
EDITOR: 

Editor Decision:  

Publish subject to minor revisions (further review by editor) (24 May 2018) by Stacey 

Archfield 

 

Comments to the Author: 

The manuscript has received two reviews. Both reviewers had a positive reaction to 

the manuscript and felt that the manuscript was appropriate for publication in HESS, 

subject to what I would characterize as minor revision based on the excellent and 

constructive review comments.  

 

The authors have responded to each of the comments and I would now instruct the 

authors to make their proposed changes to their manuscript. It was not clear from the 

author responses how Comments #3 and 4 by Reviewer 1 will be addressed in the 

manuscript so I ask that the authors indicate this in their final responses to the 

reviewer comments.  

 

I look forward to final acceptance of this manuscript once the review comments have 

been addressed.  

 

Thank you for considering HESS for your work, 

Stacey 

 

 

 

 

 

 

 

 

 

 

 

 

 



AUTHORS: 

Dear Stacey, 

thank you very much for the information about the positive assessment of our 

manuscript. 

We made the proposed changes to the manuscript and added the missing 

information on the changes in the manuscript regarding comments # 3 and # 4 of 

referee 1 in our final response to the referees. We hope that those proposed changes 

likewise covered the raised issues. During revision, we realized one detail concerning 

the results at site S_121 which might irritate the reader. We included this in our 

response to comment # 4 b of referee 1 to further clarify how the local water quality 

relationships at a site or of single samples relate to the overall picture constituted by 

the components. 

Please find our detailed final responses to all comments of the referees and the 

manuscript with the marked changes. For our final responses we marked the 

unaltered responses from the 8th of May 2018 with blue font color. New or modified 

responses are marked with red font color. Please note that we did not explicitly state 

the formal changes (spelling, remove of spaces, updating of links) we applied in the 

revised manuscript in our final responses. The series of apparently double figures in 

the marked up version of the manuscript are caused by the new treatment of missing 

values according to comment # 7 of referee 1. 

We want to thank once again both referees for their positive feedback, their 

constructive comments and their time.  

The comments helped us a lot to improve the quality and clarity of the manuscript 

and made us think about some aspects of our study in more detail.  

 

Best regards 

Christian Lehr  

(on behalf of the authors) 

 

 

  



Anonymous Referee #1  

Received and published: 16 March 2018  
 

REFEREE: This manuscript presents a new exploratory framework for detection of 

dominant changes in multivariate water quality data sets with irregular sampling in 

space and time. The paper is well written and I think it is a valuable contribution to 

the hydrological community. I recommend its publication after the following 

comments are addressed. 

General comments: 

1. On the novelty of the proposed framework: I think this manuscript can foster future 

research ideas and efforts that are aimed toward detecting dominant changes in 

watershed using multivariate data at multiple sites. I think this type of coherent and 

systematic investigation of watershed data is limited in the literature, since previous 

studies have tended to focus on either only a few sites or a few constituents. 

AUTHORS: We thank the referee very much for these very positive statements! 

REFEREE: 2. On the abstract: I found it quite lengthy (469 words), which prevents 

readers from quickly grasping the key messages. Also, it is not customary to have 

more than one paragraph in the abstract. 

AUTHORS: We shortened it and reformatted it to one paragraph. The new abstract 

reads:  

“Time series of groundwater and stream water quality often exhibit substantial 

temporal and spatial variability which can rarely be traced back to single 

anthropogenic or natural drivers. Typical existing monitoring data sets, e.g. from 

environmental agencies, are usually characterized by relatively low sampling 

frequency and irregular sampling in space and / or time. This complicates the 

differentiation between anthropogenic influence and natural variability as well as the 

detection of changes in water quality which indicate changes of single drivers. We 

suggest the new term ‘dominant changes’ for changes in multivariate water quality 

data which concern 1) multiple variables, 2) multiple sites and 3) long-term patterns 

and present an exploratory framework for the detection of such ‘dominant changes’ in 

multivariate water quality data sets with irregular sampling in space and time. Firstly, 

we used a non-linear dimension reduction technique to derive components which 

provide a sparse description of the dominant spatiotemporal dynamics in the 

multivariate water quality data set. They were used to derive hypotheses on the 

dominant drivers influencing water quality. Secondly, different sampling sites were 

compared with respect to median component values. Thirdly, time series of the 

components at single sites were analysed for seasonal patterns and linear and non-

linear trends. The approach uses spatial and temporal heterogeneities as a source of 

information rather than considering them as noise, and considers non-linearities 

explicitly. It is especially recommended for the exploratory assessment of existing 



long term low frequency multivariate water quality monitoring data. We tested the 

approach with a joint stream water and groundwater data set quality consisting of 

1572 samples, each comprising sixteen variables, sampled with a spatially and 

temporally irregular sampling scheme at 29 sites in the Uckermark region in 

northeast Germany from 1998 to 2009. Four components were derived and 

interpreted as 1) agriculturally induced enhancement of the natural background level 

of solute concentration, 2) redox sequence from reducing conditions in deep 

groundwater to post oxic conditions in shallow groundwater and oxic conditions in 

stream water, 3) mixing ratio of deep and shallow groundwater to the streamflow and 

4) sporadic events of slurry application in the agricultural practice. Dominant changes 

were observed for the first two components. The changing intensity of the 1st 

component was interpreted as response to the temporal variability of the thickness of 

the unsaturated zone. A steady increase of the 2nd component at most stream water 

sites pointed towards progressing depletion of the denitrification capacity of the deep 

aquifer.” 

REFEREE: 3. On the coverage of the monitoring data: The paper addresses the 

‘time’ aspect of the collected water quality data but lacks a thorough discussion on 

the ‘discharge’ and ‘season’ aspects of those data. Were all constituents at these 

sites sampled roughly similarly across season? Were they sampled roughly similarly 

during normal-flow and stormflow conditions? Such information is important and can 

be simply shown with boxplots (e.g., with “month” and “discharge percentiles” as x-

axes respectively.) If samples at these sites were not taken roughly similarly across 

season or discharge, how would that affect the validity of the proposed exploratory 

framework and the interpretation of the results? The authors should comment on that. 

AUTHORS: The monitoring did not explicitly distinguish between normal-flow and 

stormflow conditions. It rather aimed to fulfill the approximately monthly sampling 

frequency in the streams. Each sample contained all 16 constituents except for the 

missing values (Table S3). The grab samples were taken on the days marked in the 

left panel of Figure 2. Thus, while there are definitely irregularities among the series 

and within series over the course of time, the sites were sampled roughly similarly 

across season. The most important systematic deviation from this rule were the 

Peege sites and the most upstream sites of the Quillow, which often desiccate in 

summer (p. 36, l. 780-782).  

In general, the interpretation of the components should consider the temporal 

structure of the data set. E.g. systematic deviations as the ones describe above 

should be considered. Thus, we included it in our interpretation of the 1st component 

(p. 36, l. 778 et seq.).  

If the monitoring would in general not have been performed roughly similarly across 

seasons, e.g. if one or more seasons would in general be missing, the estimation of 

the seasonality would not be applicable. If the monitoring would be such, that there 

would be different seasons sampled in different years, this would have to be 

considered in the estimation of the trend.  



We agree that considering discharge data would be valuable. Unfortunately, the 

monitoring did not include discharge measurements. The monitoring aimed to cover 

the spatial and temporal variability variety of water quality along the Quillow stream 

its tributaries and the adjacent streams. Discharge data was only available at sites 

Q_93 and S_118. Thus we did not include it in the presented analysis. 

To clarify this we changed the last sentence of the third paragraph of section 2.2 in 

the revised manuscript to: 

“In total, sampling intervals between two consecutive samples varied between nine 

and 714 days (Figure 2). The sites were sampled roughly similarly across seasons 

(left panel Figure 2). The most important systematic deviation from this rule were the 

Peege sites and the most upstream sites of the Quillow (left panel Figure 2 and 

Figure 1), which often fall dry in summer (Merz and Steidl, 2015).”  

We changed the third sentence of the fourth paragraph of section 5.3 to: 

“This leads often to drought in the uppermost stream reaches (left panel Figure 2; 
Merz and Steidl, 2015).” 
 
We changed the first sentence in the first paragraph of section 2.2 to: 

“The monitoring aimed to cover the spatial variability and temporal of water quality 

along the Quillow stream, its tributaries and the adjacent streams. The main focus of 

the monitoring was the Quillow catchment.” 

We added a new sixth sentence to the first paragraph of section 2.2: 

“Discharge data was only available at sites Q_93 and S_118 (Figure 1). Thus we did 

not include it in the presented analysis.”  

And we added a new last paragraph in section 5.4: 

“In general, the interpretation of the components should consider the temporal 

structure of the data set. For example in this study the drying out of the streams at 

the Peege sites and the most upstream sites of the Quillow in summer was the most 

important systematic deviation from an otherwise roughly similar sampling across 

seasons (left panel Figure 2). This information was included in the interpretation of 

the 1st component (section 5.3). If the monitoring would in general not have been 

performed roughly similarly across seasons, e.g. if one or more seasons would in 

general be missing, the estimation of the seasonality would not be applicable. If the 

monitoring would be such that there would be different seasons sampled in different 

years, this would have to be considered in the estimation of the trend.“ 

REFEREE: 4. On the general applicability of the framework: Several points shall be 

discussed by the authors regarding the applicability of the framework, which can 

guide its application to monitoring network elsewhere.  



a) Is the framework intended to solute data only? Sediment and total phosphorus are 

typically monitored by many programs. Do the authors recommend the inclusion of 

such constituents in the proposed framework?  

AUTHORS: Technically it is possible to include other data than solutes. However, the 

multivariate components derived by the dimension reduction approach are at the 

basis of our interpretation. Thus including other types of data might in some cases 

complicate the interpretation.  

In general we would not mix variables with different scales of measures (e.g. nominal 

variables and ratio scaled variables).  

For the interpretation we recommend to keep in mind, that all included variables are 

z-scaled prior to the dimension reduction. Thus all of them are equally weighted. For 

example if we would include only one sediment variable to our set of 16 water quality 

solutes, we expect that it would not change too much of the derived components.  

To address this issue, we extended the fourth paragraph in section 5.5 to the 

following two paragraphs: 

“Technically it is possible to combine other data than solutes (e.g. sediment data, 

biological indicators, etc.) together with the solutes in one joined data set for the 

derivation of the components. However, the multivariate components derived by the 

dimension reduction approach are the basis of the subsequent interpretation of the 

results. It has to be considered as well that all included variables are equally 

weighted due to the z-scaling prior to the dimension reduction. Thus, including other 

types of data might in some cases complicate the interpretation. In general, we 

recommend not to mix variables with different scales of measures (e.g. nominal 

variables and ratio scaled variables) in the data base for the derivation of the 

components.  

Instead, data which was not used in the derivation of the components can be used as 

additional information for their interpretation. For example in this study, we used in 

addition to the spatiotemporal features of the components other variables like 

groundwater level series, Fe2
+ and HCO3

- concentration from the groundwater 

samples, the spatial distribution of land use, and expert knowledge on the study area 

for the derivation of the hypotheses. A thorough…” 

REFEREE: b) What is the threshold for a constituent (or a site) to be included in the 

analysis? Specifically, how many samples are required for a constituent-site pair to 

be eligible? I am puzzled by the few stations in Figure 2 that have only 1-8 samples. I 

wonder whether these site-constituent pairs should be disregarded.  

AUTHORS: It depends on the focus of the study which samples might be considered 

neglectable. In our case the reasoning was to provide an exploratory approach which 

enables to get an overview on as much of the available data as possible without too 

many decisions beforehand which samples / sites to disregard (see also first 

sentence of comment 4c of referee 1). We intentionally included all samples 



available, as long as not more than two of the 16 monitored variables were missing 

(p. 11, l. 221-223). If the data is organized as in our application, that means that the 

solutes serve as variables and the samples as observations, than the dimension 

reduction approach is “blind” to the information which sample belongs to which site. 

This information is maintained as index of the samples / observations. It is used for 

example to calculate for each site the median of the component values (section 4.2) 

and to assess at each site the representation of interpoint distances from the original 

data space in the low-dimensional projection (Table S4).  

Because the selection of data points at a site is only a subset of the global data set 

for which the dimension reduction was performed, the performances regarding the 

representation of interpoint distances differ between the individual sites (Table S4) as 

well as compared to the overall performance for the global data set (Table 2). At 

some sites it can even happen that adding more components does not for every 

component improve the representation of interpoint distances in the low-dimensional 

projection. This occurred in this study only at site S_121 where the representation of 

interpoint distances with four components (R2 = 0.68) was slightly worse than with 

three components (R2 = 0.66) (Table S4). This indicated an anomaly at this specific 

site compared to all other sites with respect to the 4th component, respectively the 

solutes which mainly determine the 4th component. We traced this phenomenon back 

to one single sample from the 25th of May 2004 which comprised relatively high DOC 

values and at the same time relatively low values of K+, which is opposing the 

relationships indicative for the 4th component (Figure 3). The deterioration of the 

representation of the interpoint distances after adding the 4th component at this site 

vanished in an Isomap analysis which was performed without this sample. We were 

not able to find an explanation for this exceptional sample. However, it underlined 

that by applying a dimension reduction method every single sample is put into 

perspective of the global features of the data set as depicted by the components.  

This interplay between the local perspective on the water quality relationships in the 

subsets of the sites or in individual samples on the one hand and of the global 

perspective of the whole data set on the other hand is a key feature of the presented 

analysis. The derived components constitute a frame in which all samples are 

integrated independent of the number of sample per site. Thus, in our application we 

get the information of how those sites with very little samples group or behave in 

relation to the others. Even a few samples might indicate e.g. that the respective site 

behaves similar to other sites with respect to some components and very different 

with respect to other components. This information would be lost if those samples 

would be excluded beforehand.  

To clarify this, we added the following sentences after the fourth sentence in the 

second paragraph of section 3.3.2: 

“For the local assessment of representation of interpoint distances at the individual 

sites, only the data points from the respective sites were used. Because the selection 

of data points at a site is only a subset of the global data set for which the dimension 



reduction was performed, the performances regarding the representation of interpoint 

distances differ between the individual sites as well as compared to the overall 

performance for the global data set. At some sites it can even happen that adding 

more components does not for every component improve the representation of 

interpoint distances in the low-dimensional projection.” 

We replaced the last two sentences in the last paragraph of section 5.2 with: 

“However, the performance of the representation of the interpoint distances after 

adding the 4th component differed substantially between the different sites (Table 

S4). In case of site S_121 the representation of interpoint distances with four 

components (R2 = 0.68) was even slightly worse than with three components (R2 = 

0.66) (Table S4). This indicated an anomaly at this specific site compared to all other 

sites with respect to the 4th component, respectively the solutes which mainly 

determine the 4th component. We traced this phenomenon back to one single sample 

from the 25th of May 2004 which comprised relatively high DOC values and at the 

same time relatively low values of K+, which is opposing the relationships indicative 

for the 4th component (Figure 3). The deterioration of the representation of the 

interpoint distances after adding the 4th component at this site vanished in an Isomap 

analysis which was performed without this sample. We were not able to find an 

explanation for this exceptional sample. However, it underlined that by applying a 

dimension reduction method every single sample is put into perspective of the global 

features of the data set as depicted by the components. Overall, the 4th component 

underlines the necessity to develop and use methods in environmental data analysis 

which enable to consider non-linear processes as well as singular and site-specific 

events.” 

We moved the last paragraph of section 5.4 as new first paragraph. And we rewrote 

the former first paragraph as new second paragraph continuing as the new beginning 

of the third paragraph. The latter rewritten second and third paragraph reads: 

“It is important to note that our approach does not require the same number of 

samples per site (Figure 2). The derived components constitute a frame in which all 

samples are integrated independent of the number of sample per site. Thus, in our 

application we get the information of how those sites with very little samples group or 

behave in relation to the others. Even a few samples might indicate for example that 

the respective site behaves similar to other sites with respect to some components 

and very different with respect to other components. The influence of single samples 

for the integration of the different sites into the global pattern of the water quality 

relationships summarized by the 4th component is an illustrative example for that 

(section 5.2). Thus, even occasional sampling at some sites helps assessing the 

strength of effects of the respective drivers at these sites and might support or 

contradict hypotheses on spatial variability and related long-term patterns of those 

influences. This information would be lost if those samples would be excluded 

beforehand.  



In addition, the approach followed here does not require identical temporal sampling 

resolution at all sites or synchronous sampling dates. Thus, a strictly regular 

sampling design, which is hardly feasible, is no prerequisite. Correspondingly, data 

from different monitoring programs could be used for a joint analysis. Sampling 

intervals …” 

REFEREE: c) For such multi-site and multi-constituent exploration, all available data 

should be considered to enhance the robustness of modeling results. However, not 

all the data are consistently available across the sites. Then, how should one handle 

the tradeoff between the number of constituents and the number of sites? If we rank 

all constituents by the number of applicable sites, C1, C2, C3, C3, . . .., C16, then 

what is the relative gain of sequentially adding extra constituents (from C1 to C16) 

into the analysis framework? Can an explicit rule be developed to prevent adding 

new constituents to the framework?  

AUTHORS: Again, this depends on the focus of the study. In our case we aimed to 

maintain the spatial coverage of the monitoring. If the main focus is to get an 

understanding of the multivariate water quality dynamics in detail, it might be 

worthwhile in the sketched trade-off scenario to disregard some sites and gain some 

constituents. 

We have not thought about an explicit rule to prevent adding new constituents so far. 

But what we think could be considered is a correlation analysis of all variables 

beforehand to rule out the variables that correlate stronger than a pre-defined 

threshold. However, we recommend not to stick only to the threshold, but to visually 

examine the scatterplots of the respective variables to check for systematic 

deviations from the global relationship. There might be e.g. some sites or seasons in 

which the otherwise tight relationship gets weaker.   

What we did is to exclude the variables with less more than 5% missing values (p. 

10, l. 218-219) to keep the possible effect of any method of replacement rather low.  

We included those considerations as two new paragraphs in section 5.5 after the new 

paragraph related to comment 8 of referee 1 and comment 7 of referee 2 and prior to 

the new paragraph related to comment 4a of referee 1: 

“For data sets in which the number of measured variables differs between the sites 

there is a trade-off between number of considered variables vs. number of 

considered sites. Depending on the focus of the study different selections of the data 

set can be used. For example if the main focus of the study is to analyse the 

multivariate water quality dynamics in detail it might be worthwhile to disregard some 

sites to be able to include more variables. If the focus is to maintain the spatial 

coverage of the monitoring, like in this study, more sites might be of more value than 

additional variables. Depending on the available resources a third option would be to 

perform two analyses, one focusing on more variables, one on more sites, and 

comparing the results. If it is possible to link the considered components, like we did 

in the preceding paragraph, this proceeding can be used for spatial extrapolation of 



the hypotheses derived from the version which included more variables. However, in 

our case the sketched trade-off was not dramatic. Thus, we excluded only the 

variables with more than 5% missing values (section 2.2) to keep the possible effect 

of any method of replacement rather low. 

To prevent adding variables with little information gain it is recommendable to 

perform a correlation analysis beforehand and rule out highly correlated variables. 

For this purpose we recommend not to rely only on a numerical measure of 

correlation, but to visually examine the scatterplots of the respective variables to 

check for systematic deviations from the global relationship. There might be e.g. 

some sites or seasons in which the otherwise tight relationship gets weaker pointing 

to local or temporal phenomena.” 

REFEREE: 5. On the irregularity nature of the monitoring data: The authors have 

provided adequate references in many parts of the manuscript. One exception is on 

the irregularity of water quality data (∼ line 110 and also Section 5.4). One reference 

that you may find useful is provided below, which discusses at least two points that 

are discussed in this manuscript, including (a) irregularity nature of water quality data 

and how to model that property and (b) fractal scaling in water quality data which may 

affect trend significance (including the trend approaches used here).  

Zhang, Q., Harman, C. J., and Kirchner, J. W. (2018), Evaluation of statistical 

methods for quantifying fractal scaling in water-quality time series with irregular 

sampling, Hydrol. Earth Syst. Sci., 22, 1175-1192, https://doi.org/10.5194/hess-22-

1175-2018. 

AUTHORS: We included the suggested reference in the revised manuscript at the 

end of the fourth paragraph in the introduction: 

“Thus, in environmental monitoring practice, data sets with gaps and periods with 

corrupted measurements are more the rule rather than the exception (c.f., e.g., 

Zhang et al., 2018 for river quality data).”  

and in section 3.4.2 as new eigth sentence after the new seventh sentence related to 

comment # 11 of referee 1: 

“Consequently, we did not consider the possible effects of the irregular sampling on 

the long-term memory (fractal scaling) of the water quality series either (Zhang et al., 

2018).”   

REFEREE: Specific comments: 

6. On Figure 2:  

a) This is a well-designed figure.  

AUTHORS: Thank you very much! 

https://doi.org/10.5194/hess-22-1175-2018
https://doi.org/10.5194/hess-22-1175-2018


REFEREE: b) Consider adding vertical reference lines in the right panel to indicate 1-

day, 1-week, and 1-month intervals.  

c) Add additional reference lines to separate groundwater from stream water – refer 

to your treatment in Figure 5.  

d) Consider using color to distinguish between median and mean.  

AUTHORS: We updated the figure according to your suggestions. 

 

Figure 2 Left panel: Sampling dates at the sites for the whole monitoring period. Right 

panel: Boxplots of the variability of sampling intervals during the monitoring period. 

For better readability, the maximum of the x-axis is limited to 180 days. Median (red) 

and mean (blue) of sampling intervals are shown separately for the groundwater and 

stream water sites. Grey vertical lines mark the 1-day, 1-week and 1-month interval. 

Both panels: The dashed horizontal line separates groundwater sites (bottom) from 

stream water sites (top). Subscripts: P = Peege, Q = Quillow, S = Strom, St = 

Stierngraben, U = Ucker, D = Dauergraben, Gs = shallow groundwater, Gd = deep 

groundwater. The number of samples at each site is given in brackets. Names of the 

sites with more than 50 samples are printed bold. 



REFEREE: e) Comment in the text on the apparent outlier in the site GdQ_198 

distribution.  

AUTHORS: This was an exceptional sample taken during maintenance work. We 

included this information as fourth sentence in the third paragraph of section 2.2 in 

the revised manuscript: 

“The one shorter sampling interval at site GdQ_198 was an exceptional sample taken 

during maintenance work.“ 

REFEREE: f) Do the numbers in bracket represent the number of samples for one 

constituent or all constituents? Clarify.  

AUTHORS: The numbers in bracket represent the numbers of samples. Each 

sample contained all constituents, except for the missing values (Table S3).  

We added “Each sample contained measurements of all 16 variables.” prior to the 

sentence “Those water samples…” on page 11 line 221 in the revised manuscript.  

REFEREE: g) Two of the sites have only one sample each. Justify why those sites 

should not be removed. In my opinion, those sites which only several samples should 

also be excluded unless their use can be justified. 

AUTHORS: We aimed to demonstrate how the suggested exploratory approach can 

be used irrespective of those rather extreme differences between the numbers of 

samples per site to get an overview on as much of the available data as possible. 

While only of indicative value, it still can be interesting to see whether those single 

sample-sites plot / group different for the different components with respect to the 

other sites. Please see also our response to comment 4b) of referee 1. 

REFEREE: 7. Line 248: I would suggest using median for the missing value 

replacement. 

AUTHORS: In our case only a small percentage of samples were concerned (in the 

data set that was used for the dimension reduction at most for DOC: 3.44% and in 

the only for the comparison used groundwater samples at most HCO3
-: 6.43% Table 

S3). We compared the two versions (missing value replacement with mean vs. 

missing value replacement with median). For the PCA, the scores of the first 10 

components of the two versions yielded a R2 > 0.99. For Isomap, the first 9 

components yielded a R2 > 0.99 and the 10th component a R2 of 0.98. There were 

only minor differences in the site-specific cumulated R2 of the reproduction of the 

interpoint distances of the data in the projection by the first four components of 

Isomap at sites with n > 15 (Table S4). Thus, for our case it did not really make a 

difference.  

However, for other data sets this might be different. Thus, we agree that using 

median for the missing value replacement is in general the more robust approach.   



Therefore, we updated the figures and results in the revised manuscript with the 

missing values replaced by the median and changed “mean” to “median” in the first 

sentence of section 3.1. 

REFEREE: 8. Line 252: Provide references to justify the use of half detection limit for 

censored values. It is a typical practice but it has been pointed out that such 

treatment may cause issues to analysis – refer to the references below. This could be 

a problem for NO2 and PO4, since the two species have significant proportions of 

censored values (Table S3). 

Helsel, D.R., 2006. Fabricating data: how substituting values for nondetects can ruin 

results, and what can be done about it. Chemosphere, 65(11), pp.2434-2439. 

Helsel, D. R. (2005). More than obvious: better methods for interpreting nondetect 

data. https://pubs.acs.org/doi/pdf/10.1021/es053368a. 

AUTHORS: Thank you for this substantial comment and the provided references. As 

both referees raised this point, we will give a joint answer. Please see our response 

to comment 7 of referee 2. 

REFEREE: 9. Line 262: How was the threshold of ‘50 samples’ chosen? It is still a 

small size.  

AUTHORS: This threshold was a compromise between preferably long time series 

and the attempt to include preferably many of the series and sites in the analysis, to 

get an overview on the differences between the sites and catchments. The longest 

series in our data set comprised 127 samples. Thus, the data set as such is limited in 

this regard. 

REFEREE: 10. Line 386 (Eq. 2): Check whether you want to use two equal signs in 

this equation. 

AUTHORS: We rewrote the equation. Please see our response to comment 8 of 

referee 2. 

REFEREE: 11. Line 421: The effect of autocorrelation on trend analysis is not only 

relevant to short-memory processes (e.g., AR(1) in Yue et al., 2002), but also long-

memory processes (e.g., ARFIMA). 

Cohn, T. A., and H. F. Lins (2005), Nature’s style: Naturally trendy, Geophys. Res. 

Lett., 32, L23402, doi:10.1029/2005GL024476. 

Zhang, Q., Harman, C. J., and Kirchner, J. W. (2018), Evaluation of statistical 

methods for quantifying fractal scaling in water-quality time series with irregular 

sampling, Hydrol. Earth Syst. Sci., 22, 1175-1192, https://doi.org/10.5194/hess-22-

1175-2018. 

https://pubs.acs.org/doi/pdf/10.1021/es053368a
https://doi.org/10.5194/hess-22-1175-2018
https://doi.org/10.5194/hess-22-1175-2018


AUTHORS: We specified the addressed autocorrelation in the fifth sentence of 

section 3.4.2 as “short-term autocorrelation” and included the suggested references 

in the revised manuscript as new seventh sentence in section 3.4.2: 

“Neither did we consider long-term memory and its effects on the statistical 

significance of the trends (Cohn and Lins 2005; Zhang et al., 2018).” 

REFEREE: 12. Line 456: I think it should be 42% (per Table 2). 

AUTHORS: 42% is correct. We corrected that in the revised manuscript.  

REFEREE: 13. Line 459: In addition to temperature, PO4 is also negatively 

correlated with PC 1. 

AUTHORS: We decided to mention in the text for each component only the 

constituents which correlated strongest, because the interpretation was focused on 

those. The correlation with PO4
3- is negative, but almost zero. That is why we did not 

mention it. In the same manner, we proceeded for the other components. 

REFEREE: 14. Line 463: This should be 18% (per Table 2). 

AUTHORS: 18% is correct. We corrected that in the revised manuscript.  

REFEREE: 15. Line 537: Check the label for n < 3 in Figure 5, which should not be 

identical to n < 13. 

AUTHORS: We changed the label for n < 3 to “X” and reformatted the 4 plots in one 

column instead of a 2x2 matrix to enable larger labels for better readability. 



 

Figure 5 Boxplots of scores of component 1 to 4 at different sites. Sites with n < 13 

are marked with ‘~’, those with n < 3 with ‘X’. Subscripts: P = Peege, Q = Quillow, S = 

Strom, St = Stierngraben, U = Ucker, D = Dauergraben, Gs = shallow groundwater, 

Gd = deep groundwater. 

 

REFEREE: 16. Line 675: This conclusion should be supported by some references. 



AUTHORS: We included references and changed the last sentence of the last 

paragraph of section 5.1 to: 

“The catchments of the analysed analyzed streams are only sparsely populated and 

mainly characterized by intensive agriculture (Table 1). In agricultural landscapes 

slurry is a typical source in which those nutrients occur in high concentration (Hooda 

et al., 2000). We are not aware of any other high-concentration sources of this 

combination of nutrients in the region. The little number of scores with very low 

scores implied that there were merely single events occurring at some of the sites 

only. This fits to the finding that the timing of slurry application is crucial for the 

amount of nutrient loss to the streams (Hooda et al., 2000; Cherobim et al., 2017). 

Thus, we interpreted the negative peaks of the 4th component as sporadic events of 

slurry application, being either unintentionally directly applied to the stream during the 

spreading of the slurry or being leached via surface runoff and tile drain discharge 

after application.”  

References: 

Cherobim, V. F., Huang, C.-H. and Favaretto, N.: Tillage system and time post-liquid 
dairy manure: Effects on runoff, sediment and nutrients losses, Agricultural Water 
Management, 184, 96–103, doi:10.1016/j.agwat.2017.01.004, 2017.  
 
Hooda, P. S., Edwards, A. C., Anderson, H. A. and Miller, A.: A review of water 
quality concerns in livestock farming areas, Science of The Total Environment, 
250(1), 143–167, doi:10.1016/S0048-9697(00)00373-9, 2000.  
 

  



Anonymous Referee #2  

Received and published: 22 March 2018  
 

REFEREE: The manuscript proposes an exploratory framework for detection of 

dominant changes in multivariate water-quality data sets with irregular sampling in 

space and time. As stated in the introduction, many analysis methods assume 

regular temporal spacing, but many monitoring networks evolve over time resulting in 

irregularly spaced samples. The concept is good, some more effort needs to be put 

into the writing and analysis. 

AUTHORS: Thank you for the positive statement! 

REFEREE: 1. The abstract is rather lengthy.  

AUTHORS: We shortened it. Please see our response to comment 2 of referee 1 

REFEREE: 2. The introduction contains vague statements and extraneous adverbs. 

The first sentence of the article is "Numerous high frequency studies unravelled the 

high temporal variability of stream water quality." This is well known, as shown by the 

many references. It seems like the first sentence of the article should start with a 

stronger sentence about the problem at hand.  

AUTHORS: We added the following sentence as first sentence of the introduction in 

the revised manuscript: 

“Detecting of changes in water quality and the responsible drivers are of fundamental 

interest for water management purposes as well as for scientific analyses.“  

REFEREE: The second paragraph of the introduction has the phrase "numerous 

different drivers at different scales." This is vague. Give an example, or qualify the 

drivers, such as climatic and land-use drivers.  

AUTHORS: We rewrote the sentence to: 

“Instead, a variety of biogeochemical processes (e.g., Stumm and Morgan, 1996; 

Neal, 2004; Beudert et al., 2015), climatic (e.g., Neal, 2004) and hydrological (e.g., 

Molenat et al., 2008) variability and anthropogenic influences, for example 

agricultural (e.g., Basu et al., 2010; Basu et al., 2011; Aubert et al., 2013) or forestal 

(e.g., Neal, 2004) land use, land use change (e.g., Scanlon et al., 2007; Raymond et 

al., 2008) or urbanization (e.g., Kroeze et al., 2013), interact at different scales 

impeding identification of clear cause-effect relationships.“ 

REFEREE: The second sentence of the third paragraph is either missing something 

or "determining" should be "determine."  

AUTHORS: We rewrote the sentence to: 



“Usually only a few dominant processes determine the main dynamics of stream flow, 

groundwater head or water quality (Grayson and Blöschl, 2000; Sivakumar, 2004; 

Lischeid et al., 2016).”  

and rewrote the sentence on p. 41 l. 929-931 to: 

“This is consistent with the prior assumption that there are a few dominant drivers 

which determine the main stream water and groundwater quality dynamics in the 

region.” 

REFEREE: 3. In the description of the study area the mean annual precipitation and 

mean annual temperature are given for the federal state Brandenburg for 1961–1990. 

This does not overlap with the study period of 1990–2009 at all. With the common 

use and availability of climatic data, it would not take much effort to report 

precipitation and temperature for the study period. It is not clear what period the 

water balance variability values represent. 

AUTHORS: We replaced the addressed lines in the revised manuscript with: 

“At the ZALF weather station Dedelow, which is situated approximately 500m 

NEnortheast of Q_97 (Figure 1), a mean annual precipitation of 550 mm and a mean 

annual temperature of 8.9° C was observed for the hydrological years within the 

study period (1997-11 to 2009-10). The mean annual climatic water balance for this 

period, calculated from daily precipitation and potential evapotranspiration, was found 

to be -103 mm, exhibiting high interannual variability with -148 mm in the summer 

half year and +45 mm in the winter half year.” 

REFEREE: 4. The topography and soils sections are well written and informative. 

AUTHORS: Thank you very much for this positive feedback! 

REFEREE: 5. We know the data are collected irregularly, but are they collected to be 

representative of seasons and flow conditions, i.e., are there high-flow samples? 

AUTHORS: Thank you for this comment. Referee 1 raised this point as well. Please 

see our response to comment 3 of referee 1. 

REFEREE: 6. Figure 2 shows some sites with very little data, yet it seems like they 

were included. It is not clear how these help inform the method. It seems like there 

should be some minimum number of samples per year most of the years from 1998 - 

2009 in order for a site to be included in the study. Some parts of the proposed 

framework were done for sites with more than 50 observations. It seems like the 

entire analysis should be done only with those sites. It is not clear how these low-

sample sites fit with the rest of the sites. 

AUTHORS: Thank you for this comment. Referee 1 raised this point as well. Please 

see our response to the comments 4.b) and 6.g) of referee 1. 



REFEREE: 7. It has been very well documented that substituting a fraction of the 

reporting limit is an inappropriate method for dealing with censored data. See: 

Gilliom, R.J., and Helsel, D.R., 1986, Estimation of distributional parameters for 

censored trace level water quality data, 1. Estimation techniques: Water Resources 

Reserach, 22, 135–146. 

Singh, A., and Nocerino, J., 2002, Robust estimation of mean and variance using 

environmental data sets with below detection limit observations: Chemometrics and 

Intelligent Laboratory Systems, 60, 69–86. 

Helsel, D. R., 2005, More than obvious - Better method better methods for 

interpreting nondetect data: Environ. Sci. Technol., 39(20), 419A–423A, DOI: 

10.1021/es053368a 

Helsel, D.R., 2005, Nondetects and Data Analysis: Wiley-Interscience, 250 p. 

Helsel, D.R., 2006, Fabricating data - How substituting values for nondetects can ruin 

results, and what can be done about it: Chemosphere, 65(11), 2434–2439. 

Helsel, D.R., 2012, Statistics for Censored Environmental Data Using Minitab and R: 

John Wiley & Sons, 324 p. 

Admittedly, the percent of censored values is small, but substitution should really not 

be used anymore in water-quality analyses. I’m not sure if Isometric Feature Mapping 

can utilize censored values. However, the authors could estimate the mean and 

standard deviation of the constituents with censored values using regression on order 

statistics or maximum likelihood methods (see Helsel, 2012) before standardizing the 

variables. The Akritas-Thiel-Sen median line can be used for the trend analysis. 

AUTHORS: Thank you for this substantial comment and the provided references. As 

both referees raised this point, we will give a joint answer. 

First of all, we agree that the question of how to deal with censored values is crucial 

and has to be handled with care.  

The censored values in our study are the values below the detection limit of the 

respective variable, thus the measurements which are considered to be too imprecise 

to be reported as a single number (according to Helsel, 2012). Still they yield 

important information, in particular the ratio of values below the detection limit in 

comparison to values above the detection limit (cf. Helsel, 2012, page 12). This 

information is provided for all variables in table S3. We agree that censored values 

are not a big issue for our data set, except for the variables NO2
- and PO4

3- (and Fe2+ 

for the additional groundwater data, which was not used to calculate the 

components).  

In our case, the purpose of the replacement of values below the detection limit is not 

to estimate distributional parameters such as mean or standard deviation or to 

perform statistical tests (like in most applications of the provided references). The 



purpose is merely to provide values for all 16 variables in a sample so that the 

dimension reduction method can be applied.  

The standardizing of the variables before applying the dimension reduction method is 

to achieve equal weighting of the variables. Therefore, the estimation of mean and 

standard deviation for this purpose has to be based on all values of a variable – 

whatever values are used for replacement of the censored values. 

We are not aware of an isometric feature mapping variant, which is able to explicitly 

deal with censored values.  

Helsel (2012) suggests to perform dimension reduction methods on the rank scaled 

variables or on a rank based distance matrix if censored values occur. To our 

understanding, we have to deal here with the trade-off between derivation of more 

“correct” components (the rank based case) and the loss of information that occurs, 

in case the ratio scaled variables are transformed to ranks (namely the information on 

the relative distances of the data points to each other, for example how distant the 

value of rank x is to the value of rank x-1 in comparison to rank x-2, etc.). For the 

exploratory purpose of our study, we prefer to maintain this information in the light of 

the fact that only 2 out of 16 variables are substantially affected.  

Although in our case the calculation of the components included the substituted 

values, the components themselves do not contain censored values any more. Thus, 

the subsequent time series analysis of the component scores does not have to be 

designed especially for the treatment of censored values (e.g. Akritas-Thiel-Sen 

median). 

Concerning the correlation of variables and components, we used the residual plots 

and the spearman rank correlation of residuals and components (Section 3.3.3, p. 17, 

l. 377-388). We admit that a problem arises with the calculation of the multiple linear 

regression and therefore the residuals are affected as well. Again, we have to deal 

with a trade-off between potential information loss regarding the 14 out of 16 

variables compared to the more correct treatment of 2 out of 16 variables. Spearman 

rank is one of the methods recommended by Helsel (2012) for the calculation of 

correlations with variables with only one reporting limit (in our case the detection 

limit). However - as in the case of the components - the residuals themselves are 

calculated with the censored values, but they do not contain censored values as 

such. For example for NO2
-, the values that were substituted with half of the detection 

limit would get all the same rank, while the residuals of the linear model of NO2
- with 

three of the components do not contain same-ranked values any longer. 

Those two decisions (rank-based dimension reduction method yes / no and use of 

multiple linear regression and the residuals yes / no) can be questioned. Here, we 

provided arguments, why we did so. Following our argumentation and proceeding, 

the subsequent time series analysis of component scores as well as the correlation 

analysis between residuals and components should be not problematic.  



In addition, of the two affected variables only PO4
3- is substantial for the interpretation 

of a component, namely component 4. In this specific case, the range of values of the 

4th component “was spanned mainly by single large values of NH4
+, PO4

3- and K+ that 

cannot be explained with the preceding three components (Figure S4). This 

highlights the importance of particular events for the 4th component.” (p.21, l. 483-

486). This fits to the distribution of PO4
3- values which exhibits a substantial part of 

values below the detection limit and some outstandingly large values. 

We checked for the influence of the substitution of the two affected variables on the 

components by performing another PCA and Isomap based on a data set in which 

NO2
- and PO4

3- were excluded.  

The correlation of the PCA scores of the interpreted components 1 to 4 of version 1 

(with NO2
- and PO4

3-) vs. version 2 (without NO2
- and PO4

3-) yielded a R2 of cp1: 

0.99, cp2: 0.99, cp3: 0.99, cp4: 0.71.  

The correlation of the Isomap scores of the interpreted components 1 to 4 of version 

1 (with NO2
- and PO4

3-) vs. version 2 (without NO2
- and PO4

3-) yielded a R2 of cp1: 

0.99, cp2: 0.98, cp3: 0.97, cp4: 0.64.  

The same correlations were found for a third version in which NO2
- and PO4

3- were 

excluded and all missing values were replaced with the respective median, instead of 

the mean as suggested by Referee 1 in Comment 7.  

The comparison of the two versions with respect to the Spearman rank correlations 

of Isomap scores of the first four components and the residuals (please see Figure 3 

in the manuscript for the respective values of version 1) yielded a R2 of cp1: 0.98, 

cp2: 0.99, cp3: 0.99, cp4: 0.88.  

Thus the first three components are virtually identical. The fourth component is 

affected, because PO4
3- is one of the important variables determining this 

component. Still, the similarity of the correlations of Isomap scores and component 4 

of both versions suggest that even for this component the variables NO2
- and PO4

3-, 

and therefore the substitution of values below the detection limit with half of the 

detection limit, did not substantially affect the derived components. 

To summarize: 

We agree that the treatment of censored values is an issue that has to be considered 

carefully, in our case especially for NO2
- and PO4

3-. We decided for our data set and 

the amount of affected values / variables to go not for a rank based dimension 

reduction method, due to the loss of information. Therefore, we needed to provide 

numerical values for the values below the detection limit. We decided to choose half 

the detection limit as a simple marker. The calculation of the components, the 

multiple linear regression and the residuals is affected by the substitution. We 

showed that for our case the substitution did not substantially affect the interpretation 

of the results.  



We included the following paragraph after the third paragraph in section 5.5. 

“Exploratory framework” in the revised manuscript: 

“The treatment of censored values can substantially affect the derived components 

and the subsequent interpretation of the results and has to be considered carefully 

(Helsel, 2012 and references therein). For the application of Isomap, it is required to 

provide numerical values for the values below the detection limit. For simplicity, we 

here used half the detection limit as a maker for values below the detection limit. We 

checked for the effect of this substitution by comparing the Isomap results of the 

presented analysis with another Isomap analysis in which we excluded the two most 

affected variables NO2
- and PO4

3- (Figure S4). The correlation of the Isomap scores 

of the interpreted components 1 to 4 of version 1 (with NO2
- and PO4

3-) vs. version 2 

(without NO2
- and PO4

3-) yielded a R2 of cp1: 0.99, cp2: 0.98, cp3: 0.97, cp4: 0.64. 

The comparison of the two versions with respect to the Spearman rank correlations 

of Isomap scores of the first four components and the residuals (please see Figure 3 

for the respective values of version 1) yielded a R2 of cp1: 0.98, cp2: 0.99, cp3: 0.99, 

cp4: 0.88. Thus the first three components are virtually identical. The 4th component 

is affected, because PO4
3- is one of the important variables for this component 

(Figure 3). Still, the similarity of the correlations of Isomap scores and the 4th 

component of both versions suggests that the characteristics of the 4th component 

were not merely introduced by the substitution of the values below the detection limit 

for PO4
3-. Thus, overall, the substitution did not substantially affect the interpretation 

of the considered components. For data sets which are more heavily affected by 

censored values other dimension reduction methods such as the rank based 

approaches suggested by Helsel (2012) should be preferred.” 

References: 

Helsel, D. R.: Statistics for Censored Environmental Data Using Minitab and R, 2nd 
ed., John Wiley & Sons., 2012.  
 

REFEREE: 8. Check equation (2) in line 385. Should there be a plus sign between 

B0 and the summation symbol? Describe the components of the equation that were 

not already described in equation (1). 

AUTHORS: We rewrote the addressed paragraph to: 

“Correlation between scores of a selected component cpx and values of single 

variables might be blurred due to the effects of other components on the same 

variable. We excluded those effects by analysing the relationships between scores of 

the selected component cpx and the residuals of the multiple linear regression mlr of 

the single variable vi at hand and the remaining other considered components CP\x 

(residuals): 

𝑐𝑜𝑟(𝑐𝑝𝑥, 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠[𝑚𝑙𝑟(𝑣𝑖, 𝐶𝑃\𝑥)]) ,      (1) 



where CP\x is the set of m considered components, without the selected 

component cpx, 𝛽0 and 𝛽𝑗 the intercept and coefficients of the regression 

𝑚𝑙𝑟(𝑣𝑖, 𝐶𝑃\𝑥 ) = 𝛽0 + ∑ 𝛽𝑗𝑐𝑝𝑗 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑗∈{𝐶𝑃\𝑥}     (2)” 

REFEREE: 9. In the interpretation of components, the authors describe using 

multiple linear regression, which is a parametric method that assumes a model linear 

in the parameters, but then make an argument for a non-parametric measure of 

correlation applied to the multiple linear regression results. This seems contradictory. 

AUTHORS: The residuals of the multiple linear regression were used to exclude the 

influence of the respective other three components in the assessment of correlation 

between single variables and components (p. 17, l. 377-387). Thus, the aim was to 

facilitate the assessment of the specific contribution of a single component out of the 

four considered components, especially in the visual examination of the residual-plots 

(p.17, l. 387).  

To summarize the relationships between residuals and components we used 

Spearman rank correlation (p.17, l. 388+389). Most of the global relationships in this 

study were linear (Figure S1-S4). This is usually not known beforehand. Using 

Spearman rank correlation enabled to consider non-linear relationships between 

residuals and components as well, as long as they are monotonic.  

However, the main benefit in this study was that Spearman rank correlation is less 

sensitive to extreme values compared to Pearson correlation. This concerned 

especially the assessment of the relationships of the residuals of SO4
2- and Cl- with 

the 2nd component and the residuals of PO4
3- and NH4

+ with the 4th component 

(Figure S2 and S4), which were way stronger expressed with Pearson correlation 

due to a few single extreme values. 

In addition, if the step with the multiple linear regression is omitted, thus if the 

correlations between variables and components are assessed based on the 

measured variables and not the residuals, than the use of Spearman rank correlation 

yields the additional benefit that it can deal with censored values (because there is in 

our case only one detection limit per variable  cf. Helsel, 2012, p. 218).  

To clarify this issue we will replace the last sentence in section 3.3.3 with:  

“To summarize the relationships between components and residuals we used 

Spearman rank correlation, which enables to consider non-linear relationships as 

well, as long as they are monotonic. Besides, it is less sensitive to extreme values 

than Pearson correlation.”  

and the 2nd sentence in the 3rd paragraph of section 5.5 with:  

“Again, whether the relationships are linear, as it was for most of the global 

relationships in this study (Figure S1-S4), is usually not known beforehand. 

Summarizing the relationships between residuals and components with Spearman 



rank correlation enables to consider non-linear relationships between residuals and 

components as well, as long as they are monotonic. However, the main benefit in this 

study was that Spearman rank correlation is less sensitive to extreme values 

compared to Pearson correlation. This concerned especially the assessment of the 

relationships of the residuals of SO4
2- and Cl- with the 2nd component and the 

residuals of PO4
3- and NH4

+ with the 4th component (Figure S2 and S4), which were 

way stronger expressed with Pearson correlation due to a few single extreme 

values.” 

REFEREE: 10. Consider presenting the methods and the results in the same order 

for parallel construction. 

AUTHORS: Thanks for this comment. We tried different ways to structure the 

manuscript during the writing process before we ended up with the current structure. 

The reasoning was to firstly introduce separately all the tools in the methods section 

before we secondly present the results from the perspective of the different aspects 

of the dominant changes in the data set.  

We still think that it is a reasonably compromise for the purpose of this study. The 

structures of the methods and results sections are not parallel as you mentioned. 

Instead, we explicitly introduced the structure of the results and discussion section in 

the section “3.2 Exploratory framework”. The purpose of this section is to wrap up all 

the methods in one consistent picture and illustrate the workflow. 

REFEREE: 11. In the discussion, the conclusions on page 32 about the 1st 

component were not well supported. There were a lot of statements like "we assume 

a general effect," some process "might" happen, some processes "tend to enhance." 

The discussion of the 2nd component was better supported with information about 

the sediments in the area. Some of the material in the first paragraph of section 5.2 

should be moved up to better support the conclusions about the 1st component.  

AUTHORS: Interpretations of the components were developed in a systematic way, 

considering the aspects of the correlations of variables and components (section 

5.1), the spatial patterns (section 5.2) and the temporal patterns (section 5.3) of the 

components. Any interpretation is not only based on section 5.1 but after putting the 

different pieces of information in section 5.1, 5.2 and 5.3 together (p. 17, l. 374-376). 

We would like to stick to this structure for the sake of clarity. As guidance for the 

reader, we present the hypotheses for the components already in section 5.1. 

Correspondingly, we formulated the hypothesis for the 1st component in section 5.1 in 

a careful manner, to express that the aspect of correlation among the solutes alone is 

merely one aspect which needs further support. This is realized in sections 5.2 and 

5.3 in which we add the spatial and temporal patterns to the picture to strengthen our 

hypothesis.  

To more explicitly state the background of our hypothesis for the 1st component in 

this early stage of the argumentation, we added a new introductory sentence for the 

3rd paragraph in section 5.1 in the revised manuscript. 



“The whole study region is characterized by relatively intense agriculture (Table 1).”  

REFEREE: The discussion of the 4th component on page 33 seemed speculative. 

Has this been modelled or shown elsewhere? 

AUTHORS: Thank you for this comment. Referee 1 raised this point as well. Please 

see our response to the comment 16 of referee 1. 

REFEREE: 12. Page 37 states nicely some important implications of the observed 

water quality. 

AUTHORS: Thank you very much for this positive feedback! 

REFEREE: 13. Page 40, line 895, change "is" to "are." 

AUTHORS: The “is” refers to “The assessment of ….. is less sensitive…” 

REFEREE: 14. Page 40, line 901, "Complementary" does not seem like an 

appropriate word for this sentence. 

AUTHORS:  

OLD RESPONSE from 8 May 2018: 

We rewrote the sentence to: 

“In addition to the spatiotemporal features of the components we used other variables 

like groundwater level series, Fe2+ and HCO3
- concentration from the groundwater 

samples, the spatial distribution of land use, and expert knowledge on the study area 

for the derivation of the hypotheses.” 

NEW RESPONSE: 

Considering the comment 4a) of Referee 1 we rewrote the addressed sentence. 

Please see our response there.  

REFEREE: 15. Some of the results, discussion, and conclusions mention both PCA 

and Isomap, but some of the numbers, figures, results must come from one of them 

specifically. That should be made more clear. 

AUTHORS: PCA is used here merely as a benchmark for the Isomap results (p. 15, l. 

316+317) and to introduce the concept / functioning of dimension reduction methods 

to the reader, as we expected it to be more familiar to the hydrological community. To 

our knowledge it is the most established and most used dimension reduction method 

in hydrology. Another reason why we included it in the study is because some 

readers might want to apply the framework based on PCA alone. 

Thus, all presented and discussed results are from Isomap except from the 

“benchmark” comparison with PCA (Table 2). 



We clarified this in the revised manuscript. We moved the last sentence of the first 

paragraph of section 5.5 to the beginning of 5.1 and added another sentence: 

“Non-linear Isomap performed in this study only slightly better with respect to the 

representation of interpoint distances than PCA (Table 2), suggesting that mainly 

linear relationships were of importance for the overall dynamics in the data set. As 

there were only minor differences, we will present in the following the results of 

Isomap only.” 

The second first sentence in the second paragraph of section 5.5 reads now: 

“Whether the relationships in the data set are mainly linear ones, as in this study, or 

whether there are considerably non-linear relationships as well, is usually not known 

in advance.”  

REFEREE: 16. Check that numbers in the text agree with the numbers in the figures 

and tables. 

AUTHORS: We carefully checked the manuscript. Unfortunately we missed the two 

numbers referee 1 pointed out (comment 12 and 14 of referee 1).  

REFEREE: 17. In suggesting this approach, how do you know the results are 

sufficient?  

AUTHORS: In our understanding, the sufficiency of the results depends on the 

purpose of the study.  

Our purpose was to provide a framework for the exploratory analysis of dominant 

changes in the spatial and temporal features of multivariate water quality data sets. 

We think that we were able to demonstrate its applicability with the presented study.  

REFEREE: Are there some measures of quality that can be incorporated into this? 

A very basic measure of quality is to measure the amount of variance in the data set, 

which is assigned to the first components. For example a more or less evenly 

distributed variance among the first components indicates that there are no dominant 

structures in the data set the used method is sensitive for. This result in itself can be 

rather interesting. Apart from that it would be in this case most probably not possible 

to link the components to drivers which help to better understand the monitored 

system.  

A next step can be to compare the results of different dimension reduction methods, 

as we did here with principal component analysis and isometric feature mapping 

(Table 2). If applicable, the results of the dimension reduction method can be 

evaluated with different performance measures (e.g. the PCA performance can be 

evaluated with the “classical” approach via the sizes of the eigenvalues that are 

assigned to the components, or the correlation of the distance matrices of the 

analysed data in the original data space and the projection, as it was done in this 

study). 



Concerning the interpretation of the components, we want to emphasize once more 

that the suggested approach is an exploratory one. Testing the derived hypothesis - 

for example by correlating the results with additional data - is a next step. Another 

option would be to test the hypotheses with virtual or “real-life” experiments (p. 40, l. 

907-909).  

Depending on the structure of the data set (e.g. its spatial and temporal resolution, 

number of samples per site, etc.) one option could be to perform the suggested 

approach with different subsets of the data set and compare the derived spatial and 

temporal patterns for example for different regions or time periods. The same 

approach can be used to check the results for their dependence on specific 

selections of the data set, which can serve as an estimation of the 

representativeness of the results for the overall region and time period. 
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Abstract 

Time series of groundwater and stream catchment water quality often exhibit 

substantial temporal and spatial variability which can rarely be traced back to single 

causal factors. Numerous anthropogenic or and natural drivers influence groundwater 20 

and stream water quality, especially in regions with high land use intensity. In 

addition, tTypical existing monitoring data sets, e.g. from environmental agencies, are 

usually characterized by relatively low sampling frequency and irregular sampling in 

space and / or time. This complicates the differentiation between anthropogenic 

influence and natural variability as well as the detection of changes in water quality 25 

which indicate changes of single drivers. Detecting such changes is of fundamental 

interest for water management purposes as well as for scientific analyses.  

We suggest the new term ‘dominant changes’ for changes in multivariate water 

quality data that which concern 1) multiple variables, 2) multiple sites and 3) long-

term patterns 1) more than a single variable, 2) more than one single site and 3) 30 

more than short-term fluctuations or single events and present an exploratory 

framework for the detection of such ‘dominant changes’ in multivariate water quality 

data sets with irregular sampling in space and time. Firstly, we used a non-linear 

dimension reduction technique to derive multivariate water quality components. The 

components which provide a sparse description of the dominant spatiotemporal 35 

dynamics in the multivariate water quality data set. In addition, they can beThey were 

used to derive hypotheses on the dominant drivers influencing water quality. 

Secondly, different sampling sites were compared with respect to median component 

values. Thirdly, time series of the components at single sites were analysed for 

seasonal patterns and linear and non-linear trends. The approach uses spatial and 40 

temporal heterogeneities as a source of information rather than considering them as 

noise, and considers non-linearities explicitly. Spatial and temporal heterogeneities 

are efficiently used as a source of information rather than being considered as noise. 

Besides, non-linearities are considered explicitly. The approachIt is especially 

recommended for the exploratory assessment of existing long term low frequency 45 

multivariate water quality monitoring data.  

We tested the approach with a large data set ofjoint stream water and groundwater 
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data set quality consisting of 1572 samples, each comprising sixteen hydrochemical 

variables, sampled with a spatially and temporally irregular sampling scheme at 29 

sites in the Uckermark region in northeast Germany from 1998 to 2009. Four 50 

components were derived and interpreted as 1) the agriculturally induced 

enhancement of the natural background level of solute concentration, 2) the redox 

sequence from reducing conditions in deep groundwater to post oxic conditions in 

shallow groundwater and oxic conditions in stream water, 3) the mixing ratio of deep 

and shallow groundwater to the streamflow and 4) sporadic events of slurry 55 

application in the agricultural practice. Dominant changes were observed for the first 

two components. The changing intensity of the 1st component during the course of 

the observation period was interpreted as response to the temporal variability of the 

thickness of the unsaturated zone. A steady increase of the 2nd component 

throughout the monitoring period at most stream water sites pointed towards 60 

progressing depletion of the denitrification capacity of the deep aquifer.  
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1 Introduction 

Numerous high frequency sampling studies unravelled the high temporal variability 

of stream water quality (e.g., Kirchner et al., 2004; Cassidy and Jordan, 2011; 65 

Halliday et al., 2012; Neal et al., 2012; Wade et al., 2012; Aubert et al., 2013; 

Kirchner and Neal, 2013; Tunaley et al. 2016; Rode et al., 2016; Blaen et al., 2017). 

Therefore, monitoring water quantity and quality on the timescale of the hydrological 

response of the catchment is a key requirement for understanding water quality 

dynamics and its driving processes in detail (Kirchner et al., 2004; Neal et al., 2012; 70 

Halliday et al., 2012). While the development of sensor technology, data loggers and 

transmission technology hopefully will help to significantly increase the number of 

high-frequency monitoring programmes in the future, most of the existing monitoring 

programmes so far applied a rather low sampling frequency. Nonetheless, there is 

common agreement that for short periods with high-frequency data, longer periods of 75 

low-frequency monitoring provide invaluable context (Burt et al., 2011; Neal et al., 

2012; Halliday et al., 2012; Bieroza et al., 2014). This is especially true for existing 

long term records which are required as reference to distinguish between natural 

short term and long term variability of the observed variables and the assessment of 

the effects of anthropogenic influence on water quality such as changes in land use 80 

in the catchment (Burt et al., 2008; Howden et al., 2011).  

The intriguing temporal and spatial variability in water quality monitoring data sets 

can in most cases hardly be related to single causal factors. Instead, a variety of 

biogeochemical processes (e.g., Stumm and Morgan, 1996; Neal, 2004; Beudert et 

al., 2015), climatic (e.g., Neal, 2004) and hydrological (e.g., Molenat et al., 2008) 85 

variability and anthropogenic influences, for example agricultural (e.g., Basu et al., 

2010; Basu et al., 2011; Aubert et al., 2013) or forestal (e.g., Neal, 2004) land use, 

land use change (e.g., Scanlon et al., 2007; Raymond et al., 2008) or urbanization 

(e.g., Kroeze et al., 2013), interact at different scales impeding identification of clear 

cause-effect relationships (e.g., Stumm and Morgan, 1996; Neal, 2004; Scanlon et 90 

al., 2007; Raymond et al., 2008; Basu et al., 2010; Basu et al., 2011; Aubert et al., 

2013; Kroeze et al., 2013; Beudert et al., 2015). Usually a single solute is affected by 

numerous different drivers at different scales (cf., e.g., Molenat et al., 2008; Lischeid 
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et al., 2010; Schuetz et al., 2016 for NO3
-). Inversely, a single driver usually has an 

impact on various solutes (Massmann et al., 2004; Lischeid and Bittersohl, 2008). 95 

This suggests that trend analyses of single variables might easily be misleading with 

respect to the identification of driving factors. For this purpose techniques which are 

able to account for the interaction of multiple drivers and observed variables are 

preferable. 

On the other hand, despite their complexity, catchments are highly constrained 100 

systems. Usually only a few dominant processes are dominant and determineing the 

main dynamics of stream flow, groundwater head or water quality (Grayson and 

Blöschl, 2000; Sivakumar, 2004; Lischeid et al., 2016). Using joint information from 

different solutes is an established way to derive hypotheses on processes or other 

causal factors that are dominant in the monitored data. For this purpose, dimension 105 

reduction techniques, especially the linear principal component analysis (PCA), have 

been used in analyses of multivariate water quality data for long, mostly as 

exploratory tool for descriptive process identification (e.g. Usunoff and Guzmán-

Guzmán, 1989; Haag and Westrich, 2002; Cloutier et al., 2008) or for determining 

mixing ratios (e.g., Hooper et al., 1990; Capell et al., 2011). If the analysed data 110 

consist of time series of one or several variables observed at different sites, then the 

temporal features of the results of the dimension reduction can be analysed in a 

spatially explicit way, e.g. with respect to seasonal patterns or long term 

developments at the monitored sites (Lischeid and Bittersohl, 2008; Lischeid et al., 

2010).  115 

However, many of the methods commonly used for analysing temporal 

developments in monitoring data sets require regularly sampled data. In practice the 

spatiotemporal design of sampling campaigns and monitoring networks often evolves 

during the sampling period in an irregular way. In order to obtain a regularly sampled 

data set, additional information with a different sampling design, e.g. from pilot 120 

studies or single sampling campaigns, might not be utilized in the analysis at all. 

Further irregularities in the spatiotemporal structure of environmental monitoring data 

sets arise typically during the monitoring itself from a variety of reasons such as 

failure of sensors or data loggers, measurement errors, loss of samples, periods of 
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ice or drought, etc.. Thus, in environmental monitoring practice, data sets with gaps 125 

and periods with corrupted measurements are more the rule rather than the 

exception (c.f., e.g., Zhang et al., 2018 for river quality data). 

Lischeid et al. (2010) suggested a combination of exploratory data analysis 

methods to detect and analyse dominant processes and their temporal development 

in multivariate water quality data sets that is capable of dealing with irregular time 130 

series. We built on that and extended it towards the detection of ‘dominant changes’ 

in time series of multivariate water quality data that are monitored at different sites, 

i.e. at different parts of a catchment or in different catchments within a region. In 

analogy to the dominant process concept (Grayson and Blöschl, 2000; Sivakumar, 

2004), we use the term ‘dominant changes’ in a broad and descriptive sense referring 135 

to systemic changes that clearly exceed the ‘usual’ range of heterogeneities in the 

temporal, spatial or inter-variable structure of the observed water quality data. We 

considered changes as dominant that concerned 1) main components of the 

multivariate water quality data set rather than single water quality variables 

(multivariate components); 2) behaviour at various sites rather than at single sites 140 

(multiple sites); and 3) long-term behaviour rather than short-term fluctuations or 

single events (long-term patterns).  

To identify the dominant changes, we combined exploratory data analysis methods 

for non-linear dimension reduction, spectral analysis, linear and non-linear trend 

estimation and monotonic trend test in one exploratory framework. The suggested 145 

approach was tested with a multivariate water quality data set that has been sampled 

with a spatially and temporally irregular sampling scheme in northeast Germany from 

1998 to 2009. In the following, we present and discuss the results of our case study 

according to the three aspects of ‘dominant changes’: 1) multivariate components, 2) 

multiple sites and 3) long-term patterns. We continue with a discussion of 4) effects 150 

of the irregular sampling and 5) methodological aspects of the exploratory framework. 
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2 Data 

2.1 Study area 

The study area is the upper part of the basin of the Ucker river located in the 155 

northeast of Germany, about 90 km north of Berlin, which drains to the Baltic Sea 

another 50 km further north. It is part of the Leibniz Centre for Agricultural Landscape 

Research (ZALF) long-term monitoring region AgroScapeLab Quillow, the LTER-D 

(Long Term Ecological Research Network, Germany) and the TERENO (Terrestrial 

Environmental Observatories, http://teodoor.icg.kfa-juelich.de) Northeastern German 160 

Lowland Observatory. Water samples have been taken in the adjacent catchments of 

Dauergraben (78.9 km²), Stierngraben (104.8 km²), and Quillow (399.4 km²) with its 

subcatchments Strom (235.8 km²) and Peege (25.6 km²) (Figure 1). At the ZALF 

weather station Dedelow, which is situated approximately 500m northeast of Q_97 

(Figure 1), a mean annual precipitation of 550 mm and a mean annual temperature of 165 

8.9° C was observed for the hydrological years within the study period (1997-11 to 

2009-10). The mean annual climatic water balance for this period, calculated from 

daily precipitation and potential evapotranspiration, was found to be -103 mm, 

exhibiting high interannual variability with -148 mm in the summer half year and +45 

mm in the winter half year.For the part of the Ucker catchment which is situated 170 

within the federal state Brandenburg a mean annual precipitation of 584.5 mm and a 

mean annual temperature of 8.3°C was found for the 1961-1990 period and a mean 

annual climatic water balance of -40.4 mm was estimated with the ARC/EGMO model 

(Lahmer et al., 2000). The mean climatic water balance exhibited high interannual 

variability with -181.4 mm in the summer half year and +141 mm in the winter half 175 

year.  

The topography of the region developed basically during the Pomerian stage and 

the Mecklenburgian stage of the Weichselian ice age, i.e. 15,200 to 14,100 years 

before present. Altitude varies from 20 m in the lowlands of the Ucker river to more 

than 100 m above sea level in the southwestern part of the study area. During the 180 

Pleistocene, repeated advances and recessions of the ice sheet deposited highly 

heterogeneous unconsolidated sediments of about 150 m to 200 m thickness. The 

base consists of a thick Oligocene clay layer which separates the upper freshwater 



8 

groundwater system from saline groundwater underneath. Based on borehole 

surveys, up to seven aquifers divided by layers of till have been identified within the 185 

unconsolidated Quaternary sediments. In some parts of the region patches of 

halophilious plants are found in the lowlands indicating local upwelling of saline 

groundwater from the underlying Tertiary aquifer through windows of the Oligocene 

clay layer. 

Loamy and sandy loamy soils prevail that developed from the till substrate. Most of 190 

the region is intensively used as cropland, although the fraction of arable land differs 

between the catchments (Table 1). Forests comprise only a minor fraction of the area 

(Table 1). Land cover did not change within the study period from 1998 to 2009. The 

riparian zone of the catchments is mostly used as grassland, underlain by peat and 

organic and sandy fluvial deposits. The hummocky landscape includes about 1300 195 

closed drainage basins and small ponds with an area of the water surface < 1 ha 

(Kalettka and Rudat, 2006; Lischeid et al., 2016). Many of the larger depressions 

have been connected by ditches to facilitate drainage. Partly, these ditches have later 

been replaced by underground pipes for land reclamation. In addition, agricultural 

soils are extensively drained by subsurface tile drainage systems. From the 13th 200 

century till the end of the 19th century, the energy of the natural water courses was 

also occasionally used to power mills. Today, those mills are not active any longer 

and have been replaced in most cases by weirs for water management or ramps. For 

more details on the study site, please see Merz and Steidl (2015). 
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Figure 1 Map of the study area. Coordinates of UTM-zone 33N are given in m. 

Upper panel: Stream water monitoring sites and the location of the study area (Upper 

Ucker river catchment) within Germany. Lower panel: Section with the included 

groundwater monitoring sites. For better readability only the number of the ID of the 210 

monitoring sites is shown.  
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Table 1 Share of land use classes in the different catchments (percent of land 

cover) based on CORINE Land Cover data (2000). 

  Settlements 
/ Industry 

Arable 
land 

Grass- 
land 

Lakes Others Wet- 
land 

Wood- 
land 

Dauergraben 1.7 92.1 4.1 1 0.3 - 0.8 

Ucker 4.6 62.3 5.6 7.7 2.2 2.4 15.2 

Stierngraben 1.4 61.2 15.8 1.2 0.9 - 19.5 

Strom 2.2 54 7 6.9 1.2 - 28.7 

Quillow 2.3 77 9.3 1.3 1.4 - 8.7 

Peege 0 78.3 5.5 - - - 16.2 

 215 

2.2 Sampling and analysis 

The monitoring aimed to cover the spatial and temporal variability of water quality 

along the Quillow stream, its tributaries and the adjacent streams. The main focus of 

the monitoring was the Quillow catchment. Here, eight sampling sites were located 

along the main stream, and another four at each of the two tributaries Peege and 220 

Strom (Figure 1 and Table S1). At the streams Dauergraben and Stierngraben and at 

the Ucker river, stream water quality was monitored at one site respectively. Stream 

water sampling started in 1998 and was performed until 2009. Discharge data was 

only available at sites Q_93 and S_118 (Figure 1). Thus we did not include it in the 

presented analysis. Groundwater quality was monitored in the Quillow catchment 225 

only, close to the middle reaches of the stream and close to the mouth of the Peege 

tributary, from 2000 to 2008 (Lower panel Figure 1). At this site, an up to 15 m thick 

horizontal till layer separates a shallow and very heterogeneous unconfined aquifer 

from a mainly confined deep aquifer. The separating till layer crops out further 

downstream (Merz and Steidl, 2015). Both aquifers were monitored (Table S2). The 230 

deep aquifer is known to be confined except at well Gd_204. Groundwater level in 

the deep aquifer was measured daily with automatic data loggers at wells Gd_198, 

Gd_201, Gd_203 and Gd_204 (Merz and Steidl, 2014a). 

Groundwater quality (Merz and Steidl, 2014b) and stream water quality (Kalettka 

and Steidl, 2014) monitoring in the Quillow catchment covers a wide range of water 235 

quality parameters. For the multivariate analysis in this study, we considered from the 
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joint groundwater and stream water quality data set only the 16 variables with less 

than 5% missing values, i.e. NH4
+, NO3

-, NO2
-, PO4

3+, -, Na+, K+, Mg2+, Ca2+, Cl-, O2, 

pH, water temperature, redox potential (Eh), electric conductivity (EC), SO4
2-, and 

DOC (Table S3). Each sample contained measurements of all 16 variables. Those 240 

water samples for which more than two of the 16 monitored variables were missing 

were excluded from the analysis, resulting in a set of 1572 samples. In total, 0.69% of 

the values in the dataset were missing. In addition, we considered HCO3
- and Fe2+ 

concentration from the groundwater monitoring (Table S3). 

The number of temporal replicates varied between one and 127 per site (Figure 2). 245 

In general, streams were sampled at approximately monthly intervals, and 

groundwater samples were taken every three months. Median [mean] sampling 

intervals were 29 [38.7] days for stream water and 98 [125.3] days for groundwater. 

The one shorter sampling interval at site GdQ_198 was an exceptional sample taken 

during maintenance work. In total, sampling intervals between two consecutive 250 

samples varied between nine and 714 days (Figure 2). The sites were sampled 

roughly similarly across seasons (left panel Figure 2). The most important systematic 

deviation from this rule were the Peege sites and the most upstream sites of the 

Quillow (left panel Figure 2 and Figure 1), which often fall dry in summer (Merz and 

Steidl, 2015). 255 

Further details on the data and measurement methods are provided by Merz and 

Steidl (2015). The selection of water quality data used in this article and the 

groundwater level data have been published under CC-BY 4.0 and can be accessed 

at doi: 10.4228/ZALF.2017.340http://open-research-

data.ext.zalf.de/ResearchData/2017_340.html and doi: 10.4228/ZALF.2000.272 260 

respectively.  
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Figure 2 Left panel: Sampling dates at the sites for the whole monitoring period. 

Right panel: Boxplots of the variability of sampling intervals during the monitoring 265 

period. For better readability, the maximum of the x-axis is limited to 180 days.  

Median (redgrey solid line) and mean (bluegrey dashed line) of sampling intervals are 

shown separately for the groundwater and stream water sites. Grey vertical lines 

mark the 1-day, 1-week and 1-month interval. Both panels: The dashed horizontal 

line separates groundwater sites (bottom) from stream water sites (top). Subscripts: 270 

P = Peege, Q = Quillow, S = Strom, St = Stierngraben, U = Ucker, D = Dauergraben, 

Gs = shallow groundwater, Gd = deep groundwater. The number of samples at each 

site is given in brackets. Names of the sites with more than 50 samples are printed 

bold. 

 275 
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3 Methods 

3.1 Data preprocessing  

Missing values were replaced by the median of the respective variable. This 

concerned at most DOC (3.44% of the values) and NO2
- (2.54%), whereas the 

percentage of missing values was less than 2% for each of the other 14 variables 280 

(Table S3). Values below detection limit were replaced by 0.5 times that limit. To 

achieve equally weighted variables the values were z-normalized to zero mean and 

unit standard deviation for each variable separately. 

 

3.2  Exploratory framework 285 

To identify the dominant changes, we firstly used the non-linear dimension 

reduction technique Isometric Feature Mapping to derive the main multivariate water 

quality components. To account for the interaction of groundwater and stream water, 

both groundwater and stream water samples have been analysed together in one 

joint analysis. Secondly, we studied differences between the sites with respect to 290 

median component values. Thirdly, we analysed the time series of the components at 

sites with more than 50 samples. Seasonal patterns were analysed with the Lomb-

Scargle approach (Lomb, 1976; Scargle, 1982; Scargle, 1989) and – if significant – 

were subtracted from the series prior to trend analyses. Please note that the term 

‘seasonal’ refers to the annual cycle throughout the article. Linear trends were 295 

estimated with the Theil-Sen estimator and tested for significance with the Mann-

Kendall Test. Non-linear trends were depicted with the locally weighted regression 

(LOESS) approach (Cleveland, 1979; Cleveland and Devlin, 1988). We then related 

resulting low-frequency patterns to the long-term groundwater head dynamics, 

likewise determined as LOESS smooth of the de-seasonalised series. Time series 300 

analysis at different sites allowed to check whether long-term patterns were 

consistent, pointing to more general effects in the study area.  

As the methods do not require regularly sampled data in space or time, we 

considered every sample as additional information of the spatiotemporal variability of 
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the observed water quality in the study area rather than noise. Consequently, 305 

irrespective of irregularities of sampling intervals at a site or differences in sampling 

intervals and numbers of samples between the different sites, we included as many 

samples in the analysis as possible to increase the informative value and support the 

representativeness of the study in space and time. This might lead to a bias in the 

determination of the components, as well as in the estimation of the trends of the 310 

components and their significance, if deviations from a regular sampling scheme 

follow a systematic pattern. To check for that, we tested the distribution of sampling 

intervals at all sites with N > 50 (Table S1) for normality with the Shapiro-Wilk-test 

and the temporal development of the lengths of the sampling intervals for the whole 

observation period for monotonic trends with the Mann-Kendall-test. For all tested 315 

sites a Gaussian distribution of sampling intervals as well as a monotonic trend of the 

length of sampling intervals during the observation period was rejected. 

 

3.3 Dimension reduction 

Dimension reduction methods aim to represent a data set with a given number of 320 

dimensions (here the number of measured hydrochemical variables) in a new data 

space with substantially less dimensions. This is achieved by projecting the data in a 

new ordination system which makes a more efficient use of the intrinsic structures of 

the data set than the original one. The axes of the new ordination system are usually 

called ‘components’ or ‘dimensions’. In the following, we will use the term 325 

‘components’. For the values of a component we will use the term ‘scores’. The 

reduction of the dataset’s dimensionality is achieved by considering only some of the 

new components for further analysis. The selection process is a trade-off between 

reduction of the dimensionality and minimizing the loss of potentially informative 

structures. Typically only the first few components are selected as they depict the 330 

main structures in the data set.  

In the projection, different methods focus on different aspects of the data. For 

example, PCA aims for maximizing variance on the first components, classical 

multidimensional scaling (CMDS) at preserving the interpoint distances of the input 
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data in the projection, and self-organizing maps (SOM) at preserving the 335 

neighbourhood relations (topology) of the input data in the projection (Lee, 2007). In 

the last years, a variety of non-linear dimension reduction methods has been 

developed (Van der Maaten et al., 2009). Although being sensitive to noisy data, 

Isometric Feature Mapping (Isomap; Tenenbaum et al., 2000) was one of the best 

performing approaches when applied to real-world-data (Geng et al., 2005). It has 340 

been successfully applied in environmental research disciplines, e.g. biodiversity 

studies (Mahecha et al., 2007), soil sciences (Schilli et al., 2010), climatology 

(Gámez et al., 2004), and biogeochemistry (Weyer et al., 2014). 

 

3.3.1 Principal component analysis 345 

In our study, the well-established linear principal component analysis (PCA) served 

as benchmark for the non-linear Isometric Feature Mapping. PCA is one of the most 

widespread dimension reduction methods going back to research of Pearson (1901) 

and Hotelling (1933). For a brief introduction to PCA, please see, e.g., Jolliffe and 

Cadima (2016), for a comprehensive one Joliffe (2002). PCA aims to successively 350 

maximize the variance of the data set on the new calculated components. The scores 

of the components are calculated as weighted linear combinations of the original 

variables. The weights (loadings) of the linear combination define the axes of the 

data space in which the data is projected. The loadings are the eigenvectors derived 

from an eigenvalue decomposition of the covariance matrix of the analysed variables. 355 

If the analysed variables are z-normalized, as was done here, their covariance matrix 

is equivalent to the (Pearson) correlation matrix. The components are ordered with 

decreasing size of their eigenvalues. The share of variance that is assigned to a 

component is proportional to the size of its eigenvalue in relation to the sum of all 

eigenvalues. Thus, the ratio of total variance that is captured by the considered 360 

components gives a measure of performance of the PCA. PCA was performed in R 

(R Core Team, 2017) with the function ‘princomp’ of the default package ‘stats’. 
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3.3.2 Isometric Feature Mapping 365 

Isometric feature mapping (Isomap) is a non-linear extension of CMDS. It aims to 

approximate the global non-linearity in a dataset by local linear fittings (Geng et al., 

2005). This is done by mapping approximated geodesic interpoint-distances to an 

Euclidean distance matrix via a neighbourhood graph G (Tenenbaum et al., 2000). 

The geodesic distance between two points is the distance along the surface of a 370 

(non-linear) manifold, in contrast to the straight-line Euclidean distance (Geng et al., 

2005). The neighbourhood graph G consists of segments that connect every data 

point to its k nearest neighbours directly via Euclidean distances. For all non-

connected points the shortest path along the neighbourhood graph G is computed as 

the smallest sum of connected segments via the Dijkstra-algorithm (Dijkstra, 1959). 375 

This approximation of the geodesic distances allows the adaptation of G to the global 

non-linear structures in a data set. The only free parameter k has to be optimized by 

checking the performance of several runs. The more linear the data, the higher will 

the optimum k be. If k equals the possible number of connections of one data point to 

all other data points, the approximations of the geodesic distances are equal to the 380 

Euclidean distances and the Isomap results are congruent to those of CMDS and 

linear PCA (Gámez et al., 2004). Finally the neighbourhood graph G is embedded in 

the Euclidean space.  

In contrast to PCA, assessing performance based on the eigenvalues of the 

components is not applicable for Isomap. Performance of the dimension reduction of 385 

the Isomap approach was assessed and compared to performance of the PCA by the 

squared Pearson correlation coefficient (R2) of the interpoint distances in the high-

dimensional data space and in the low-dimensional projection spanned by selected 

components (Lischeid and Bittersohl 2008; Lischeid et al., 2010). A perfect fit would 

yield a value of 1 and a value of 0 reflects no correlation between the distance 390 

matrices of the original data and of the projection. Please note, that with this measure 

the contribution of single components to the overall performance does not 

necessarily decrease monotonically with increasing order of the components, as it is 

the case for the eigenvalue-based performance measure of PCA. For the local 

assessment of representation of interpoint distances at the individual sites, only the 395 
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data points from the respective sites were used. Because the selection of data points 

at a site is only a subset of the global data set for which the dimension reduction was 

performed, the performances regarding the representation of interpoint distances 

differ between the individual sites as well as compared to the overall performance for 

the global data set. At some sites it can even happen that adding more components 400 

does not for every component improve the representation of interpoint distances in 

the low-dimensional projection. Isomap and the determination of the distance 

matrices were performed with the R-package ‘vegan’ (Oksanen et al., 2009). 

 

3.3.3 Interpretation of components 405 

The analysis focused on those components that explained a major fraction of the 

total interpoint distances. The considered components were regarded to reflect 

dominant drivers influencing water quality. Here, the term ‘driver’ was used for 

biogeochemical and hydrological processes as well as for anthropogenic influences 

affecting water quality. Correspondingly we formulated a hypothesis for each 410 

considered component. The interpretation of the components is based on analysing 

(i) the correlations between measured variables and component scores as well as (ii) 

spatial and temporal patterns of the scores.  

Correlation between scores of a selected component cpx and values of single 

variables might be blurred due to the effects of other components on the same 415 

variable. We excluded those effects by analysing the relationships between scores of 

the selected component cpx and the residuals of the multiple linear regression mlr of 

the single variable vi at hand and the remaining other considered components CP\x 

(residuals): 

���(���, ��	
���	����(��, ��\���� ,      (1) 420 

where CP\x is the set of m considered components, without the selected 

component cpx, �� and �� the intercept and coefficients of the regression 

���(��, ��\� � =  ��  = �� � ����� + ��	
���	
 

�!"
    (2) 
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���(��, ��\� � = �� + ∑ ����� + ��	
���	�∈{&'\�}     (2) 

To assess the relationships between components and residuals we used bivariate 425 

scatterplots. To summarize the relationships between components and residuals we 

used Spearman rank correlation, which enables to consider non-linear relationships 

as well, as long as they are monotonic. Besides, it is less sensitive to extreme values 

than Pearson correlation.As a measure for monotonic but not necessarily linear 

correlation we used Spearman rank-correlation.  430 

 

3.4 Time series analysis 

At sites with more than 50 samples, time series of component scores were 

analysed for seasonal patterns, linear trends and non-linear trends. The sites were 

compared with respect to the identified long-term patterns to detect general patterns 435 

in the study area. The significance level for trend and frequencies in this study was 

set to p ≤ 0.05. At each site, the fractions of variance of a time series that were 

assigned to its seasonal pattern, linear trend or non-linear trend were determined as 

the R2 of the respective pattern with the component series. In case of significant 

seasonal patterns, the estimations of the trends were based on the de-seasonalised 440 

series. Accordingly, the fractions of variance assigned to the trends were determined 

as the R2 of the trend pattern with the de-seasonalised series. The decomposition of 

the time series in a seasonal component and a non-linear trend derived with LOESS 

was inspired by the STL-approach of Cleveland et al. (1990).  

 445 

3.4.1 Lomb-Scargle method 

Standard Fourier analysis requires equidistant time series which was not given in our 

study. Therefore the estimation of seasonal patterns in the time series was done with 

the Lomb-Scargle method, which is an extension of Fourier-Analysis to the uneven-

spaced case genuinely invented in astrophysics (Lomb, 1976; Scargle, 1982). The 450 

application of the Lomb-Scargle method in this study follows to a large extent the 

workflow suggested by Glynn et al. (2006) as well as Hocke and Kämpfer (2009). 
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Details are given in the Appendix A. The implementation used in this manuscript can 

be accessed as R-script at doi: 

10.4228/ZALF.2017.340http://open-research-data.ext.zalf.de/ResearchData/2017_34455 

0.html. 

 

3.4.2 Theil-Sen estimator and Mann-Kendall test 

The linear trend was estimated with the non-parametric Theil-Sen estimator which 

is the median of all interpoint slopes in a time series (Theil, 1950; Sen, 1968). The 460 

Mann-Kendall test (Mann, 1945; Kendall, 1990) was used to test for significant 

monotonic trends. Identified trends are not necessarily linear. Being based on rank 

correlation, data do not have to obey any specific distribution. Please note that we 

did not account for the effect of overestimation of the significance of trends with the 

Mann-Kendall test due to short-term autocorrelation (Yue et al., 2002). That would 465 

have required an assessment of the lag-1 autocorrelation which was hampered by 

the irregular sampling. Neither did we consider long-term memory and its effects on 

the statistical significance of the trends (Cohn and Lins 2005; Zhang et al., 2018). 

Consequently, we did not consider the possible effects of the irregular sampling on 

the long-term memory (fractal scaling) of the water quality series either (Zhang et al., 470 

2018). Due to the limited number of samples per year and non-equidistant sampling, 

the seasonal Mann-Kendall test was not applicable (Figure 2). Instead, significant 

seasonal patterns according to the Lomb-Scargle approach were subtracted prior 

trend analysis. The Mann-Kendall test was performed with the R-package ‘Kendall’ 

(McLeod, 2011).  475 

 

3.4.3 Locally weighted regression (LOESS) 

We assessed non-linear trends and low-frequency patterns with locally weighted 

regression (LOESS; Cleveland, 1979; Cleveland and Devlin, 1988), where the 

smoothing is done by local fitting of a second order polynomial to each point x in the 480 

data set using weighted least squares. The weights for each value to be fitted are 
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scaled to the range from 0 to 1 by the distance d(x) between x and its qth closest 

point. The ratio of q to the number n of all data points, i.e. the span of the local 

regression smoother, defines the degree of smoothing. We used the default 

smoothing span which is a proportion of q/n = 0.75 of x´s nearest neighbours. Data 485 

points further away than the qth data point do not contribute to the regression. Within 

the range of the span, the weights wi of the neighbouring points xi in the least square 

fit decrease with increasing distance of xi to x symmetrically around x according to 

the tricubic weighting function wi(x) = (1 - [ (|xi - x|) / d(x) ]3)3. Again, significant 

seasonal patterns according to the Lomb-Scargle approach were subtracted prior 490 

trend analysis. For details about choosing different LOESS-parametrisations, please 

see Cleveland (1979) as well as Cleveland and Devlin (1988). Local extrema of the 

LOESS smooth were identified with the R-package ‘EMD’ (Kim and Oh, 2009; 2014.). 

 

4 Results 495 

4.1 Multivariate components 

We achieved the best performance of the Isomap dimension reduction with k = 

1300 (Table 2). In the following, results are presented for the first four Isomap 

components representing 88% of the interpoint distances of the total data set. For 

single sites (with more than 15 samples), between 29 and 97 % of the respective 500 

interpoint distances were represented (Table S4Table 2).  

The 1st component depicted 424% of the interpoint distances of the total data set. 

Plotting residuals of the variables versus the 1st component showed strong positive 

correlations for NO3
-, Na+, K+, Mg2+, Ca2+, Cl-, EC, SO4

2-, DOC and slightly less, but 

still positive, correlations for O2 and Eh. Temperature was the only variable 505 

correlating negatively with the 1st component (Figure 3). Visualization of the 

component scores versus residuals of solute concentration revealed predominantly 

linear relationships (Figure S1). 

The 2nd component reflected 189% of the interpoint distances in the data. It 

exhibited clear positive correlation with O2 concentration, pH and Eh, and weaker 510 
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correlation with Na+, K+ and DOC. It was inversely correlated with Ca2+, EC and SO4
2- 

(Figure 3 and Figure S2). In the groundwater samples, HCO3
- and Fe2+ had been 

determined as well. Both solutes were negatively correlated with this component 

(Figure 4 upper panel). NO3
- concentration in the deep groundwater samples was 

very low (with 27% of the samples below detection limit) and did not show any clear 515 

correlation with the 2nd component. Low component scores in the groundwater came 

along with high Ca2+ and HCO3
- concentration. 

The relationship of scores of component one and two in the groundwater is shown 

in the lower panel of Figure 4. Except for the two shallow wells close to the Peege 

stream (Gs_200, Gs_202; cf. Figure 1) scores of the 1st and 2nd component are 520 

negatively related (Figure 4 lower panel). 

The 3rd component represented 6% of the interpoint distances in the data set. The 

residuals exhibited positive correlation for Na+, Mg2+, Cl-, pH and temperature. 

Negative correlations were found for NO3
-, Ca2+, O2, Eh, and DOC (Figure 3 and 

Figure S3 ).  525 

Another 22% of the interpoint distances in the data were assigned to the 4th 

component. Residuals of the component scores showed negative correlation for 

NH4
+, PO4

3-, K+, temperature, and DOC and positive correlation for O2 (Figure 3 and 

Figure S4). The range of component values was spanned mainly by single large 

values of NH4
+, PO4

3-, and K+ that cannot be explained with the preceding three 530 

components (Figure S4). This highlights the importance of particular events for the 4th 

component.  

Table 2 Cumulated R2 of the reproduction of the interpoint distances of the data in the 

projection by the first ten components of the best Isomap run and linear PCA. 

Component 1 2 3 4 5 6 7 8 9 10 

Isomap 0.42 0.6 0.66 0.88 0.94 0.96 0.97 0.98 0.98 0.99 

PCA  0.39 0.57 0.65 0.88 0.94 0.95 0.97 0.98 0.99 0.99 
 535 
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Figure 3 Spearman- rank- correlation of a component and the residuals of the 

multiple linear regression of the measured variable and the remaining three other 540 

components. 
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Figure 4 Upper panel: Selection of variables vs. scores of component 2 for the 
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groundwater samples. Concentration in mgL-1. Lower panel: Scores of component 1 545 

vs. component 2 at the groundwater sites.  

 

4.2 Multiple sites 

Median values of scores of the 1st component clearly differed between streams 

(Figure 5 A). At the Strom sites, the median score values were considerably lower 550 

than those from the other stream water sampling sites. The median values of scores 

of the sites at the Quillow and Stierngraben showed intermediate values followed by 

the Ucker site, the Peege sites and finally the Dauergraben with the highest median 

score value. Groundwater samples in general exhibited consistently low scores of the 

1st component, but without clear differences between deep and shallow groundwater 555 

samples. Mixing of water from different streams was visible at site Q_93 downstream 

the confluence of the Quillow (Q_95) and of the Strom stream (S_118), as well as at 

site Q_100 downstream the confluence of Q_104, Q_102 and P_107 (Figure 1 and 

Figure 5 A).  

Stream water samples exhibited the highest scores of the 2nd component, whereas 560 

low scores were limited to deep groundwater samples, and shallow groundwater 

samples were in an intermediate position (Figure 5 B). Median values of the stream 

water sites were approximately on the same level except for the sites Q_103, Q_106 

and U_128 which exhibited noticeably higher median values than the other stream 

water sites and the two Peege sites P_109 and P_108, which exhibited median 565 

values on the same level as the shallow groundwater sites Gs_199 and G_200. The 

scores in the deep groundwater clearly showed the largest absolute values, 

indicating the significance of deep groundwater for this component (Figure 5 B).  

Scores of the 3rd component in the deep groundwater were consistently higher 

than in shallow groundwater, while the stream water samples covered the whole 570 

range of values (Figure 5 C). Lowest scores of the 3rd component were found at the 

Peege sites and in the shallow groundwater, highest scores at Ucker, Dauergraben 

and the deep groundwater. At the Quillow stream, scores tended to increase from the 

spring to the outlet. The effect of mixing of tributaries with different water qualities 
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was visible along the course of the Peege and Quillow streams downstream of the 575 

respective confluences at the sites P_108, Q_95 and Q_93 (Figure 1 and Figure 5 

C). 

The range of values of the 4th component was strongly biased towards negative 

values, caused by single events at some sites which exhibited very low values 

(Figure 5 D).  580 
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Figure 5 Boxplots of scores of component 1 to 4 at different sites. Sites with n < 13 

are marked with ‘~’, those with n < 3 with 2 ‘~X’. Subscripts: P = Peege, Q = Quillow, 

S = Strom, St = Stierngraben, U = Ucker, D = Dauergraben, Gs = shallow 585 

groundwater, Gd = deep groundwater. 
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4.3 Long-term patterns 

Time series of scores of the components were studied at sites with more than 50 

temporal replicates. This applied for 13 stream water sites (Table S1). All dominant 590 

frequencies (for details, please see Appendix A) interpreted as seasonal patterns had 

a period length in the range between 350 and 380 days. For de-seasonalisation 

these seasonal patterns were subtracted from the time series prior to analysis for 

linear and non-linear trends. 

Most of the time series of the scores of the 1st component exhibited clear seasonal 595 

patterns with maximum scores during the winter season (Figure 6 and Figure 7). 

Between 30 and 67 % of the variance were assigned to the seasonal pattern. At all 

sites we found significant negative monotonic trends (Figure 6). The strongest 

decline was found at site D_112, the weakest trend at site Q_97 (not shown). The 

linear trend comprised between 9 and 48 % of the variance of the de-seasonalised 600 

time series (Figure 6). In contrast, the LOESS smooth depicted 14 to 57 % of the 

variance (Figure 6). It showed a decrease until December 2004 approximately and an 

increase thereafter (Figure 8). The de-seasonalised time series of groundwater 

heads showed a similar behaviour, with the minimum water level in June 2006 

(Figure 8). Timing of the minimum values of the scores of the 1st component varied 605 

between sites, spanning a range from 17th February 2004 to 17th of March 2009 

(Figure 8). As an example, Figure 7 gives the time series of scores of the 1st 

component at site Q_93, the seasonal pattern extracted from the series and the de-

seasonalised time series with the non-linear trend estimated with the LOESS 

smoother. 610 

Unlike for the 1st component, only five of the thirteen considered time series of the 

2nd component exhibited a clear significant seasonal pattern, accounting for 17 to 48 

% of variance (Figure 6). The maxima of the seasonal patterns of the sites at Quillow 

and Ucker were in spring, at Stierngraben and Dauergraben in summer. In contrast, 

significant monotonic trends were found at most of the stream water sampling sites. 615 

All significant trends of the 2nd component were positive. The linear trend comprised 

between 5 and 16 % of the variance of the time series, while the LOESS smooth 

comprised between 4 and 25 %.  
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Values of the 3rd component showed a clear seasonal pattern with maxima in 

summer (Figure 6). Between 30 and 60 % of the variance were assigned to the 620 

seasonal signal. The only exception was site D_112 were the seasonal pattern was 

distorted by strong maxima in the winters of 2003, 2004 and 2007. Only at four sites 

significant linear trends were found. All of them were negative, comprising between 6 

and 13 % of the variance. The LOESS smooth depicted between 0 and 21 % of the 

variance.  625 

For the 4th component, significant seasonal patterns with maxima in summer were 

observed at 7 of the 13 analysed series, comprising between 17 and 61 % of the 

variance (Figure 6). Five sites showed a significant monotonic trend, comprising 

between 5 and 10 % of the variance. A negative trend was observed at site St_133 

only. Four sites showed a positive trend. The LOESS smooth depicted between 1 630 

and 16 % of the variance.  
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Figure 6 Fraction of variance of the time series of the Isomap component scores of 

sites with n > 50 assigned to the seasonal pattern (dark grey) and the trend 635 

estimated by the linear Theil-Sen estimator (mid grey) as well as the non-linear 

LOESS smooth (light grey). Fraction of variance is derived as R2 of the scores of the 

respective component with the seasonal pattern or the estimated trend. Only 

significant seasonal patterns and linear trends are shown. The sign of the linear 

Theil-Sen estimator is given in the respective line. The number of samples at each 640 

site is given in brackets. 
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Figure 7 Upper panel: Time series of scores of the 1st component at site Q_93 in 

black and the seasonal pattern estimated with Lomb-Scargle in grey. Lower panel: 645 

The de-seasonalised series in black and the non-linear trend estimated with LOESS 

in grey. The number of samples is given in brackets. 
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Figure 8 Left y-axis: LOESS smooth of time series of the 1st component at sites 650 

with n > 50 in grey. If a significant seasonal pattern was present, this was removed 

before smoothing. Right y-axis: LOESS smooth of the de-seasonalised groundwater 

level at four sites in black. The black dots mark the minima of the LOESS-smoothed 

series.  

 655 

5 Discussion 

5.1 Multivariate components 

Non-linear Isomap performed in this study only slightly better with respect to the 
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representation of interpoint distances than PCA (Table 2), suggesting that mainly 

linear relationships were of importance for the overall dynamics in the data set. As 660 

there were only minor differences, we will present in the following the results of 

Isomap only. 

For PCA and Isomap, the 1st component represents by definition the correlation 

structure that predominantly can be extracted from the set of variables as a whole. If 

all the loadings of the 1st component of a PCA have the same sign, it is a weighted 665 

average of all the analysed variables (Jolliffe, 2002; Jolliffe and Cadima, 2016). The 

stronger the analysed variables are linearly correlated, the more the 1st component 

approximates the arithmetic mean of all variables (for examples with hydrometric 

data see Lischeid, et al., 2010; Lehr et al., 2015). Furthermore, the 1st component 

serves as reference for all the subsequent components.  670 

In this study each sample of the multivariate water quality data set is uniquely 

defined by a sampling site and a sampling date. Thus, the 1st component depicted a) 

for each sampling site the pattern that was most prominent in the time series of the 

variables correlating with the 1st component, and b) between the sampling sites the 

difference in concentration level of those variables. High values of the 1st component 675 

indicate synchronous appearance of relatively high Eh and EC together with relatively 

high concentration of NO3
-, Cl-, SO4

2-, Na+, K+, Mg2+, Ca2+, DOC, O2 accompanied 

with relatively low temperature (Figure 3). 

The whole study region is characterized by relatively intense agriculture (Table 1). 

Thus, iIn addition to the natural background, we assume a general effect of the 680 

agricultural practice on the solute concentration level and the dynamics of the water 

quality series in the area. Enhanced concentration of NO3
-, Cl-, SO4

2- and Ca2+ is 

typical for groundwater and stream water in regions with intense agriculture 

compared to forested areas (Broers and van der Grift, 2004; Fitzpatrick et al., 2007; 

Lischeid and Kalettka, 2012). Nitrogen and potassium are the main ingredients of 685 

mineral fertilizers. Cl- and SO4
2- are the dominating anions in potassium fertilizers. 

SO4
2- is a major ingredient of phosphorus fertilizers and ingredient in some nitrogen 

fertilizers. Calcite is present in some nitrogen fertilizers or is applied separately via 

liming. DOC might be leached from slurry application or via tile drains after 
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mechanical destruction of topsoil aggregates during tillage (Graeber et al., 2012). In 690 

addition, cations from the soil matrix might be leached by an enhanced anion 

concentration (mainly NO3
-) (Jessen et al., 2017). Overall the application of fertilizers 

and other agricultural practices like tillage tend to enhance the solute concentration 

of seepage water (Pierson-Wickmann et al., 2009). Thus, we interpreted the 1st 

component as the enhancement of the natural background level of solute 695 

concentration due to agricultural practices. 

Compared to the 1st component, the relationships of the 2nd component with Eh, 

pH and O2 concentration were clearer expressed (Figure 3 and Figure S2). The 

range of the scores of the 2nd component was spanned by the lowest values in the 

deep groundwater and the highest values in the stream water (Figure 5 B) whereas 700 

shallow groundwater exhibited intermediate scores. This sequence corresponds to 

redox conditions expected in those water categories. Thus, we interpreted the 2nd 

component as a redox controlled component covering a sequence from reducing 

conditions in deep groundwater to post oxic conditions in shallow groundwater and 

oxic conditions in stream water. O2 and NO3
- concentration in deep groundwater 705 

samples usually was below the detection limit which is a common feature in this 

region (Merz et al., 2009). NO3
- in seepage and groundwater can be denitrified by 

microorganisms which use the oxidation of sulphides to sulphate as electron donor 

for denitrification (Massmann et al., 2003, Jørgensen et al., 2009). We ascribed the 

high SO4
2- and Fe2+ concentration to oxidation of pyrite (Figure 4 upper panel and 710 

Figure S2). Pyrite and other sulphides are abundant in the Pleistocenic sediments of 

North Germany (e.g. Weymann et al., 2010). Consequently, the pH decreases, 

calcite gets dissolved and the HCO3
- concentration increases. Part of the released 

Ca2+ replaces Na+ and K+ being sorbed to clay minerals.  

We interpreted the clear separation in the 3rd component between relatively low 715 

scores for the shallow aquifer and relatively high scores for the deep aquifer as 

reflection of two opposing gradients (Figure 5 C). High concentration of NO3
-, O2 and 

DOC and relatively high Eh values being negatively related to the 3rd component 

(Figure 3) is indicative for groundwater close to the surface, whereas enhanced 

concentration of the positively related solutes Na+, Mg2+ and Cl- is characteristic for 720 
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local upwelling of saline groundwater from the underlying Tertiary aquifers at greater 

depth (Hannemann and Schirrmeister 1998; Tesmer et al., 2007). The scores of the 

stream water samples, in turn, reflect the mixing ratio of groundwater from the two 

aquifers to the streamflow. We expect the baseflow maintained from the deep aquifer 

to be relatively enriched with geogenic solutes compared to the water that stems from 725 

the shallow aquifer or faster responding flow components like tile drain discharge and 

surface runoff. Water from the shallow aquifer is expected to be relatively enriched 

with surface born solutes compared to water that stems from the deep aquifer.  

The range of values of the 4th component was dominated by single extremely low 

scores, reflecting samples with high concentration of NH4
+, PO4

3-, and K+ (Figure S4). 730 

The catchments of the analysed streams are only sparsely populated and mainly 

characterized by intensive agriculture (Table 1). In agricultural landscapes slurry is a 

typical source in which those nutrients occur in high concentration (Hooda et al., 

2000). We are not aware of any other high-concentration sources of this combination 

of nutrients in the region. The little number of scores with very low scores implied that 735 

there were merely single events occurring at some of the sites only. This fits to the 

finding that the timing of slurry application is crucial for the amount of nutrient loss to 

the streams (Hooda et al., 2000; Cherobim et al., 2017). Thus, we interpreted the 

negative peaks of the 4th component as sporadic events of slurry application, being 

either unintentionally directly applied to the stream during the spreading of the slurry 740 

or being leached via surface runoff and tile drain discharge after application.We 

conclude that these negative peaks can be ascribed to slurry application, being either 

unintentionally directly applied to the stream or being leached via surface runoff and 

tile drain discharge after application.  

 745 

5.2 Multiple sites 

The interpretation of the 1st component as agriculturally induced enhancement of 

the natural background level of most of the water quality variables is consistent with 

the spatial pattern of median component scores at the different sites. The highest 

scores were found in the Dauergraben stream and in the Peege stream (Figure 5 A). 750 
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Both catchments are characterized by intense agriculture, a relatively dense network 

of tile drains, and hardly any buffer strips along the streams leading to a rapid 

transmission of solute enriched waters from the fields to the streams. In contrast, the 

Strom stream exhibited the lowest scores among all streams. Compared to the other 

streams, the valley of the Strom stream is clearly deep cut. Therefore, the Strom 755 

stream is expected to receive along its whole length continuous and substantial 

groundwater inflow from the deep aquifer. In addition, the valley slopes are covered 

with forest and not in agricultural use, acting as a buffer strip for the agricultural 

impact. Furthermore, the fraction of arable land in the Strom catchment is smallest, 

and the fraction of woodland is largest compared to the other catchments (Table 1). 760 

Main parts of the Strom catchment are situated within a nature conservation area 

furthermore limiting the agricultural impact in its riparian zone. 

Deep groundwater, shallow groundwater and the stream water were well 

separated by the 2nd component (Figure 5 B). Exceptions were the sites at the 

Peege, which are mainly supplied with water from tile drainage and the shallow 765 

aquifer and consequently yield median values similar to the shallow groundwater. 

The largest positive median values of the 2nd component, being higher than those of 

the other stream water sites, were observed at sites with less than 13 samples 

(Q_103 and Q_106) and at the site U_128 which received at least partly waters from 

a different region than the other stream water sites (Figure 1 and Figure 5 B). Thus, 770 

for the purpose of this study, we restricted our analysis on the spatial variability of the 

redox component to the categories of deep groundwater, shallow groundwater and 

stream water.  

However, we took a closer look at the non-linear structure that became apparent 

for the deep groundwater samples in some of the residual plots of the 2nd component 775 

(Figure S2). In addition, we related the groundwater values of the 2nd component to 

the 1st component and the HCO3
- and Fe2+ concentration (Figure 4). The negative 

relationship between the 2nd component and the 1st component in the deep 

groundwater suggests that the agricultural load represented by the 1st component 

acts as a driver for the sulphide oxidation represented by the 2nd component. Among 780 

all deep groundwater wells, the deepest groundwater well Gd_198 exhibited the 
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lowest scores of the 1st component (Figure 5 A) and the highest scores of the 2nd 

component (Figure 4 lower panel and Figure 5 B). This suggests that due to the 

relatively low agricultural load the oxidation of sulphides was the least pronounced 

among all deeper wells. Similar relationships between the extent of sulphate 785 

oxidation in the aquifer and agriculturally borne NO3
- input have been found in other 

studies (e.g., Zhang et al., 2009; Jessen et al., 2017 and references therein). 

We expected the ratio of groundwater from the deep aquifer contributing to the 

streamflow to increase in general with increasing catchment size. The Peege stream 

is mainly fed by the shallow aquifer and yielded consequently median values of the 790 

3rd component similar to the shallow groundwater sites (Figure 5 C). The streams of 

Quillow, Strom and Stierngraben, showed little higher median values, indicating the 

larger proportion of groundwater from the deep aquifer contributing to runoff 

compared to the Peege stream. The sites U_128 and D_112 showed the highest 

median values of the 3rd component among the stream water sites, being equal or 795 

even higher than those of the deep groundwater sites (Figure 5 C). Both sites have 

subsurface catchments that do not include the deep groundwater samplings sites in 

this study. Site D_112 is on the eastern side of the river Ucker, while all groundwater 

sampling sites are on the western side of it (Figure 1). In addition, its higher median 

value of the 3rd component was partly due to several peaks during the winter time. 800 

Those coincide with high values of Cl-. These might indicate road salt application, but 

we did not investigate this further, as it considered only this single site. Site U_128 is 

situated at the outlet of the lake Unteruckersee upstream of the confluence of the 

Quillow stream (Figure 1). There, we did not expect a contribution of the groundwater 

sampled in the Quillow catchment either.  805 

All the stream water sampling sites with negative peaks of the 4th component are 

located near arable fields which are known to get fertilised by slurry (Figure 5 D). For 

example the two most affected sites Q_102 and Q_103 receive slurry input from a 

large pig farm close by (personal communication G. Verch). Overall, only a few slurry 

input events accounted for 22% of the representation of the interpoint distances of all 810 

the water quality samples of the water quality data set in the Isomap projection 

(Figure 5 D). However, the performance of the representation of the interpoint 
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distances after adding the 4th component differed substantially between the different 

sites (Table S4). In case of site S_121 the representation of interpoint distances with 

four components (R2 = 0.68) was even slightly worse than with three components (R2 815 

= 0.66) (Table S4). This indicated an anomaly at this specific site compared to all 

other sites with respect to the 4th component, respectively the solutes which mainly 

determine the 4th component. We traced this phenomenon back to one single sample 

from the 25th of May 2004 which comprised relatively high DOC values and at the 

same time relatively low values of K+, which is opposing the relationships indicative 820 

for the 4th component (Figure 3). The deterioration of the representation of the 

interpoint distances after adding the 4th component at this site vanished in an Isomap 

analysis which was performed without this sample. We were not able to find an 

explanation for this exceptional sample. However, it underlined that by applying a 

dimension reduction method every single sample is put into perspective of the global 825 

features of the data set as depicted by the components. Overall, the 4th component 

underlines the necessity to develop and use methods in environmental data analysis 

which enable to consider non-linear processes as well as singular and site-specific 

events.However, the percentage of represented interpoint distances of all samples at 

a specific site ranged from < 1% to 42% for sites with n > 18 (Table S4). This 830 

underlines the necessity to develop and use such methods in environmental sciences 

which are able to consider non-linear processes and to deal with singular and site-

specific events. 

 

5.3 Long-term patterns 835 

Dominant changes were observed for the first two components (Figure 6). We 

interpreted the non-linear long term trend of the 1st component at most stream water 

sites (Figure 8) as the response of stream water quality to the interannual variability 

of depth to groundwater. An increase in the thickness of the unsaturated zone leads 

in general to longer residence time of seepage water, increasing retardation and 840 

buffering of topsoil seepage water, which is reducing the solute concentration 

originating from the surface in the seepage water and consequently reducing the 

values of the 1st component.  
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Trends similarly shaped to the non-linear trend of the 1st component of stream 

water quality were observed for the water level in the deep groundwater. In general, 845 

the turning points of the deep groundwater head time series lag behind those of the 

scores of the 1st component of the stream water sites by approximately 1.5 years 

(Figure 8). The earlier date of the turning point at groundwater gauge Gd_204 in 

October 2005 is most probably an artefact, caused by the effect of the large time 

gaps in 2006 and 2007 on the de-seasonalising at this site and has to be considered 850 

with care.  

We suggest that the time lag between stream water chemistry and water level in 

the deep aquifer is due to different response times to changes in the moisture 

conditions of the unsaturated zone. Compared to the relatively fast response of the 

stream water quality, the groundwater level in the deep aquifer reacts slower. In 855 

general, the overall trend of groundwater recharge reflects a relatively slow response 

to changes in the regional water balance. The velocity of seepage in the sediments of 

the upstream region of the Quillow catchment is estimated to be roughly 1 m per 

year.  

The seasonal patterns, i.e. the annual variability, in the time series of the scores of 860 

the 1st component in the streams were ascribed to transient hydraulic decoupling of 

the mostly affected topsoils from the streams in summer. Usually there is hardly any 

seepage during the dry summer months at all. This leads often to desiccation 

ofdrought in the uppermost stream reaches (left panel Figure 2; Lischeid et al., 

2017Merz and Steidl, 2015). Thus, shallow groundwater and tile drain discharge, 865 

both sources with relatively high agricultural load, did not contribute to stream 

discharge during these periods and larger areas of the catchment got hydraulically 

decoupled from the stream network (Merz and Steidl, 2015). Similar effects of the 

seasonal variability of the hydrological connectivity of streams, groundwater and tile 

drainage in agricultural catchments on the concentration level of agriculturally born 870 

solutes in the stream water have been reported, e.g. for NO3
- in the Schaugraben 

study catchment in the North of Germany (Wriedt et al., 2007) and for NO3
- and Cl- in 

the Kervidy-Naizin catchment in western France (Molenat et al., 2008; Aubert et al., 

2013). 
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The other dominant change of stream water chemistry observed in this study was 875 

the continuous increase of the 2nd component at most stream water sites (Figure 6). 

All of the sampling sites with very low values of the 2nd component were in the deep 

aquifer (Figure 5 B). The positive trends of the 2nd component at most stream water 

sites were ascribed to changes in the chemistry of the groundwater-borne baseflow. 

Considering the interpretation of the 2nd component, this translates into enhanced 880 

oxidation of geogenic sulphides in the deeper aquifer due to the continuous input of 

agriculturally born NO3
- and DOC and subsequent calcite dissolution. Geogenic 

sulphides, such as pyrite, serve as electron donors for denitrification. The 

consumption of the geogenic sulphides is irreversible and might lead to the depletion 

of the denitrification capacity in the deep aquifer in the long run (Merz et al., 2009; 885 

Zhang et al., 2009; Merz and Steidl, 2015). Consequently, buffering of NO3
- surplus 

from agricultural land use is expected to decrease and NO3
- concentration in the 

groundwater and the stream water is expected to increase. The hypothesised long-

term development should be of concern for the water resources and environmental 

protection agencies with respect to future water quality and related international 890 

commitments, such as the Water framework (EU, 2000), the Groundwater (EU, 2006) 

and the Nitrate directive (EU, 1991) of the European Union. Substantial time lags 

have to be considered for the response of groundwater quality to measures that 

reduce leaching of NO3
- (e.g. Pierson-Wickmann et al., 2009; Meals et al., 2010). In 

the Quillow catchment, we expect travel times in the order of magnitude of decades 895 

for the seepage water to reach the deep aquifer.  

We did not observe dominant changes for the other two water quality components 

during the course of the observation period. The main temporal feature of the 3rd 

component was a very distinct and steady seasonal pattern, as could be expected for 

the mixing ratio of groundwater from the deep aquifer. All stream water sites with n > 900 

50, except for D_112, showed a distinct seasonal pattern with maximum scores in the 

summer, which is consistent with the assumption that the fraction of deep 

groundwater in the streams is highest during this period (Figure 6). The seasonal 

pattern at site D_112 was disturbed by the winter peaks we ascribed to road salt 

application (section 5.2).  905 
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Because of its strong dependence from single events (Figure 5 D), the results of 

the estimation of the seasonal patterns and the trends of the 4th component have to 

be considered with care. The maxima of the seasonal pattern in summer at some 

sites were interpreted as reduced nutrient inputs to the stream due to nutrient uptake 

of plants and maximum buffering capacity of the unsaturated zone in summer. There 910 

were no indications for any effects of those events that we ascribed to the direct 

effect of slurry application on samples taken on the subsequent sampling dates at the 

affected sites. This is presumably due to the width of the sampling interval (Figure 2). 

In case of dependence of a component from single events, ‘change’ might be also 

related to clustering of those events during certain parts of the series, either for series 915 

at single sites or sets of series. Most of the ‘extreme’ events of the 4th component 

appeared during the first half of the observation period (not shown). However, 

because of the small number of clearly outstanding events, we did not investigate this 

further (Figure 5 D). 

In this study, the presented analysis of changes in water quality was limited by the 920 

temporal resolution of the data. Aspects such as long-term memory effects, as 

indicated by fractal scaling of solute series (Kirchner et al., 2000) and the observed 

scale-crossing non-self-averaging behaviour of solute series (Kirchner and Neal, 

2013) were not considered. However, we assume that the suggested use of 

multivariate components gives some robustness to the detected changes compared 925 

to the analysis of single solutes. 

 

5.4 Effects of the irregular sampling 

There was an obvious spatial bias with a focus on the Quillow catchment itself, 

conditioned by the focus of the monitoring (section 2.2, Figure 1). Stream sampling 930 

sites were only partly independent from each other, as the same streams had been 

sampled along different reaches. This needs to be considered in the interpretation of 

the components. In our exploratory approach, differences between subsequent 

stream reaches helped to identify the effects of tributaries or groundwater that 

recharged between the respective sampling sites. In that way, the stream was used 935 
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as a measurement device for biogeochemical processes and water-borne solute 

transport in different parts of the catchment and the interlinkages of groundwater and 

stream water.  

It is important to note that our approach does not require the same number of 

samples per siteidentical temporal sampling resolution at all sites (Figure 2). The 940 

derived components constitute a frame in which all samples are integrated 

independent of the number of sample per site. Thus, in our application we get the 

information of how those sites with very little samples group or behave in relation to 

the others. Even a few samples might indicate for example that the respective site 

behaves similar to other sites with respect to some components and very different 945 

with respect to other components. The influence of single samples for the integration 

of the different sites into the global pattern of the water quality relationships 

summarized by the 4th component is an illustrative example for that (section 5.2). 

Thus, even oOccasional sampling at additional some sites helps assessing the 

strength of effects of the respective drivers at these sites and might support or 950 

contradict hypotheses on spatial variability and related long-term patterns of those 

influences. This information would be lost if those samples would be excluded 

beforehand.  

In addition, the approach followed here does not require identical temporal 

sampling resolution at all sites or synchronous sampling dates. Thus, a strictly 955 

regular sampling design, which is hardly feasible, is no prerequisite. Correspondingly, 

data from different monitoring programs could be used for a joint analysis.  

Sampling intervals at the sampling sites with N > 50 were not normally distributed 

and biased towards deviations that are longer than the median (right panel Figure 2). 

Several series exhibited large time gaps. However, as sampling intervals did not 960 

change systematically throughout the monitoring period we assume that the effects 

on the results of the significance test with Mann-Kendall were negligible (section 3.2). 

In comparison, the trend estimations with Theil-Sen estimator and LOESS are more 

robust, as they incorporate the exact sampling dates explicitly in the calculations. 

Thus, we do not expect major effects on the sign of the Theil-Sen estimator or the 965 

general shape of the LOESS smooth at the given temporal resolution.  
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In general, the interpretation of the components should consider the temporal 

structure of the data set. For example in this study the drying out of the streams at 

the Peege sites and the most upstream sites of the Quillow in summer was the most 

important systematic deviation from an otherwise roughly similar sampling across 970 

seasons (left panel Figure 2). This information was included in the interpretation of 

the 1st component (section 5.3). If the monitoring would in general not have been 

performed roughly similarly across seasons, e.g. if one or more seasons would in 

general be missing, the estimation of the seasonality would not be applicable. If the 

monitoring would be such that there would be different seasons sampled in different 975 

years, this would have to be considered in the estimation of the trend.  

There was an obvious spatial bias with a focus on the Quillow catchment itself, 

conditioned by the focus of the monitoring (section 2.2, Figure 1). Stream sampling 

sites were only partly independent from each other, as the same streams had been 

sampled along different reaches. This needs to be considered in the interpretation of 980 

the components. In our exploratory approach, differences between subsequent 

stream reaches helped to identify the effects of tributaries or groundwater that 

recharged between the respective sampling sites. In that way, the stream was used 

as a measurement device for biogeochemical processes and water-borne solute 

transport in different parts of the catchment and the interlinkages of groundwater and 985 

stream water.  

 

5.5 Exploratory framework 

The application of a dimension reduction approach was motivated by the 

assumption that drivers influencing water quality usually affect more than one solute, 990 

and that single solutes are affected by more than one driver. Like in preceding 

studies (e.g., Lischeid and Bittersohl, 2008; Lischeid et al., 2010), the representation 

of water quality data in low-dimensional space required only a few components to 

capture the ‘main features’ of the data set. Non-linear Isometric Feature Mapping 

performed in this study only slightly better with respect to the representation of 995 

interpoint distances than PCA (Table 2), suggesting that mainly linear relationships 
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were of importance for the overall dynamics in the data set.  

Whether the relationships in the data set are mainly linear ones, as in this study, or 

whether there are considerably non-linear relationships as well, This is usually not 

known in advance. Thus, if the aim is to consider and check for possible non-linear 1000 

relationships in the analysis we recommend using PCA as a linear benchmark for 

Isomap (demonstrated by Lischeid and Bittersohl, 2008). In a straightforward way this 

allows for 1) assessing whether the dominant correlation structures in the data set 

are mainly linear or non-linear, and 2) identifying those components, samples, sites 

and periods deviating from the linear behaviour as captured by the PCA.  1005 

Based on the correlation of component scores and residuals, we formulated for 

each considered component a hypothesis on a dominant driver influencing water 

quality. Again, whether the relationships are linear, as it was for most of the global 

relationships in this study (Figure S1-S4), is usually not known beforehand. 

Summarizing the relationships between residuals and components with Spearman 1010 

rank correlation enables to consider non-linear relationships between residuals and 

components as well, as long as they are monotonic. However, the main benefit in this 

study was that Spearman rank correlation is less sensitive to extreme values 

compared to Pearson correlation. This concerned especially the assessment of the 

relationships of the residuals of SO4
2- and Cl- with the 2nd component and the 1015 

residuals of PO4
3- and NH4

+ with the 4th component (Figure S2 and S4), which were 

way stronger expressed with Pearson correlation due to a few single extreme values. 

The assessment of the relationships of scores and residuals with Spearman rank-

correlation considers non-linear monotonic correlations and is less sensitive to 

extreme values compared to Pearson correlation. The derived correlations differ from 1020 

default loadings of PCA, which are defined as the coefficients of the linear 

combination of the analysed variables which is used to calculate the principal 

component scores. Those coefficients, scaled by the square root of the eigenvalue of 

the respective component, are equivalent to the Pearson correlation of PCA 

component scores and analysed variables. It is important to note that the differences 1025 

in the evaluation of the correlations of components and the measured variables might 

lead to different interpretations of the components.  
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The treatment of censored values can substantially affect the derived components 

and the subsequent interpretation of the results and has to be considered carefully 

(Helsel, 2012 and references therein). For the application of Isomap, it is required to 1030 

provide numerical values for the values below the detection limit. For simplicity, we 

here used half the detection limit as a maker for values below the detection limit. We 

checked for the effect of this substitution by comparing the Isomap results of the 

presented analysis with another Isomap analysis in which we excluded the two most 

affected variables NO2
- and PO4

3- (Figure S4). The correlation of the Isomap scores 1035 

of the interpreted components 1 to 4 of version 1 (with NO2
- and PO4

3-) vs. version 2 

(without NO2
- and PO4

3-) yielded a R2 of cp1: 0.99, cp2: 0.98, cp3: 0.97, cp4: 0.64. 

The comparison of the two versions with respect to the Spearman rank correlations 

of Isomap scores of the first four components and the residuals (please see Figure 3 

for the respective values of version 1) yielded a R2 of cp1: 0.98, cp2: 0.99, cp3: 0.99, 1040 

cp4: 0.88. Thus the first three components are virtually identical. The 4th component 

is affected, because PO4
3- is one of the important variables for this component 

(Figure 3). Still, the similarity of the correlations of Isomap scores and the 4th 

component of both versions suggests that the characteristics of the 4th component 

were not merely introduced by the substitution of the values below the detection limit 1045 

for PO4
3-. Thus, overall, the substitution did not substantially affect the interpretation 

of the considered components. For data sets which are more heavily affected by 

censored values other dimension reduction methods such as the rank based 

approaches suggested by Helsel (2012) should be preferred. 

For data sets in which the number of measured variables differs between the sites 1050 

there is a trade-off between number of considered variables vs. number of 

considered sites. Depending on the focus of the study different selections of the data 

set can be used. For example if the main focus of the study is to analyse the 

multivariate water quality dynamics in detail it might be worthwhile to disregard some 

sites to be able to include more variables. If the focus is to maintain the spatial 1055 

coverage of the monitoring, like in this study, more sites might be of more value than 

additional variables. Depending on the available resources a third option would be to 

perform two analyses, one focusing on more variables, one on more sites, and 

comparing the results. If it is possible to link the considered components, like we did 
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in the preceding paragraph, this proceeding can be used for spatial extrapolation of 1060 

the hypotheses derived from the version which included more variables. However, in 

our case the sketched trade-off was not dramatic. Thus, we excluded only the 

variables with more than 5% missing values (section 2.2) to keep the possible effect 

of any method of replacement rather low. 

To prevent adding variables with little information gain it is recommendable to 1065 

perform a correlation analysis beforehand and rule out highly correlated variables. 

For this purpose we recommend not to rely only on a numerical measure of 

correlation, but to visually examine the scatterplots of the respective variables to 

check for systematic deviations from the global relationship. There might be e.g. 

some sites or seasons in which the otherwise tight relationship gets weaker pointing 1070 

to local or temporal phenomena. 

Technically it is possible to combine other data than solutes (e.g. sediment data, 

biological indicators, etc.) together with the solutes in one joined data set for the 

derivation of the components. However, the multivariate components derived by the 

dimension reduction approach are the basis of the subsequent interpretation of the 1075 

results. It has to be considered as well that all included variables are equally 

weighted due to the z-scaling prior to the dimension reduction. Thus, including other 

types of data might in some cases complicate the interpretation. In general, we 

recommend not to mix variables with different scales of measures (e.g. nominal 

variables and ratio scaled variables) in the data base for the derivation of the 1080 

components. 

Instead, data which was not used in the derivation of the components can be used 

as additional information for their interpretation. For example in this study, we used in 

additionComplementary, we used for the derivation of the hypotheses  to the 

spatiotemporal features of the components in combination with the spatial order of 1085 

the sampling sites, other variables like groundwater level series, Fe2
+ and HCO3

- 

concentration from the groundwater samples, the spatial distribution of land use, and 

expert knowledge on the study area for the derivation of the hypotheses. A thorough 

testing of the hypotheses, for example through hydrochemical modelling or numerical 

experiments with virtual catchments was out of the scope of this study.  1090 
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However, an interpretation of the components as distinct drivers is no prerequisite 

for the further analysis of the components. In any case, the components constitute, 

and can simply be used as, a condensed representation of similar behaviour among 

the analysed variables according to the constraints of the used dimension reduction 

method.  1095 

For PCA and Isomap each component describes subsequently the correlation 

structure that is most prominent in the remainder of what has not already been 

assigned to the higher-ranked components. This implies that each component has to 

be interpreted with respect to the higher ranked components. Also, the consideration 

of the respective other components in the interpretation of a component can be 1100 

helpful to carve out its characteristics as it was done here with the residuals of the 

multiple linear regression of the respective three other components and the 

measured variables (e.g. Figure S1). Beyond that, it can be helpful to elucidate the 

interaction of the components as it was done here e.g. for scores of the 1st and 2nd 

component (Figure 4 lower panel). 1105 

The sites differed substantially with respect to the median values of the four 

analysed multivariate components (Figure 5). However, these components comprised 

the largest fraction of the interpoint distances at any single site with more than 18 

samples (Table S4). We conclude that our results identified major regional 

phenomena rather than site-specific peculiarities. This is consistent with the prior 1110 

assumptions that there are a few dominant drivers which determine the main 

influencing stream water and groundwater quality dynamics in the region. were in fact 

the same at all sites.  This gives some confidence to hypothesize that these drivers 

presumably play a major role even in adjacent catchments that have not been 

sampled so far.  1115 

To detect and characterize the dominant changes in the multivariate water quality 

data we explored whether there were shifts in time in specific components, whether 

they were linear or non-linear in nature, and if trends did occur at many or only at 

single sites. For example for the scores of the 1st component, the Mann-Kendall 

approach identified monotonic trends at various stream water sampling sites (Figure 1120 

6). However, the linear trend estimation failed to detect the non-linear trend that was 
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observed at many series (Figure 8). This reflects the well-known sensitivity of global 

linear trend estimation to low-frequency patterns that are not entirely covered by the 

observation period (Koutsoyiannis, 2006; Milliman et al., 2008; Lins and Cohn, 2011).  

The LOESS smooths of the de-seasonalised series, on the other hand, did clearly 1125 

reveal the similarity between the long term behaviour of groundwater level in the 

deep aquifer and series of the 1st component. In our exploratory approach, the 

LOESS smooth of the de-seasonalised series served as a descriptive tool for 

illustrating rather than for proving non-linear long-term patterns. No significance test 

was applied. The outcome of the LOESS smoother highly depends on the 1130 

parameterisation of the approach (i.e., the degree of smoothness) that would have to 

be justified prior testing of significance.  

 

6 Conclusions 

We suggested and tested an exploratory approach for the detection of dominant 1135 

changes in multivariate water quality data sets with irregular sampling in space and 

time. The combination of the selected methods aimed to provide a broadly applicable 

exploratory framework for typical existing monitoring data sets, e.g. from 

environmental agencies, which are often characterized by relatively low sampling 

frequency and irregularities of the sampling in space and / or time. In the approach, 1140 

we applied a dimension reduction method to derive multivariate water quality 

components and analysed their spatiotemporal features with respect to changes that 

concerned more than single sites, short-term fluctuations or single events.  

The components can be used irrespective of an interpretation as drivers 

influencing water quality. By definition, the components are a sparse description of 1145 

the common dynamics among the water quality variables. Thus, similar behaviour in 

space and time among the water quality variables as well as systematic changes in 

the multivariate water quality data can be addressed in a purely descriptive manner. 

This can be used for example to test the often implicit assumption of constant 

boundary conditions of scientific process and modelling studies. Furthermore, the 1150 

components and their spatiotemporal features per se can serve as reference for 



53 

further studies, e.g. detailed process studies with higher temporal resolution, and the 

assessment of future developments of water quality in an area. In this study, the 

components were used to develop hypotheses on dominant drivers influencing water 

quality and to analyse the temporal and spatial variability of those influences.  1155 

It is emphasized that the presented approach is readily applicable with data from 

common monitoring programs without specific requirements concerning sampling 

frequency or regular distribution of sampling sites, sampling dates, and sampling 

intervals, except that there should be no systematic bias in the respective distribution. 

Even variables which have to be excluded from the derivation of the components, for 1160 

example because of the amount of missing values or because they have been 

monitored only at subsets of the sampling sites, can be related to the components as 

additional information for their interpretation. For example in this study we used the 

concentration of Fe2+ and HCO3
- in the groundwater as additional information for the 

interpretation of the 2nd component. Thus the approach allows an efficient use of 1165 

existing monitoring data as well as the consideration of often neglected ‘irregular’ 

pieces of data from e.g. pilot studies or single sampling campaigns. Irregularities in 

the structure of a data set are not seen as fundamental hindrance, but as additional 

source of information. We see this as a major advantage for the analysis of 

comprehensive water quality monitoring programs, both from a scientific perspective 1170 

and from a more applied point of view of e.g. water resources and environmental 

agencies. Therefore, we recommend the approach especially for the exploratory 

assessment of existing long term low frequency multivariate water quality monitoring 

data sets. 

 1175 

Data availability 

A selection of R-scripts that covers the main steps of the exploratory framework is 

provided at doi: 10.4228/ZALF.2017.340http://open-research-

data.ext.zalf.de/ResearchData/2017_340.html under CC-BY 4.0 licence. It comes 

together with the water quality data used in this manuscript and some examples of 1180 

exploratory plots not included in this manuscript. 
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Appendix A  

Lomb-Scargle 

A given discrete time series  with  and centred around zero can be 

described as a superposition from sin- and cos-terms with amplitudes a and b, time 

, angular frequency  and a noise term . 1535 

 (1) 

Lomb (1976) introduced an additional factor Tau to consider for deviations from the 

evenly spaced case. 

 (2) 

 1540 

The constant  scales the term to the centre of the period covered 

by the series for every frequency j. If the starting point of the series is set to zero tave 

enables to correct for offsets between the spectral components and thus allows to 

correctly reconstruct the original series out of its spectral components (Hocke 1998; 

Hocke and Kämpfer, 2009). 1545 

With these two extensions of the time term, equation 1 can be rewritten as  

  (3) 

with amplitude and phase .  

The Lomb-Scargle periodogram  (equation 4) normalized with the total variance 

of the data  equals the linear least square fit of the time series model in equations 1550 

1 and 3 for a certain frequency (Lomb, 1976; Press et al., 2007).
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 (4)  

The amplitudes a and b can be computed out of the square root of the corresponding 

sin- and cos-terms of the normalized Lomb-Scargle periodogram, which yields the 

normalized power spectral density at certain frequencies (Hocke and Kämpfer, 2009).  1555 

     (5) 

Different modified series can be reconstructed out of any set of spectral components. 

So the method might be used i.e. as band-pass-filter or filling of gaps in the series 

(Hocke and Kämpfer, 2009).  

The number of frequencies in which the series is decomposed is calculated with the 1560 

empirical formula derived out of Monte Carlo simulations by Horne and Baliunas 

(1986) (Glynn et al., 2006; Press et al., 2007). 

  (6) 

The false-alarm probability or statistical significance level  of the  value at a 

certain frequency is calculated with equation (Scargle, 1982; Glynn et al., 2006; 1565 

Press et al., 2007). 

 (7) 

 is the number of test frequencies which is here set to  and z is the tested 

value of 
 
at a certain frequency. To diminish aliasing, which means reappearing 

of higher frequencies' power in the power of lower ones, the highest test frequency is 1570 

set to the Nyquist-rate . Because of the irregular sampling, the 
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sampling rate  is approximated here by the average sampling interval 

. The lowest test frequency is the inverse of the sampling range 

 (Scargle, 1982; Press et al., 2007). 

Although  should be the number of independent frequencies in the signal it is 1575 

possible that frequencies lying close to each other ‘share’ the same underlying 

trigger. This leakage of power is promoted by the uneven sampling and oversampling 

of the frequency domain M > N (Scargle, 1989; Horne and Baliunas, 1986). In 

addition, the effect may be enhanced because of local high sampling density, 

autocorrelation in the data or very strong momentum of the underlying trigger. 1580 

With regard to these circumstances, which apply especially for the groundwater level 

series in this study, only the ‘dominant’ frequencies were used to identify seasonal 

patterns. The term ‘dominant’ frequency is used here for the peaks in between 

groups of significant frequencies. If such groups build ‘significance-plateaus' the 

median of this plateau is taken as dominant frequency.  1585 
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Supplementary material 
 

Table S1 Stream water sampling sites. The abbreviation in the ID refers to the 

corresponding catchment. N: number of samples. 1590 

 

ID N Easting Northing Catchment 

D_112 126 3426969 5916330 Dauergraben 

U_128 114 3423416 5907370 Ucker 

St_133 124 3420262 5891835 Stierngraben 

S_118 118 3421173 5907839 Strom 

S_120 1 3418025 5906225 Strom 

S_121 23 3416348 5905013 Strom 

S_122 1 3412048 5903419 Strom 

Q_93 126 3422251 5908887 Quillow 

Q_95 125 3420582 5910416 Quillow 

Q_96 11 3420084 5913122 Quillow 

Q_97 126 3419850 5913404 Quillow 

Q_98 127 3417941 5913091 Quillow 

Q_100 110 3412572 5912708 Quillow 

Q_104 71 3409712 5912268 Quillow 

Q_106 12 3406372 5912814 Quillow 

Q_102 11 3410569 5911755 Quillow 

Q_103 8 3408376 5910401 Quillow 

P_107 78 3410047 5912392 Peege 

P_108 61 3408727 5914397 Peege 

P_109 8 3410232 5916180 Peege 

P_110 51 3410858 5917416 Peege 
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Table S2 Sampling sites for groundwater quality and groundwater level. The 

abbreviation in the ID refers to the corresponding catchment. The subscripts Gs = 1595 

shallow groundwater and Gd = deep groundwater give additional information on the 

respective groundwater layer. All groundwater wells are inside the Quillow catchment. 

N: number of samples. 

 

        Depth of screen Depth of screen 

ID N Easting Northing m (a.s.l) m below ground 

Gd_205 2 3416412 5911941 40.55 - 38.55 15 - 17 

Gd_204 25 3412546 5912702 49 - 47 16 - 18 

Gs_200 6 3410020 5912439 74.10 - 73.10 4.0 - 5.0 

Gs_199 18 3409934 5912302 72.20 - 71.20 3.0 - 4.0 

Gd_198 28 3409934 5912302 51.27 - 53.27 22 - 24 

Gs_202 11 3409863 5912702 74.14 - 73.14 4.0 - 5.0 

Gd_201 25 3409863 5912702 65.79 - 63.79 12.5 - 14.5 

Gd_203 25 3409764 5912942 63.46 - 61.46 16 - 18 
  1600 
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Table S3 Measurement details of the analysed variables. Before the data analysis 

NH4
+ was calculated from NH4-N, PO4

3- from o-PO4-P, and the concentration of 

HCO3
- was converted from mmolL-1 to mgL-1. 

 

Abbreviation Parameter Unit Measuring 
accuracy / 
detection 
limit 

missing 
values 
in % 

n samples 
< detection 
limit in % 

Stream water and groundwater         

pH pH value  0.01 0 0 

Eh Redox potential mV 1 0.57 0 

EC Electric 
conductivity 

µScm-1  1 0 0 

Temp Water 
temperature 

°C 0.1 0 0 

O2 Oxygen mgL-1 0.1 1.91 0.25 

NH4-N Ammonium 
nitrogen 

mgL-1 0.01 0.57 0.76 

o-PO4-P Phosphorus of 
orthophosphate 

mgL-1 0.01 0 37.53 

DOC Dissolved 
organic carbon 

mgL-1 0.05 3.44 0 

Anions      

Cl- Chloride mgL-1 0.03 0 0 

NO2
- Nitrite mgL-1 0.03 2.54 65.52 

NO3
-  Nitrate mgL-1 0.03 0.38 2.93 

SO4
2- Sulfate mgL-1 0.02 1.34 0 

Cations      

Na+ Sodium mgL-1 0.01 0 0 

K+ Potassium mgL-1 0.02 0 0 

Mg2+ Magnesium mgL-1 0.02 0 0 

Ca2+ Calcium mgL-1 0.03 0 0 

Only groundwater         

Fe2+ Iron(II) mgL-1 0.03 0 8.57 

HCO3
-  Hydrogen 

carbonate 
mmolL-1 0.01 6.43 0 

 1605 
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Table S4 Site-specific cumulated R2 of the reproduction of the interpoint distances of 

the data in the projection by the first four components of Isomap at sites with n > 15. 

Subscripts: P = Peege, Q = Quillow, S = Strom, St = Stierngraben, U = Ucker, D = 

Dauergraben, Gs = shallow groundwater, Gd = deep groundwater. 1610 

 

ID Gd_203 Gd_201 Gd_198 Gd_204 Gs_199 P_110 P_108 
PQ_10

7 
Q_104 Q_100 

 N 25 25 28 25 18 51 61 78 71 110 

 Cp. 1 0.1 0.6259 0.01 0.154 0.01 0.25 0.367 0.112 0.21 0.27 
 Cp. 2 0.33 0.696 0.254 0.331 0.08 0.38 0.468 0.27 0.33 0.61 
 Cp. 3 0.49 0.79 0.63 0.51 0.21 0.45 0.565 0.534 0.41 0.64 
 Cp. 4 0.549 0.8 0.74 0.556 0.29 0.596 0.97 0.65 0.745 0.8 
 

  ID Q_98 Q_97 Q_95 Q_93 S_121 S_118 St_133 U_128 D_112 
  N 127 126 125 126 23 118 124 114 126 
  Cp. 1 0.33 0.365 0.2 0.11 0.35 0.15 0.3 0.11 0.54 
  Cp. 2 0.43 0.46 0.31 0.24 0.43 0.254 0.45 0.278 0.64 
  Cp. 3 0.59 0.58 0.35 0.3 0.687 0.39 0.59 0.41 0.73 
  Cp. 4 0.72 0.66 0.678 0.72 0.665 0.769 0.67 0.523 0.83 
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Figure S1 Residuals of the multiple linear regression of selected single variables 

and component 2-4 vs. scores of component 1. Grey filled dots: stream water. Light 1615 

grey open circles: shallow groundwater. Black x-mark: deep groundwater. 
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Figure S2 Residuals of the multiple linear regression of selected variables on 

component 1, 2 and 4 vs. scores of component 2. Grey filled dots: stream water. 1620 

Light grey open circles: shallow groundwater. Black x-mark: deep groundwater. 
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Figure S3 Selection of residuals of the multiple linear regression of single variables 

and component 1, 2 and 4 vs. scores of component 3. Grey filled dots: stream water. 1625 

Light grey open circles: shallow groundwater. Black x-mark: deep groundwater. 
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Figure S4 Selection of residuals of the multiple linear regression of single variables 

and component 1-3 vs. scores of component 4. Grey filled dots: stream water. Light 1630 

grey open circles: shallow groundwater. Black x-mark: deep groundwater. 


