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Abstract 10 

No synthesized global gridded runoff product, derived from multiple sources, is available despite such a product being useful 

to meet the needs of many global water initiatives. We apply an optimal weighting approach to merge runoff estimates from 

hydrological models constrained with observational streamflow records. The weighting method is based on the ability of the 

models to match observed streamflow data while accounting for error covariance between the participating products. To 

address the lack of observed streamflow for many regions, a dissimilarity method was applied to transfer the weights of the 15 

participating products to the ungauged basins from the closest gauged basins using dissimilarity between basins in 

physiographic and climatic characteristics as a proxy for distance. We perform out-of-sample tests to examine the success of 

the dissimilarity approach and we confirm that the weighted product performs better than its 11 constituents products in a 

range of metrics. Our resulting synthesized global gridded runoff product is available at monthly time scales, and includes 

time variant uncertainty, for the period 1980 – 2012 on a 0.5o grid. The synthesized global gridded runoff product broadly 20 

agrees with published runoff estimates at many river basins, and represents well the seasonal runoff cycle for most of the 

globe. The new product, called Linear Optimal Runoff Aggregate (LORA), is a valuable synthesis of existing runoff 

products and will be freely available for download on geonetwork.nci.org.au. 

Introduction 

Runoff is the horizontal flow of water on land or through soil before it reaches a stream, river, lake, reservoir or other 25 

channels. It has been widely used as a metric for droughts (Shukla and Wood, 2008; van Huijgevoort et al., 2013; Bai et al., 

2014; Ling et al., 2016) and to understand the effects of climate change on the hydrological cycle (Ukkola et al., 2016; Zhai 

and Tao, 2017). Accurate estimates of runoff are critical to inform climate change adaptation strategies, to guide appropriate 
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water management in agriculture (Nyamadzawo et al., 2012), and to enable the assessment of the impact of anthropogenic 

activities on ecosystems (Vörösmarty et al., 2010), yet direct measurement of runoff at large scales is simply not possible.  

While runoff observations do not exist, direct streamflow or river discharge observations - basin integrated runoff - have 

been archived in many databases. The most comprehensive international streamflow database is the Global Runoff Data 

Base (GRDB; www.bafg.de), which consists of daily and monthly quality-controlled streamflow records from more than 5 

9500 gauges across the globe. Geospatial Attributes of Gages for Evaluating Streamflow version II (GAGES-II) represents 

another noteworthy streamflow database, consisting of daily quality-controlled streamflow data from over 9000 US gauges. 

Hydrological and land surface models are capable of producing gridded runoff estimates for any region across the globe 

(Sood and Smakhtin, 2015; Liu et al., 2016; Kauffeldt et al., 2016). However, these runoff estimates suffer from 

uncertainties due to shortcomings in the model structure and parameterization and the meteorological forcing data (Beven, 10 

1989; Beck, 2017a). There are various ways to use streamflow observations for improving the runoff outputs from these 

models. The conventional approach consists of model parameter calibration using locally observed streamflow data (see 

review by Pechlivanidis et al., 2011). Another widely used method is through regionalization; that is, the transfer of 

knowledge (e.g., calibrated parameters) from gauged basins to ungauged basins (see review by Beck et al., 2016). In 

contrast, several other studies attempted to correct the runoff outputs directly rather than the model parameters, for example 15 

by bias-correcting model runoff outputs based on streamflow observations ( see review by Ye et al., 2014), or by combining 

or weighting ensembles of model outputs to obtain improved runoff estimates (e.g., Aires, 2014). There are, however, 

relatively few continental- and global-scale efforts to improve model estimates using observed streamflow.   

A broad array of gridded model-based runoff estimates are freely available, including ECMWF’s Interim reanalysis (ERA-

Interim ; Dee et al., 2011), NASA’s Modern Era Retrospective-analysis for Research and Applications ( MERRA) Land  20 

(Reichle et al., 2011), the Climate Forecast System Reanalysis (CFSR; Tomy and Sumam, 2016), the second global soil 

wetness project (GSWP2; Dirmeyer et al., 2006), the Water Model Intercomparison Project (WaterMIP; Haddeland et al., 

2011), and the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004). Recently, the eartH2Observe project 

has made available two ensembles (tier-1 and -2) of state-of-the-art global hydrological and land surface model outputs 

(http://www.earth2observe.eu/; Beck et al., 2017a; and Schellekens et al., 2017). Although these model simulations represent 25 

the only time varying gridded estimates of runoff at the global scale, they are subject to considerable uncertainties, resulting 

in large differences in runoff simulated by the models. Many studies have therefore evaluated and compared the gridded 

runoff models (see overview in Table 1 of Beck et al., 2017a).  

Despite the demonstrated improved predictive capability of multi-model ensemble approaches (Sahoo et al., 2011; Pan et al., 

2012; Bishop and Abramowitz, 2013; Mueller et al., 2013; Munier et al., 2014; Aires, 2014; Rodell et al., 2015; Jiménez et 30 

al., 2017; Hobeichi et al., 2018; Zhang et al., 2018), very little has been done to utilise this range of model simulations 

toward improved runoff estimates. This paper implements the weighting and rescaling method introduced in Bishop and 
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Abramowitz (2013) and Abramowitz and Bishop (2015) to derive a monthly 0.5° global synthesis runoff product. Briefly 

summarized, we use a bias correction and weighting approach to merge 11 state-of-the-art gridded runoff products from the 

eartH2Observe project, constrained by observed streamflow from a variety of sources. This approach also provides us with 

corresponding uncertainty estimates that are better constrained than the simple range of modelled values. For ungauged 

regions we employ a dissimilarity method to transfer the product weights to the ungauged basins from the closest basins 5 

using dissimilarity between basins as a proxy for distance. Such a synthesis product is in line with the multi-source strategy 

of Global Energy and Water EXchanges (GEWEX; Morel, 2001) and NASA’s Making Earth Science Data Records for Use 

in Research Environments (MEaSUREs; Earthdata, 2017) initiatives and is particularly useful for studies that aim to close 

the water budget at the grid scale. 

Sections 2.1 describes the observed streamflow data. Section 2.2 presents the participating datasets used to derive the 10 

weighted runoff product. Section 2.3 details the weighting method implemented in the gauged basins, while Section 2.4 

focuses on the ungauged basins. Section 2.5 examines the approach used to derive the global runoff product. We then present 

and discuss our results in Section 3 and 4 before concluding. 

Data and Methods 

2.1 Observed streamflow data 15 

We used observed streamflow from the following four sources: (i) the US Geological Survey (USGS) Geospatial Attributes 

of Gages for Evaluating Streamflow (GAGES)-II database (Falcone et al., 2010); (ii) the Global Runoff Data Base (GRDB; 

http://www.bafg.de/GRDC/); (iii) the Australian Peel et al. (2000) database; and (iv) the global Dai (2016) database. We 

discarded duplicates and from the remaining set of stations discarded those satisfying at least one of the following criteria: (i) 

basin area <8000 km2 (fewer than three 0.5 grid cells); (ii) record length <5 y in the period 1980–2012 (not necessarily 20 

consecutive); and (iii) low observed streamflow (i.e. around 0) that does not represent the total runoff across the basins due 

to significant anthropogenic activities. A river basin was identified with significant anthropogenic activities if it has > 20% 

irrigated area using the Global Map of Irrigation Areas (GMIA-Version 4.0.2; Siebert et al., 2007) or has > 20% classified as 

“Artificial surfaces and associated areas” according to the Global Land Cover Map (GlobCover-Version 2.3; Bontemps et 

al., 2011). In total 596 stations (of which 20 are nested in the basins of other stations) were found to be suitable for the 25 

analysis (Fig. 1).  

  

2.2 Simulated runoff data 

To derive the global monthly 0.5° synthesis runoff product, we used 11 total runoff outputs (from eight different models) and 

seven streamflow outputs (from six different models) produced as part of tiers 1 and 2 of the eartH2Observe project 30 

(available via ftp://wci.earth2observe.eu/).  The models and their available variables are presented in Table 1. For tier 1 of 
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eartH2Observe, the models were forced with the WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset 

(Weedon et al., 2014) corrected using the Climatic Research Unit Timeseries dataset (CRU-TS3.1; Harris et al., 2014). For 

tier 2, the models were forced using the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 

2017b). The runoff and streamflow values are provided in kg m-2s-1 and m3 s-1, respectively.  For consistency, the runoff 

outputs with resolution <0.5° were resampled to 0.5° using bilinear interpolation. In some cases, the river network employed 5 

by the model did not correspond with the stream gauge location, in which case we manually selected the grid cell that 

provided the best match with the observed streamflow. 

The runoff outputs were only used if no streamflow output was available and only in basins smaller than 100,000 km2. To 

make the runoff data consistent with the streamflow data, we integrated the runoff over the basin areas (termed Ragg, units 

m3 s-1). Thus, for basins smaller than 100,000 km2 the synthesis product was derived from 11 model outputs, whereas for 10 

basins larger than 100,000 km2 the synthesis product was derived from seven outputs. 

2.3 Implementing the weighting approach at the gauged basins  

At each gauged basin, we built a linear combination 𝜇q of the participating modelled streamflow datasets 𝑥 (i.e. Ragg in 

small basins and modelled streamflow, q, in large basins) that minimized the mean square difference with the observed 

streamflow Q at that basin such that: 𝜇q
j

= ∑ 𝑤k(𝑥k
j

−K
k=1 𝑏k) where 𝑗 ∈ [1, J] are the time steps and  𝑘 ∈ [1, K] represent 15 

the participating models, 𝑥𝑘
𝑗
 (i.e., Raggk

j
 in small basins and 𝑞k

j
 in large basins) is the value of the participating dataset in m3 

s-1 at the  jth time step of the kth participating model, the bias term 𝑏k is the mean error of  𝑥k in m3 s-1. The set of weights 𝑤k 

provides an analytical solution to the minimization of  ∑ (𝜇q
j

− 𝑄j)2J
j=1 , where 𝑄𝑗  is the observed streamflow at the jth time 

step (for derivation see Bishop and Abramowitz (2013)). 

We then derived the weighted runoff dataset by applying the computed weights on the bias corrected runoff estimates of the 20 

participating models. The weighted runoff dataset is expressed as:  

𝜇r
j

= ∑ 𝑤k(𝑟k
j

− b′k)

K

k=1

 

Where 𝑟k
j
 is the value of runoff estimate in kg m−2s−1 of the kth participating model at the jth time step and b′k is its runoff 

bias in kg m−2s−1.  

To calculate the runoff bias b′k, we assumed that for each model k and at each time j the bias ratio of a model (defined as the 25 

ratio of the model error to the simulated magnitude) is the same for streamflow and runoff estimates Eq. (1). In small basins, 

the bias ratio of modeled streamflow was calculated by using Raggk
j
 instead of the modeled streamflow 𝑞k

j
 Eq. (2). 

[
𝑞k

j
− Qj

𝑞
k
j =  

b′k

𝑟
k
j ]basin  (1) 
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[
Raggk

j
− 𝑄j

Ragg
k
j =  

b′k

𝑟
k
j ]basin  (2) 

To avoid over-fitting when applying the weighting approach, we limited the number of participating models so that the ratio 

of number of records to number of models does not fall below 10.  As a result of this, when required, we discarded the 

models that had the highest bias (i.e. left terms in Eq (1, 2)) until the threshold was met. The weighting and the bias 

correction occasionally resulted in negative runoff values, we replaced any negative values with zero. 5 

We implemented the ensemble dependence transformation process detailed in Bishop and Abramowitz (2013) to compute 

the gridded time-variant uncertainty associated with the derived runoff estimates, following the same approach as in 

Hobeichi et al. (2018). For any particular gauged basin, we first calculated the spatial aggregate of our weighted runoff 

estimate, Raggμ
, then quantified sr

2, the error variance of Raggμ
 with respect to the observed streamflow Q over time and 

space. We then transformed the constituent modelled estimates so that their variance about Raggμ
 at a given time step σr

2j
, 10 

averaged over all time steps where we have available streamflow data for the current basin, is equal to sr
2. This transformed 

ensemble provides us with uncertainty estimates that (a) are varying in time and space, and (b) accurately reflects our ability 

to reproduce the observed streamflow. It provides a much more defensible uncertainty estimate than simply calculating the 

standard deviation of the involved products. We then used √σr
2j

 as the spatially and temporally varying estimate of 

uncertainty standard deviation, which we will refer to below simply as ‘uncertainty’. For more details about how this 15 

technique was implemented we refer readers to Hobeichi et al. (2018). 

2.4 Deriving runoff estimates at the ungauged river basins 

Implementing the weighting approach requires observed streamflow to constrain the weighting, which we do not have at 

ungauged river basins (defined in section 2.1). To address this, we used the modelled and observed streamflow from the 

three most similar gauged river basins, based on pre-defined physical and climatic characteristics, to derive model weights at 20 

each ungauged basin. The selected gauged river basins served as donor basins to the ungauged receptor basins. We then 

implemented the weighting technique on the ensemble of 11 (in small basins) or eight (in large basins) model outputs by 

matching Ragg calculated across the selected donor basins with the observed streamflow. Finally, we transferred the weights 

and bias ratios computed at the donor basins to the receptor basin and subsequently computed the associated uncertainty 

values. 25 

Most of the gauged river basins were classified as donor basins. Some, however, were excluded from being donors where we 

found (based on Ragg or modeled streamflow time series and metric values) that none of the models was able to simulate the 

streamflow dynamics. These basins are mainly located in areas of natural lakes, in mountainous areas covered with snow, or 

in wet regions with intense rainfall. We therefore (subjectively) decided that those excluded basins should be assigned to a 

“non–donor and non–receptor” category.  30 
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We applied the method presented in Beck et al. (2016) to calculate a similarity index S between a donor basin a and a 

receptor basin b expressed as: 

𝑆a,b = ∑
|𝑍p,a−𝑍p,b|

IQRp

7
p=1  (3) 

Where p denotes the climatic and physiographic characteristics as in Table 4 of Beck et al. (2016). This includes aridity 

index, fractions of forest and snow cover, soil clay content, surface slope, and annual averages of precipitation and potential 5 

evaporation. 𝑍p,a  and 𝑍p,b are the values of the characteristic p at donor and receptor basins, respectively. IQRp is the 

interquartile range of characteristic p calculated over the land surface, excluding deserts (defined by an aridity index > 5, see 

Table 4 of Beck et al. (2016))  and areas with permanent ice (defined by climate zones Tundra, Subarctic and Ice cap using a 

simplified climate zones map created by the Esri Education Team for ArcGIS online (World Climate Zones – Simplified; 

Esri Education Team, 2014)). From Eq. 3 it follows that the most similar donor a to a receptor b is the one that has the 10 

lowest index value with basin b. We applied this approach to identify the 3 most similar donors for every receptor basin. 

In very large basins, physiographic and climatic heterogeneity can result in misleading basin-mean averages. We therefore 

excluded highly heterogeneous basins from the list of donors and classified them as ‘non-donor and non-receptor’ basins, 

and also broke up large heterogeneous receptor basins by climate groups into smaller basin zones and then treated them as 

separate basins to effectively receive sets of weights and bias ratios from the donor basins to the separate parts. Here we 15 

defined large heterogeneous basins as basins with areas greater than 1,000,000 km2 and covering climate zones that belong 

to at least two groups of 1) Tropical Wet, 2) Humid continental, Humid subtropical, Mediterranean and Marine, 3) Tropical 

Dry, Semi–arid and Arid, 4) Tundra, Subarctic and Ice cap and 5) Highlands. Climate classification is based on the 

simplified climate zones map (World Climate Zones te zones map; Esri Education Team, 2014) defined above.  Figure 2 

shows the spatial coverage of the donor basins, receptor basins and non-donor and non-receptor basins, and Fig. 3 20 

summarizes the steps carried out to derive the weighted runoff product for the global land.   

2.5 Out-of-sample testing 

To test that this approach is producing a runoff estimate at receptor basins (using transferred weights from the most similar 

gauged basins) that is better than any of the individual models, we performed an out-of-sample test. In this test, we selected a 

gauged basin and treated it as a receptor basin, constructing model weights by using the three most similar donor basins. We 25 

could then compare: (a) observed streamflow; (b) the in-sample weighted product (WPin) derived by using observed 

streamflow for this basin to weight models; (c) an out-of-sample weighted product (WPout) derived by constructing the 

weighting at the three most similar basins, and; (d) the individual model estimates at each basin. We calculated four metrics 

of performance for WPin, WPout and each of the 11 datasets: Mean Square Error  MSE=mean(Ragg – observed streamflow)2; 

Mean Bias=mean| Ragg – observed streamflow |; Correlation COR=corr(observed streamflow, Ragg) and Standard 30 

Deviation (SD) difference= σRagg − σobserved streamflow. We repeated the out-of-sample test for all the gauged basins (donor 

basins and non-donor and non-receptor basins). 
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We displayed the results of the out-sample-test by showing the percentage performance improvement of WPout compared to 

WPin  and each individual model, yielding 12 different values of performance improvement. If the approach is succeeding, 

we expect that both WPout and WPin will perform better than any of the models used in this study, and also WPin should be in 

better agreement with the observed streamflow when compared to WPout. 

We used box and whisker plots to show the results of performance improvement of WPout calculated relative to WPin and the 5 

11 datasets across all the gauged basins. The lower and upper hinges of a boxplot represent the first (Q1) and third (Q3) 

quartiles respectively of the performance improvement results and the line inside the boxplot shows the median value. The 

extreme of the lower whisker represents the maximum of 1) min(dataset) and 2) (Q1 - IQR), while the extreme of the upper 

whisker is the minimum of 1) max(dataset) and 2) (Q3 + IQR)), where IQR represents the interquartile range (i.e. Q3 - Q1 ) of 

the performance improvement results. A median line located above the 0 axis is an indication that the out of sample 10 

weighting offers an improvement in more than half of the basins.  

3 Results 

The results for the out-of-sample test are displayed in the box and whisker plots presented in Fig. 4 (a - d). 

The MSE and Mean bias plots in Fig. 4 (a and d) indicate that across almost all the gauged basins WPout performs better than 

each of the individual models. Similarly, the COR plot in Fig. 3 (c) shows that the out-of-sample weighting has in fact 15 

improved the correlation with observational data across almost all the gauged basins. The SD difference plot (Fig. 4 (b)) 

shows a significant improvement of WPout relative to the models, but the number of basins that benefit from this 

improvement decreased, perhaps because the variability of the individual members of the weighting ensemble is not 

necessarily temporally coincident at all the basins, resulting in decreased variability. The negative performance improvement 

of WPout  relative to WPin across all metrics (first boxplot, Fig. 4 (a-d)) indicates that the weighting performs better in-sample 20 

than out-of sample, which is to be expected. Critically though, the fact that the weighting delivers improvement over all 

models when the weights are transferred from similar basins indicate that the dissimilarity technique is succeeding and can 

be effectively used at the ungauged basins by feeding the weighting with data from the most similar basins with streamflow 

observations. 

Based on the improvement that the weighting approach implemented in both gauged and ungauged basins offers over Ragg 25 

estimates computed for 11 individual model runoff estimates, in terms of MSE, SD difference, COR and Mean Bias against 

observed streamflow data, we now present details of the mosaic of the individual weighted runoff estimates derived across 

all the basins that we name LORA. At the gauged basins, the weighting was trained with the Ragg of the modelled runoff at 

the individual basins and constrained with the observed streamflow. At ungauged basins, the dissimilarity approach was first 

implemented to find the three most similar basins, then the weighting was trained on the combined datasets from these three 30 
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basins. Subsequently, weights were transferred to the ungauged basins and applied to combine the runoff estimates at the 

individual basins.  

The eight modelled runoff datasets listed in Table 1 as part of the tier1 ensemble were recently included in a global 

evaluation by Beck et al. (2017a). In their analysis, they computed a summary performance statistic that they termed OS by 

incorporating several long-term runoff behavioural signatures defined in Table 3 of Beck et al. (2017a) and found that the 5 

mean of runoff estimates from four models only (LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) performed the best 

in terms of  OS̅̅̅̅  (i.e. mean of OS over all the basins included in their study) relative to each individual modelled runoff 

estimates and the mean of all the modelled runoff estimates. In this study, we calculated the mean runoff from the four best 

products found by Beck et al. (2017a), that is (LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG. Hereafter, we refer 

this as “Best4”, and we calculated four statistics (RMSE, SD difference, COR and Mean bias defined here as mean(dataset-10 

obs)) for Ragg computed from LORA, Best4 and each of the 11 runoff datasets across all the gauged basins. The boxplots in 

Fig. 5 (a-d) display the results. 

The RMSE plot in Fig. 5(a) shows that LORA has the lowest RMSE values with the observed streamflow. All of the 

component models exhibit a similar performance in RMSE. Similarly, LORA has overall the least SD difference with 

observations (Fig. 5 b) across more than half of the basins. The Mean bias plot in Fig. 5(d) shows a non-significant positive 15 

bias in LORA relative to the observation at the majority of the basins. Best4, HBV-SIMREG, PCR-GLOBWB and 

particularly LISFLOOD exhibit a positive mean bias across most of the basins but with much higher bias magnitude 

compared to that of LORA. HTESSEL and SURFEX estimates from both tiers (i.e tier1 and tier2) together with JULES 

(tier2) and WGAP3 show negative and positive bias distributed evenly across the basins. LORA shows the highest temporal 

correlation with the observed streamflow at more than half of gauged basins (Fig. 5 (c)). The low RMSE and Mean bias 20 

values relative to the other estimates is partly due to the bias correction applied before the weighting. While all the 

performance metrics calculated here show that LORA outperforms Best4, these metrics do not allow us to assess how well 

LORA performs in terms of bias in the runoff timing, replicating the peaks or representing quick runoff, with the exception 

of the correlation metric. These aspects were studied in more detail in Beck et al. (2017a) and showed that Best4 performs 

well in these performance metrics.  25 

All the models involved in deriving LORA with the exception of  HBV-SIMREG were found in the study of (Beck et al., 

2017a)  to show early spring snowmelt peak and an overall significant underestimation of runoff in the snow-dominated 

basins. To see how well LORA performs at high latitudes, we examined the gauged basins located at higher latitudes (>60°) 

and we calculated two statistics – COR and mean bias – as in Fig. 5 (c-d) but this time for the snow-dominated basins only. 

We display the results in Fig. 6. 30 

The temporal correlation plot in Fig. 6 (a) shows that LORA is in better agreement with observed streamflow at snow-

dominated basins compared to the ensemble of all the gauged basins on the globe (Fig. 5 (c)) with an overall average 

improvement of 7%.  Similarly, HBV-SIMREG shows an improved correlation with the observed streamflow at snow-
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dominated basins with an average improvement of 14%, this agrees with the results reported by Beck et al. (2017a) who 

attributed the improved performance of HBV-SIMREG in snow-dominated regions to a snowfall gauge undercatch 

correction. The overall performance of Best4 and LISFLOOD do not change in terms of spatial correlation; on the contrary, 

all the remaining products show a degraded performance. Figure 6 (b) shows that LORA exhibits small biases across snow-

dominated basins relative to participating models. Conversely, with the exception of LISFLOOD, all the tier1 products 5 

including Best4 show a negative mean bias across more than half of the snow-dominated basin, in particular HTESSEL, 

JULES, SURFEX and W3RA show a large negative bias at most of these basins. This agrees with the negative bias found in 

the study of Beck et al. (2017a) in all tier1 products except LISFLOOD.  These results indicate that LORA is likely to 

slightly overestimate runoff in high latitudes whereas all tier1 products with the exception of LISFLOOD tend to 

underestimate runoff in these regions, and that this underestimation is larger for HTESSEL, JULES, SURFEX and W3RA. 10 

Tier2 products show both positive and negative bias across the basins. Their bias is of a lower magnitude than that found in 

tier1 products. That is probably because the forcing precipitation used to derive tier 2 outputs (i.e. MSWEP) has less biases 

than that used to derive tier1 estimates (i.e. WFDEI corrected using CRU-TS3.1). We also calculated the two metrics, SD 

difference and mean bias as in Fig. 5 (a and b), but we found no noticeable differences in the performance of any of the 

products relative to that found globally in Fig. 5 (a and b). The results displayed in Fig. 5 and Fig. 6 are discussed further 15 

below.  

We calculated the seasonal relative uncertainty expressed as the ratio of average uncertainty to mean runoff (i.e. 

mean runoff uncertainty

mean runoff
) for the period 1980 – 2012. This metric is intended to show some indication of the reliability of the 

derived runoff, with results displayed in Fig. 7.  Regions in red show grid cells that satisfy 
mean runoff uncertainty

mean runoff
< 1, while 

those shown in yellow are regions where the value of mean runoff uncertainty are larger than the value of the associated 20 

mean runoff itself. Regions in blue are grid cells that have a zero mean runoff and hence an undetermined relative 

uncertainty.  The global maps in Fig. 7 show a consistent low reliability in Sahel, Indus basin, Parana, the semi-arid regions 

of Eastern Argentina, Doring basin in South Africa, red river sub-basin of the Mississippi, Burdekin and Fitzroy basins in 

North-East Australia and many regions of the Arab Peninsula. The areas at the higher latitudes in Asia and North America 

show high reliability during Jun-Jul-Aug and low reliability during the rest of the year. Parts of Madeiry sub-basin – a major 25 

sub-basin of the Amazon – show low reliability during June-Nov. The basins in Central America show high reliability in all 

seasons except in Mar-May while River basins in Somalia show low reliability during the austral summer and winter. River 

basins in the far east show low reliability in spring and autumn and a higher reliability in winter and summer. 

Figure 8 displays the seasonal cycles of Ragg for LORA and Best4 and the observed streamflow over 11 major river basins. 

To generate this plot, we calculated the average Ragg for each month over the period of availability of observed streamflow. 30 

The shaded regions represent the range of uncertainty aggregates associated with the derived runoff. In the Amazon basin, 

LORA overestimates runoff in the wet season and underestimates it in the dry season, but the observed streamflow during 
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the dry season still lies within the error bounds of LORA.  LORA shows good agreement with the observed cycle in the 

Mississippi. In the Niger and Murray-Darling basins, while LORA overestimates the observed streamflow, it shows a much 

better agreement compared to Best4 which strongly overestimates runoff. In the Parana basin, LORA underestimates the 

observed streamflow in all seasons except summer. In the subarctic basins, LORA shows different behavior within the 

individual basins. In Pechora and Olenek, LORA represents well the seasonal cycle and the magnitude of runoff, whereas in 5 

the Amur, Lena and Yenisei, LORA shows an early shift of the runoff peak and an overall overestimation of runoff. In the 

Indigirka, LORA overestimates the spring peak, but the observed seasonal cycle lies within the error bounds.   

 

 

Finally, we compared our mean annual runoff (mm/year) with those estimated by a well-known land surface hydrological 10 

model the Variable Infiltration Capacity (VIC; Liang et al., 1994) model in the study of Zhang et al. (2018) over comparable 

temporal and spatial scale for 16 large basins chosen from different climate zones on the globe. The mean annual runoff was 

computed over the period 1984 - 2010 instead of 1980 – 2012 to maximize the temporal agreement with the study of Zhang 

et al. (2018).  

Table 2 shows that for some basins VIC and LORA agree well in estimating mean annual runoff (i.e. difference between 15 

LORA and at least one of VIC and VIC adjusted for budget closure <10%). This threshold is met in the Amazon, Columbia, 

Congo, Danube, Mackenzie and Mississippi. The basins that show a larger difference between VIC and LORA but show that 

VIC estimates lie within the uncertainty bounds of LORA (i.e. between LORA-uncertainty and LORA+uncertainty) include 

the Indigirka, Olenek, Parana, Pechora, Yenisei and Yukon. Large discrepancies between VIC and LORA are found in Lena 

and the Murray-Darling. 20 

 

4 Discussion 

The results of the out-of-sample test suggest that deriving runoff estimates in an ungauged basin by training the weighting 

with streamflow data from similar basins - in terms of climatic and physiographic characteristics - is successful. While the 

runoff product derived by using weights from external basins outperforms the runoff estimates from the individual models, 25 

the weighted runoff derived in-sample offers overall even more capable runoff estimates. 

It follows from Fig. 2 and Fig. 7 that the runoff values computed over dry climates tend to be less reliable than those in other 

regimes. This is perhaps due to the biases in the WFDEI precipitation forcing that intensify in the arid and semi-arid regions 

and propagate in the simulated runoff (Beck et al., 2017a). Also, due the lower density of gauged basins in the arid and semi-

arid climates compared to other regimes, receptor basins are dominant over dry climates, which reduces the skill of the 30 

weighting to produce good runoff estimates.  This is also in line with our conclusions from Fig. 3 that the weighting provides 

more reliable results in the gauged basins.  
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All the tier1 model outputs involved in this study with the exception of HBV-SIMREG were found by Beck et al. (2017a) to 

show early spring snowmelt in the snow-dominated basins. Both the Yenisei and the Lena are large basins (2.6 and 2.4 

million km2, respectively), and hence – as noted in Sect. 2.2 – only models that had estimates of both streamflow and runoff 

were used to derive LORA at these basins, and therefore HBV-SIMREG – whose inclusion would have improved the 

weighting - was excluded. Beck et al. (2017a) also found that LISFLOOD has the best square root-transformed mean annual 5 

runoff among the tier1 datasets and perfoms well in terms of temporal correlation in all climates, this agrees with the high 

temporal correlation of LISFLOOD seen in Fig. 5 (c) and Fig. 6 (a), and also explains the highest weights attributed to 

LISFLOOD in the majority of snow-dominated basins. Because of this, and because LISFLOOD tends to overestimate 

runoff across half of the snow-dominated basins (as shown in Fig.6 (b)) LORA exhibits a positive bias across half of the 

snow-dominated basins (Fig. 6 (b)) and particularly in Lena, Amur and Yenisei basins  (Fig. 8) . 10 

Pan et al. (2012) and Sheffield et al. (2009) assumed that the errors in the measured streamflow are inversely proportional to 

the area of the basins and ranges between 5% and 10%. Whereas Di Baldassarre and Montanari (2009) analyzed the overall 

error affecting streamflow observations and found that these errors range between 6% and 42%. In earlier studies, the errors 

in streamflow  measurement were estimated to range from 10% to 20%  (Rantz, 1982; Dingman, 1994). In the study of 

Zhang et al. (2018), the error ratios of VIC were set to be 5%. In this study, we used the weighting approach to compute 15 

gridded uncertainty values based on the discrepancy between the Ragg of the derived runoff and the associated observational 

dataset in each gauged basin or alternatively, based on the discrepancy between Ragg of the derived runoff and the 

associated observational dataset from three similar basins in the case of ungauged basins. The derived gridded uncertainty 

changes in time and space. Our uncertainty estimates show higher values than those set for VIC, and additionally the 

estimated values and their reliability change with climate and season (Fig. 7). It follows from Table 2 that in most of the 20 

basins the mean annual runoff uncertainty exceeds 30% of the values of the associated runoff itself. In fact, when the values 

of runoff approach zero (i.e. in arid and semi-arid regions during the hot climate or in the snow dominated basins during 

winter) it is expected that the uncertainty values become very close to the associated runoff estimates and eventually the 

error ratio becomes high. It is not surprising that the estimated relative uncertainties exceed the error ratios of the 

observations. Also the change of the uncertainty values with time and space is consistent with the fact that the individual 25 

datasets that were used to derive LORA exhibit performance differences in different climates and terrains (Beck et al., 

2017a). 

Figure 9 shows the Mean seasonal runoff (mm/year) calculated for the period 1980 – 2012. There is consistently low runoff 

in arid regions and high runoff in wet regions across all the seasons. High latitudes in America and Asia exhibit no runoff 

during the snow season and high runoff during Mar-Aug when snow melts. Overall, there is a clear agreement between the 30 

spatial distribution of runoff and the different climate regimes. This is particularly reflected in Madagascar where the 

differences in runoff pattern match the different climate regimes across the island. LORA captures the high wetness in the 

monsoonal seasons and exhibits a shift in magnitude during the wet monsoon in the lower Amazon during Oct-May, the 
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upper Amazon during Jun-Aug, South Asia during Jun-Nov, Central Sahel in August and Guinea Coasts in June, July, 

September and October.  

As discussed in Hobeichi et al. (2018), the weighting approach has its own advantages and drawbacks. One limitation is that 

a common imperfection in all the individual products is likely to propagate into the derived product. The early spring runoff 

peak found in both LORA and the datasets that were used to derive it is an example of this limitation. On the other hand, the 5 

seasonal runoff cycle of LORA in both Pechora and Olenek (i.e. two snow-dominated basins) indicate that LORA was able 

to capture the seasonal signal and the timing of the runoff peak very well as opposed to the constituent products and Best4, 

which also suggests that the weighting has the ability to overcome the weaknesses of the individual products. Additionally, it 

was shown in Beck et al. (2017a) that tier1 products consistently overestimate runoff in arid and semi-arid regions due to a 

bias in the WFDEI precipitation forcing, this appears in the massive overestimation exhibited by Best4 in Niger and Murray-10 

Darling (Fig. 8), however the weighting was able to eliminate a large amount of this overestimation, which also emphasizes 

the ability of the weighting approach to mitigate limitations in individual models. Another limitation arises from the scarcity 

of observed streamflow particularly in the arid regions and from the quality of the observational data itself.  As noted earlier, 

the errors in GRDB dataset were reported to range between 10% and 20% and were found by Di Baldassarre and Montanari 

(2009) to have an average value that exceed 25% across all the studied river basins. 15 

The weighting technique allows the addition of new runoff estimates when they become available. This will be particularly 

beneficial if the future estimates represent reasonably the runoff peak in the snow-dominated regions.  

5 Conclusion 

In this study, we presented LORA, a new global monthly runoff product with associated uncertainty. LORA was derived for 

1980–2012 with monthly temporal resolution at 0.5° spatial resolution by applying a weighting approach that accounts for 20 

both performance differences and error covariance between the constituent products.  

To ensure full global coverage, we used a similarity index to transfer weights and bias ratios constructed from gauged basins 

with similar climatic and physiographic characteristics to ungauged basins. This allows the derivation of runoff in areas 

where we do not have observed streamflow. 

We showed that this approach is succeeding, that LORA performs better than any of its constituent modelled products in a 25 

range of metrics, across basins globally and especially in the higher latitudes. However, LORA tends to overestimate runoff 

and shows an early snow-melt peak in some snow-dominated basins. LORA was not found to significantly overestimate 

runoff in arid and semi-arid regions as opposed to the constituent products. 

The approach and product detailed here offers the opportunity for improvement as new streamflow and modelled runoff 

datasets become available. It presents a new, relatively independent estimate of a key component of the terrestrial water 30 

budget, with a justifiable and well constrained uncertainty estimate.  
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Tables 

Table 1:  Model outputs from Tiers 1 and 2 of eartH2Observe project used to derive the synthesis runoff product.  

Model Tier Our abbreviation Variables Spatial 

Resolution 

Reference 
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HTESSEL 1 HTESS1 Streamflow & 

Total runoff 

0.5° (Balsamo et al., 2009, 2011)  

2 HTESS2 streamflow & 

Total runoff 

0.25° (Balsamo et al., 2009, 2011) 

JULES 1 JULES1 Total runoff 0.5° (Best et al., 2011) 

2 JULES2 Total runoff 0.25° (Best et al., 2011) 

LISFLOOD 1 LISF Streamflow & 

Total runoff 

0.5° (Burek, P., van der Knijff, 

J., de Roo, 2013; Van Der 

Knijff et al., 2010) 

PCR-GLOBWB 1 PCRG Streamflow & 

Total runoff 

0.5° (Van Beek and Bierkens, 

2009) 

SURFEX 1 SURF1 Streamflow & 

Total runoff 

0.5° (Decharme et al., 2011, 

2013) 

2 SURF2 Total runoff 0.25° (Decharme et al., 2011, 

2013) 

W3RA 1 W3RA Streamflow & 

Total runoff 

0.5° (Van Dijk et al., 2014; Van 

Dijk and Warren, 2010) 

WaterGAP3 1 WGAP3 Streamflow & 

Total runoff 

0.5° (Flörke et al., 2013) 

HBV-SIMREG 1 HBVS Total runoff 0.5° (Beck et al., 2016) 

 

Table 2: A comparison of mean annual runoff (mm/year) of 16 major basins covering different climate zones around the world  for 

LORA and VIC (Zhang et al., 2018), the mean annual uncertainty values associated with LORA runoff are shown and the 

adjusted VIC annual runoff values within 5% error bounds for water budget closure are displayed. 

Basin VIC 

mm/year 

VIC adjusted for 

water budget 

closure  

mm/year 

LORA 

(Runoff) 

mm/year 

LORA 

(uncertainty) 

mm/year 

Dominant climate 

Amazon 1048 1029 1151 357 Tropical wet 

Amur 135 129 
219 115 

Humid continental and 

semi arid 

Columbia 318 293 
333 101 

Semi-arid and 

highlands 

Congo 407 404 
358 147 

Tropical wet and 

tropical dry 

Danube 272 265 

260 125 

Marine Humid, 

continental and humid 

subtropical 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-386
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 7 August 2018
c© Author(s) 2018. CC BY 4.0 License.



18 

 

Indigirka 132 120 228 171 Subarctic 

Lena 142 134 301 137 Subarctic 

Mackenzie 189 173 191 110 Subarctic 

Mississippi 220 215 
212 123 

Humid continental and 

humid subtropical 

Murray-Darling 42 41 15 6 Arid and semi-arid 

Niger 198 194 106 41 Arid, semi-arid and 

tropical dry 

Olenek 114 106 230 208 Subarctic 

Parana 278 279 
189 97 

Marine and humid 

subtropical 

Pechora 342 308 420 420 Tundra and subarctic 

Yenisei 217 195 324 203 Subarctic 

Yukon 149 139 229 102 Subarctic 

 

 

Figures 

 

Figure 1: Spatial coverage of gauged and ungauged river basins and location of stream gauges. 5 
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Figure 2: Spatial coverage of donor basins, receptor basins and non-donor and non-receptor basins. 
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Figure 3. Flow chart summarizing the steps carried out to derive the weighted runoff product for the global land surface. 
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Figure 4: Box and whisker plots displaying the percentage improvement that the weighted product (WPout) offers when tested out-

of-sample, using four metrics: MSE (a), SD difference (b), COR (c) and Mean bias (d), when compared to the weighted product 

derived from in-sample data (WPin), and each runoff product involved in this study. Box and whisker plots represent values 

calculated at 482 gauged basins. See Table 1 for dataset abbreviations. The lower and upper hinges of a boxplot represent the first 

(Q1) and third (Q3) quartiles respectively of the performance improvement results and the line inside the boxplot shows the median 5 

value. The extreme of the lower whisker represents the maximum of 1) min(dataset) and 2) (Q1 - IQR), while the extreme of the 

upper whisker is the minimum of 1) max(dataset) and 2) (Q3 + IQR)), where IQR represents the interquartile range (i.e. Q3 - Q1 ) 

of the performance improvement results. A median line located above the 0 axis is an indication that the out of sample weighting 

offers an improvement in more than half of the basins. 
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Figure 5: Four statistics, (a) RMSE, (b) SD difference, (c) COR and (d) Mean bias, calculated for LORA, Best4 (i.e. the simple 

average of runoff estimates from LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this 

study at the gauged basins. See Table 1 for dataset abbreviations. 

 

 5 

Figure 6: Two statistics, (a) COR and (b) Mean bias, calculated for LORA, Best4 (i.e. the simple average of runoff estimates from 

LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this study at the gauged basins located 

at the high latitudes (>60°). See Table 1 for dataset abbreviations. 
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Figure 7: Seasonal reliability, defined as  high ( 
𝒎𝒆𝒏 𝒓𝒖𝒏𝒐𝒇𝒇 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

𝒎𝒆𝒂𝒏 𝒓𝒖𝒏𝒐𝒇𝒇
< 𝟏, in red), low (

𝒎𝒆𝒏 𝒓𝒖𝒏𝒐𝒇𝒇 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

𝒎𝒆𝒂𝒏 𝒓𝒖𝒏𝒐𝒇𝒇
≥ 𝟏, in yellow) and 

undetermined (mean runoff = 0, in blue). 
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Figure 8: Seasonal cycle of Runoff aggregates from LORA and Best4 compared with the observed streamflow over 11 major 

basins. Runoff aggregates and the observed streamflow were averaged for each month across the period of availability of 

observation. The shaded regions shows the aggregated uncertainty derived for LORA.  
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Figure 9: Mean seasonal runoff calculated for the period 1980 – 2012 
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