenerated residuals,once once re-introduced to the simulated flows, can affect the performance 366 
flow mmetrics. We consider three performance metrics for this analysis: NSE, KGE, and APFB. First, 367 
Figure 7 shows the distributions of flow residuals produced by the calibrated models. The APFB 368 
calibration that produces the worst temporal pattern of flow time series (the lowest correlation shown 369 
in Figure 2d and 3d)  produces wider residual distributions. Following the method byof (Farmer and 370 
Vogel (2016) and; Bourgin et al. (2015), 100 sets of synthetic residual time series (𝜀 ) for the 371 
validation period are stochastically generated by sampling the residuals of the calibrated flow (i.e., 372 
simulation during the calibration period) for each model and added to the respective modeled flow 373 
during the evaluation period. The method randomly samples the residuals from the residual pool 374 
formed based on the flow magnitude. For each of the 100 residual reintroducedamended flow series, 375 
mean error (𝛽) and variability error (𝛼) are computed, and then median error values are compared 376 
with the original deterministic flow error metrics. Figure 8 shows the improvement of bias (𝛼) and 377 
variability error (𝛽) regardless of the performance metric or residual distribution characteristics. 378 
Similar to (Farmer and Vogel (2016)results, high flow volume error (percent bias of FHV) and APFB 379 
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computed with residual incorporated flow series also improve over compared to the deterministic 380 
flow series from the calibrated models (Figure 9).  381 
[25][26] In summary, Iit seems that theThe quality of the original deterministic flow simulated 382 
by the hydrologic models has little effect on the flowperformance metrics based on the ensemble of 383 
residual addedaugmented flows (Figure ??). Since the stochastically generated ensembles do not 384 
countaccount for temporal correlation, every ensemble has reduced correlation and deteriorated time 385 
series error metrics (e.g., NSE and KGE metrics). However, the error metrics related to the flow 386 
duration curve (APFB) is not affected by the lack of correlation because metrics usingbased on FDC 387 
do not account forpreserve information regarding the temporal sequence.  TAlthough residual 388 
reintroducedaugmented flow ensembletime-series enhances some of flow metrics, the (temporal) 389 
dynamicall pattern is not reproduced. These observations point toward the need for careful 390 
investigation onin interpreting the improvement in model skill  - especially when different error 391 
metrics are taken into account.  therefore, modeler should be aware of how model skills are improved.  392 

6 Conclusions 393 
[26][27] The use of large sample catchment calibrations of two different hydrologic models 394 
with five several performance metrics enables us to make robust inferences regarding the effects of 395 
the calibration metric on the ability to infer extreme (high flow) events. Here, we have focused on 396 
improvement in representation of annual peak flow estimatesestimates, as they are important for flood 397 
frequency magnitude estimation. Our calibration study supports the notion of Gupta et al. (2009) that 398 
squared error type metrics are not suitable for model calibration when the application requires robust 399 
high flow performance. We draw the following conclusions from the analysis presented in this paper:  400 

1. The choice of errorCalibration metric choice for model calibration impacts high flow 401 
estimates very similarly for both models, although mHM provides overall better performance 402 
than VIC for in terms of all metrics evaluated. 403 

1.2.Calibration with KGE improves performance as assessed by high flow metrics through 404 
improvement of time- seriesdependent metrics (mean,e.g.,   variability error score). 405 
Adjustingstment of the  scaling factors onrelated to the different  the KGE components (biass,, 406 
variability, and error, correlation terms) can further assist the model simulations in matching 407 
certain aspects of flow characteristics. The degree of improvement is, however, is model 408 
dependent , though sensitivity depends on the models.  409 

2.3.Application specific metrics can improve estimation of specifically targeted aspects of the 410 
system response (here annual peak flows) if used to direct model calibration.  However, the 411 
use of an application specific metric does not guarantee acceptable performance with regard 412 
to other metrics, even those closely related to the application specific metric.  413 

3. The ability to adjust weighting on bias, variability, and correlation makes KGE a versatile 414 
performance metric that can be used to improve model-based estimation of high flow related 415 
hydrologic signatures.  416 

[27][28] Given that Gupta et al. (2009) shows clear improvement of flow variability estimates 417 
by switching the calibration metric from NSE to KGE for a simple rainfall-runoff model similar to 418 
the HBV model (Bergström 1995), and that our results are similar for two relatively more complex 419 
models, that are more complex, we can expect that other models would exhibit similar results when 420 
using KGE or a its scaled variant. It If choosing to use an application specific metrics, it seems clear 421 
that careful thought needs to be given to the design of application specificthe metrics if we are to 422 
obtain good performance for both the target metric (used for calibration) and other related metrics 423 
(used for evaluation). This is more), soimportant since we wish as to increase confidence in the 424 
robustness and transferability of the calibrated model – an the issue that . This issue needs to be 425 
examined in more detail.  426 
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7 Code Availability 427 
[28][29] Model calibration was performed using MPR-flex available at 428 
https://github.com/NCAR/mpr-flex/tree/direct_calib for VIC. mHM is calibrated with the MPR 429 
strategy implemented in the mHM. Hydrometeorological data are obtained from a part of Catchment 430 
Attributes and Meteorology for Large-sample Studies (CAMELS; Newman et al. 2014; Addor et al. 431 
2017). Analysis and plotting codes are available at 432 
https://github.com/nmizukami/calib4ffahttps://github.com/nmizukami/calib4ffa/blob/master/ffa.ipy433 
nb. 434 
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