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Abstract 

Time series of groundwater and stream water quality often exhibit substantial 

temporal and spatial variability, whereas typical existing monitoring data sets, e.g. 

from environmental agencies, are usually characterized by relatively low sampling 20 

frequency and irregular sampling in space and / or time. This complicates the 

differentiation between anthropogenic influence and natural variability as well as the 

detection of changes in water quality which indicate changes of single drivers. We 

suggest the new term ‘dominant changes’ for changes in multivariate water quality 

data which concern 1) multiple variables, 2) multiple sites and 3) long-term patterns 25 

and present an exploratory framework for the detection of such dominant changes in 

data sets with irregular sampling in space and time. Firstly, a non-linear dimension 

reduction technique was used to summarize the dominant spatiotemporal dynamics 

in the multivariate water quality data set in a few components. Those were used to 

derive hypotheses on the dominant drivers influencing water quality. Secondly, 30 

different sampling sites were compared with respect to median component values. 

Thirdly, time series of the components at single sites were analysed for long-term 

patterns. We tested the approach with a joint stream water and groundwater data set 

quality consisting of 1572 samples, each comprising sixteen variables, sampled with 

a spatially and temporally irregular sampling scheme at 29 sites in northeast 35 

Germany from 1998 to 2009. The first four components were interpreted as 1) 

agriculturally induced enhancement of the natural background level of solute 

concentration, 2) redox sequence from reducing conditions in deep groundwater to 

post oxic conditions in shallow groundwater and oxic conditions in stream water, 3) 

mixing ratio of deep and shallow groundwater to the streamflow and 4) sporadic 40 

events of slurry application in the agricultural practice. Dominant changes were 

observed for the first two components. The changing intensity of the 1st component 

was interpreted as response to the temporal variability of the thickness of the 

unsaturated zone. A steady increase of the 2nd component at most stream water sites 

pointed towards progressing depletion of the denitrification capacity of the deep 45 

aquifer.  
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1 Introduction 

Numerous high frequency sampling studies unravelled the high temporal variability 

of stream water quality (e.g., Kirchner et al., 2004; Cassidy and Jordan, 2011; 50 

Halliday et al., 2012; Neal et al., 2012; Wade et al., 2012; Aubert et al., 2013; 

Kirchner and Neal, 2013; Tunaley et al. 2016; Rode et al., 2016; Blaen et al., 2017). 

Therefore, monitoring water quantity and quality on the timescale of the hydrological 

response of the catchment is a key requirement for understanding water quality 

dynamics and its driving processes in detail (Kirchner et al., 2004; Neal et al., 2012; 55 

Halliday et al., 2012). While the development of sensor technology, data loggers and 

transmission technology hopefully will help to significantly increase the number of 

high-frequency monitoring programmes in the future, most of the existing monitoring 

programmes so far applied a rather low sampling frequency. Nonetheless, there is 

common agreement that for short periods with high-frequency data, longer periods of 60 

low-frequency monitoring provide invaluable context (Burt et al., 2011; Neal et al., 

2012; Halliday et al., 2012; Bieroza et al., 2014). This is especially true for existing 

long term records which are required as reference to distinguish between natural 

short term and long term variability of the observed variables and the assessment of 

the effects of anthropogenic influence on water quality such as changes in land use 65 

in the catchment (Burt et al., 2008; Howden et al., 2011).  

The intriguing temporal and spatial variability in water quality monitoring data sets 

can in most cases hardly be related to single causal factors. Instead, a variety of 

biogeochemical processes (e.g., Stumm and Morgan, 1996; Neal, 2004; Beudert et 

al., 2015), climatic (e.g., Neal, 2004) and hydrological (e.g., Molenat et al., 2008) 70 

variability and anthropogenic influences, for example agricultural (e.g., Basu et al., 

2010; Basu et al., 2011; Aubert et al., 2013) or forestal (e.g., Neal, 2004) land use, 

land use change (e.g., Scanlon et al., 2007; Raymond et al., 2008) or urbanization 

(e.g., Kroeze et al., 2013), interact at different scales impeding identification of clear 

cause-effect relationships. Usually a single solute is affected by numerous different 75 

drivers at different scales (cf., e.g., Molenat et al., 2008; Lischeid et al., 2010; 

Schuetz et al., 2016 for NO3
-). Inversely, a single driver usually has an impact on 

various solutes (Massmann et al., 2004; Lischeid and Bittersohl, 2008). This 
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suggests that trend analyses of single variables might easily be misleading with 

respect to the identification of driving factors. For this purpose techniques which are 80 

able to account for the interaction of multiple drivers and observed variables are 

preferable. 

On the other hand, despite their complexity, catchments are highly constrained 

systems. Usually only a few dominant processes determine the main dynamics of 

stream flow, groundwater head or water quality (Grayson and Blöschl, 2000; 85 

Sivakumar, 2004; Lischeid et al., 2016). Using joint information from different solutes 

is an established way to derive hypotheses on processes or other causal factors that 

are dominant in the monitored data. For this purpose, dimension reduction 

techniques, especially the linear principal component analysis (PCA), have been 

used in analyses of multivariate water quality data for long, mostly as exploratory tool 90 

for descriptive process identification (e.g., Usunoff and Guzmán-Guzmán, 1989; 

Haag and Westrich, 2002; Cloutier et al., 2008) or for determining mixing ratios (e.g., 

Hooper et al., 1990; Capell et al., 2011). If the analysed data consist of time series of 

one or several variables observed at different sites, then the temporal features of the 

results of the dimension reduction can be analysed in a spatially explicit way, e.g. 95 

with respect to seasonal patterns or long term developments at the monitored sites 

(Lischeid and Bittersohl, 2008; Lischeid et al., 2010).  

However, many of the methods commonly used for analysing temporal 

developments in monitoring data sets require regularly sampled data. In practice the 

spatiotemporal design of sampling campaigns and monitoring networks often evolves 100 

during the sampling period in an irregular way. In order to obtain a regularly sampled 

data set, additional information with a different sampling design, e.g. from pilot 

studies or single sampling campaigns, might not be utilized in the analysis at all. 

Further irregularities in the spatiotemporal structure of environmental monitoring data 

sets arise typically during the monitoring itself from a variety of reasons such as 105 

failure of sensors or data loggers, measurement errors, loss of samples, periods of 

ice or drought, etc.. Thus, in environmental monitoring practice, data sets with gaps 

and periods with corrupted measurements are more the rule rather than the 

exception (c.f., e.g., Zhang et al., 2018 for river quality data). 
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Lischeid et al. (2010) suggested a combination of exploratory data analysis 110 

methods to detect and analyse dominant processes and their temporal development 

in multivariate water quality data sets that is capable of dealing with irregular time 

series. We built on that and extended it towards the detection of ‘dominant changes’ 

in time series of multivariate water quality data that are monitored at different sites, 

i.e. at different parts of a catchment or in different catchments within a region. In 115 

analogy to the dominant process concept (Grayson and Blöschl, 2000; Sivakumar, 

2004), we use the term ‘dominant changes’ in a broad and descriptive sense referring 

to systemic changes that clearly exceed the ‘usual’ range of heterogeneities in the 

temporal, spatial or inter-variable structure of the observed water quality data. We 

considered changes as dominant that concerned 1) main components of the 120 

multivariate water quality data set rather than single water quality variables 

(multivariate components); 2) behaviour at various sites rather than at single sites 

(multiple sites); and 3) long-term behaviour rather than short-term fluctuations or 

single events (long-term patterns).  

To identify the dominant changes, we combined exploratory data analysis methods 125 

for non-linear dimension reduction, spectral analysis, linear and non-linear trend 

estimation and monotonic trend test in one exploratory framework. The suggested 

approach was tested with a multivariate water quality data set that has been sampled 

with a spatially and temporally irregular sampling scheme in northeast Germany from 

1998 to 2009. In the following, we present and discuss the results of our case study 130 

according to the three aspects of dominant changes: 1) multivariate components, 2) 

multiple sites and 3) long-term patterns. We continue with a discussion of 4) effects 

of the irregular sampling and 5) methodological aspects of the exploratory framework. 

 

2 Data 135 

2.1 Study area 

The study area is the upper part of the basin of the Ucker river located in the 

northeast of Germany, about 90 km north of Berlin, which drains to the Baltic Sea 

another 50 km further north. It is part of the Leibniz Centre for Agricultural Landscape 
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Research (ZALF) long-term monitoring region AgroScapeLab Quillow, the LTER-D 140 

(Long Term Ecological Research Network, Germany) and the TERENO (Terrestrial 

Environmental Observatories, http://teodoor.icg.kfa-juelich.de) Northeastern German 

Lowland Observatory. Water samples have been taken in the adjacent catchments of 

Dauergraben (78.9 km²), Stierngraben (104.8 km²), and Quillow (399.4 km²) with its 

subcatchments Strom (235.8 km²) and Peege (25.6 km²) (Figure 1). At the ZALF 145 

weather station Dedelow, which is situated approximately 500m northeast of Q_97 

(Figure 1), a mean annual precipitation of 550 mm and a mean annual temperature of 

8.9° C was observed for the hydrological years within the study period (1997-11 to 

2009-10). The mean annual climatic water balance for this period, calculated from 

daily precipitation and potential evapotranspiration, was found to be -103 mm, 150 

exhibiting high interannual variability with -148 mm in the summer half year and +45 

mm in the winter half year. 

The topography of the region developed basically during the Pomerian stage and 

the Mecklenburgian stage of the Weichselian ice age, i.e. 15,200 to 14,100 years 

before present. Altitude varies from 20 m in the lowlands of the Ucker river to more 155 

than 100 m above sea level in the southwestern part of the study area. During the 

Pleistocene, repeated advances and recessions of the ice sheet deposited highly 

heterogeneous unconsolidated sediments of about 150 m to 200 m thickness. The 

base consists of a thick Oligocene clay layer which separates the upper freshwater 

groundwater system from saline groundwater underneath. Based on borehole 160 

surveys, up to seven aquifers divided by layers of till have been identified within the 

unconsolidated Quaternary sediments. In some parts of the region patches of 

halophilious plants are found in the lowlands indicating local upwelling of saline 

groundwater from the underlying Tertiary aquifer through windows of the Oligocene 

clay layer. 165 

Loamy and sandy loamy soils prevail that developed from the till substrate. Most of 

the region is intensively used as cropland, although the fraction of arable land differs 

between the catchments (Table 1). Forests comprise only a minor fraction of the area 

(Table 1). Land cover did not change within the study period from 1998 to 2009. The 

riparian zone of the catchments is mostly used as grassland, underlain by peat and 170 
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organic and sandy fluvial deposits. The hummocky landscape includes about 1300 

closed drainage basins and small ponds with an area of the water surface < 1 ha 

(Kalettka and Rudat, 2006; Lischeid et al., 2016). Many of the larger depressions 

have been connected by ditches to facilitate drainage. Partly, these ditches have later 

been replaced by underground pipes for land reclamation. In addition, agricultural 175 

soils are extensively drained by subsurface tile drainage systems. From the 13th 

century till the end of the 19th century, the energy of the natural water courses was 

also occasionally used to power mills. Today, those mills are not active any longer 

and have been replaced in most cases by weirs for water management or ramps. For 

more details on the study site, please see Merz and Steidl (2015). 180 
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Figure 1 Map of the study area. Coordinates of UTM-zone 33N are given in m. 

Upper panel: Stream water monitoring sites and the location of the study area (Upper 

Ucker river catchment) within Germany. Lower panel: Section with the included 185 

groundwater monitoring sites. For better readability only the number of the ID of the 

monitoring sites is shown.  
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Table 1 Share of land use classes in the different catchments (percent of land 

cover) based on CORINE Land Cover data (2000). 190 

  Settlements 
/ Industry 

Arable 
land 

Grass- 
land 

Lakes Others Wet- 
land 

Wood- 
land 

Dauergraben 1.7 92.1 4.1 1 0.3 - 0.8 

Ucker 4.6 62.3 5.6 7.7 2.2 2.4 15.2 

Stierngraben 1.4 61.2 15.8 1.2 0.9 - 19.5 

Strom 2.2 54 7 6.9 1.2 - 28.7 

Quillow 2.3 77 9.3 1.3 1.4 - 8.7 

Peege 0 78.3 5.5 - - - 16.2 

 

2.2 Sampling and analysis 

The monitoring aimed to cover the spatial and temporal variability of water quality 

along the Quillow stream, its tributaries and the adjacent streams. The main focus of 

the monitoring was the Quillow catchment. Here, eight sampling sites were located 195 

along the main stream, and another four at each of the two tributaries Peege and 

Strom (Figure 1 and Table S1). At the streams Dauergraben and Stierngraben and at 

the Ucker river, stream water quality was monitored at one site respectively. Stream 

water sampling started in 1998 and was performed until 2009. Discharge data was 

only available at sites Q_93 and S_118 (Figure 1). Thus we did not include it in the 200 

presented analysis. Groundwater quality was monitored in the Quillow catchment 

only, close to the middle reaches of the stream and close to the mouth of the Peege 

tributary, from 2000 to 2008 (Lower panel Figure 1). At this site, an up to 15 m thick 

horizontal till layer separates a shallow and very heterogeneous unconfined aquifer 

from a mainly confined deep aquifer. The separating till layer crops out further 205 

downstream (Merz and Steidl, 2015). Both aquifers were monitored (Table S2). The 

deep aquifer is known to be confined except at well Gd_204. Groundwater level in 

the deep aquifer was measured daily with automatic data loggers at wells Gd_198, 

Gd_201, Gd_203 and Gd_204 (Merz and Steidl, 2014a). 

Groundwater quality (Merz and Steidl, 2014b) and stream water quality (Kalettka 210 

and Steidl, 2014) monitoring in the Quillow catchment covers a wide range of water 

quality parameters. For the multivariate analysis in this study, we considered from the 
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joint groundwater and stream water quality data set only the 16 variables with less 

than 5% missing values, i.e. NH4
+, NO3

-, NO2
-, PO4

3-, Na+, K+, Mg2+, Ca2+, Cl-, O2, pH, 

water temperature, redox potential (Eh), electric conductivity (EC), SO4
2-, and DOC 215 

(Table S3). Each sample contained measurements of all 16 variables. Those water 

samples for which more than two of the 16 monitored variables were missing were 

excluded from the analysis, resulting in a set of 1572 samples. In total, 0.69% of the 

values in the dataset were missing. In addition, we considered HCO3
- and Fe2+ 

concentration from the groundwater monitoring (Table S3). 220 

The number of temporal replicates varied between one and 127 per site (Figure 2). 

In general, streams were sampled at approximately monthly intervals, and 

groundwater samples were taken every three months. Median [mean] sampling 

intervals were 29 [38.7] days for stream water and 98 [125.3] days for groundwater. 

The one shorter sampling interval at site GdQ_198 was an exceptional sample taken 225 

during maintenance work. In total, sampling intervals between two consecutive 

samples varied between nine and 714 days (Figure 2). The sites were sampled 

roughly similarly across seasons (left panel Figure 2). The most important systematic 

deviation from this rule were the Peege sites and the most upstream sites of the 

Quillow (left panel Figure 2 and Figure 1), which often fall dry in summer (Merz and 230 

Steidl, 2015). 

Further details on the data and measurement methods are provided by Merz and 

Steidl (2015). The selection of water quality data used in this article and the 

groundwater level data have been published under CC-BY 4.0 and can be accessed 

at doi: 10.4228/ZALF.2017.340 and doi: 10.4228/ZALF.2000.272 respectively.  235 
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Figure 2 Left panel: Sampling dates at the sites for the whole monitoring period. 

Right panel: Boxplots of the variability of sampling intervals during the monitoring 

period. For better readability, the maximum of the x-axis is limited to 180 days. 240 

Median (red) and mean (blue) of sampling intervals are shown separately for the 

groundwater and stream water sites. Grey vertical lines mark the 1-day, 1-week and 

1-month interval. Both panels: The dashed horizontal line separates groundwater 

sites (bottom) from stream water sites (top). Subscripts: P = Peege, Q = Quillow, S = 

Strom, St = Stierngraben, U = Ucker, D = Dauergraben, Gs = shallow groundwater, 245 

Gd = deep groundwater. The number of samples at each site is given in brackets. 

Names of the sites with more than 50 samples are printed bold. 
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3 Methods 

3.1 Data preprocessing  250 

Missing values were replaced by the median of the respective variable. This 

concerned at most DOC (3.44% of the values) and NO2
- (2.54%), whereas the 

percentage of missing values was less than 2% for each of the other 14 variables 

(Table S3). Values below detection limit were replaced by 0.5 times that limit. To 

achieve equally weighted variables the values were z-normalized to zero mean and 255 

unit standard deviation for each variable separately. 

 

3.2 Exploratory framework 

To identify the dominant changes, we firstly used the non-linear dimension 

reduction technique Isometric Feature Mapping to derive the main multivariate water 260 

quality components. To account for the interaction of groundwater and stream water, 

both groundwater and stream water samples have been analysed together in one 

joint analysis. Secondly, we studied differences between the sites with respect to 

median component values. Thirdly, we analysed the time series of the components at 

sites with more than 50 samples. Seasonal patterns were analysed with the Lomb-265 

Scargle approach (Lomb, 1976; Scargle, 1982; Scargle, 1989) and – if significant – 

were subtracted from the series prior to trend analyses. Please note that the term 

‘seasonal’ refers to the annual cycle throughout the article. Linear trends were 

estimated with the Theil-Sen estimator and tested for significance with the Mann-

Kendall Test. Non-linear trends were depicted with the locally weighted regression 270 

(LOESS) approach (Cleveland, 1979; Cleveland and Devlin, 1988). We then related 

resulting low-frequency patterns to the long-term groundwater head dynamics, 

likewise determined as LOESS smooth of the de-seasonalised series. Time series 

analysis at different sites allowed to check whether long-term patterns were 

consistent, pointing to more general effects in the study area.  275 

As the methods do not require regularly sampled data in space or time, we 

considered every sample as additional information of the spatiotemporal variability of 



13 

the observed water quality in the study area rather than noise. Consequently, 

irrespective of irregularities of sampling intervals at a site or differences in sampling 

intervals and numbers of samples between the different sites, we included as many 280 

samples in the analysis as possible to increase the informative value and support the 

representativeness of the study in space and time. This might lead to a bias in the 

determination of the components, as well as in the estimation of the trends of the 

components and their significance, if deviations from a regular sampling scheme 

follow a systematic pattern. To check for that, we tested the distribution of sampling 285 

intervals at all sites with N > 50 (Table S1) for normality with the Shapiro-Wilk-test 

and the temporal development of the lengths of the sampling intervals for the whole 

observation period for monotonic trends with the Mann-Kendall-test. For all tested 

sites a Gaussian distribution of sampling intervals as well as a monotonic trend of the 

length of sampling intervals during the observation period was rejected. 290 

 

3.3 Dimension reduction 

Dimension reduction methods aim to represent a data set with a given number of 

dimensions (here the number of measured hydrochemical variables) in a new data 

space with substantially less dimensions. This is achieved by projecting the data in a 295 

new ordination system which makes a more efficient use of the intrinsic structures of 

the data set than the original one. The axes of the new ordination system are usually 

called ‘components’ or ‘dimensions’. In the following, we will use the term 

‘components’. For the values of a component we will use the term ‘scores’. The 

reduction of the dataset’s dimensionality is achieved by considering only some of the 300 

new components for further analysis. The selection process is a trade-off between 

reduction of the dimensionality and minimizing the loss of potentially informative 

structures. Typically only the first few components are selected as they depict the 

main structures in the data set.  

In the projection, different methods focus on different aspects of the data. For 305 

example, PCA aims for maximizing variance on the first components, classical 

multidimensional scaling (CMDS) at preserving the interpoint distances of the input 
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data in the projection, and self-organizing maps (SOM) at preserving the 

neighbourhood relations (topology) of the input data in the projection (Lee, 2007). In 

the last years, a variety of non-linear dimension reduction methods has been 310 

developed (Van der Maaten et al., 2009). Although being sensitive to noisy data, 

Isometric Feature Mapping (Isomap; Tenenbaum et al., 2000) was one of the best 

performing approaches when applied to real-world-data (Geng et al., 2005). It has 

been successfully applied in environmental research disciplines, e.g. biodiversity 

studies (Mahecha et al., 2007), soil sciences (Schilli et al., 2010), climatology 315 

(Gámez et al., 2004), and biogeochemistry (Weyer et al., 2014). 

 

3.3.1 Principal component analysis 

In our study, the well-established linear principal component analysis (PCA) served 

as benchmark for the non-linear Isometric Feature Mapping. PCA is one of the most 320 

widespread dimension reduction methods going back to research of Pearson (1901) 

and Hotelling (1933). For a brief introduction to PCA, please see, e.g., Jolliffe and 

Cadima (2016), for a comprehensive one Joliffe (2002). PCA aims to successively 

maximize the variance of the data set on the new calculated components. The scores 

of the components are calculated as weighted linear combinations of the original 325 

variables. The weights (loadings) of the linear combination define the axes of the 

data space in which the data is projected. The loadings are the eigenvectors derived 

from an eigenvalue decomposition of the covariance matrix of the analysed variables. 

If the analysed variables are z-normalized, as was done here, their covariance matrix 

is equivalent to the (Pearson) correlation matrix. The components are ordered with 330 

decreasing size of their eigenvalues. The share of variance that is assigned to a 

component is proportional to the size of its eigenvalue in relation to the sum of all 

eigenvalues. Thus, the ratio of total variance that is captured by the considered 

components gives a measure of performance of the PCA. PCA was performed in R 

(R Core Team, 2017) with the function ‘princomp’ of the default package ‘stats’. 335 
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3.3.2 Isometric Feature Mapping 

Isometric feature mapping (Isomap) is a non-linear extension of CMDS. It aims to 

approximate the global non-linearity in a dataset by local linear fittings (Geng et al., 340 

2005). This is done by mapping approximated geodesic interpoint-distances to an 

Euclidean distance matrix via a neighbourhood graph G (Tenenbaum et al., 2000). 

The geodesic distance between two points is the distance along the surface of a 

(non-linear) manifold, in contrast to the straight-line Euclidean distance (Geng et al., 

2005). The neighbourhood graph G consists of segments that connect every data 345 

point to its k nearest neighbours directly via Euclidean distances. For all non-

connected points the shortest path along the neighbourhood graph G is computed as 

the smallest sum of connected segments via the Dijkstra-algorithm (Dijkstra, 1959). 

This approximation of the geodesic distances allows the adaptation of G to the global 

non-linear structures in a data set. The only free parameter k has to be optimized by 350 

checking the performance of several runs. The more linear the data, the higher will 

the optimum k be. If k equals the possible number of connections of one data point to 

all other data points, the approximations of the geodesic distances are equal to the 

Euclidean distances and the Isomap results are congruent to those of CMDS and 

linear PCA (Gámez et al., 2004). Finally the neighbourhood graph G is embedded in 355 

the Euclidean space.  

In contrast to PCA, assessing performance based on the eigenvalues of the 

components is not applicable for Isomap. Performance of the dimension reduction of 

the Isomap approach was assessed and compared to performance of the PCA by the 

squared Pearson correlation coefficient (R2) of the interpoint distances in the high-360 

dimensional data space and in the low-dimensional projection spanned by selected 

components (Lischeid and Bittersohl 2008; Lischeid et al., 2010). A perfect fit would 

yield a value of 1 and a value of 0 reflects no correlation between the distance 

matrices of the original data and of the projection. Please note, that with this measure 

the contribution of single components to the overall performance does not 365 

necessarily decrease monotonically with increasing order of the components, as it is 

the case for the eigenvalue-based performance measure of PCA. For the local 

assessment of representation of interpoint distances at the individual sites, only the 
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data points from the respective sites were used. Because the selection of data points 

at a site is only a subset of the global data set for which the dimension reduction was 370 

performed, the performances regarding the representation of interpoint distances 

differ between the individual sites as well as compared to the overall performance for 

the global data set. At some sites it can even happen that adding more components 

does not for every component improve the representation of interpoint distances in 

the low-dimensional projection. Isomap and the determination of the distance 375 

matrices were performed with the R-package ‘vegan’ (Oksanen et al., 2009). 

 

3.3.3 Interpretation of components 

The analysis focused on those components that explained a major fraction of the 

total interpoint distances. The considered components were regarded to reflect 380 

dominant drivers influencing water quality. Here, the term ‘driver’ was used for 

biogeochemical and hydrological processes as well as for anthropogenic influences 

affecting water quality. Correspondingly we formulated a hypothesis for each 

considered component. The interpretation of the components is based on analysing 

(i) the correlations between measured variables and component scores as well as (ii) 385 

spatial and temporal patterns of the scores.  

Correlation between scores of a selected component cpx and values of single 

variables might be blurred due to the effects of other components on the same 

variable. We excluded those effects by analysing the relationships between scores of 

the selected component cpx and the residuals of the multiple linear regression mlr of 390 

the single variable vi at hand and the remaining other considered components CP\x 

(residuals): 

���(���, ��	
��
�	����(��, ��\���� ,      (1) 

where CP\x is the set of m considered components, without the selected 

component cpx, �� and �� the intercept and coefficients of the regression 395 

���(��, ��\� � = �� + ∑ ����� + ��	
��
�	�∈{"#\�}     (2) 
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To assess the relationships between components and residuals we used bivariate 

scatterplots. To summarize the relationships between components and residuals we 

used Spearman rank correlation, which enables to consider non-linear relationships 

as well, as long as they are monotonic. Besides, it is less sensitive to extreme values 400 

than Pearson correlation.  

 

3.4 Time series analysis 

At sites with more than 50 samples, time series of component scores were 

analysed for seasonal patterns, linear trends and non-linear trends. The sites were 405 

compared with respect to the identified long-term patterns to detect general patterns 

in the study area. The significance level for trend and frequencies in this study was 

set to p ≤ 0.05. At each site, the fractions of variance of a time series that were 

assigned to its seasonal pattern, linear trend or non-linear trend were determined as 

the R2 of the respective pattern with the component series. In case of significant 410 

seasonal patterns, the estimations of the trends were based on the de-seasonalised 

series. Accordingly, the fractions of variance assigned to the trends were determined 

as the R2 of the trend pattern with the de-seasonalised series. The decomposition of 

the time series in a seasonal component and a non-linear trend derived with LOESS 

was inspired by the STL-approach of Cleveland et al. (1990).  415 

 

3.4.1 Lomb-Scargle method 

Standard Fourier analysis requires equidistant time series which was not given in our 

study. Therefore the estimation of seasonal patterns in the time series was done with 

the Lomb-Scargle method, which is an extension of Fourier-Analysis to the uneven-420 

spaced case genuinely invented in astrophysics (Lomb, 1976; Scargle, 1982). The 

application of the Lomb-Scargle method in this study follows to a large extent the 

workflow suggested by Glynn et al. (2006) as well as Hocke and Kämpfer (2009). 

Details are given in the Appendix A. The implementation used in this manuscript can 

be accessed as R-script at doi: 10.4228/ZALF.2017.340. 425 
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3.4.2 Theil-Sen estimator and Mann-Kendall test 

The linear trend was estimated with the non-parametric Theil-Sen estimator which 

is the median of all interpoint slopes in a time series (Theil, 1950; Sen, 1968). The 

Mann-Kendall test (Mann, 1945; Kendall, 1990) was used to test for significant 430 

monotonic trends. Identified trends are not necessarily linear. Being based on rank 

correlation, data do not have to obey any specific distribution. Please note that we 

did not account for the effect of overestimation of the significance of trends with the 

Mann-Kendall test due to short-term autocorrelation (Yue et al., 2002). That would 

have required an assessment of the lag-1 autocorrelation which was hampered by 435 

the irregular sampling. Neither did we consider long-term memory and its effects on 

the statistical significance of the trends (Cohn and Lins 2005; Zhang et al., 2018). 

Consequently, we did not consider the possible effects of the irregular sampling on 

the long-term memory (fractal scaling) of the water quality series either (Zhang et al., 

2018). Due to the limited number of samples per year and non-equidistant sampling, 440 

the seasonal Mann-Kendall test was not applicable (Figure 2). Instead, significant 

seasonal patterns according to the Lomb-Scargle approach were subtracted prior 

trend analysis. The Mann-Kendall test was performed with the R-package ‘Kendall’ 

(McLeod, 2011).  

 445 

3.4.3 Locally weighted regression (LOESS) 

We assessed non-linear trends and low-frequency patterns with locally weighted 

regression (LOESS; Cleveland, 1979; Cleveland and Devlin, 1988), where the 

smoothing is done by local fitting of a second order polynomial to each point x in the 

data set using weighted least squares. The weights for each value to be fitted are 450 

scaled to the range from 0 to 1 by the distance d(x) between x and its qth closest 

point. The ratio of q to the number n of all data points, i.e. the span of the local 

regression smoother, defines the degree of smoothing. We used the default 

smoothing span which is a proportion of q/n = 0.75 of x´s nearest neighbours. Data 

points further away than the qth data point do not contribute to the regression. Within 455 
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the range of the span, the weights wi of the neighbouring points xi in the least square 

fit decrease with increasing distance of xi to x symmetrically around x according to 

the tricubic weighting function wi(x) = (1 - [ (|xi - x|) / d(x) ]3)3. Again, significant 

seasonal patterns according to the Lomb-Scargle approach were subtracted prior 

trend analysis. For details about choosing different LOESS-parametrisations, please 460 

see Cleveland (1979) as well as Cleveland and Devlin (1988). Local extrema of the 

LOESS smooth were identified with the R-package ‘EMD’ (Kim and Oh, 2009; 2014.). 

 

4 Results 

4.1 Multivariate components 465 

We achieved the best performance of the Isomap dimension reduction with k = 

1300 (Table 2). In the following, results are presented for the first four Isomap 

components representing 88% of the interpoint distances of the total data set. For 

single sites (with more than 15 samples), between 29 and 97 % of the respective 

interpoint distances were represented (Table S4).  470 

The 1st component depicted 42% of the interpoint distances of the total data set. 

Plotting residuals of the variables versus the 1st component showed strong positive 

correlations for NO3
-, Na+, K+, Mg2+, Ca2+, Cl-, EC, SO4

2-, DOC and slightly less, but 

still positive, correlations for O2 and Eh. Temperature was the only variable 

correlating negatively with the 1st component (Figure 3). Visualization of the 475 

component scores versus residuals of solute concentration revealed predominantly 

linear relationships (Figure S1). 

The 2nd component reflected 18% of the interpoint distances in the data. It 

exhibited clear positive correlation with O2 concentration, pH and Eh, and weaker 

correlation with Na+, K+ and DOC. It was inversely correlated with Ca2+, EC and SO4
2- 480 

(Figure 3 and Figure S2). In the groundwater samples, HCO3
- and Fe2+ had been 

determined as well. Both solutes were negatively correlated with this component 

(Figure 4 upper panel). NO3
- concentration in the deep groundwater samples was 

very low (with 27% of the samples below detection limit) and did not show any clear 
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correlation with the 2nd component. Low component scores in the groundwater came 485 

along with high Ca2+ and HCO3
- concentration. 

The relationship of scores of component one and two in the groundwater is shown 

in the lower panel of Figure 4. Except for the two shallow wells close to the Peege 

stream (Gs_200, Gs_202; cf. Figure 1) scores of the 1st and 2nd component are 

negatively related (Figure 4 lower panel). 490 

The 3rd component represented 6% of the interpoint distances in the data set. The 

residuals exhibited positive correlation for Na+, Mg2+, Cl-, pH and temperature. 

Negative correlations were found for NO3
-, Ca2+, O2, Eh, and DOC (Figure 3 and 

Figure S3 ).  

Another 22% of the interpoint distances in the data were assigned to the 4th 495 

component. Residuals of the component scores showed negative correlation for 

NH4
+, PO4

3-, K+, temperature, and DOC and positive correlation for O2 (Figure 3 and 

Figure S4). The range of component values was spanned mainly by single large 

values of NH4
+, PO4

3-, and K+ that cannot be explained with the preceding three 

components (Figure S4). This highlights the importance of particular events for the 4th 500 

component.  

Table 2 Cumulated R2 of the reproduction of the interpoint distances of the data in the 

projection by the first ten components of the best Isomap run and linear PCA. 

Component 1 2 3 4 5 6 7 8 9 10 

Isomap 0.42 0.6 0.66 0.88 0.94 0.96 0.97 0.98 0.98 0.99 

PCA  0.39 0.57 0.65 0.88 0.94 0.95 0.97 0.98 0.99 0.99 
 

 505 
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Figure 3 Spearman rank correlation of a component and the residuals of the 

multiple linear regression of the measured variable and the remaining three other 

components. 510 
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Figure 4 Upper panel: Selection of variables versus scores of component 2 for the 

groundwater samples. Concentration in mgL-1. Lower panel: Scores of component 1 

versus component 2 at the groundwater sites.  515 

 

4.2 Multiple sites 

Median values of scores of the 1st component clearly differed between streams 

(Figure 5 A). At the Strom sites, the median score values were considerably lower 

than those from the other stream water sampling sites. The median values of scores 520 

of the sites at the Quillow and Stierngraben showed intermediate values followed by 

the Ucker site, the Peege sites and finally the Dauergraben with the highest median 

score value. Groundwater samples in general exhibited consistently low scores of the 

1st component, but without clear differences between deep and shallow groundwater 

samples. Mixing of water from different streams was visible at site Q_93 downstream 525 

the confluence of the Quillow (Q_95) and of the Strom stream (S_118), as well as at 

site Q_100 downstream the confluence of Q_104, Q_102 and P_107 (Figure 1 and 
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Figure 5 A).  

Stream water samples exhibited the highest scores of the 2nd component, whereas 

low scores were limited to deep groundwater samples, and shallow groundwater 530 

samples were in an intermediate position (Figure 5 B). Median values of the stream 

water sites were approximately on the same level except for the sites Q_103, Q_106 

and U_128 which exhibited noticeably higher median values than the other stream 

water sites and the two Peege sites P_109 and P_108, which exhibited median 

values on the same level as the shallow groundwater sites Gs_199 and G_200. The 535 

scores in the deep groundwater clearly showed the largest absolute values, 

indicating the significance of deep groundwater for this component (Figure 5 B).  

Scores of the 3rd component in the deep groundwater were consistently higher 

than in shallow groundwater, while the stream water samples covered the whole 

range of values (Figure 5 C). Lowest scores of the 3rd component were found at the 540 

Peege sites and in the shallow groundwater, highest scores at Ucker, Dauergraben 

and the deep groundwater. At the Quillow stream, scores tended to increase from the 

spring to the outlet. The effect of mixing of tributaries with different water qualities 

was visible along the course of the Peege and Quillow streams downstream of the 

respective confluences at the sites P_108, Q_95 and Q_93 (Figure 1 and Figure 5 545 

C). 

The range of values of the 4th component was strongly biased towards negative 

values, caused by single events at some sites which exhibited very low values 

(Figure 5 D).  

 550 
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Figure 5 Boxplots of scores of component 1 to 4 at different sites. Sites with N < 

13 are marked with ‘~’, those with N < 3 with ‘X’. Subscripts: P = Peege, Q = Quillow, 

S = Strom, St = Stierngraben, U = Ucker, D = Dauergraben, Gs = shallow 

groundwater, Gd = deep groundwater. 555 
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4.3 Long-term patterns 

Time series of scores of the components were studied at sites with more than 50 

temporal replicates. This applied for 13 stream water sites (Table S1). All dominant 

frequencies (for details, please see Appendix A) interpreted as seasonal patterns had 560 

a period length in the range between 350 and 380 days. For de-seasonalisation 

these seasonal patterns were subtracted from the time series prior to analysis for 

linear and non-linear trends. 

Most of the time series of the scores of the 1st component exhibited clear seasonal 

patterns with maximum scores during the winter season (Figure 6 and Figure 7). 565 

Between 30 and 67 % of the variance were assigned to the seasonal pattern. At all 

sites we found significant negative monotonic trends (Figure 6). The strongest 

decline was found at site D_112, the weakest trend at site Q_97 (not shown). The 

linear trend comprised between 9 and 48 % of the variance of the de-seasonalised 

time series (Figure 6). In contrast, the LOESS smooth depicted 14 to 57 % of the 570 

variance (Figure 6). It showed a decrease until December 2004 approximately and an 

increase thereafter (Figure 8). The de-seasonalised time series of groundwater 

heads showed a similar behaviour, with the minimum water level in June 2006 

(Figure 8). Timing of the minimum values of the scores of the 1st component varied 

between sites, spanning a range from 17th February 2004 to 17th of March 2009 575 

(Figure 8). As an example, Figure 7 gives the time series of scores of the 1st 

component at site Q_93, the seasonal pattern extracted from the series and the de-

seasonalised time series with the non-linear trend estimated with the LOESS 

smoother. 

Unlike for the 1st component, only five of the thirteen considered time series of the 580 

2nd component exhibited a clear significant seasonal pattern, accounting for 17 to 48 

% of variance (Figure 6). The maxima of the seasonal patterns of the sites at Quillow 

and Ucker were in spring, at Stierngraben and Dauergraben in summer. In contrast, 

significant monotonic trends were found at most of the stream water sampling sites. 

All significant trends of the 2nd component were positive. The linear trend comprised 585 

between 5 and 16 % of the variance of the time series, while the LOESS smooth 

comprised between 4 and 25 %.  



26 

Values of the 3rd component showed a clear seasonal pattern with maxima in 

summer (Figure 6). Between 30 and 60 % of the variance were assigned to the 

seasonal signal. The only exception was site D_112 were the seasonal pattern was 590 

distorted by strong maxima in the winters of 2003, 2004 and 2007. Only at four sites 

significant linear trends were found. All of them were negative, comprising between 6 

and 13 % of the variance. The LOESS smooth depicted between 0 and 21 % of the 

variance.  

For the 4th component, significant seasonal patterns with maxima in summer were 595 

observed at 7 of the 13 analysed series, comprising between 17 and 61 % of the 

variance (Figure 6). Five sites showed a significant monotonic trend, comprising 

between 5 and 10 % of the variance. A negative trend was observed at site St_133 

only. Four sites showed a positive trend. The LOESS smooth depicted between 1 

and 16 % of the variance.  600 
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Figure 6 Fraction of variance of the time series of the Isomap component scores of 

sites with N > 50 assigned to the seasonal pattern (dark grey) and the trend 

estimated by the linear Theil-Sen estimator (mid grey) as well as the non-linear 605 

LOESS smooth (light grey). Fraction of variance is derived as R2 of the scores of the 

respective component with the seasonal pattern or the estimated trend. Only 

significant seasonal patterns and linear trends are shown. The sign of the linear 

Theil-Sen estimator is given in the respective line. The number of samples at each 

site is given in brackets. 610 
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Figure 7 Upper panel: Time series of scores of the 1st component at site Q_93 (N 

= 126) in black and the seasonal pattern estimated with Lomb-Scargle in grey. Lower 

panel: The de-seasonalised series in black and the non-linear trend estimated with 615 

LOESS in grey. 
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Figure 8 Left y-axis: LOESS smooth of time series of the 1st component at sites 

with N > 50 in grey. If a significant seasonal pattern was present, this was removed 620 

before smoothing. Right y-axis: LOESS smooth of the de-seasonalised groundwater 

level at four sites in black. The black dots mark the minima of the LOESS-smoothed 

series.  

 

5 Discussion 625 

5.1 Multivariate components 

Non-linear Isomap performed in this study only slightly better with respect to the 
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representation of interpoint distances than PCA (Table 2), suggesting that mainly 

linear relationships were of importance for the overall dynamics in the data set. As 

there were only minor differences, we will present in the following the results of 630 

Isomap only. 

For PCA and Isomap, the 1st component represents by definition the correlation 

structure that predominantly can be extracted from the set of variables as a whole. If 

all the loadings of the 1st component of a PCA have the same sign, it is a weighted 

average of all the analysed variables (Jolliffe, 2002; Jolliffe and Cadima, 2016). The 635 

stronger the analysed variables are linearly correlated, the more the 1st component 

approximates the arithmetic mean of all variables (for examples with hydrometric 

data see Lischeid, et al., 2010; Lehr et al., 2015). Furthermore, the 1st component 

serves as reference for all the subsequent components.  

In this study each sample of the multivariate water quality data set is uniquely 640 

defined by a sampling site and a sampling date. Thus, the 1st component depicted a) 

for each sampling site the pattern that was most prominent in the time series of the 

variables correlating with the 1st component, and b) between the sampling sites the 

difference in concentration level of those variables. High values of the 1st component 

indicate synchronous appearance of relatively high Eh and EC together with relatively 645 

high concentration of NO3
-, Cl-, SO4

2-, Na+, K+, Mg2+, Ca2+, DOC, O2 accompanied 

with relatively low temperature (Figure 3). 

The whole study region is characterized by relatively intense agriculture (Table 1). 

Thus, in addition to the natural background, we assume a general effect of the 

agricultural practice on the solute concentration level and the dynamics of the water 650 

quality series in the area. Enhanced concentration of NO3
-, Cl-, SO4

2- and Ca2+ is 

typical for groundwater and stream water in regions with intense agriculture 

compared to forested areas (Broers and van der Grift, 2004; Fitzpatrick et al., 2007; 

Lischeid and Kalettka, 2012). Nitrogen and potassium are the main ingredients of 

mineral fertilizers. Cl- and SO4
2- are the dominating anions in potassium fertilizers. 655 

SO4
2- is a major ingredient of phosphorus fertilizers and ingredient in some nitrogen 

fertilizers. Calcite is present in some nitrogen fertilizers or is applied separately via 

liming. DOC might be leached from slurry application or via tile drains after 
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mechanical destruction of topsoil aggregates during tillage (Graeber et al., 2012). In 

addition, cations from the soil matrix might be leached by an enhanced anion 660 

concentration (mainly NO3
-) (Jessen et al., 2017). Overall the application of fertilizers 

and other agricultural practices like tillage tend to enhance the solute concentration 

of seepage water (Pierson-Wickmann et al., 2009). Thus, we interpreted the 1st 

component as the enhancement of the natural background level of solute 

concentration due to agricultural practices. 665 

Compared to the 1st component, the relationships of the 2nd component with Eh, 

pH and O2 concentration were clearer expressed (Figure 3 and Figure S2). The 

range of the scores of the 2nd component was spanned by the lowest values in the 

deep groundwater and the highest values in the stream water (Figure 5 B) whereas 

shallow groundwater exhibited intermediate scores. This sequence corresponds to 670 

redox conditions expected in those water categories. Thus, we interpreted the 2nd 

component as a redox controlled component covering a sequence from reducing 

conditions in deep groundwater to post oxic conditions in shallow groundwater and 

oxic conditions in stream water. O2 and NO3
- concentration in deep groundwater 

samples usually was below the detection limit which is a common feature in this 675 

region (Merz et al., 2009). NO3
- in seepage and groundwater can be denitrified by 

microorganisms which use the oxidation of sulphides to sulphate as electron donor 

for denitrification (Massmann et al., 2003, Jørgensen et al., 2009). We ascribed the 

high SO4
2- and Fe2+ concentration to oxidation of pyrite (Figure 4 upper panel and 

Figure S2). Pyrite and other sulphides are abundant in the Pleistocenic sediments of 680 

North Germany (e.g., Weymann et al., 2010). Consequently, the pH decreases, 

calcite gets dissolved and the HCO3
- concentration increases. Part of the released 

Ca2+ replaces Na+ and K+ being sorbed to clay minerals.  

We interpreted the clear separation in the 3rd component between relatively low 

scores for the shallow aquifer and relatively high scores for the deep aquifer as 685 

reflection of two opposing gradients (Figure 5 C). High concentration of NO3
-, O2 and 

DOC and relatively high Eh values being negatively related to the 3rd component 

(Figure 3) is indicative for groundwater close to the surface, whereas enhanced 

concentration of the positively related solutes Na+, Mg2+ and Cl- is characteristic for 
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local upwelling of saline groundwater from the underlying Tertiary aquifers at greater 690 

depth (Hannemann and Schirrmeister 1998; Tesmer et al., 2007). The scores of the 

stream water samples, in turn, reflect the mixing ratio of groundwater from the two 

aquifers to the streamflow. We expect the baseflow maintained from the deep aquifer 

to be relatively enriched with geogenic solutes compared to the water that stems from 

the shallow aquifer or faster responding flow components like tile drain discharge and 695 

surface runoff. Water from the shallow aquifer is expected to be relatively enriched 

with surface born solutes compared to water that stems from the deep aquifer.  

The range of values of the 4th component was dominated by single extremely low 

scores, reflecting samples with high concentration of NH4
+, PO4

3-, and K+ (Figure S4). 

The catchments of the analysed streams are only sparsely populated and mainly 700 

characterized by intensive agriculture (Table 1). In agricultural landscapes slurry is a 

typical source in which those nutrients occur in high concentration (Hooda et al., 

2000). We are not aware of any other high-concentration sources of this combination 

of nutrients in the region. The little number of scores with very low scores implied that 

there were merely single events occurring at some of the sites only. This fits to the 705 

finding that the timing of slurry application is crucial for the amount of nutrient loss to 

the streams (Hooda et al., 2000; Cherobim et al., 2017). Thus, we interpreted the 

negative peaks of the 4th component as sporadic events of slurry application, being 

either unintentionally directly applied to the stream during the spreading of the slurry 

or being leached via surface runoff and tile drain discharge after application. 710 

 

5.2 Multiple sites 

The interpretation of the 1st component as agriculturally induced enhancement of 

the natural background level of most of the water quality variables is consistent with 

the spatial pattern of median component scores at the different sites. The highest 715 

scores were found in the Dauergraben stream and in the Peege stream (Figure 5 A). 

Both catchments are characterized by intense agriculture, a relatively dense network 

of tile drains, and hardly any buffer strips along the streams leading to a rapid 

transmission of solute enriched waters from the fields to the streams. In contrast, the 
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Strom stream exhibited the lowest scores among all streams. Compared to the other 720 

streams, the valley of the Strom stream is clearly deep cut. Therefore, the Strom 

stream is expected to receive along its whole length continuous and substantial 

groundwater inflow from the deep aquifer. In addition, the valley slopes are covered 

with forest and not in agricultural use, acting as a buffer strip for the agricultural 

impact. Furthermore, the fraction of arable land in the Strom catchment is smallest, 725 

and the fraction of woodland is largest compared to the other catchments (Table 1). 

Main parts of the Strom catchment are situated within a nature conservation area 

furthermore limiting the agricultural impact in its riparian zone. 

Deep groundwater, shallow groundwater and the stream water were well 

separated by the 2nd component (Figure 5 B). Exceptions were the sites at the 730 

Peege, which are mainly supplied with water from tile drainage and the shallow 

aquifer and consequently yield median values similar to the shallow groundwater. 

The largest positive median values of the 2nd component, being higher than those of 

the other stream water sites, were observed at sites with less than 13 samples 

(Q_103 and Q_106) and at the site U_128 which received at least partly waters from 735 

a different region than the other stream water sites (Figure 1 and Figure 5 B). Thus, 

for the purpose of this study, we restricted our analysis on the spatial variability of the 

redox component to the categories of deep groundwater, shallow groundwater and 

stream water.  

However, we took a closer look at the non-linear structure that became apparent 740 

for the deep groundwater samples in some of the residual plots of the 2nd component 

(Figure S2). In addition, we related the groundwater values of the 2nd component to 

the 1st component and the HCO3
- and Fe2+ concentration (Figure 4). The negative 

relationship between the 2nd component and the 1st component in the deep 

groundwater suggests that the agricultural load represented by the 1st component 745 

acts as a driver for the sulphide oxidation represented by the 2nd component. Among 

all deep groundwater wells, the deepest groundwater well Gd_198 exhibited the 

lowest scores of the 1st component (Figure 5 A) and the highest scores of the 2nd 

component (Figure 4 lower panel and Figure 5 B). This suggests that due to the 

relatively low agricultural load the oxidation of sulphides was the least pronounced 750 
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among all deeper wells. Similar relationships between the extent of sulphate 

oxidation in the aquifer and agriculturally borne NO3
- input have been found in other 

studies (e.g., Zhang et al., 2009; Jessen et al., 2017 and references therein). 

We expected the ratio of groundwater from the deep aquifer contributing to the 

streamflow to increase in general with increasing catchment size. The Peege stream 755 

is mainly fed by the shallow aquifer and yielded consequently median values of the 

3rd component similar to the shallow groundwater sites (Figure 5 C). The streams of 

Quillow, Strom and Stierngraben, showed little higher median values, indicating the 

larger proportion of groundwater from the deep aquifer contributing to runoff 

compared to the Peege stream. The sites U_128 and D_112 showed the highest 760 

median values of the 3rd component among the stream water sites, being equal or 

even higher than those of the deep groundwater sites (Figure 5 C). Both sites have 

subsurface catchments that do not include the deep groundwater samplings sites in 

this study. Site D_112 is on the eastern side of the river Ucker, while all groundwater 

sampling sites are on the western side of it (Figure 1). In addition, its higher median 765 

value of the 3rd component was partly due to several peaks during the winter time. 

Those coincide with high values of Cl-. These might indicate road salt application, but 

we did not investigate this further, as it considered only this single site. Site U_128 is 

situated at the outlet of the lake Unteruckersee upstream of the confluence of the 

Quillow stream (Figure 1). There, we did not expect a contribution of the groundwater 770 

sampled in the Quillow catchment either.  

All the stream water sampling sites with negative peaks of the 4th component are 

located near arable fields which are known to get fertilised by slurry (Figure 5 D). For 

example the two most affected sites Q_102 and Q_103 receive slurry input from a 

large pig farm close by (personal communication G. Verch). Overall, only a few slurry 775 

input events accounted for 22% of the representation of the interpoint distances of all 

the water quality samples of the water quality data set in the Isomap projection 

(Figure 5 D). However, the performance of the representation of the interpoint 

distances after adding the 4th component differed substantially between the different 

sites (Table S4). In case of site S_121 the representation of interpoint distances with 780 

four components (R2 = 0.68) was even slightly worse than with three components (R2 
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= 0.66) (Table S4). This indicated an anomaly at this specific site compared to all 

other sites with respect to the 4th component, respectively the solutes which mainly 

determine the 4th component. We traced this phenomenon back to one single sample 

from the 25th of May 2004 which comprised relatively high DOC values and at the 785 

same time relatively low values of K+, which is opposing the relationships indicative 

for the 4th component (Figure 3). The deterioration of the representation of the 

interpoint distances after adding the 4th component at this site vanished in an Isomap 

analysis which was performed without this sample. We were not able to find an 

explanation for this exceptional sample. However, it underlined that by applying a 790 

dimension reduction method every single sample is put into perspective of the global 

features of the data set as depicted by the components. Overall, the 4th component 

underlines the necessity to develop and use methods in environmental data analysis 

which enable to consider non-linear processes as well as singular and site-specific 

events. 795 

 

5.3 Long-term patterns 

Dominant changes were observed for the first two components (Figure 6). We 

interpreted the non-linear long term trend of the 1st component at most stream water 

sites (Figure 8) as the response of stream water quality to the interannual variability 800 

of depth to groundwater. An increase in the thickness of the unsaturated zone leads 

in general to longer residence time of seepage water, increasing retardation and 

buffering of topsoil seepage water, which is reducing the solute concentration 

originating from the surface in the seepage water and consequently reducing the 

values of the 1st component.  805 

Trends similarly shaped to the non-linear trend of the 1st component of stream 

water quality were observed for the water level in the deep groundwater. In general, 

the turning points of the deep groundwater head time series lag behind those of the 

scores of the 1st component of the stream water sites by approximately 1.5 years 

(Figure 8). The earlier date of the turning point at groundwater gauge Gd_204 in 810 

October 2005 is most probably an artefact, caused by the effect of the large time 
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gaps in 2006 and 2007 on the de-seasonalising at this site and has to be considered 

with care.  

We suggest that the time lag between stream water chemistry and water level in 

the deep aquifer is due to different response times to changes in the moisture 815 

conditions of the unsaturated zone. Compared to the relatively fast response of the 

stream water quality, the groundwater level in the deep aquifer reacts slower. In 

general, the overall trend of groundwater recharge reflects a relatively slow response 

to changes in the regional water balance. The velocity of seepage in the sediments of 

the upstream region of the Quillow catchment is estimated to be roughly 1 m per 820 

year.  

The seasonal patterns, i.e. the annual variability, in the time series of the scores of 

the 1st component in the streams were ascribed to transient hydraulic decoupling of 

the mostly affected topsoils from the streams in summer. Usually there is hardly any 

seepage during the dry summer months at all. This leads often to drought in the 825 

uppermost stream reaches (left panel Figure 2 and Merz and Steidl, 2015). Thus, 

shallow groundwater and tile drain discharge, both sources with relatively high 

agricultural load, did not contribute to stream discharge during these periods and 

larger areas of the catchment got hydraulically decoupled from the stream network 

(Merz and Steidl, 2015). Similar effects of the seasonal variability of the hydrological 830 

connectivity of streams, groundwater and tile drainage in agricultural catchments on 

the concentration level of agriculturally born solutes in the stream water have been 

reported, e.g. for NO3
- in the Schaugraben study catchment in the North of Germany 

(Wriedt et al., 2007) and for NO3
- and Cl- in the Kervidy-Naizin catchment in western 

France (Molenat et al., 2008; Aubert et al., 2013). 835 

The other dominant change of stream water chemistry observed in this study was 

the continuous increase of the 2nd component at most stream water sites (Figure 6). 

All of the sampling sites with very low values of the 2nd component were in the deep 

aquifer (Figure 5 B). The positive trends of the 2nd component at most stream water 

sites were ascribed to changes in the chemistry of the groundwater-borne baseflow. 840 

Considering the interpretation of the 2nd component, this translates into enhanced 

oxidation of geogenic sulphides in the deeper aquifer due to the continuous input of 
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agriculturally born NO3
- and DOC and subsequent calcite dissolution. Geogenic 

sulphides, such as pyrite, serve as electron donors for denitrification. The 

consumption of the geogenic sulphides is irreversible and might lead to the depletion 845 

of the denitrification capacity in the deep aquifer in the long run (Merz et al., 2009; 

Zhang et al., 2009; Merz and Steidl, 2015). Consequently, buffering of NO3
- surplus 

from agricultural land use is expected to decrease and NO3
- concentration in the 

groundwater and the stream water is expected to increase. The hypothesised long-

term development should be of concern for the water resources and environmental 850 

protection agencies with respect to future water quality and related international 

commitments, such as the Water framework (EU, 2000), the Groundwater (EU, 2006) 

and the Nitrate directive (EU, 1991) of the European Union. Substantial time lags 

have to be considered for the response of groundwater quality to measures that 

reduce leaching of NO3
- (e.g., Pierson-Wickmann et al., 2009; Meals et al., 2010). In 855 

the Quillow catchment, we expect travel times in the order of magnitude of decades 

for the seepage water to reach the deep aquifer.  

We did not observe dominant changes for the other two water quality components 

during the course of the observation period. The main temporal feature of the 3rd 

component was a very distinct and steady seasonal pattern, as could be expected for 860 

the mixing ratio of groundwater from the deep aquifer. All stream water sites with n > 

50, except for D_112, showed a distinct seasonal pattern with maximum scores in the 

summer, which is consistent with the assumption that the fraction of deep 

groundwater in the streams is highest during this period (Figure 6). The seasonal 

pattern at site D_112 was disturbed by the winter peaks we ascribed to road salt 865 

application (section 5.2).  

Because of its strong dependence from single events (Figure 5 D), the results of 

the estimation of the seasonal patterns and the trends of the 4th component have to 

be considered with care. The maxima of the seasonal pattern in summer at some 

sites were interpreted as reduced nutrient inputs to the stream due to nutrient uptake 870 

of plants and maximum buffering capacity of the unsaturated zone in summer. There 

were no indications for any effects of those events that we ascribed to the direct 

effect of slurry application on samples taken on the subsequent sampling dates at the 
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affected sites. This is presumably due to the width of the sampling interval (Figure 2). 

In case of dependence of a component from single events, ‘change’ might be also 875 

related to clustering of those events during certain parts of the series, either for series 

at single sites or sets of series. Most of the ‘extreme’ events of the 4th component 

appeared during the first half of the observation period (not shown). However, 

because of the small number of clearly outstanding events, we did not investigate this 

further (Figure 5 D). 880 

In this study, the presented analysis of changes in water quality was limited by the 

temporal resolution of the data. Aspects such as long-term memory effects, as 

indicated by fractal scaling of solute series (Kirchner et al., 2000) and the observed 

scale-crossing non-self-averaging behaviour of solute series (Kirchner and Neal, 

2013) were not considered. However, we assume that the suggested use of 885 

multivariate components gives some robustness to the detected changes compared 

to the analysis of single solutes. 

 

5.4 Effects of the irregular sampling 

There was an obvious spatial bias with a focus on the Quillow catchment itself, 890 

conditioned by the focus of the monitoring (section 2.2, Figure 1). Stream sampling 

sites were only partly independent from each other, as the same streams had been 

sampled along different reaches. This needs to be considered in the interpretation of 

the components. In our exploratory approach, differences between subsequent 

stream reaches helped to identify the effects of tributaries or groundwater that 895 

recharged between the respective sampling sites. In that way, the stream was used 

as a measurement device for biogeochemical processes and water-borne solute 

transport in different parts of the catchment and the interlinkages of groundwater and 

stream water.  

It is important to note that our approach does not require the same number of 900 

samples per site (Figure 2). The derived components constitute a frame in which all 

samples are integrated independent of the number of sample per site. Thus, in our 
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application we get the information of how those sites with very little samples group or 

behave in relation to the others. Even a few samples might indicate for example that 

the respective site behaves similar to other sites with respect to some components 905 

and very different with respect to other components. The influence of single samples 

for the integration of the different sites into the global pattern of the water quality 

relationships summarized by the 4th component is an illustrative example for that 

(section 5.2). Thus, even occasional sampling at some sites helps assessing the 

strength of effects of the respective drivers at these sites and might support or 910 

contradict hypotheses on spatial variability and related long-term patterns of those 

influences. This information would be lost if those samples would be excluded 

beforehand.  

In addition, the approach followed here does not require identical temporal 

sampling resolution at all sites or synchronous sampling dates. Thus, a strictly 915 

regular sampling design, which is hardly feasible, is no prerequisite. Correspondingly, 

data from different monitoring programs could be used for a joint analysis. Sampling 

intervals at the sampling sites with N > 50 were not normally distributed and biased 

towards deviations that are longer than the median (right panel Figure 2). Several 

series exhibited large time gaps. However, as sampling intervals did not change 920 

systematically throughout the monitoring period we assume that the effects on the 

results of the significance test with Mann-Kendall were negligible (section 3.2). In 

comparison, the trend estimations with Theil-Sen estimator and LOESS are more 

robust, as they incorporate the exact sampling dates explicitly in the calculations. 

Thus, we do not expect major effects on the sign of the Theil-Sen estimator or the 925 

general shape of the LOESS smooth at the given temporal resolution.  

In general, the interpretation of the components should consider the temporal 

structure of the data set. For example in this study the drying out of the streams at 

the Peege sites and the most upstream sites of the Quillow in summer was the most 

important systematic deviation from an otherwise roughly similar sampling across 930 

seasons (left panel Figure 2). This information was included in the interpretation of 

the 1st component (section 5.3). If the monitoring would in general not have been 

performed roughly similarly across seasons, e.g. if one or more seasons would in 
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general be missing, the estimation of the seasonality would not be applicable. If the 

monitoring would be such that there would be different seasons sampled in different 935 

years, this would have to be considered in the estimation of the trend.  

 

5.5 Exploratory framework 

The application of a dimension reduction approach was motivated by the 

assumption that drivers influencing water quality usually affect more than one solute, 940 

and that single solutes are affected by more than one driver. Like in preceding 

studies (e.g., Lischeid and Bittersohl, 2008; Lischeid et al., 2010), the representation 

of water quality data in low-dimensional space required only a few components to 

capture the ‘main features’ of the data set.  

Whether the relationships in the data set are mainly linear ones, as in this study, or 945 

whether there are considerably non-linear relationships as well, is usually not known 

in advance. Thus, if the aim is to consider and check for possible non-linear 

relationships in the analysis we recommend using PCA as a linear benchmark for 

Isomap (demonstrated by Lischeid and Bittersohl, 2008). In a straightforward way this 

allows for 1) assessing whether the dominant correlation structures in the data set 950 

are mainly linear or non-linear, and 2) identifying those components, samples, sites 

and periods deviating from the linear behaviour as captured by the PCA.  

Based on the correlation of component scores and residuals, we formulated for 

each considered component a hypothesis on a dominant driver influencing water 

quality. Again, whether the relationships are linear, as it was for most of the global 955 

relationships in this study (Figure S1-S4), is usually not known beforehand. 

Summarizing the relationships between residuals and components with Spearman 

rank correlation enables to consider non-linear relationships between residuals and 

components as well, as long as they are monotonic. However, the main benefit in this 

study was that Spearman rank correlation is less sensitive to extreme values 960 

compared to Pearson correlation. This concerned especially the assessment of the 

relationships of the residuals of SO4
2- and Cl- with the 2nd component and the 

residuals of PO4
3- and NH4

+ with the 4th component (Figure S2 and S4), which were 
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way stronger expressed with Pearson correlation due to a few single extreme values. 

The derived correlations differ from default loadings of PCA, which are defined as the 965 

coefficients of the linear combination of the analysed variables which is used to 

calculate the principal component scores. Those coefficients, scaled by the square 

root of the eigenvalue of the respective component, are equivalent to the Pearson 

correlation of PCA component scores and analysed variables. It is important to note 

that the differences in the evaluation of the correlations of components and the 970 

measured variables might lead to different interpretations of the components.  

The treatment of censored values can substantially affect the derived components 

and the subsequent interpretation of the results and has to be considered carefully 

(Helsel, 2012 and references therein). For the application of Isomap, it is required to 

provide numerical values for the values below the detection limit. For simplicity, we 975 

here used half the detection limit as a maker for values below the detection limit. We 

checked for the effect of this substitution by comparing the Isomap results of the 

presented analysis with another Isomap analysis in which we excluded the two most 

affected variables NO2
- and PO4

3- (Figure S4). The correlation of the Isomap scores 

of the interpreted components 1 to 4 of version 1 (with NO2
- and PO4

3-) versus 980 

version 2 (without NO2
- and PO4

3-) yielded a R2 of cp1: 0.99, cp2: 0.98, cp3: 0.97, 

cp4: 0.64. The comparison of the two versions with respect to the Spearman rank 

correlations of Isomap scores of the first four components and the residuals (please 

see Figure 3 for the respective values of version 1) yielded a R2 of cp1: 0.98, cp2: 

0.99, cp3: 0.99, cp4: 0.88. Thus the first three components are virtually identical. The 985 

4th component is affected, because PO4
3- is one of the important variables for this 

component (Figure 3). Still, the similarity of the correlations of Isomap scores and the 

4th component of both versions suggests that the characteristics of the 4th component 

were not merely introduced by the substitution of the values below the detection limit 

for PO4
3-. Thus, overall, the substitution did not substantially affect the interpretation 990 

of the considered components; however, we acknowledge that the replacement of 

censored data with some fraction of the reporting limit is not generally appropriate for 

dealing with censored data (Gilliom and Helsel, 1986; Singh and Nocerino, 2002; 

Helsel, 2005; Helsel, 2006; Helsel, 2012). For data sets which are more heavily 

affected by censored values other dimension reduction methods such as the rank 995 
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based approaches suggested by Helsel (2012) should be preferred. 

For data sets in which the number of measured variables differs between the sites 

there is a trade-off between number of considered variables versus number of 

considered sites. Depending on the focus of the study different selections of the data 

set can be used. For example if the main focus of the study is to analyse the 1000 

multivariate water quality dynamics in detail it might be worthwhile to disregard some 

sites to be able to include more variables. If the focus is to maintain the spatial 

coverage of the monitoring, like in this study, more sites might be of more value than 

additional variables. Depending on the available resources a third option would be to 

perform two analyses, one focusing on more variables, one on more sites, and 1005 

comparing the results. If it is possible to link the considered components, like we did 

in the preceding paragraph, this proceeding can be used for spatial extrapolation of 

the hypotheses derived from the version which included more variables. However, in 

our case the sketched trade-off was not dramatic. Thus, we excluded only the 

variables with more than 5% missing values (section 2.2) to keep the possible effect 1010 

of any method of replacement rather low. 

To prevent adding variables with little information gain it is recommendable to 

perform a correlation analysis beforehand and rule out highly correlated variables. 

For this purpose we recommend not to rely only on a numerical measure of 

correlation, but to visually examine the scatterplots of the respective variables to 1015 

check for systematic deviations from the global relationship. There might be e.g. 

some sites or seasons in which the otherwise tight relationship gets weaker pointing 

to local or temporal phenomena. 

Technically it is possible to combine other data than solutes (e.g. sediment data, 

biological indicators, etc.) together with the solutes in one joined data set for the 1020 

derivation of the components. However, the multivariate components derived by the 

dimension reduction approach are the basis of the subsequent interpretation of the 

results. It has to be considered as well that all included variables are equally 

weighted due to the z-scaling prior to the dimension reduction. Thus, including other 

types of data might in some cases complicate the interpretation. In general, we 1025 

recommend not to mix variables with different scales of measures (e.g. nominal 



43 

variables and ratio scaled variables) in the data base for the derivation of the 

components. 

Instead, data which was not used in the derivation of the components can be used 

as additional information for their interpretation. For example in this study, we used in 1030 

addition to the spatiotemporal features of the components other variables like 

groundwater level series, Fe2
+ and HCO3

- concentration from the groundwater 

samples, the spatial distribution of land use, and expert knowledge on the study area 

for the derivation of the hypotheses. A thorough testing of the hypotheses, for 

example through hydrochemical modelling or numerical experiments with virtual 1035 

catchments was out of the scope of this study.  

However, an interpretation of the components as distinct drivers is no prerequisite 

for the further analysis of the components. In any case, the components constitute, 

and can simply be used as, a condensed representation of similar behaviour among 

the analysed variables according to the constraints of the used dimension reduction 1040 

method.  

For PCA and Isomap each component describes subsequently the correlation 

structure that is most prominent in the remainder of what has not already been 

assigned to the higher-ranked components. This implies that each component has to 

be interpreted with respect to the higher ranked components. Also, the consideration 1045 

of the respective other components in the interpretation of a component can be 

helpful to carve out its characteristics as it was done here with the residuals of the 

multiple linear regression of the respective three other components and the 

measured variables (e.g. Figure S1). Beyond that, it can be helpful to elucidate the 

interaction of the components as it was done here e.g. for scores of the 1st and 2nd 1050 

component (Figure 4 lower panel). 

The sites differed substantially with respect to the median values of the four 

analysed multivariate components (Figure 5). However, these components comprised 

the largest fraction of the interpoint distances at any single site with more than 18 

samples (Table S4). We conclude that our results identified major regional 1055 

phenomena rather than site-specific peculiarities. This is consistent with the prior 
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assumption that there are a few dominant drivers which determine the main stream 

water and groundwater quality dynamics in the region. This gives some confidence to 

hypothesize that these drivers presumably play a major role even in adjacent 

catchments that have not been sampled so far.  1060 

To detect and characterize the dominant changes in the multivariate water quality 

data we explored whether there were shifts in time in specific components, whether 

they were linear or non-linear in nature, and if trends did occur at many or only at 

single sites. For example for the scores of the 1st component, the Mann-Kendall 

approach identified monotonic trends at various stream water sampling sites (Figure 1065 

6). However, the linear trend estimation failed to detect the non-linear trend that was 

observed at many series (Figure 8). This reflects the well-known sensitivity of global 

linear trend estimation to low-frequency patterns that are not entirely covered by the 

observation period (Koutsoyiannis, 2006; Milliman et al., 2008; Lins and Cohn, 2011).  

The LOESS smooths of the de-seasonalised series, on the other hand, did clearly 1070 

reveal the similarity between the long term behaviour of groundwater level in the 

deep aquifer and series of the 1st component. In our exploratory approach, the 

LOESS smooth of the de-seasonalised series served as a descriptive tool for 

illustrating rather than for proving non-linear long-term patterns. No significance test 

was applied. The outcome of the LOESS smoother highly depends on the 1075 

parameterisation of the approach (i.e., the degree of smoothness) that would have to 

be justified prior testing of significance.  

 

6 Conclusions 

We suggested and tested an exploratory approach for the detection of dominant 1080 

changes in multivariate water quality data sets with irregular sampling in space and 

time. The combination of the selected methods aimed to provide a broadly applicable 

exploratory framework for typical existing monitoring data sets, e.g. from 

environmental agencies, which are often characterized by relatively low sampling 

frequency and irregularities of the sampling in space and / or time. In the approach, 1085 

we applied a dimension reduction method to derive multivariate water quality 
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components and analysed their spatiotemporal features with respect to changes that 

concerned more than single sites, short-term fluctuations or single events.  

The components can be used irrespective of an interpretation as drivers 

influencing water quality. By definition, the components are a compact description of 1090 

the common dynamics among the water quality variables. Thus, similar behaviour in 

space and time among the water quality variables as well as systematic changes in 

the multivariate water quality data can be addressed in a purely descriptive manner. 

This can be used for example to test the often implicit assumption of constant 

boundary conditions of scientific process and modelling studies. Furthermore, the 1095 

components and their spatiotemporal features per se can serve as reference for 

further studies, e.g. detailed process studies with higher temporal resolution, and the 

assessment of future developments of water quality in an area. In this study, the 

components were used to develop hypotheses on dominant drivers influencing water 

quality and to analyse the temporal and spatial variability of those influences.  1100 

It is emphasized that the presented approach is readily applicable with data from 

common monitoring programs without specific requirements concerning sampling 

frequency or regular distribution of sampling sites, sampling dates, and sampling 

intervals, except that there should be no systematic bias in the respective distribution. 

Even variables which have to be excluded from the derivation of the components, for 1105 

example because of the amount of missing values or because they have been 

monitored only at subsets of the sampling sites, can be related to the components as 

additional information for their interpretation. For example in this study we used the 

concentration of Fe2+ and HCO3
- in the groundwater as additional information for the 

interpretation of the 2nd component. Thus the approach allows an efficient use of 1110 

existing monitoring data as well as the consideration of often neglected ‘irregular’ 

pieces of data from e.g. pilot studies or single sampling campaigns. Irregularities in 

the structure of a data set are not seen as fundamental hindrance, but as additional 

source of information. We see this as a major advantage for the analysis of 

comprehensive water quality monitoring programs, both from a scientific perspective 1115 

and from a more applied point of view of e.g. water resources and environmental 

agencies. Therefore, we recommend the approach especially for the exploratory 
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assessment of existing long term low frequency multivariate water quality monitoring 

data sets. 

 1120 

Data availability 

A selection of R-scripts that covers the main steps of the exploratory framework is 

provided at doi: 10.4228/ZALF.2017.340 under CC-BY 4.0 licence. It comes together 

with the water quality data used in this manuscript and some examples of exploratory 

plots not included in this manuscript. 1125 
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Appendix A  

Lomb-Scargle 

A given discrete time series  with  and centred around zero can be 

described as a superposition from sin- and cos-terms with amplitudes a and b, time 1485 

, angular frequency  and a noise term . 

 (1) 

Lomb (1976) introduced an additional factor Tau to consider for deviations from the 

evenly spaced case. 

 (2) 1490 

 

The constant  scales the term to the centre of the period covered 

by the series for every frequency j. If the starting point of the series is set to zero tave 

enables to correct for offsets between the spectral components and thus allows to 

correctly reconstruct the original series out of its spectral components (Hocke 1998; 1495 

Hocke and Kämpfer, 2009). 

With these two extensions of the time term, equation 1 can be rewritten as  

  (3) 

with amplitude and phase .  

The Lomb-Scargle periodogram  (equation 4) normalized with the total variance 1500 

of the data  equals the linear least square fit of the time series model in equations 

1 and 3 for a certain frequency (Lomb, 1976; Press et al., 2007).
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 (4)  

The amplitudes a and b can be computed out of the square root of the corresponding 

sin- and cos-terms of the normalized Lomb-Scargle periodogram, which yields the 1505 

normalized power spectral density at certain frequencies (Hocke and Kämpfer, 2009).  

     (5) 

Different modified series can be reconstructed out of any set of spectral components. 

So the method might be used i.e. as band-pass-filter or filling of gaps in the series 

(Hocke and Kämpfer, 2009).  1510 

The number of frequencies in which the series is decomposed is calculated with the 

empirical formula derived out of Monte Carlo simulations by Horne and Baliunas 

(1986) (Glynn et al., 2006; Press et al., 2007). 

  (6) 

The false-alarm probability or statistical significance level  of the  value at a 1515 

certain frequency is calculated with equation (Scargle, 1982; Glynn et al., 2006; 

Press et al., 2007). 

 (7) 

 is the number of test frequencies which is here set to  and z is the tested 

value of 
 
at a certain frequency. To diminish aliasing, which means reappearing 1520 

of higher frequencies' power in the power of lower ones, the highest test frequency is 

set to the Nyquist-rate . Because of the irregular sampling, the 
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sampling rate  is approximated here by the average sampling interval 

. The lowest test frequency is the inverse of the sampling range 

 (Scargle, 1982; Press et al., 2007). 1525 

Although  should be the number of independent frequencies in the signal it is 

possible that frequencies lying close to each other ‘share’ the same underlying 

trigger. This leakage of power is promoted by the uneven sampling and oversampling 

of the frequency domain M > N (Scargle, 1989; Horne and Baliunas, 1986). In 

addition, the effect may be enhanced because of local high sampling density, 1530 

autocorrelation in the data or very strong momentum of the underlying trigger. 

With regard to these circumstances, which apply especially for the groundwater level 

series in this study, only the ‘dominant frequencies’ were used to identify seasonal 

patterns. The term ‘dominant frequency’ is used here for the peaks in between 

groups of significant frequencies. If such groups build ‘significance-plateaus' the 1535 

median of this plateau is taken as dominant frequency.  
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Supplementary material 
 

Table S1 Stream water sampling sites. The abbreviation in the ID refers to the 1540 

corresponding catchment. N: number of samples. 

 

ID N Easting Northing Catchment 

D_112 126 3426969 5916330 Dauergraben 

U_128 114 3423416 5907370 Ucker 

St_133 124 3420262 5891835 Stierngraben 

S_118 118 3421173 5907839 Strom 

S_120 1 3418025 5906225 Strom 

S_121 23 3416348 5905013 Strom 

S_122 1 3412048 5903419 Strom 

Q_93 126 3422251 5908887 Quillow 

Q_95 125 3420582 5910416 Quillow 

Q_96 11 3420084 5913122 Quillow 

Q_97 126 3419850 5913404 Quillow 

Q_98 127 3417941 5913091 Quillow 

Q_100 110 3412572 5912708 Quillow 

Q_104 71 3409712 5912268 Quillow 

Q_106 12 3406372 5912814 Quillow 

Q_102 11 3410569 5911755 Quillow 

Q_103 8 3408376 5910401 Quillow 

P_107 78 3410047 5912392 Peege 

P_108 61 3408727 5914397 Peege 

P_109 8 3410232 5916180 Peege 

P_110 51 3410858 5917416 Peege 
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Table S2 Sampling sites for groundwater quality and groundwater level. The 1545 

abbreviation in the ID refers to the corresponding catchment. The subscripts Gs = 

shallow groundwater and Gd = deep groundwater give additional information on the 

respective groundwater layer. All groundwater wells are inside the Quillow catchment. 

N: number of samples. 

 1550 

        Depth of screen Depth of screen 

ID N Easting Northing m (a.s.l) m below ground 

Gd_205 2 3416412 5911941 40.55 - 38.55 15 - 17 

Gd_204 25 3412546 5912702 49 - 47 16 - 18 

Gs_200 6 3410020 5912439 74.10 - 73.10 4.0 - 5.0 

Gs_199 18 3409934 5912302 72.20 - 71.20 3.0 - 4.0 

Gd_198 28 3409934 5912302 51.27 - 53.27 22 - 24 

Gs_202 11 3409863 5912702 74.14 - 73.14 4.0 - 5.0 

Gd_201 25 3409863 5912702 65.79 - 63.79 12.5 - 14.5 

Gd_203 25 3409764 5912942 63.46 - 61.46 16 - 18 
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Table S3 Measurement details of the analysed variables. Before the data analysis 

NH4
+ was calculated from NH4-N, PO4

3- from o-PO4-P, and the concentration of 

HCO3
- was converted from mmolL-1 to mgL-1. 

 1555 

Abbreviation Parameter Unit Measuring 
accuracy / 
detection 
limit 

missing 
values 
in % 

n samples 
< detection 
limit in % 

Stream water and groundwater         

pH pH value  0.01 0 0 

Eh Redox potential mV 1 0.57 0 

EC Electric 
conductivity 

µScm-1  1 0 0 

Temp Water 
temperature 

°C 0.1 0 0 

O2 Oxygen mgL-1 0.1 1.91 0.25 

NH4-N Ammonium 
nitrogen 

mgL-1 0.01 0.57 0.76 

o-PO4-P Phosphorus of 
orthophosphate 

mgL-1 0.01 0 37.53 

DOC Dissolved 
organic carbon 

mgL-1 0.05 3.44 0 

Anions      

Cl- Chloride mgL-1 0.03 0 0 

NO2
- Nitrite mgL-1 0.03 2.54 65.52 

NO3
-  Nitrate mgL-1 0.03 0.38 2.93 

SO4
2- Sulfate mgL-1 0.02 1.34 0 

Cations      

Na+ Sodium mgL-1 0.01 0 0 

K+ Potassium mgL-1 0.02 0 0 

Mg2+ Magnesium mgL-1 0.02 0 0 

Ca2+ Calcium mgL-1 0.03 0 0 

Only groundwater         

Fe2+ Iron(II) mgL-1 0.03 0 8.57 

HCO3
-  Hydrogen 

carbonate 
mmolL-1 0.01 6.43 0 
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Table S4 Site-specific cumulated R2 of the reproduction of the interpoint distances of 

the data in the projection by the first four components of Isomap at sites with n > 15. 

Subscripts: P = Peege, Q = Quillow, S = Strom, St = Stierngraben, U = Ucker, D = 1560 

Dauergraben, Gs = shallow groundwater, Gd = deep groundwater. 

 

ID Gd_203 Gd_201 Gd_198 Gd_204 Gs_199 P_110 P_108 P_107 Q_104 Q_100 

 N 25 25 28 25 18 51 61 78 71 110 

 Cp. 1 0.1 0.62 0.01 0.15 0.01 0.25 0.36 0.11 0.21 0.27 
 Cp. 2 0.33 0.69 0.25 0.33 0.08 0.38 0.46 0.27 0.33 0.61 
 Cp. 3 0.49 0.79 0.6 0.5 0.2 0.45 0.56 0.53 0.41 0.64 
 Cp. 4 0.5 0.8 0.74 0.55 0.29 0.59 0.97 0.65 0.74 0.8 
 

  ID Q_98 Q_97 Q_95 Q_93 S_121 S_118 St_133 U_128 D_112 
  N 127 126 125 126 23 118 124 114 126 
  Cp. 1 0.33 0.36 0.2 0.11 0.35 0.15 0.3 0.11 0.54 
  Cp. 2 0.43 0.46 0.31 0.24 0.43 0.25 0.45 0.27 0.64 
  Cp. 3 0.59 0.58 0.35 0.3 0.68 0.39 0.59 0.4 0.73 
  Cp. 4 0.72 0.66 0.67 0.72 0.66 0.7 0.67 0.52 0.83 
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Figure S1 Residuals of the multiple linear regression of selected single variables 1565 

and component 2-4 versus scores of component 1. Grey filled dots: stream water. 

Light grey open circles: shallow groundwater. Black x-mark: deep groundwater. 
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Figure S2 Residuals of the multiple linear regression of selected variables on 1570 

component 1, 2 and 4 versus scores of component 2. Grey filled dots: stream water. 

Light grey open circles: shallow groundwater. Black x-mark: deep groundwater. 
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Figure S3 Selection of residuals of the multiple linear regression of single variables 1575 

and component 1, 2 and 4 versus scores of component 3. Grey filled dots: stream 

water. Light grey open circles: shallow groundwater. Black x-mark: deep groundwater. 
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Figure S4 Selection of residuals of the multiple linear regression of single variables 1580 

and component 1-3 versus scores of component 4. Grey filled dots: stream water. 

Light grey open circles: shallow groundwater. Black x-mark: deep groundwater. 


