
Manuscript hess-2018-386 entitled “Linear Optimal Runoff 

Aggregate (LORA): A global gridded synthesis runoff product” 

We would like to thank the reviewers for their constructive comments on our manuscript. This 

document outlines our responses to his comments and the improvements made to the manuscript. 

We have also added the modified manuscript and the new supplement at the end of this 

document. 

 

Response to Reviewer #1 

Overall comments and questions 

(1) Please refer early to Fig. 3 in the methods description. 

Thanks for this suggestion, we have now referred to the flowchart in Figure 3 before detailing 

our methods. Its caption has now changed to Figure 2. 

 

(2) Maps of the performance of LORA would be very helpful. 

(3) Some example time series, including the time-varying uncertainty would be interesting. 

Both (2) and (3) are good ideas. We have now provided a map of the temporal correlation of 

aggregated LORA runoff and observed streamflow, as well as time series computed over 

selected basins with different correlation levels, showing LORA uncertainty estimates. We have 

also added the text: 

Further, we provide in Fig. S2 the spatial distribution of correlation results from Fig. 6 

(c). The basins are colour-coded by their temporal correlation with the observed 

streamflow and the number of basins in each category is given. Basins in yellow are 

those where LORA is highly correlated with the observation while dark blue basins are 

those where LORA exhibits a negative correlation with the observation. It can be noted 

from Fig. 6(c) that occurrence of negative correlation is extremely unusual which 

explains why these were considered outliers and were not shown in the box and whisker 

plot. Likely, low correlation basins are unusual and constitute less than 12% of the 

number of basins (excluding basins with negative correlation). Also, the median value is 

above 0.8, which is higher than any constituent estimates. We selected a basin from each 

correlation range and examined the timeseries of LORA and the observed streamflow 

more closely (Fig. S3-S7), in particular illustrating the uncertainty estimate of LORA. In 

Ganges, LORA captures well the observed time-series dynamic with a tendency to over-

estimate streamflow peak in August (Fig. S3). Over Madeira basin, LORA is able to 

represent reasonably well most of the climatic variability found in the observation (Fig. 

S4). In Congo, the catchment has an irregular time-series dynamic, LORA is in principle 

able to capture a large part of the climatic variability in the observation (Fig. S5). In 



Lena, the observation shows a peak in June and a second less significant peak in 

September (Fig. S6). Both peaks are captured by LORA during most of the time series 

with a tendency to underestimate the late summer peak and overestimate the early 

summer peak. In the upper Indus, LORA does not capture the magnitudes of observed 

streamflow and shows a reversed seasonal cycle which explains why it exhibits negative 

correlation with the observation (Fig.S7). Zhang et al. (2018) found disagreement 

between simulated runoff from three LSMs and observed streamflow over Indus basin 

which they expected to be due to errors in the observational data from GRDB dataset. 

 

Figure S2: Temporal correlation of LORA with the observed streamflow over the gauged basins. 

Basins are colour coded by correlation range and their numbers are given in brackets. 

 

Figure S3: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty 

range (grey) over the Ganges basin (in mm month-1). This basin was shown in yellow in Fig. S2, 

indicating that LORA exhibits a high temporal correlation (≥ 0.9) with the observation. 



 

Figure S4: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty 

range (grey) over Madeira basin, i.e. a sub-basin of the Amazonas (in mm month-1). This basin 

was shown in orange in Fig. S2, indicating that LORA exhibits a temporal correlation in the 

range [0.75 – 0.9[ with the observation. 

 

Figure S5: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty 

range (grey) over the Congo basin (in mm month-1). This basin was shown in violet in Fig. S2, 

indicating that LORA exhibits a temporal correlation in the range [0.5 – 0.75[ with the 

observation. 

 

Figure S6: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty 

range (grey) over Lena basin (in mm month-1). This basin was shown in purple in Fig. S2, 

indicating that LORA exhibits low temporal correlation (<0.5) with the observation. 



 

Figure S7: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty 

range (grey) over the Indus basin (in mm month-1). This basin was shown in dark blue in Fig. S2, 

indicating that LORA exhibits a negative temporal correlation with the observation.  

 

 (4) Does the fact that the weights are computed based on a discrete set of donor catchments 

lead to discontinuities in the runoff fields? How would e.g. the field look 

like for one individual month? 

 

Good point. We obviously don’t expect to see discontinuity in the runoff fields within individual 

gauged basins since the weighting is uniform across the basin. On the other hand, we expect to 

see discontinuity in runoff fields at ungauged basins, particularly over large heterogeneous 

ungauged basins, given that different sets of weights were used to derive runoff over different 

parts of the basins.  However, since dividing the heterogeneous basins into different regions was 

based on climatic differences between these regions, we think that such discontinuity naturally 

arises from the differences in climatic characteristics anyway, so that a different set of weights 

for each region is not necessarily problematic. It certainly seems a better use of available 

information that weighting globally. A visual assessments of LORA monthly maps did not reveal 

unexpected discontinuities in the runoff fields. We provide in Fig. S8 an example of runoff fields 

in an individual month (e.g. May, 2003). Since LORA is publicly available it should be easy to 

verify that this example is not a misrepresentation of the results. 

 

 
Fig. S8: Global map of LORA runoff fields (mm) in May 2003. 

 



(5) I really appreciate the authors effort to also include uncertainty estimates in their 

product. Unfortunately, I did not find any validation of this uncertainty estimate or a 

full interpretation of what it means. I know the uncertainty estimates are introduced 

elsewhere, but as this is a relatively new approach it requires extra care.  

  

We have now explained in more detail how we calculated the uncertainty estimates:  

 

We implemented the ensemble dependence transformation process detailed in Bishop and 

Abramowitz (2013) to compute the gridded time-variant uncertainty associated with the 

derived runoff estimates. For any given gauged basin, we first calculated the spatial 

aggregate of our weighted runoff estimate 𝑅𝑎𝑔𝑔𝜇, then quantified 𝑠𝑞
2, the error variance 

of 𝑅𝑎𝑔𝑔𝜇 with respect to the observed streamflow Q over time as: 

𝑠𝑞
2 =

∑ (𝑅𝑎𝑔𝑔𝜇
𝑗 − 𝑄𝑗)2𝐽

𝑗=1

𝐽 − 1
 

Then, we wished to guarantee that the variance of the constituent modelled estimate 𝜎𝑞
2𝑗 

about  𝑅𝑎𝑔𝑔𝜇
𝑗 at a given time step, averaged over all time steps where we have 

available streamflow data, is equal to 𝑠𝑞
2, such as  𝑠𝑞

2 = 
1

𝐽
∑ 𝜎𝑞

2𝑗𝐽
𝑗=1 .  

Since the variance of the existing constituent products do not, in general, satisfy this 

equation. We transformed them so that it does. This involved first modifying the set of 

weights 𝑤 to a new set �̃� such that  

�̃� =
𝑤𝑇+(𝛼−1)

1𝑇

𝐾

𝛼
 , where 𝛼 = 1 − 𝐾𝑚𝑖𝑛(𝑤𝑘) and 𝑚𝑖𝑛(𝑤𝑘) is the smallest negative 

weight (and 𝛼 is set 1 if all 𝑤𝑘 are non-negative). This ensures that all the modified 

weights  �̃�𝑘  are positive. We then transform the individual estimates 𝑥𝑘
𝑗
  to �̃�𝑘

𝑗
 where 
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The weighted variance estimate of the transformed ensemble can be defined as 

 𝜎𝑞
2𝑗
= ∑ �̃�𝑘(�̃�𝑘

𝑗
− 𝑅𝑎𝑔𝑔𝜇
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true. Furthermore, √𝜎𝑞
2𝑗

 is the temporally varying estimate of uncertainty standard 

deviation of the transformed ensemble that (a) is varying in time, and (b) accurately 

reflects our ability to reproduce the observed streamflow.  

We refer the reader to Bishop and Abramowitz (2013) for proofs. 



In order to estimate √𝜎𝑟
2𝑗

 , the uncertainty of the runoff attributes 𝜇𝑟
𝑗
 at each point in 

time and space, we first transformed the runoff fields  𝑟𝑘
𝑗
 to �̃�𝑘

𝑗
 by applying the same 

transformation parameters 𝛼 and 𝛽 such that �̃�𝑘
𝑗
= 𝜇𝑟

𝑗
+ 𝛽(�̅�𝑗 +  𝛼(𝑟𝑘

𝑗
− �̅�𝑗)  − 𝜇𝑟

𝑗
). We 

then calculated the error variance 𝜎𝑟
2𝑗
= ∑ �̃�𝑘(�̃�𝑘

𝑗
− 𝜇𝑟

𝑗
)2𝐾

𝑘=1 . 

Finally, we used √𝜎𝑟
2𝑗

 as the spatially and temporally varying estimate of runoff 

uncertainty standard deviation, which we will refer to below simply as ‘uncertainty’. It 

provides a much more defensible uncertainty estimate than simply calculating the 

standard deviation of the involved products.  

We note that for a given basin,  √𝜎𝑞
2𝑗

 represents the uncertainty of the modelled 

streamflow i.e. 𝑅𝑎𝑔𝑔𝜇
𝑗, while √𝜎𝑟

2𝑗
  represents the uncertainty of modelled runoff at 

each grid cell across the basin. This means that at every time step, there is one value for 

√𝜎𝑞
2𝑗

 per basin, and one value for  √𝜎𝑟
2 per grid across the basin. 

 

 

(5.1) For example: It is not clear to me whether this uncertainty estimate is related to the 

“confidence interval” (i.e. an estimate for the range of the “true” ensemble mean”) or 

whether it is related to the “prediction interval” (i.e. an estimate of the range in which new 

observations would fall). 

 

(5.1) It follows from the above that √𝜎𝑞
2𝑗

 can be considered a ‘prediction interval’ if it was 

calculated over an ungauged basin. So √𝜎𝑟
2𝑗

 , the uncertainty estimate associated to the runoff 

fields, is also considered a prediction interval. The applied transformation can be viewed as a 

tool to extrapolate the uncertainty estimates in two directions: 1) basin-to-basin: from gauged to 

ungauged basins, and 2) basin-to-grid: from runoff aggregate in a basin to grid cells across the 

same basin.  

 

(5.2) if the uncertainty is an “prediction interval”, an evaluation of the widths of the 

“uncertainty bounds” with respect to the distribution of the residuals would be helpful. 

Especially, compared to the spread of the input ensemble. For this, metrics from ensemble 

forecasting (e.g. the continuous ranked probability score (CRPS) or “reliability 

plots/histograms” might be helpful). 

 

We don’t really have observations for runoff, so we can’t test our method for deriving 

uncertainty on runoff, however we can test it on streamflow (i.e. runoff aggregates). At the 

gauged basins, our method for deriving the uncertainty estimates guarantees -by design- that the 



uncertainty estimates are equal to the RMSE of runoff aggregates against observed streamflow. 

Therefore, we see that the good performance of uncertainty estimates at the gauged basins is 

obvious. However, to test that our approach is also succeeding over the ungauged basins, we 

have now performed out-of-sample tests to show that the distribution of the errors over the 

gauged basin is similar to the distribution of their errors when they are considered ungauged. We 

have now explained how we have performed this test and showed the results in the manuscript:  

The uncertainty estimates computed at the gauged basins represent the deviation of (the 

spatial aggregate of) our weighted product (𝑅𝑎𝑔𝑔𝜇) from the observed streamflow, since 

the in-sample uncertainty estimates are calculated from the variance of the transformed 

ensemble, which by design equals MSE of 𝑅𝑎𝑔𝑔𝜇 against observations (i.e. error 

variance of 𝑅𝑎𝑔𝑔𝜇). To test if the uncertainty estimates perform well out-of-sample (i.e. 

at the ungauged basins), we took a gauged basin, but instead of constraining the 

weighting using observed streamflow from this basin, we constructed model weights by 

using the three most similar donor basins. We could then calculate MSE of 𝑅𝑎𝑔𝑔𝜇 

against observations from the three donor basins, denoted by MSEin, which provides us 

with the uncertainty estimates calculated in-sample (√𝑀𝑆𝐸𝑖𝑛), since the observational 

data used in this case is the same dataset that was used to train the weighting. We also 

calculated the MSE of the aggregated weighted product against the actual observation of 

the gauged basin and denoted this MSEout. √𝑀𝑆𝐸𝑜𝑢𝑡 represents the uncertainty estimates 

computed out-of-sample, since the comparison was performed against observational data 

that has not been used to train the weighting. We repeated the out-of-sample test for all 

the gauged basins. 

We displayed the results of the out-sample-test by showing the ratio √𝑀𝑆𝐸𝑜𝑢𝑡 /√𝑀𝑆𝐸𝑖𝑛 . 

If the approach is succeeding, we expect that this ratio is around one, indicating that the 

values of MSEin and MSEout are close to each other. We used a box and whisker plot, 

where each sample is a different basin, to show the results. 

 

We have also commented on the results: 

Critically though, the fact that the weighting delivers improvement over all models when 

the weights are transferred from similar basins indicate that the dissimilarity technique is 

succeeding and can be effectively used at the ungauged basins by feeding the weighting 

with data from the most similar basins with streamflow observations. Furthermore, the 

boxplot in Fig 5 shows that, overall, when the uncertainty estimates are computed out-of-

sample they are very similar to what they would have been if they were computed in-

sample. This demonstrates that the dissimilarity technique can be effectively used to 

derive not only the weighting product but also its associated uncertainties at the 

ungauged basin. 

 



 

Figure 5: Box and whisker plots displaying the ratio of (1) the uncertainties of the spatial aggregate of the weighted product 

computed out-of-sample to (2) the uncertainties of the spatial aggregate of the weighted computed in-sample. 

 

(5.3) the uncertainty bounds can produce negative runoff. Should this be the case or 

is this an artefact? 

Good point. When runoff is smaller than its associated uncertainty, the uncertainty bounds will 

certainly produce negative runoff. This is an artefact that arises from using a generic process to 

determine an uncertainty range. A negative runoff is obviously not physical and requires some 

interpretation from the side of the user, to make sure that there are hard boundaries. 

 

(6) I would appreciate some more information (figures, tables) on the actual “weights” 

and “biases”  

 

We thank the reviewer for his suggestion. We have now provided in table S1 the weights and 

bias ratios calculated for the participating products over a range of river basins: 

Table S1 shows examples of weights and bias ratios calculated for the participating 

models over a range of river basins. It shows that HBVS, JULES1, JULES2 and SURF2 

didn’t participate in the weighting over the large basins (i.e. Amur, Indigirka, 

Mississippi, Murray-Darling, Olenek, Parana, Pechora and Yenisei) since these models 

don’t have estimates for streamflow which are needed to construct the weights over large 

basins. For the smaller Copper River basin, however, runoff estimates from all models 

participated in deriving weighted runoff estimates. Table S1 also shows that in many 

cases, models were assigned negative weights. While this might not be expected in typical 

performance-based weighting, it is possible when weighting is based on error covariance 

as well as their performance differences in this formulation. We show below how the 

weights can be modified to non-negative weights. 



Table S1: Example of weights (w) and bias ratios (r) computed for the participating products over a range of river basins. 

 

(7) some of the references have artefacts, e.g. “nan” values instead of page numbers… 

Thanks for spotting this out. We have now fixed this in the manuscript 

Response to specific comments and questions 

Section 2.1: The authors might also be interested in the following global-scale data 

source: Do et al (2018, doi:10.5194/essd-10-765-2018) & Gudmundsson et al (2018, doi: 

10.5194/essd-10-787-2018). Sorry for this self-citation. 

 

Thanks for pointing us to this very impressive dataset. It is not immediately clear how we can 

use the GSIM in the current analysis since we need continuous discharge time series.  However, 

we will work towards using the dataset in the future to improve our dissimilarity index. 

 

Section 2.2: What about other comprehensive model ensembles, such as ISIMIP2a 

(http://dx.doi.org/10.5880/PIK.2017.010) 

 

We agree with the reviewer that ISIMIP2a model outputs provide a suite of valuable datasets for 

runoff and discharge. However, we haven’t included any of those in our analysis because at the 

beginning of our project, these datasets spanned up to 2005 only while our employed datasets 

spanned up to 2012.  

We also note that three out of the eight models that we employed in this study are members of 

the ISIMIP2a models. In the future, we aim to include additional datasets, and we might consider 

including datasets from ISIMIP2a if we sort out the difference in the temporal coverage period 

(i.e. up to 2010 now for ISIMIP2a ensemble, while up to 2012 for LORA) 

 

page 4, line 25: Is there some empirical evidence supporting the assumption of constant 

bias ratio? 

Good point. The literature doesn’t provide any empirical evidence that supports or contradicts 

this assumption. However, this assumption was a part of our whole approach that we have tested 

in section (2.5). The results from Figures 4 and 5 indicate that our overall approach was 

succeeding.  



We have now clarified this point in section 2.3: 

We note that there is no empirical evidence in the literature that the assumptions 

presented in Eq 1 and Eq 2 are valid or invalid. However, they are a core part of our 

overall approach which we tested and demonstrated to be successful later in this paper. 

 

Generall for methods: I found the mixed use of Ragg_kˆj and q_kˆj confusing. Would it 

be possible to clarify the difference/commonality once and then only use one of them? 

 

Over a given basin and for a participating model k Raggk refers to the spatial aggregate of 

simulated runoff across a basin, while qk refers to modelled streamflow at a grid cell underlying 

a stream gauge. 

We have now clarified these terms in the text.  

 

where 𝑗 ∈ [1, 𝐽] are the time steps and  𝑘 ∈ [1, 𝐾] represent the participating models, 𝑥𝑘
𝑗
 

(i.e., integrated runoff  𝑅𝑎𝑔𝑔𝑘
𝑗
 over the basin areas in small basins and modelled 

streamflow at a gauge location 𝑞𝑘
𝑗
 in large basins) is the value of the participating 

dataset in m3 s-1 at the  jth time step of the kth participating model. 

 

page 5, line 2: not really clear what you mean with this sentence. what is the number 

of records? 

 

The number of records refers to the total number of available monthly observations available for 

a basin. We have now clarified this in the text 

 

To avoid over-fitting when applying the weighting approach, we limited the number of 

participating models so that the ratio of number of records (i.e. total number of available 

monthly observations within the period of study) to number of models does not fall below 

ten. 

 

page 5, line 4: An alternative approach for dealing with negative values might be to log 

transform runoff/stream flow before doing the computations and back transform it in the 

end. See e.g. Gudmundsson & Seneviratne (2015, doi: 10.5194/hess-19-2859-2015; 

2016, doi:10.5194/essd-8-279-2016). Again, my apologies for self-citation. 

 

Thanks for sharing this study. This is something to look at in the future versions of LORA and 

requires testing its applicability with our methods for deriving the uncertainty estimates.  

 

page 5, line 10: Some more details on the transformation process would be appreciated. 

 

I know it is published in Hobeichi et al. (2018) but it would make the paper easier 

to understand if it would be outlined in more detail here. 

 



We thank the reviewer for his comments, we have addressed this earlier in this document. Please 

see our response to (5). 

 

page 5, line 20: transfer of "weights" from the 3 most similar basins; why 3 and not 

a larger/smaller number? Any empirical motivation for this? Would optimizing this 

hyper-parameter help to get even better results? 

 

We agree this is a subjective choice. The dissimilarity technique has been previously applied to 

find 10 donors for 1 receptor. Given that all the selected donors must have very close similarity 

indices, we found by trial and error that increasing the number of donor basins might introduce 

donor basins that have a significantly different similarity index, and that setting the number of 

donor basins to three seemed most appropriate. Informal optimisation. We have now clarified 

this in the text: 

The dissimilarity technique has been previously applied to find ten donors for one 

receptor. Given that all the selected donors must have very close similarity indices, we 

found by trial and error that increasing the number of donor basins might introduce 

donor basins that have a significantly different similarity index, and that setting the 

number of donor basins to three seemed most appropriate. Informal optimisation. 

 

page 6. line 8: Note that “Tundra” and “Subarctic” will not always have permanent ice! 

Thanks for spotting this, we have now changed the text to read:  

areas covered with ice during most of the year (defined by climate zones Tundra, 

Subarctic and Ice cap) 

 

Also: The chosen climate zone map is very uncommon, and most readers will not be 

familiar with it. Therefore, it needs to be presented in a figure. Alternative: why not use 

a common climate-zone definition (e.g. Köppen-Geiger?) 

We used this particular climate map because it comprises only 12 broad climate classes 

(compared to more than 30 in other climate maps e.g. Köppen–Geiger). This reduced the 

divisions made to large heterogenous basins, while ensuring that the resultant basin zones within 

individual basins have very distinct climate characteristics.  

We have now clarified this in the text and provided a figure of this climate map in the 

supplemental material 

We used this particular climate map because it comprises only 12 broad climate groups 

(compared to more than 30 in other climate maps e.g. Köppen–Geiger). This reduced the 

divisions made to large heterogenous basins, while ensuring that the resultant basin 

zones of individual basins have very distinct climate characteristics. 

 

 



 

Figure S1: Climate map used in this study (available from ArcGIS online). It is a simplified climate zones map consisting 

of 12 broad climate classes 

 

page 7. l 15: should be fig 4 not fig 3 

Thanks for spotting this. We made the changes in the text 

Fig 4: I found the "relative" improvement difficult to grasp upon first reading. Suggestion: 

just show the performance for WPin WPout (and omit individual models, as they 

are shown later) 

We agree with the reviewer that the plot in Figure 4 needs careful examination, and that one 

might think that Figure 4 and Figure 5 (now Figure 6) provide redundant information. However, 

while both Figures look similar, each achieves a different purpose. For instance, the plot in 

Figure 4 provides evidence that our approach (i.e. using transferred weights from the most 

similar gauged basins to derive runoff estimates at the receptor basins) is succeeding by the fact 

that WPout offers improvement over the individual products. On the other hand, Figure 5 (now 

Figure 6) compares the performance of the individual product with that of WPin (i.e. partially 

LORA) over the gauged basins. We therefore believe that it is worth providing both plots to the 

reader.  

 

page 9, line 18: 

(1) "mean runoff uncertainty". What was exactly calculated? Note that simply averaging 

sqrt(sigma) will yield wrong results. Instead the rules for propagation of uncertainty 

should be used (https://en.wikipedia.org/wiki/Propagation_of_uncertainty). If the authors 

did already consider this, I apologize for this comment. 

(2) Note that there are strong perceptions on what "reliability" means in ensemble 

forecasting. 

See e.g. "reliability diagrams" and "reliability histograms" 

page 9, line 31 & Fig 8: how did you compute the mean uncertainty? (refer to my 



comment above) 

 

Great point. We understand that averaging sqrt(sigma) cannot be used to derive the uncertainty 

of runoff fields from the uncertainty of streamflow or vice versa, but rather there are various 

rules for propagation of uncertainty that can be applied. In our response to (5) We have now 

explained our method for deriving uncertainty estimates for both runoff fields and their spatial 

aggregate (streamflow) which had not been clearly detailed in the manuscript. Here “mean runoff 

uncertainty” refers to the seasonal mean runoff uncertainty (climatology), we agree with the 

reviewer that this should be specified to avoid confusion with the spatial mean of uncertainty 

which does not really make sense. We have now clarified this in the text: 

We calculated the seasonal relative uncertainty expressed as the ratio of the seasonal 

average uncertainty to seasonal mean runoff (i.e. 
𝑚𝑒𝑎𝑛 𝑟𝑢𝑛𝑜𝑓𝑓 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

𝑚𝑒𝑎𝑛 𝑟𝑢𝑛𝑜𝑓𝑓
) over the period 

1980 – 2012. 

 

page 10, line 31: not Fig 3... 

Thanks for spotting this out, we have now fixed this in the text. 

  



Response to Reviewer #2 

(1) I miss a few explicit examples explaining why runoff is at all useful, especially at 0.5 

degrees. The argument is that accurate estimates of runoff are critical to inform climate 

change adaptation strategies, to guide appropriate water management in agriculture and to 

enable the assessment of the impact of anthropogenic activities on ecosystems. However, 

what does runoff at 50x50 km resolution even mean? It is in terms of scale too far off from 

being operationally relevant. Thus, a stronger justification using examples is called for. 

 

We thank the reviewer for their suggestion: We have replaced the text with: 

 

Characterizing its dynamics and magnitudes is a major research aim of hydrology and 

hydrometeorology and a critical importance to improve our understanding of the current 

conditions of the large-scale water cycle and predict its future states. More accurate 

estimates also provide additional constraint for climate model evaluation.   

 

(2) I also miss some references to the earliest work on runoff fields, e.g. Fekete et al. 2002: 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/1999GB001254  

 

We agree with the reviewer, the study of Fekete et al. (2002) is an important example of how 

streamflow observation and model outputs can be combined to generate runoff fields. We have 

now referred to their study in the text  

…, several other studies attempted to correct the runoff outputs directly rather than the 

model parameters, for example by bias-correcting model runoff outputs based on 

streamflow observations (Fekete et al., 2002; Ye et al., 2014), 

 

(3) Regarding to previous work and scales, I would like to call the authors’ attention to a 

recent publication by Barbarossa et al.( https://www.nature.com/articles/sdata201852). 

They provide discharge estimates at 1 km resolution. I move that these are probably more 

representative for local runoff than those obtained from GHMs at half degree resolution? 

 

We thank the reviewer for pointing out this study. We of course agree that FLO1k better 

represents small streams due to its higher spatial resolution. However, FLO1k does not 

necessarily provide more accurate estimates for large rivers. Additionally, FLO1k only provides 

information about the mean, minimum, and maximum annual flow, which limits its usefulness. 

In contrast, LORA provides valuable information about flow timing and the seasonal runoff 

distribution. The two datasets are thus quite different and in some ways complementary. In the 

revised paper we now cite Barbarossa et al. (2018). 

(4) Section 2.3: I find that there is too little info on the method used to compute the weights. 

I don’t think that it should be necessary read another paper to comprehend the essentials 



of the methods used. So, I would want some more explanation on how the weights are 

calculated.  

 

As noted in our response to Reviewer 1 and below, we have included significantly more detail 

about this in the revised manuscript. 

 

For instance:  

- How are correlations between models accounted for?  

An error covariance matrix is calculated for the participating models. The weights are functions 

of this error covariance matrix. We provide more details below 

- Are the weights allowed to be negative?  

Yes, weights can be negative 

 

- Is the sum of the weights adding up to one?  

Yes, the weights add up to one. 

If this is the case, one has to add another equation and transform a constrained 

optimization to an unconstrained one using Lagrange multipliers. 

This is correct, we constrained the weights to sum up to one, and we transformed the problem of 

minimizing  ∑ (𝜇q
j
− 𝑄j)2

J
j=1  to a problem of minimizing a function that involves a Lagrange 

multiplier. 

We have now detailed the weighting method in the text: 

 

At each gauged basin, we built a linear combination 𝜇𝑞 of the participating modelled 

streamflow datasets 𝑥 (i.e. Ragg in small basins and modelled streamflow, q, in large 

basins) that minimized the mean square difference with the observed streamflow Q at that 

basin such that: 𝜇𝑞
𝑗
= ∑ 𝑤𝑘(𝑥𝑘

𝑗
−𝐾

𝑘=1 𝑏𝑘) where 𝑗 ∈ [1, 𝐽] are the time steps and  𝑘 ∈

[1, 𝐾] represent the participating models, 𝑥𝑘
𝑗
 (i.e., integrated runoff  𝑅𝑎𝑔𝑔𝑘

𝑗
 over the 

basin areas in small basins and modelled streamflow at a gauge location 𝑞𝑘
𝑗
 in large 

basins) is the value of the participating dataset in m3 s-1 at the  jth time step of the kth 

participating model, the bias term 𝑏𝑘 is the mean error of  𝑥𝑘 in m3 s-1. The set of weights 

𝑤𝑘 provides an analytical solution to the minimization of  ∑ (𝜇𝑞
𝑗
− 𝑄𝑗)2𝐽

𝑗=1  subject to the 

constraint that  ∑ 𝑤𝑘 = 1
𝐾
𝑘=1 , where 𝑄𝑗 is the observed streamflow at the jth time step. 

This minimization problem can be solved using the method of Lagrange multipliers by 

finding a minima for  

𝐹(𝑤, ) =
1

2
[

1

(𝐽−1)
∑ (𝜇𝑞

𝑗
− 𝑄𝑗)2] − ((∑ 𝑤𝑘

𝐾
𝑘=1 ) − 1)𝐽

𝑗=1 . 

The solution to the minimization of 𝐹(𝑤, ) can be expressed as =
𝐴−11

1𝑇𝐴−11
 , where 1𝑇 =

[1,1, . . . ,1]⏞      
𝑘 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

 and 𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑘 × 𝑘 error covariance matrix of the participating datasets 



(after bias correction), i.e. A=(

𝑐1,1 ⋯ 𝑐1,𝑘
⋮ ⋱ ⋮
𝑐𝑘,1 … 𝑐𝑘,𝑘

). A is symmetric and the term 𝑐𝑎,𝑏 is the 

covariance of the ath and bth bias corrected dataset after subtracting the observed 

dataset, while each diagonal term 𝑐𝑘,𝑘is the error variance of dataset k. We note here that 

the solution presented here is based on the performance of the participating products 

(diagonal terms of A) and the dependence of their errors (accounted for by the non-

diagonal terms of A). For derivation see Bishop and Abramowitz (2013). 

We then derived the weighted runoff dataset by applying the computed weights on the 

bias corrected runoff estimates of the participating models. The weighted runoff dataset 

is expressed as:  

𝜇𝑟
𝑗
=∑𝑤𝑘(𝑟𝑘

𝑗
− 𝑏′𝑘)

𝐾

𝑘=1

 

Where 𝑟𝑘
𝑗
 is the value of runoff estimate in 𝑘𝑔 𝑚−2𝑠−1 of the kth participating model at 

the jth time step and 𝑏′𝑘 is its runoff bias in 𝑘𝑔 𝑚−2𝑠−1.  

 

Line 8-10 page 5: This seems to assume that travel times are less than a month because it 

neglects routing? 

Yes, this is worth mentioning. It is a limitation that has possibly led to an overestimation in the 

computed uncertainties over large basins. We have now added this to the text. 

Given that there are no direct observations for runoff, uncertainties were computed from 

the discrepancy between the modelled runoff aggregates and observed streamflow. This 

ignored the lag time between LORA integrated runoff and observed streamflow at the 

mouth of the river and induced biases that possibly led to overestimated uncertainty over 

large gauged basins.  

 (6) Lines 11-13 page 5: “It provides better estimates than simply calculating the standard 

deviation of the involved products”. Is that really the case? If your weighting method is 

optimal and you have bias-corrected correctly would the following estimator for each pixel 

not be unbiased (i and j are different products bias corrected): 

 
By moving a window T over time you get your time varying variance 

 

We thank the reviewer for his suggestion. We think that while the suggested formula provides 

time varying uncertainty estimates associated to the weighted runoff, it does not account for the 

dependence between ri,t and rj,t which is likely to lead to an overestimation of uncertainty. 

Meanwhile, the ensemble dependence transformation process that we applied in this paper to the 

participating products transforms the dependent estimates to statistically independent estimates. 



We don’t really have observations for runoff, so we can’t test our method for deriving 

uncertainty on runoff, however we can test it on streamflow (i.e. runoff aggregates). We have 

performed out-of-sample tests to show that the distribution of the errors over the gauged basin is 

similar to the distribution of their errors when they are considered ungauged. We have now 

explained how we have performed this test and showed the results in the manuscript:  

The uncertainty estimates computed at the gauged basins represent the deviation of (the 

spatial aggregate of) our weighted product (𝑅𝑎𝑔𝑔𝜇) from the observed streamflow, since 

the in-sample uncertainty estimates are calculated from the variance of the transformed 

ensemble, which by design equals MSE of 𝑅𝑎𝑔𝑔𝜇 against observations (i.e. error 

variance of 𝑅𝑎𝑔𝑔𝜇). To test if the uncertainty estimates perform well out-of-sample (i.e. 

at the ungauged basins), we took a gauged basin, but instead of constraining the 

weighting using observed streamflow from this basin, we constructed model weights by 

using the three most similar donor basins. We could then calculate MSE of 𝑅𝑎𝑔𝑔𝜇 

against observations from the three donor basins, denoted by MSEin, which provides us 

with the uncertainty estimates calculated in-sample (√𝑀𝑆𝐸𝑖𝑛), since the observational 

data used in this case is the same dataset that was used to train the weighting. We also 

calculated the MSE of the aggregated weighted product against the actual observation of 

the gauged basin and denoted this MSEout. √𝑀𝑆𝐸𝑜𝑢𝑡 represents the uncertainty estimates 

computed out-of-sample, since the comparison was performed against observational data 

that has not been used to train the weighting. We repeated the out-of-sample test for all 

the gauged basins. 

We displayed the results of the out-sample-test by showing the ratio √𝑀𝑆𝐸𝑜𝑢𝑡 /√𝑀𝑆𝐸𝑖𝑛 . 

If the approach is succeeding, we expect that this ratio is around one, indicating that the 

values of MSEin and MSEout are close to each other. We used a box and whisker plot, 

where each sample is a different basin, to show the results. 

 

We have also commented on the results: 

Critically though, the fact that the weighting delivers improvement over all models when 

the weights are transferred from similar basins indicate that the dissimilarity technique is 

succeeding and can be effectively used at the ungauged basins by feeding the weighting 

with data from the most similar basins with streamflow observations. Furthermore, the 

boxplot in Fig 5 shows that, overall, when the uncertainty estimates are computed out-of-

sample they are very similar to what they would have been if they were computed in-

sample. This demonstrates that the dissimilarity technique can be effectively used to 

derive not only the weighting product but also its associated uncertainties at the 

ungauged basin. 

 



 

Figure 5: Box and whisker plots displaying the ratio of (1) the uncertainties of the spatial aggregate of the weighted product 

computed out-of-sample to (2) the uncertainties of the spatial aggregate of the weighted computed in-sample. 

 

(7) Line 20-25 page 5: transferring the weights from donors to receptors. Are one set of 

weights obtained jointly for the three donor catchments or are three sets of weights 

averaged and transferred? 

 

Yes, this was not clear in the text. One set of weights is obtained jointly from the three donor 

catchments. We clarified this in the text. 

 

We then implemented the weighting technique on the ensemble of 11 (in small basins) or 

eight (in large basins) model outputs by matching Ragg calculated across the selected 

donor basins with the observed streamflow. This resulted in one set of weights and bias 

ratios obtained jointly from the three donor basins.  

 

(8) Line 11 on page 10. Why compare only with VIC? Why not GLDAS (4 models). 

Good question. At the time of analysis, GLDAS version1 model outputs had either a very short 

common period with LORA or a coarse resolution (1°) and showed a significant disagreement 

with observation when we interpolated them to a 0.5° grid. We clarified this in the text. 

Other global estimates of total runoff are also available such as GLDAS and Multi-scale 

Synthesis and Terrestrial Model Intercomparison Project (MsTMIP; Huntzinger et al., 

2016), however we haven’t compared LORA with these datasets because they either have 

a short common period with LORA, or a coarser resolution (i.e. 1o) and showed a 

significant disagreement with observation when interpolated to a 0.5° grid. 

 

(9). Table 2: why not add the estimated total runoff volumes from GRDC (also globally in 

km3). It would be good to see what the global runoff volume is in this product compared to 

other estimates. 



Good idea. We have now added the average total yearly volume of discharged water from LORA 

and observation  

 
Table 2: A comparison of mean annual runoff (mm/year) of 16 major basins covering different climate 

zones around the world  for LORA and VIC (Zhang et al., 2018), the yearly volume of LORA runoff 

aggregates (i.e. flow in Km3) and observed annual flow (Km3) over the basins and  mean annual 

uncertainty values associated with LORA runoff are shown and the adjusted VIC annual runoff values 

within 5% error bounds for water budget closure are displayed. Observed annual flow is given only if 

data from all contributing stations is available over a whole year over for at least 17 years out of 33 

years covered in this study.  

Basin 
VIC 

mm/year 

VIC adjusted for 

water budget 

closure 

mm/year 

LORA 

(Runoff) 

mm/year 

LORA 

(uncertainty) 

mm/year 

LORA 

yearly flow ± 

uncertainty 

Km3 

 

Observed 

yearly flow 
Km3 

Dominant 

climate 

Amazon 1048 1029 1151 360 6763 ± 2115 - Tropical wet 

Amur 135 129 219 115 428 ± 225 325 

Humid 

continental and 

semi-arid 

Columbia 318 293 333 101 218 ± 66 209 
Semi-arid and 

highlands 

Congo 407 404 358 147 1292 ± 532 1240 
Tropical wet 

and tropical dry 

Danube 272 265 260 125 199 ± 95 205 

Marine Humid, 

continental and 

humid 

subtropical 

Indigirka 132 120 228 171 78  ±  59 53 Subarctic 

Lena 142 134 301 137 731 ± 332 557 Subarctic 

Mackenzie 189 173 191 110 323 ± 186 294 Subarctic 

Mississippi 220 215 212 123 616 ± 359 581 

Humid 

continental and 

humid 

subtropical 

Murray-

Darling 
42 41 15 6 12 ± 5 - 

Arid and semi-

arid 

Niger 198 194 106 41 239 ± 87 170 
Arid, semi-arid 

and tropical dry 

Olenek 114 106 230 208 48 ± 43 40 Subarctic 

Parana 278 279 189 97 471 ± 247 600 

Marine and 

humid 

subtropical 



Pechora 342 308 420 420 131 ± 131 153 
Tundra and 

subarctic 

Yenisei 217 195 324 203 828 ± 520 612 Subarctic 

Yukon 149 139 229 102 188 ± 83 214 Subarctic 

 

 

(10) Line 27 on page 10: reduced performance in dry climates. Apart from the reasons 

mentioned, another possible cause could be the fact that GHMs are probably less proficient 

in representing runoff processes in arid basins where often runoff is local and will not 

always be turned into streamflow 

 

Great point. We have now added this in the text to read:  

 

It follows from Fig. 8 that the runoff values computed over dry climates tend to be less 

reliable than those in other regimes. This is perhaps due to biases in the WFDEI 

precipitation forcing that are propagated and intensified in the simulated runoff (Beck et 

al., 2017a). Another possible reason is the reduced proficiency of models in representing 

runoff dynamics in arid climates where runoff tends to be highly non-linearly related to 

rainfall and often evaporates locally without reaching a river system (Ye et al., 1997). 
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Abstract 

No synthesized global gridded runoff product, derived from multiple sources, is available despite such a 

product being useful to meet the needs of many global water initiatives. We apply an optimal weighting 

approach to merge runoff estimates from hydrological models constrained with observational streamflow 

records. The weighting method is based on the ability of the models to match observed streamflow data 

while accounting for error covariance between the participating products. To address the lack of observed 

streamflow for many regions, a dissimilarity method was applied to transfer the weights of the 

participating products to the ungauged basins from the closest gauged basins using dissimilarity between 

basins in physiographic and climatic characteristics as a proxy for distance. We perform out-of-sample 

tests to examine the success of the dissimilarity approach and we confirm that the weighted product 

performs better than its 11 constituents products in a range of metrics. Our resulting synthesized global 

gridded runoff product is available at monthly time scales, and includes time variant uncertainty, for the 

period 1980 – 2012 on a 0.5o grid. The synthesized global gridded runoff product broadly agrees with 

published runoff estimates at many river basins, and represents well the seasonal runoff cycle for most 

of the globe. The new product, called Linear Optimal Runoff Aggregate (LORA), is a valuable synthesis of 

existing runoff products and will be freely available for download on geonetwork.nci.org.au. 

1 Introduction 

Runoff is the horizontal flow of water on land or through soil before it reaches a stream, river, lake, 

reservoir or other channels. It has been widely used as a metric for droughts (Shukla and Wood, 2008; van 

Huijgevoort et al., 2013; Bai et al., 2014; Ling et al., 2016) and to understand the effects of climate 

change on the hydrological cycle (Ukkola et al., 2016; Zhai and Tao, 2017). Characterizing its dynamics 

and magnitudes is a major research aim of hydrology and hydrometeorology and a critical importance to 

improve our understanding of the current conditions of the large-scale water cycle and predict its future 

states. More accurate estimates also provide additional constraint for climate model evaluation., yet direct 

measurement of runoff at large scales is simply not possible.  

While runoff observations do not exist, direct streamflow or river discharge observations - basin 

integrated runoff - have been archived in many databases. The most comprehensive international 



streamflow database is the Global Runoff Data Base (GRDB; www.bafg.de), which consists of daily and 

monthly quality-controlled streamflow records from more than 9500 gauges across the globe. Geospatial 

Attributes of Gages for Evaluating Streamflow version II (GAGES-II; Falcone et al., 2010) represents 

another noteworthy streamflow database, consisting of daily quality-controlled streamflow data from over 

9000 US gauges. 

Hydrological and land surface models are capable of producing gridded runoff estimates for any region 

across the globe (Sood and Smakhtin, 2015;Bierkens, 2015; Kauffeldt et al., 2016). However, these 

runoff estimates suffer from uncertainties due to shortcomings in the model structure and 

parameterization and the meteorological forcing data (Beven, 1989; Beck, 2017a). There are various ways 

to use streamflow observations for improving the runoff outputs from these models. The conventional 

approach consists of model parameter calibration using locally observed streamflow data (see review by 

Pechlivanidis et al., 2011). Another widely used method is through regionalization; that is, the transfer of 

knowledge (e.g., calibrated parameters) from gauged basins to ungauged basins (see review by Beck et 

al., 2016). In contrast, several other studies attempted to correct the runoff outputs directly rather than the 

model parameters, for example by bias-correcting model runoff outputs based on streamflow observations 

(Fekete et al., 2002; Ye et al., 2014), or by combining or weighting ensembles of model outputs to obtain 

improved runoff estimates (e.g., Aires, 2014). There are, however, relatively few continental- and global-

scale efforts to improve model estimates using observed streamflow.   

A broad array of gridded model-based runoff estimates are freely available, including but not limited to 

ECMWF’s Interim reanalysis (ERA-Interim ; Dee et al., 2011), NASA’s Modern Era Retrospective-

analysis for Research and Applications (MERRA) Land  (Reichle et al., 2011), the Climate Forecast 

System Reanalysis (CFSR; Tomy and Sumam, 2016), the second global soil wetness project (GSWP2; 

Dirmeyer et al., 2006), the Water Model Intercomparison Project (WaterMIP; Haddeland et al., 2011), 

and the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004). Recently, the 

eartH2Observe project has made available two ensembles (tier-1 and -2) of state-of-the-art global 

hydrological and land surface model outputs (http://www.earth2observe.eu/; Beck et al., 2017a; and 

Schellekens et al., 2017). Although model simulations represent the only time varying gridded estimates 

of runoff at the global scale, they are subject to considerable uncertainties, resulting in large differences in 

runoff simulated by the models. Many studies have therefore evaluated and compared the gridded runoff 

models (see overview in Table 1 of Beck et al., 2017a).  

Despite the demonstrated improved predictive capability of multi-model ensemble approaches (Sahoo et 

al., 2011; Pan et al., 2012;  Bishop and Abramowitz, 2013;  Mueller et al., 2013; Munier et al., 2014; 

Aires, 2014; Rodell et al., 2015; Jiménez et al., 2017; Hobeichi et al., 2018; Zhang et al., 2018), very little 

has been done to utilise this range of model simulations toward improved runoff estimates. This paper 

implements the weighting and rescaling method introduced in Bishop and Abramowitz (2013) and 

Abramowitz and Bishop (2015) to derive a monthly 0.5° global synthesis runoff product. Briefly 

summarized, we use a bias correction and weighting approach to merge 11 state-of-the-art gridded runoff 

products from the eartH2Observe project, constrained by observed streamflow from a variety of sources. 

This approach also provides us with corresponding uncertainty estimates that are better constrained than 

the simple range of modelled values. For ungauged regions we employ a dissimilarity method to transfer 

the product weights to the ungauged basins from the closest basins using dissimilarity between basins as a 

proxy for distance. Such a synthesis product is in line with the multi-source strategy of Global Energy and 

Water EXchanges (GEWEX; Morel, 2001) and NASA’s Making Earth Science Data Records for Use in 

Research Environments (MEaSUREs; Earthdata, 2017) initiatives and is particularly useful for studies 

that aim to close the water budget at the grid scale. 

http://www.earth2observe.eu/


Sections 2.1 describes the observed streamflow data. Section 2.2 presents the participating datasets used 

to derive the weighted runoff product. Section 2.3 details the weighting method implemented in the 

gauged basins, while Section 2.4 focuses on the ungauged basins. Section 2.5 examines the approach used 

to derive the global runoff product. We then present and discuss our results in Section 3 and 4 before 

concluding.  

2 Data and Methods 

2.1 Observed streamflow data 

We used observed streamflow from the following four sources: (i) the US Geological Survey (USGS) 

Geospatial Attributes of Gages for Evaluating Streamflow (GAGES)-II database (Falcone et al., 2010); 

(ii) the Global Runoff Data Base (GRDB; http://www.bafg.de/GRDC/); (iii) the Australian Peel et al. 

(2000) database; and (iv) the global Dai (2016) database. We discarded duplicates and from the remaining 

set of stations discarded those satisfying at least one of the following criteria: (i) basin area <8000 km2 

(fewer than three 0.5 grid cells); (ii) record length <5 y in the period 1980–2012 (not necessarily 

consecutive); and (iii) low observed streamflow (i.e. around 0) that does not represent the total runoff 

across the basins due to significant anthropogenic activities. A river basin was identified with significant 

anthropogenic activities if it has > 20% irrigated area using the Global Map of Irrigation Areas (GMIA-

Version 4.0.2; Siebert et al., 2007) or has > 20% classified as “Artificial surfaces and associated areas” 

according to the Global Land Cover Map (GlobCover-Version 2.3; Bontemps et al., 2011). In total 596 

stations (of which 20 are nested in the basins of other stations) were found to be suitable for the analysis 

(Fig. 1).  

  

2.2 Simulated runoff data 

To derive the global monthly 0.5° synthesis runoff product, we used 11 total runoff outputs (from eight 

different models) and seven streamflow outputs (from six different models) produced as part of tiers 1 and 

2 of the eartH2Observe project (available via ftp://wci.earth2observe.eu/).  The models and their available 

variables are presented in Table 1. For tier 1 of eartH2Observe, the models were forced with the WATCH 

Forcing Data ERA-Interim (WFDEI) meteorological dataset (Weedon et al., 2014) corrected using the 

Climatic Research Unit Timeseries dataset (CRU-TS3.1; Harris et al., 2014). For tier 2, the models were 

forced using the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2017b). 

The runoff and streamflow values are provided in kg m-2s-1 and m3 s-1, respectively.  For consistency, the 

runoff outputs with resolution <0.5° were resampled to 0.5° using bilinear interpolation. In some cases, 

the river network employed by the model did not correspond with the stream gauge location, in which 

case we manually selected the grid cell that provided the best match with the observed streamflow. 

The runoff outputs were only used if no streamflow output was available and only in basins smaller than 

100,000 km2. To make the runoff data consistent with the streamflow data, we integrated the runoff over 

the basin areas (termed Ragg, units m3 s-1). Thus, for basins smaller than 100,000 km2 the synthesis 

product was derived from 11 model outputs, whereas for basins larger than 100,000 km2 the synthesis 

product was derived from seven outputs. 

 

ftp://wci.earth2observe.eu/


We detail in sections 2.3 and 2.4 our methods to derive the weighted runoff product for the global land. A 

flowchart summarizing the process is provided in Fig. 2.  

2.3 Implementing the weighting approach at the gauged basins  

At each gauged basin, we built a linear combination 𝜇q of the participating modelled streamflow datasets 

𝑥 (i.e. Ragg in small basins and modelled streamflow, q, in large basins) that minimized the mean square 

difference with the observed streamflow Q at that basin such that: 𝜇q
j
= ∑ 𝑤k(𝑥k

j
−K

k=1 𝑏k) where 𝑗 ∈ [1, 𝐽] 

are the time steps and  𝑘 ∈ [1, 𝐾] represent the participating models, 𝑥𝑘
𝑗
 (i.e., integrated runoff  Ragg𝑘

𝑗
 over the 

basin areas in small basins and modelled streamflow at a gauge location 𝑞
𝑘

𝑗
 in large basins) is the value of the 

participating dataset in m3 s-1 at the  jth time step of the kth participating model, the bias term 𝑏k is the mean 

error of  𝑥k in m3 s-1. The set of weights 𝑤k provides an analytical solution to the minimization of  

∑ (𝜇q
j
− 𝑄j)2

J
j=1  subject to the constraint that  ∑ wk = 1

K
k=1 , where 𝑄𝑗 is the observed streamflow at the jth 

time step. This minimization problem can be solved using the method of Lagrange multipliers by finding 

a minima for  

𝐹(𝑤, ) =
1

2
[

1

(𝐽−1)
∑ (𝜇𝑞

𝑗
− 𝑄𝑗)2] − ((∑ 𝑤𝑘

𝐾
𝑘=1 ) − 1)

𝐽
𝑗=1 . 

The solution to the minimization of 𝐹(𝑤, ) can be expressed as w =
A−11

1TA−11
 , where 1T = [1,1, . . . ,1]⏞      

k elements

 and 

A is the k × k error covariance matrix of the participating datasets (after bias correction), i.e. 

A=(

𝑐1,1 ⋯ 𝑐1,𝑘
⋮ ⋱ ⋮
𝑐𝑘,1 … 𝑐𝑘,𝑘

). A is symmetric and the term 𝑐𝑎,𝑏 is the covariance of the ath and bth bias corrected 

dataset after subtracting the observed dataset, while each diagonal term 𝑐𝑘,𝑘is the error variance of dataset 

k. We note here that the solution presented here is based on the performance of the participating products 

(diagonal terms of A) and the dependence of their errors (accounted for by the non-diagonal terms of A). 

For derivation see Bishop and Abramowitz (2013). 

We then derived the weighted runoff dataset by applying the computed weights on the bias corrected 

runoff estimates of the participating models. The weighted runoff dataset is expressed as:  

𝜇r
j
=∑𝑤k(𝑟k

j
− b′k)

K

k=1

 

Where 𝑟k
j
 is the value of runoff estimate in kg m−2s−1 of the kth participating model at the jth time step 

and b′k is its runoff bias in kg m−2s−1.  

To calculate the runoff bias b′k, we assumed that for each model k and at each time j the bias ratio of a 

model (defined as the ratio of the model error to the simulated magnitude) is the same for streamflow and 

runoff estimates Eq. (1). In small basins, the bias ratio of modeled streamflow was calculated by using 

Raggk
j
 instead of the modeled streamflow 𝑞k

j
 Eq. (2). 
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We note that there no empirical evidence in the literature that the assumptions presented in Eq. 1 and Eq. 

2 are valid. However, given that these assumptions constitute a part of our overall approach that we tested 

and proved its success later in this paper, the validity of these assumptions is very likely to hold true. 

To avoid over-fitting when applying the weighting approach, we limited the number of participating 

models so that the ratio of number of records (i.e. total number of available monthly observations within 

the period of study) to number of models does not fall below ten.  As a result of this, when required, we 

discarded the models that had the highest bias (i.e. left terms in Eq (1, 2)) until the threshold was met. The 

weighting and the bias correction occasionally resulted in negative runoff values, we replaced any 

negative values with zero. Table S1 shows examples of weights and bias ratios calculated for the 

participating models over a range of river basins. It shows that HBVS, JULES1, JULES2 and SURF2 didn’t 

participate in the weighting over the large basins (i.e. Amur, Indigirka, Mississippi, Murray-Darling, 

Olenek, Parana, Pechora and Yenisei) since these models don’t have estimates for streamflow which are 

needed to construct the weights over large basins. For the smaller Copper River basin, however, 

runoff estimates from all models participated in deriving weighted runoff estimates. Table S1 also shows 

that in many cases, models were assigned negative weights. While this might not be expected in typical 

performance-based weighting, it is possible when weighting is based on error covariance as well as their 

performance differences in this formulation. We show below how the weights can be modified to non-

negative weights. 

We implemented the ensemble dependence transformation process detailed in Bishop and Abramowitz 

(2013) to compute the gridded time-variant uncertainty associated with the derived runoff estimates. 

For any given gauged basin, we first calculated the spatial aggregate of our weighted runoff estimate 

Ragg𝜇, then quantified 𝑠𝑞
2, the error variance of Ragg𝜇 with respect to the observed streamflow Q over 

time as: 

𝑠𝑞
2 =

∑ (Ragg𝜇
𝑗 − 𝑄𝑗)2

𝐽
𝑗=1

𝐽 − 1
 

Then, we wished to guarantee that the variance of the constituent modelled estimate 𝜎𝑞
2𝑗  about  

Ragg𝜇
𝑗  at a given time step, averaged over all time steps where we have available streamflow data, is 

equal to 𝑠𝑞
2, such as  𝑠𝑞

2 = 
1

𝐽
∑ 𝜎𝑞

2𝑗𝐽
𝑗=1 .  

Since the variance of the existing constituent products do not, in general, satisfy this equation. We 

transformed them so that it does. This involved first modifying the set of weights 𝑤 to a new set �̃� such 

that  

�̃� =
𝑤𝑇+(𝛼−1)

1𝑇

𝐾

𝛼
 , where 𝛼 = 1 − 𝐾𝑚𝑖𝑛(𝑤𝑘) and 𝑚𝑖𝑛(𝑤𝑘) is the smallest negative weight (and 𝛼 is set 1 

if all 𝑤𝑘  are non-negative). This ensures that all the modified weights  �̃�𝑘   are positive. We then 

transform the individual estimates 𝑥𝑘
𝑗
  to �̃�𝑘

𝑗
 where �̃�𝑘

𝑗
= Ragg𝜇

𝑗 + 𝛽(�̅�𝑗 +  𝛼(𝑥𝑘
𝑗
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The weighted variance estimate of the transformed ensemble can be defined as 

 𝜎𝑞
2𝑗
= ∑ �̃�𝑘(�̃�𝑘

𝑗
− Ragg𝜇

𝑗)2𝐾
𝑘=1  and ensures that the equation  

1

𝐽
∑ 𝜎𝑞

2𝑗𝐽
𝑗=1 = 𝑠𝑞

2 holds true. Furthermore, 

√𝜎𝑞
2𝑗

 is the temporally varying estimate of uncertainty standard deviation of the transformed ensemble 

that (a) is varying in time, and (b) accurately reflects our ability to reproduce the observed streamflow.  

We refer the reader to Bishop and Abramowitz (2013) for proofs. 

In order to estimate √𝜎𝑟
2𝑗

 , the uncertainty of the runoff attributes 𝜇𝑟
𝑗
 at each point in time and space, we 

first transformed the runoff fields  𝑟𝑘
𝑗
 to �̃�𝑘

𝑗
 by applying the same transformation parameters 𝛼 and 𝛽 such 

that �̃�𝑘
𝑗
= 𝜇𝑟

𝑗
+ 𝛽(�̅�𝑗 +  𝛼(𝑟𝑘

𝑗
− �̅�𝑗)  − 𝜇𝑟

𝑗
). We then calculated the error variance 𝜎𝑟

2𝑗
= ∑ �̃�𝑘(�̃�𝑘

𝑗
−𝐾

𝑘=1

𝜇𝑟
𝑗
)2. 

Finally, we used √𝜎𝑟
2𝑗

 as the spatially and temporally varying estimate of runoff uncertainty standard 

deviation, which we will refer to below simply as ‘uncertainty’. It provides a much more defensible 

uncertainty estimate than simply calculating the standard deviation of the involved products.  

We note that for a given basin,  √𝜎𝑞
2𝑗

 represents the uncertainty of the modelled streamflow i.e. Ragg𝜇
𝑗, 

while √𝜎𝑟
2𝑗
  represents the uncertainty of modelled runoff at each grid cell across the basin. This means 

that at every time step, there is one value for √𝜎𝑞
2𝑗

 per basin, and one value for  √𝜎𝑟
2 per grid across the 

basin. 

2.4 Deriving runoff estimates at the ungauged river basins 

Implementing the weighting approach requires observed streamflow to constrain the weighting, which we 

do not have at ungauged river basins (defined in section 2.1). To address this, we used the modelled and 

observed streamflow from the three most similar gauged river basins, based on pre-defined physical and 

climatic characteristics, to derive model weights at each ungauged basin. The selected gauged river basins 

served as donor basins to the ungauged receptor basins. We then implemented the weighting technique on 

the ensemble of 11 (in small basins) or eight (in large basins) model outputs by matching Ragg calculated 

across the selected donor basins with the observed streamflow. This resulted in one set of weights and 

bias ratios obtained jointly from the three donor basins. Finally, we transferred the weights and bias ratios 

computed at the donor basins to the receptor basin and subsequently computed the associated uncertainty 

values. 

Most of the gauged river basins were classified as donor basins. Some, however, were excluded from 

being donors where we found (based on Ragg or modeled streamflow time series and metric values) that 

none of the models was able to simulate the streamflow dynamics. These basins are mainly located in 

areas of natural lakes, in mountainous areas covered with snow, or in wet regions with intense rainfall. 

We therefore (subjectively) decided that those excluded basins should be assigned to a “non–donor and 

non–receptor” category.  



We applied the method presented in Beck et al. (2016) to calculate a similarity index S between a donor 

basin a and a receptor basin b expressed as: 

𝑆a,b = ∑
|𝑍p,a−𝑍p,b|

IQRp

7
p=1  (3) 

Where p denotes the climatic and physiographic characteristics as in Table 4 of Beck et al. (2016). This includes 

aridity index, fractions of forest and snow cover, soil clay content, surface slope, and annual averages of 

precipitation and potential evaporation. 𝑍p,a and 𝑍p,b are the values of the characteristic p at donor and receptor 

basins, respectively. IQRp is the interquartile range of characteristic p calculated over the land surface, excluding 

deserts (defined by an aridity index > 5, see Table 4 of Beck et al. (2016))  and areas covered with ice during most 

of  the year (defined by climate zones Tundra, Subarctic and Ice cap using a simplified climate zones map (Fig. S1) 

created by the Esri Education Team for ArcGIS online (World Climate Zones – Simplified; Esri Education Team, 

2014)). From Eq. 3 it follows that the most similar donor a to a receptor b is the one that has the lowest index value 

with basin b. We applied this approach to identify the three most similar donors for every receptor basin. The 

dissimilarity technique has been previously applied to find ten donors for one receptor. Given that all the selected 

donors must have very close similarity indices, we found by trial and error that increasing the number of donor 

basins might introduce donor basins that have a significantly different similarity index, and that setting the number 

of donor basins to three seemed most appropriate. 

In very large basins, physiographic and climatic heterogeneity can result in misleading basin-mean 

averages. We therefore excluded highly heterogeneous basins from the list of donors and classified them 

as ‘non-donor and non-receptor’ basins, and also broke up large heterogeneous receptor basins by climate 

groups into smaller basin zones and then treated them as separate basins to effectively receive sets of 

weights and bias ratios from the donor basins to the separate parts. Here we defined large heterogeneous 

basins as basins with areas greater than 1,000,000 km2 and covering climate zones that belong to at least 

two groups of 1) Tropical Wet, 2) Humid continental, Humid subtropical, Mediterranean and Marine, 3) 

Tropical Dry, Semi–arid and Arid, 4) Tundra, Subarctic and Ice cap and 5) Highlands. Climate 

classification is based on the simplified climate zones map (World Climate Zones climate zones map; Esri 

Education Team, 2014) defined above. We used this particular climate map because it comprises only 12 

broad climate groups (compared to more than 30 in other climate maps e.g. Köppen–Geiger). This 

reduced the divisions made to large heterogenous basins, while ensuring that the resultant basin zones 

of individual basins have very distinct climate characteristics. Figure 3 shows the spatial coverage of the 

donor basins, receptor basins and non-donor and non-receptor basins.   

2.5 Out-of-sample testing 

To test that this approach is producing a runoff estimate at receptor basins (using transferred weights from 

the most similar gauged basins) that is better than any of the individual models, we performed an out-of-

sample test. In this test, we selected a gauged basin and treated it as a receptor basin, constructing model 

weights by using the three most similar donor basins. We could then compare: (a) observed streamflow; 

(b) the in-sample weighted product (WPin) derived by using observed streamflow for this basin to weight 

models; (c) an out-of-sample weighted product (WPout) derived by constructing the weighting at the three 

most similar basins, and; (d) the individual model estimates at each basin. We calculated four metrics of 

performance for WPin, WPout and each of the 11 datasets: Mean Square Error  MSE=mean(Ragg – 



observed streamflow)2; Mean Bias=mean| Ragg – observed streamflow |; Correlation COR=corr(observed 

streamflow, Ragg) and Standard Deviation (SD) difference= σRagg − σobserved streamflow. We repeated 

the out-of-sample test for all the gauged basins (donor basins and non-donor and non-receptor basins). 

We displayed the results of the out-sample-test by showing the percentage performance improvement of 

WPout compared to WPin and each individual model, yielding 12 different values of performance 

improvement. If the approach is succeeding, we expect that both WPout and WPin will perform better than 

any of the models used in this study, and also WPin should be in better agreement with the observed 

streamflow when compared to WPout. 

We used box and whisker plots to show the results of performance improvement of WPout calculated 

relative to WPin and the 11 datasets across all the gauged basins. The lower and upper hinges of a boxplot 

represent the first (Q1) and third (Q3) quartiles respectively of the performance improvement results and 

the line inside the boxplot shows the median value. The extreme of the lower whisker represents the 

maximum of 1) min(dataset) and 2) (Q1 - IQR), while the extreme of the upper whisker is the minimum of 

1) max(dataset) and 2) (Q3 + IQR)), where IQR represents the interquartile range (i.e. Q3 - Q1 ) of the 

performance improvement results. A median line located above the 0 axis is an indication that the out of 

sample weighting offers an improvement in more than half of the basins.  

The uncertainty estimates computed at the gauged basins represent well the deviation of the spatial 

aggregate of our weighted product (𝑅𝑎𝑔𝑔𝜇) from the observed streamflow, since the in-sample 

uncertainty estimates are calculated from the variance of the transformed ensemble, which by design 

equals MSE of 𝑅𝑎𝑔𝑔𝜇 against the observation (i.e. error variance of 𝑅𝑎𝑔𝑔𝜇). To test if the uncertainty 

estimates perform well out-of-sample (i.e. at the ungauged basins), we performed another out of 

sample test. In this test, we took a gauged basin, but instead of constraining the weighting using 

observed streamflow from this basin, we constructed model weights by using the three most similar 

donor basins. We could then calculate MSE of 𝑅𝑎𝑔𝑔𝜇 against observation from the three donor basins, 

and we denoted this by MSEin, which represents the uncertainty estimates calculated in-sample, since 

the observational data used in this case is the same dataset that was used to train the weighting. We 

also calculated the MSE of the aggregated weighted product against the actual observation of the 

gauged basin and we denoted this by MSEout. MSEout represents the uncertainty estimates computed 

out-of-sample, since the comparison was performed against observational data that has not been used 

to train the weighting. We repeated the out-of-sample test for all the gauged basins. 

We displayed the results of the out-sample-test by showing the ratios of MSEin to MSEout. If the approach 

is succeeding, we expect that this ratio is around one, indicating that the values of MSEin and MSEout are 

close to each other. We used a box and whisker plots to show the results. 

3 Results 

The results for the out-of-sample test are displayed in the box and whisker plots presented in Fig. 4 (a - d). 

The MSE and Mean bias plots in Fig. 4 (a and d) indicate that across almost all the gauged basins WPout 

performs better than each of the individual models. Similarly, the COR plot in Fig. 4 (c) shows that the 

out-of-sample weighting has in fact improved the correlation with observational data across almost all the 

gauged basins. The SD difference plot (Fig. 4 (b)) shows a significant improvement of WPout relative to 

the models, but the number of basins that benefit from this improvement decreased, perhaps because the 



variability of the individual members of the weighting ensemble is not necessarily temporally coincident 

at all the basins, resulting in decreased variability. The negative performance improvement of WPout 

relative to WPin across all metrics (first boxplot, Fig. 4 (a-d)) indicates that the weighting performs better 

in-sample than out-of sample, which is to be expected. Critically though, the fact that the weighting 

delivers improvement over all models when the weights are transferred from similar basins indicate that 

the dissimilarity technique is succeeding and can be effectively used at the ungauged basins by feeding 

the weighting with data from the most similar basins with streamflow observations. Furthermore, the 

boxplot in Fig. 5 shows that, overall, when the uncertainty estimates are computed out-of-sample they are 

very similar to what they would have been if they were computed in-sample. This demonstrates that the 

dissimilarity technique can be effectively used to derive not only the weighting product but also its 

associated uncertainties at the ungauged basin. 

Based on the improvement that the weighting approach implemented in both gauged and ungauged basins 

offers over Ragg estimates computed for 11 individual model runoff estimates, in terms of MSE, SD 

difference, COR and Mean Bias against observed streamflow data, we now present details of the mosaic 

of the individual weighted runoff estimates derived across all the basins that we name LORA. At the 

gauged basins, the weighting was trained with the Ragg of the modelled runoff at the individual basins 

and constrained with the observed streamflow. At ungauged basins, the dissimilarity approach was first 

implemented to find the three most similar basins, then the weighting was trained on the combined 

datasets from these three basins. Subsequently, weights were transferred to the ungauged basins and 

applied to combine the runoff estimates at the individual basins.  

The eight modelled runoff datasets listed in Table 1 as part of the tier1 ensemble were recently included 

in a global evaluation by Beck et al. (2017a). In their analysis, they computed a summary performance 

statistic that they termed OS by incorporating several long-term runoff behavioural signatures defined in 

Table 3 of Beck et al. (2017a) and found that the mean of runoff estimates from four models only 

(LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) performed the best in terms of  OS̅̅̅̅  (i.e. mean of 

OS over all the basins included in their study) relative to each individual modelled runoff estimates and 

the mean of all the modelled runoff estimates. In this study, we calculated the mean runoff from the four 

best products found by Beck et al. (2017a), that is (LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG. 

Hereafter, we refer this as “Best4”, and we calculated four statistics (RMSE, SD difference, COR and 

Mean bias defined here as mean(dataset-obs)) for Ragg computed from LORA, Best4 and each of the 11 

runoff datasets across all the gauged basins. The boxplots in Fig. 6 (a-d) display the results. 

The RMSE plot in Fig. 6 (a) shows that LORA has the lowest RMSE values with the observed 

streamflow. All of the component models exhibit a similar performance in RMSE. Similarly, LORA has 

overall the least SD difference with observations (Fig. 6 (b)) across more than half of the basins. The 

Mean bias plot in Fig. 6 (d) shows a non-significant positive bias in LORA relative to the observation at 

the majority of the basins. Best4, HBV-SIMREG, PCR-GLOBWB and particularly LISFLOOD exhibit a 

positive mean bias across most of the basins but with much higher bias magnitude compared to that of 

LORA. HTESSEL and SURFEX estimates from both tiers (i.e tier1 and tier2) together with JULES 

(tier2) and WGAP3 show negative and positive bias distributed evenly across the basins. LORA shows 

the highest temporal correlation with the observed streamflow at more than half of gauged basins (Fig. 6 

(c)). The low RMSE and Mean bias values relative to the other estimates is partly due to the bias 

correction applied before the weighting. While all the performance metrics calculated here show that 

LORA outperforms Best4, these metrics do not allow us to assess how well LORA performs in terms of 

bias in the runoff timing, replicating the peaks or representing quick runoff, with the exception of the 



correlation metric. These aspects were studied in more detail in Beck et al. (2017a) and showed that Best4 

performs well in these performance metrics.  

All the models involved in deriving LORA with the exception of  HBV-SIMREG were found in the study 

of (Beck et al., 2017a)  to show early spring snowmelt peak and an overall significant underestimation of 

runoff in the snow-dominated basins. To see how well LORA performs at high latitudes, we examined the 

gauged basins located at higher latitudes (>60°) and we calculated two statistics – COR and mean bias – 

as in Fig. 6 (c-d) but this time for the snow-dominated basins only. We display the results in Fig. 7. 

The temporal correlation plot in Fig. 7 (a) shows that LORA is in better agreement with observed 

streamflow at snow-dominated basins compared to the ensemble of all the gauged basins on the globe 

(Fig. 6 (c)) with an overall average improvement of 7%.  Similarly, HBV-SIMREG shows an improved 

correlation with the observed streamflow at snow-dominated basins with an average improvement of 

14%, this agrees with the results reported by Beck et al. (2017a) who attributed the improved performance 

of HBV-SIMREG in snow-dominated regions to a snowfall gauge undercatch correction. The overall 

performance of Best4 and LISFLOOD do not change in terms of spatial correlation; on the contrary, all 

the remaining products show a degraded performance. Figure 7 (b) shows that LORA exhibits small 

biases across snow-dominated basins relative to participating models. Conversely, with the exception of 

LISFLOOD, all the tier1 products including Best4 show a negative mean bias across more than half of the 

snow-dominated basin, in particular HTESSEL, JULES, SURFEX and W3RA show a large negative bias 

at most of these basins. This agrees with the negative bias found in the study of Beck et al. (2017a) in all 

tier1 products except LISFLOOD.  These results indicate that LORA is likely to slightly overestimate 

runoff in high latitudes whereas all tier1 products with the exception of LISFLOOD tend to underestimate 

runoff in these regions, and that this underestimation is larger for HTESSEL, JULES, SURFEX and 

W3RA. Tier2 products show both positive and negative bias across the basins. Their bias is of a lower 

magnitude than that found in tier1 products. That is probably because the forcing precipitation used to 

derive tier 2 outputs (i.e. MSWEP) has less biases than that used to derive tier1 estimates (i.e. WFDEI 

corrected using CRU-TS3.1). We also calculated the two metrics, SD difference and mean bias as in Fig. 

6 (a and b), but we found no noticeable differences in the performance of any of the products relative to 

that found globally in Fig. 6 (a and b). The results displayed in Fig. 6 and Fig. 7 are discussed further 

below.  

We calculated the seasonal relative uncertainty expressed as the ratio of the seasonal average uncertainty 

to seasonal mean runoff (i.e. 
mean runoff uncertainty

mean runoff
) over the period 1980 – 2012. This metric is intended 

to show some indication of the reliability of the derived runoff, with results displayed in Fig. 8.  Regions 

in red show grid cells that satisfy 
mean runoff uncertainty

mean runoff
< 1, while those shown in yellow are regions 

where the value of mean runoff uncertainty are larger than the value of the associated mean runoff itself. 

Regions in blue are grid cells that have a zero mean runoff and hence an undetermined relative 

uncertainty.  The global maps in Fig. 8 show a consistent low reliability in Sahel, Indus basin, Parana, the 

semi-arid regions of Eastern Argentina, Doring basin in South Africa, red river sub-basin of the 

Mississippi, Burdekin and Fitzroy basins in North-East Australia and many regions of the Arab Peninsula. 

The areas at the higher latitudes in Asia and North America show high reliability during Jun-Jul-Aug and 

low reliability during the rest of the year. Parts of Madeiry sub-basin – a major sub-basin of the Amazon – 

show low reliability during June-Nov. The basins in Central America show high reliability in all seasons 

except in Mar-May while River basins in Somalia show low reliability during the austral summer and 

winter. River basins in the far east show low reliability in spring and autumn and a higher reliability in 

winter and summer. 



Figure 9 displays the seasonal cycles of Ragg for LORA and Best4 and the observed streamflow over 11 

major river basins. To generate this plot, we calculated the average Ragg for each month over the period 

of availability of observed streamflow. The shaded regions represent the range of uncertainty associated 

with the derived runoff. In the Amazon basin, LORA overestimates runoff in the wet season and 

underestimates it in the dry season, but the observed streamflow during the dry season still lies within the 

error bounds of LORA.  LORA shows good agreement with the observed cycle in the Mississippi. In the 

Niger and Murray-Darling basins, while LORA overestimates the observed streamflow, it shows a much 

better agreement compared to Best4 which strongly overestimates runoff. In the Parana basin, LORA 

underestimates the observed streamflow in all seasons except summer. In the subarctic basins, LORA 

shows different behavior within the individual basins. In Pechora and Olenek, LORA represents well the 

seasonal cycle and the magnitude of runoff, whereas in the Amur, Lena and Yenisei, LORA shows an 

early shift of the runoff peak and an overall overestimation of runoff. In the Indigirka, LORA 

overestimates the spring peak, but the observed seasonal cycle lies within the error bounds.   

We compared our mean annual runoff (mm/year) with those estimated by a well-known land surface 

hydrological model the Variable Infiltration Capacity (VIC; Liang et al., 1994) model as well as adjusted 

VIC estimates after enforcing the physical constraints of the water budget  in the study of Zhang et al. 

(2018) over comparable temporal and spatial scale for 16 large basins chosen from different climate zones 

on the globe. The mean annual runoff was computed over the period 1984 - 2010 instead of 1980 – 2012 

to maximize the temporal agreement with the study of Zhang et al. (2018). We also showed the average 

annual volume of water that discharges from these basins computed from LORA and the observational 

data. 

Table 2 shows that for some basins VIC and LORA agree well in estimating mean annual runoff (i.e. 

difference between LORA and at least one of VIC and VIC adjusted for budget closure <10%). This 

threshold is met in the Amazon, Columbia, Congo, Danube, Mackenzie and Mississippi. The basins that 

show a larger difference between VIC and LORA but show that VIC estimates lie within the uncertainty 

bounds of LORA (i.e. between LORA-uncertainty and LORA+uncertainty) include Indigirka, Olenek, 

Parana, Pechora, Yenisei and Yukon. Large discrepancies between VIC and LORA are found in Lena and 

the Murray-Darling. Other global estimates of total runoff are also available such as GLDAS and Multi-

scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP; Huntzinger et al., 2016), 

however we haven’t compared LORA with these datasets because they either have a short common 

period with LORA, or a coarser resolution (i.e. 1o) and showed a significant disagreement with 

observation when interpolated to a 0.5° grid. 

Finally, we provide in Fig. S8 an example of runoff fields in an individual month (e.g. May, 2003). 

4 Discussion 

The results of the out-of-sample test suggest that deriving runoff estimates in an ungauged basin by 

training the weighting with streamflow data from similar basins - in terms of climatic and physiographic 

characteristics - is successful. While the runoff product derived by using weights from external basins 

outperforms the runoff estimates from the individual models, the weighted runoff derived in-sample 

offers overall even more capable runoff estimates.  

It follows from Fig. 8 that the runoff values computed over dry climates tend to be less reliable than those 

in other regimes. This is perhaps due to biases in the WFDEI precipitation forcing that are propagated and 

intensified in the simulated runoff (Beck et al., 2017a). Another possible reason is the reduced proficiency 



of models in representing runoff dynamics in arid climates where runoff tends to be highly non-linearly 

related to rainfall and often evaporates locally without reaching a river system (Ye et al., 1997). Also, due 

the lower density of gauged basins in the arid and semi-arid climates compared to other regimes, receptor 

basins are dominant over dry climates, which reduces the skill of the weighting to produce good runoff 

estimates.  This is also in line with our conclusions from Fig. 4 that the weighting provides more reliable 

results in the gauged basins.  

All the tier1 model outputs involved in this study with the exception of HBV-SIMREG were found by 

Beck et al. (2017a) to show early spring snowmelt in the snow-dominated basins. Both the Yenisei and 

the Lena are large basins (2.6 and 2.4 million km2, respectively), and hence – as noted in Sect. 2.2 – only 

models that had estimates of both streamflow and runoff were used to derive LORA at these basins, and 

therefore HBV-SIMREG – whose inclusion would have improved the weighting - was excluded. Beck et 

al. (2017a) also found that LISFLOOD has the best square root-transformed mean annual runoff among 

the tier1 datasets and perfoms well in terms of temporal correlation in all climates, this agrees with the 

high temporal correlation of LISFLOOD seen in Fig. 6 (c) and Fig. 7 (a), and also explains the highest 

weights attributed to LISFLOOD in the majority of snow-dominated basins (Table S1). Because of this, 

and because LISFLOOD tends to overestimate runoff across half of the snow-dominated basins (as shown 

in Fig.7 (b)) LORA exhibits a positive bias across half of the snow-dominated basins (Fig. 7 (b)) and 

particularly in Lena, Amur and Yenisei basins  (Fig. 9).  

Further, we provide in Fig. S2 the spatial distribution of correlation results from Fig. 6 (c). The basins are colour-

coded by their temporal correlation with the observed streamflow and the number of basins in each category is 

given. Basins in yellow are those where LORA is highly correlated with the observation while dark blue basins are 

those where LORA exhibits a negative correlation with the observation. It can be noted from Fig. 6(c) that 

occurrence of negative correlation is extremely unusual  which explains why these were considered outliers and 

were not shown in the box and whisker plot. Likely, low correlation basins are unusual and constitute less than 12% 

of the number of basins (excluding basins with negative correlation). Also, the median value is above 0.8, which is 

higher than any constituent estimates. We selected a basin from each correlation range and examined the timeseries 

of LORA and the observed streamflow more closely (Fig. S3-S7), in particular illustrating the uncertainty estimate 

of LORA. In Ganges, LORA captures well the observed time-series dynamic with a tendency to over-estimate 

streamflow peak in August (Fig. S3). Over Madeira basin, LORA is able to represent reasonably well most of the 

climatic variability found in the observation (Fig. S4). In Congo, the catchment has an irregular time-series dynamic, 

LORA is in principle able to capture a large part of the climatic variability in the observation (Fig. S5). In Lena, the 

observation shows a peak in June and a second less significant peak in September (Fig. S6). Both peaks are captured 

by LORA during most of the time series with a tendency to underestimate the late summer peak and overestimate 

the early summer peak. In the upper Indus, LORA does not capture the magnitudes of observed streamflow and 

shows a reversed seasonal cycle which explains why it exhibits negative correlation with the observation (Fig.S7). 

Zhang et al. (2018) found disagreement between simulated runoff from three LSMs and observed streamflow over 

Indus basin which they expected to be due to errors in the observational data from GRDB dataset. 

Pan et al. (2012) and Sheffield et al. (2009) assumed that the errors in the measured streamflow are 

inversely proportional to the area of the basins and ranges between 5% and 10%. Whereas Di Baldassarre 

and Montanari (2009) analyzed the overall error affecting streamflow observations and found that these 



errors range between 6% and 42%. In earlier studies, the errors in streamflow  measurement were 

estimated to range from 10% to 20%  (Rantz, 1982; Dingman, 1994). In the study of Zhang et al. (2018), 

the error ratios of VIC were set to be 5%. In this study, we used the weighting approach to compute 

gridded uncertainty values based on the discrepancy between the Ragg of the derived runoff and the 

associated observational dataset in each gauged basin or alternatively, based on the discrepancy between 

Ragg of the derived runoff and the associated observational dataset from three similar basins in the case 

of ungauged basins. The derived gridded uncertainty changes in time and space. Our uncertainty estimates 

show higher values than those set for VIC, and additionally the estimated values and their reliability 

change with climate and season (Fig. 8). It follows from Table 2 that in most of the basins the mean 

annual runoff uncertainty exceeds 30% of the values of the associated runoff itself. In fact, when the 

values of runoff approach zero (i.e. in arid and semi-arid regions during the hot climate or in the snow 

dominated basins during winter) it is expected that the uncertainty values become very close to the 

associated runoff estimates and eventually the error ratio becomes high. It is not surprising that the 

estimated relative uncertainties exceed the error ratios of the observations. Also the change of the 

uncertainty values with time and space is consistent with the fact that the individual datasets that were 

used to derive LORA exhibit performance differences in different climates and terrains (Beck et al., 

2017a). 

Figure 10 shows the Mean seasonal runoff (mm/year) calculated for the period 1980 – 2012. There is 

consistently low runoff in arid regions and high runoff in wet regions across all the seasons. High 

latitudes in America and Asia exhibit no runoff during the snow season and high runoff during Mar-Aug 

when snow melts. Overall, there is a clear agreement between the spatial distribution of runoff and the 

different climate regimes. This is particularly reflected in Madagascar where the differences in runoff 

pattern match the different climate regimes across the island. LORA captures the high wetness in the 

monsoonal seasons and exhibits a shift in magnitude during the wet monsoon in the lower Amazon during 

Oct-May, the upper Amazon during Jun-Aug, South Asia during Jun-Nov, Central Sahel in August and 

Guinea Coasts in June, July, September and October.  

As discussed in Hobeichi et al. (2018), the weighting approach has its own advantages and drawbacks. 

One limitation is that a common imperfection in all the individual products is likely to propagate into the 

derived product. The early spring runoff peak found in both LORA and the datasets that were used to 

derive it is an example of this limitation. On the other hand, the seasonal runoff cycle of LORA in both 

Pechora and Olenek (i.e. two snow-dominated basins) indicate that LORA was able to capture the 

seasonal signal and the timing of the runoff peak very well as opposed to the constituent products and 

Best4, which also suggests that the weighting has the ability to overcome the weaknesses of the individual 

products. Additionally, it was shown in Beck et al. (2017a) that tier1 products consistently overestimate 

runoff in arid and semi-arid regions due to a bias in the WFDEI precipitation forcing, this appears in the 

massive overestimation exhibited by Best4 in Niger and Murray-Darling (Fig. 9), however the weighting 

was able to eliminate a large amount of this overestimation, which also emphasizes the ability of the 

weighting approach to mitigate limitations in individual models. Another limitation arises from the 

scarcity of observed streamflow particularly in the arid regions and from the quality of the observational 

data itself.  As noted earlier, the errors in GRDB dataset were reported to range between 10% and 20% 

and were found by Di Baldassarre and Montanari (2009) to have an average value that exceed 25% across 

all the studied river basins. Also, given that there are no direct observations for runoff, uncertainties were 

computed from the discrepancy between the modelled runoff aggregates and observed streamflow. This 

ignored the lag time between LORA integrated runoff and observed streamflow at the mouth of the river 

and induced biases that possibly led to overestimated uncertainty over large gauged basins. 



The weighting technique allows the addition of new runoff estimates when they become available. This 

will be particularly beneficial if the future estimates represent reasonably the runoff peak in the snow-

dominated regions.  

5 Conclusion 

In this study, we presented LORA, a new global monthly runoff product with associated uncertainty. 

LORA was derived for 1980–2012 with monthly temporal resolution at 0.5° spatial resolution by 

applying a weighting approach that accounts for both performance differences and error covariance 

between the constituent products.  

To ensure full global coverage, we used a similarity index to transfer weights and bias ratios constructed 

from gauged basins with similar climatic and physiographic characteristics to ungauged basins. This 

allows the derivation of runoff in areas where we do not have observed streamflow. 

We showed that this approach is succeeding, that LORA performs better than any of its constituent 

modelled products in a range of metrics, across basins globally and especially in the higher latitudes. 

However, LORA tends to overestimate runoff and shows an early snow-melt peak in some snow-

dominated basins. LORA was not found to significantly overestimate runoff in arid and semi-arid regions 

as opposed to the constituent products. 

The approach and product detailed here offers the opportunity for improvement as new streamflow and 

modelled runoff datasets become available. It presents a new, relatively independent estimate of a key 

component of the terrestrial water budget, with a justifiable and well constrained uncertainty estimate.  
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Tables 

Table 1:  Model outputs from Tiers 1 and 2 of eartH2Observe project used to derive the synthesis runoff product.  

Model Tier Our abbreviation Variables Spatial 

Resolution 

Reference 

HTESSEL 1 HTESS1 Streamflow & 

Total runoff 

0.5° (Balsamo et al., 2009, 2011)  

2 HTESS2 streamflow & 

Total runoff 

0.25° (Balsamo et al., 2009, 2011) 

JULES 1 JULES1 Total runoff 0.5° (Best et al., 2011) 

2 JULES2 Total runoff 0.25° (Best et al., 2011) 

LISFLOOD 1 LISF Streamflow & 

Total runoff 

0.5° (Burek, P., van der Knijff, 

J., de Roo, 2013; Van Der 

https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects
http://services.arcgis.com/BG6nSlhZSAWtExvp/arcgis/rest/services/WorldClimateZonesSimp/FeatureServer
http://services.arcgis.com/BG6nSlhZSAWtExvp/arcgis/rest/services/WorldClimateZonesSimp/FeatureServer
https://doi.org/10.3334/ORNLDAAC/1225


Knijff et al., 2010) 

PCR-GLOBWB 1 PCRG Streamflow & 

Total runoff 

0.5° (Van Beek and Bierkens, 

2008)  

SURFEX 1 SURF1 Streamflow & 

Total runoff 

0.5° (Decharme et al., 2011, 

2013) 

2 SURF2 Total runoff 0.25° (Decharme et al., 2011, 

2013) 

W3RA 1 W3RA Streamflow & 

Total runoff 

0.5° (Van Dijk et al., 2014; Van 

Dijk and Warren, 2010) 

WaterGAP3 1 WGAP3 Streamflow & 

Total runoff 

0.5° (Flörke et al., 2013) 

HBV-SIMREG 1 HBVS Total runoff 0.5° (Beck et al., 2016) 

 

Table 2: A comparison of mean annual runoff (mm/year) of 16 major basins covering different climate zones around the 
world  for LORA and VIC (Zhang et al., 2018), the yearly volume of LORA runoff aggregates (i.e. flow in Km3) and observed 
annual flow (Km3) over the basins and  mean annual uncertainty values associated with LORA runoff are shown and the 
adjusted VIC annual runoff values within 5% error bounds for water budget closure are displayed. Observed annual flow is 
given only if data from all contributing stations is available over a whole year over for at least 17 years out of 33 years 
covered in this study.  

 

Basin 
VIC 

mm/year 

VIC 
adjusted 
for water 
budget 
closure 

mm/year 

LORA 
(Runoff) 

mm/year 

LORA 
(uncertainty) 

mm/year 

LORA 

yearly flow 
± 

uncertainty 

Km3 

 

Observed 
yearly 
flow 

Km3 

Dominant 
climate 

Amazon 1048 1029 1151 360 
6763 ± 

2115 
- Tropical wet 

Amur 135 129 219 115 428 ± 225 325 

Humid 
continental 
and semi-

arid 

Columbia 318 293 333 101 218 ± 66 209 
Semi-arid 

and 
highlands 

Congo 407 404 358 147 1292 ± 532 1240 
Tropical wet 
and tropical 

dry 

Danube 272 265 260 125 199 ± 95 205 

Marine 
Humid, 

continental 
and humid 



subtropical 

Indigirka 132 120 228 171 78 ± 59 53 Subarctic 

Lena 142 134 301 137 731 ± 332 557 Subarctic 

Mackenzie 189 173 191 110 323 ± 186 294 Subarctic 

Mississippi 220 215 212 123 616 ± 359 581 

Humid 
continental 
and humid 
subtropical 

Murray-
Darling 

42 41 15 6 12 ± 5 - 
Arid and 
semi-arid 

Niger 198 194 106 41 239 ± 87 170 
Arid, semi-

arid and 
tropical dry 

Olenek 114 106 230 208 48 ± 43 40 Subarctic 

Parana 278 279 189 97 471 ± 247 600 
Marine and 

humid 
subtropical 

Pechora 342 308 420 420 131 ± 131 153 
Tundra and 

subarctic 

Yenisei 217 195 324 203 828 ± 520 612 Subarctic 

Yukon 149 139 229 102 188 ± 83 214 Subarctic 
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Figure 1: Spatial coverage of gauged and ungauged river basins and location of stream gauges. 
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Figure 2. Flowchart summarizing the steps carried out to derive the weighted runoff product for the global land surface. 

 

 

Figure 3: Spatial coverage of donor basins, receptor basins and non-donor and non-receptor basins. 



 



Figure 4: Box and whisker plots displaying the percentage improvement that the weighted product (WPout) offers when 

tested out-of-sample, using four metrics: MSE (a), SD difference (b), COR (c) and Mean bias (d), when compared to the 

weighted product derived from in-sample data (WPin), and each runoff product involved in this study. Box and whisker plots 

represent values calculated at 482 gauged basins. See Table 1 for dataset abbreviations. The lower and upper hinges of a 

boxplot represent the first (Q1) and third (Q3) quartiles respectively of the performance improvement results and the line 

inside the boxplot shows the median value. The extreme of the lower whisker represents the maximum of 1) min(dataset) 

and 2) (Q1 - IQR), while the extreme of the upper whisker is the minimum of 1) max(dataset) and 2) (Q3 + IQR)), where 

IQR represents the interquartile range (i.e. Q3 - Q1 ) of the performance improvement results. A median line located 

above the 0 axis is an indication that the out of sample weighting offers an improvement in more than half of the basins. 

 

Figure 5: Box and whisker plots displaying the ratio of (1) the uncertainties of the spatial aggregate of  the weighted 

computed in-sample to (2) the uncertainties of the spatial aggregate of the weighted product computed out-of-sample 

 



 

Figure 6: Four statistics, (a) RMSE, (b) SD difference, (c) COR and (d) Mean bias, calculated for LORA, Best4 (i.e. the simple 

average of runoff estimates from LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this 

study at the gauged basins. See Table 1 for dataset abbreviations. 



 

 

Figure 7: Two statistics, (a) COR and (b) Mean bias, calculated for LORA, Best4 (i.e. the simple average of runoff estimates 

from LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this study at the gauged basins 

located at the high latitudes (>60°). See Table 1 for dataset abbreviations. 

 



 

Figure 8: Seasonal reliability, defined as  high ( 
𝒎𝒆𝒏 𝒓𝒖𝒏𝒐𝒇𝒇 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

𝒎𝒆𝒂𝒏 𝒓𝒖𝒏𝒐𝒇𝒇
< 𝟏, in red), low (

𝒎𝒆𝒏 𝒓𝒖𝒏𝒐𝒇𝒇 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

𝒎𝒆𝒂𝒏 𝒓𝒖𝒏𝒐𝒇𝒇
≥ 𝟏, in yellow) 

and undetermined (mean runoff = 0, in blue). 



 

 

Figure 9: Seasonal cycle of Runoff aggregates from LORA and Best4 compared with the observed streamflow over 11 major 

basins. Runoff aggregates and the observed streamflow were averaged for each month across the period of availability of 

observation. The shaded regions show the aggregated uncertainty derived for LORA.  



  

Figure 10: Mean seasonal runoff calculated for the period 1980 – 2012 
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Table S1: Example of weights (w) and bias ratios (r) computed for the participating products over a range of river basins.

 

 

 

Figure S1: Climate map used in this study (available from ArcGIS online). It is a simplified climate zones map consisting 

of 12 broad climate classes. 



 

Figure S2: Temporal correlation of LORA with the observed streamflow over the gauged basins. Basins are colour coded 

by correlation range and their numbers are given in brackets. 

 

Figure S3: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty range (grey) over the 

Ganges basin (in mm month-1). This basin was shown in yellow in Fig. S2, indicating that LORA exhibits a high temporal 

correlation (≥ 0.9) with the observation. 

 

Figure S4: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty range (grey) over 

Madeira basin, i.e. a sub-basin of the Amazon (in mm month-1). This basin was shown in orange in Fig. S2, indicating 

that LORA exhibits a temporal correlation in the range [0.75 – 0.9[ with the observation. 



 

Figure S5: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty range (grey) over the 

Congo basin (in mm month-1). This basin was shown in violet in Fig. S2, indicating that LORA exhibits a temporal 

correlation in the range [0.5 – 0.75[ with the observation. 

 

Figure S6: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty range (grey) over Lena 

basin (in mm month-1). This basin was shown in purple in Fig. S2, indicating that LORA exhibits low temporal 

correlation (≤0.5) with the observation. 

 

Figure S7: observed streamflow (in black), LORA Runoff aggregate (in red), and its uncertainty range (grey) over the 

upper Indus basin (in mm month-1). This basin was shown in dark blue in Fig. S2, indicating that LORA exhibits a 

negative temporal correlation with the observation.  

 

 



 

Fig. S8: Global map of LORA runoff fields (mm) in May 2003 
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Abstract 10 

No synthesized global gridded runoff product, derived from multiple sources, is available despite such a product being useful 

to meet the needs of many global water initiatives. We apply an optimal weighting approach to merge runoff estimates from 

hydrological models constrained with observational streamflow records. The weighting method is based on the ability of the 

models to match observed streamflow data while accounting for error covariance between the participating products. To 

address the lack of observed streamflow for many regions, a dissimilarity method was applied to transfer the weights of the 15 

participating products to the ungauged basins from the closest gauged basins using dissimilarity between basins in 

physiographic and climatic characteristics as a proxy for distance. We perform out-of-sample tests to examine the success of 

the dissimilarity approach and we confirm that the weighted product performs better than its 11 constituents products in a 

range of metrics. Our resulting synthesized global gridded runoff product is available at monthly time scales, and includes time 

variant uncertainty, for the period 1980 – 2012 on a 0.5o grid. The synthesized global gridded runoff product broadly agrees 20 

with published runoff estimates at many river basins, and represents well the seasonal runoff cycle for most of the globe. The 

new product, called Linear Optimal Runoff Aggregate (LORA), is a valuable synthesis of existing runoff products and will be 

freely available for download on geonetwork.nci.org.au. 

1 Introduction 

Runoff is the horizontal flow of water on land or through soil before it reaches a stream, river, lake, reservoir or other channels. 25 

It has been widely used as a metric for droughts (Shukla and Wood, 2008; van Huijgevoort et al., 2013; Bai et al., 2014; Ling 

et al., 2016) and to understand the effects of climate change on the hydrological cycle (Ukkola et al., 2016; Zhai and Tao, 

2017). Characterizing its dynamics and magnitudes is a major research aim of hydrology and hydrometeorology and a critical 

importance to improve our understanding of the current conditions of the large-scale water cycle and predict its future states. 
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More accurate estimates also provide additional constraint for climate model evaluation. Accurate estimates of runoff are 

critical to inform climate change adaptation strategies, to guide appropriate water management in agriculture (Nyamadzawo 

et al., 2012), and to enable the assessment of the impact of anthropogenic activities on ecosystems (Vörösmarty et al., 2010), 

yet direct measurement of runoff at large scales is simply not possible.  

While runoff observations do not exist, direct streamflow or river discharge observations - basin integrated runoff - have been 5 

archived in many databases. The most comprehensive international streamflow database is the Global Runoff Data Base 

(GRDB; www.bafg.de), which consists of daily and monthly quality-controlled streamflow records from more than 9500 

gauges across the globe. Geospatial Attributes of Gages for Evaluating Streamflow version II (GAGES-II; (Falcone et al., 

2010)) represents another noteworthy streamflow database, consisting of daily quality-controlled streamflow data from over 

9000 US gauges. 10 

Hydrological and land surface models are capable of producing gridded runoff estimates for any region across the globe (Sood 

and Smakhtin, 2015;Bierkens, 2015; Kauffeldt et al., 2016). However, these runoff estimates suffer from uncertainties due to 

shortcomings in the model structure and parameterization and the meteorological forcing data (Beven, 1989; Beck, 2017a). 

There are various ways to use streamflow observations for improving the runoff outputs from these models. The conventional 

approach consists of model parameter calibration using locally observed streamflow data (see review by Pechlivanidis et al., 15 

2011). Another widely used method is through regionalization; that is, the transfer of knowledge (e.g., calibrated parameters) 

from gauged basins to ungauged basins (see review by Beck et al., 2016). In contrast, several other studies attempted to correct 

the runoff outputs directly rather than the model parameters, for example by bias-correcting model runoff outputs based on 

streamflow observations ( (Fekete et al., 2002); see review by Ye et al., 2014), or by combining or weighting ensembles of 

model outputs to obtain improved runoff estimates (e.g., Aires, 2014). There are, however, relatively few continental- and 20 

global-scale efforts to improve model estimates using observed streamflow.   

A broad array of gridded model-based runoff estimates are freely available, including but not limited to ECMWF’s Interim 

reanalysis (ERA-Interim ; Dee et al., 2011), NASA’s Modern Era Retrospective-analysis for Research and Applications ( 

MERRA) Land  (Reichle et al., 2011), the Climate Forecast System Reanalysis (CFSR; Tomy and Sumam, 2016), the second 

global soil wetness project (GSWP2; Dirmeyer et al., 2006), the Water Model Intercomparison Project (WaterMIP; Haddeland 25 

et al., 2011), and the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004). Recently, the eartH2Observe 

project has made available two ensembles (tier-1 and -2) of state-of-the-art global hydrological and land surface model outputs 

(http://www.earth2observe.eu/; Beck et al., 2017a; and Schellekens et al., 2017). Although these model simulations represent 

the only time varying gridded estimates of runoff at the global scale, they are subject to considerable uncertainties, resulting 

in large differences in runoff simulated by the models. Many studies have therefore evaluated and compared the gridded runoff 30 

models (see overview in Table 1 of Beck et al., 2017a).  

Field Code Changed

http://www.earth2observe.eu/
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Despite the demonstrated improved predictive capability of multi-model ensemble approaches (Sahoo et al., 2011; Pan et al., 

2012;  Bishop and Abramowitz, 2013;  Mueller et al., 2013; Munier et al., 2014; Aires, 2014; Rodell et al., 2015; Jiménez et 

al., 2017; Hobeichi et al., 2018; Zhang et al., 2018), very little has been done to utilise this range of model simulations toward 

improved runoff estimates. This paper implements the weighting and rescaling method introduced in Bishop and Abramowitz 

(2013) and Abramowitz and Bishop (2015) to derive a monthly 0.5° global synthesis runoff product. Briefly summarized, we 5 

use a bias correction and weighting approach to merge 11 state-of-the-art gridded runoff products from the eartH2Observe 

project, constrained by observed streamflow from a variety of sources. This approach also provides us with corresponding 

uncertainty estimates that are better constrained than the simple range of modelled values. For ungauged regions we employ a 

dissimilarity method to transfer the product weights to the ungauged basins from the closest basins using dissimilarity between 

basins as a proxy for distance. Such a synthesis product is in line with the multi-source strategy of Global Energy and Water 10 

EXchanges (GEWEX; Morel, 2001) and NASA’s Making Earth Science Data Records for Use in Research Environments 

(MEaSUREs; Earthdata, 2017) initiatives and is particularly useful for studies that aim to close the water budget at the grid 

scale. 

Sections 2.1 describes the observed streamflow data. Section 2.2 presents the participating datasets used to derive the weighted 

runoff product. Section 2.3 details the weighting method implemented in the gauged basins, while Section 2.4 focuses on the 15 

ungauged basins. Section 2.5 examines the approach used to derive the global runoff product. We then present and discuss our 

results in Section 3 and 4 before concluding.  

2 Data and Methods 

2.1 Observed streamflow data 

We used observed streamflow from the following four sources: (i) the US Geological Survey (USGS) Geospatial Attributes 20 

of Gages for Evaluating Streamflow (GAGES)-II database (Falcone et al., 2010); (ii) the Global Runoff Data Base (GRDB; 

http://www.bafg.de/GRDC/); (iii) the Australian Peel et al. (2000) database; and (iv) the global Dai (2016) database. We 

discarded duplicates and from the remaining set of stations discarded those satisfying at least one of the following criteria: (i) 

basin area <8000 km2 (fewer than three 0.5 grid cells); (ii) record length <5 y in the period 1980–2012 (not necessarily 

consecutive); and (iii) low observed streamflow (i.e. around 0) that does not represent the total runoff across the basins due to 25 

significant anthropogenic activities. A river basin was identified with significant anthropogenic activities if it has > 20% 

irrigated area using the Global Map of Irrigation Areas (GMIA-Version 4.0.2; Siebert et al., 2007) or has > 20% classified as 

“Artificial surfaces and associated areas” according to the Global Land Cover Map (GlobCover-Version 2.3; Bontemps et al., 

2011). In total 596 stations (of which 20 are nested in the basins of other stations) were found to be suitable for the analysis 

(Fig. 1).  30 
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2.2 Simulated runoff data 

To derive the global monthly 0.5° synthesis runoff product, we used 11 total runoff outputs (from eight different models) and 

seven streamflow outputs (from six different models) produced as part of tiers 1 and 2 of the eartH2Observe project (available 

via ftp://wci.earth2observe.eu/).  The models and their available variables are presented in Table 1. For tier 1 of eartH2Observe, 

the models were forced with the WATCH Forcing Data ERA-Interim (WFDEI) meteorological dataset (Weedon et al., 2014) 5 

corrected using the Climatic Research Unit Timeseries dataset (CRU-TS3.1; Harris et al., 2014). For tier 2, the models were 

forced using the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2017b). The runoff and 

streamflow values are provided in kg m-2s-1 and m3 s-1, respectively.  For consistency, the runoff outputs with resolution <0.5° 

were resampled to 0.5° using bilinear interpolation. In some cases, the river network employed by the model did not correspond 

with the stream gauge location, in which case we manually selected the grid cell that provided the best match with the observed 10 

streamflow. 

The runoff outputs were only used if no streamflow output was available and only in basins smaller than 100,000 km2. To 

make the runoff data consistent with the streamflow data, we integrated the runoff over the basin areas (termed Ragg, units m3 

s-1). Thus, for basins smaller than 100,000 km2 the synthesis product was derived from 11 model outputs, whereas for basins 

larger than 100,000 km2 the synthesis product was derived from seven outputs. 15 

 

We detail in sections 2.3 and 2.4 our methods to derive the weighted runoff product for the global land. A flowchart 

summarizing the process is provided in Fig. 2, and Fig. 3 summarizes the steps carried out to derive the weighted runoff 

product for the global land..  

2.3 Implementing the weighting approach at the gauged basins  20 

At each gauged basin, we built a linear combination 𝜇q of the participating modelled streamflow datasets 𝑥 (i.e. Ragg in small 

basins and modelled streamflow, q, in large basins) that minimized the mean square difference with the observed streamflow 

Q at that basin such that: 𝜇q
j
= ∑ 𝑤k(𝑥k

j
−K

k=1 𝑏k)  where 𝑗 ∈ [1, 𝐽]  are the time steps and  𝑘 ∈ [1, 𝐾]  represent the 

participating models, 𝑥𝑘
𝑗
 (i.e., integrated runoff  Ragg𝑘

𝑗
 over the basin areas in small basins and modelled streamflow at a gauge 

location 𝑞𝑘
𝑗
 in large basins) is the value of the participating dataset in m3 s-1 at the  jth time step of the kth participating model, 25 

the bias term 𝑏k is the mean error of  𝑥k in m3 s-1. The set of weights 𝑤k provides an analytical solution to the minimization of  

∑ (𝜇q
j
− 𝑄j)2

J
j=1  subject to the constraint that  ∑ wk = 1

K
k=1 , where 𝑄𝑗 is the observed streamflow at the jth time step. This 

minimization problem can be solved using the method of Lagrange multipliers by finding a minima for  

𝐹(𝑤,) =
1

2
[

1

(𝐽−1)
∑ (𝜇𝑞

𝑗
− 𝑄𝑗)2] − ((∑ 𝑤𝑘

𝐾
𝑘=1 ) − 1)𝐽

𝑗=1 . 
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The solution to the minimization of 𝐹(𝑤, ) can be expressed as w =
A−11

1TA−11
 , where 1T = [1,1, . . . ,1]⏞      

k elements

 and A is the k × k error 

covariance matrix of the participating datasets (after bias correction), i.e. A=(

𝑐1,1 ⋯ 𝑐1,𝑘
⋮ ⋱ ⋮

𝑐𝑘,1 … 𝑐𝑘,𝑘

). A is symmetric and the term 

𝑐𝑎,𝑏 is the covariance of the ath and bth bias corrected dataset after subtracting the observed dataset, while each diagonal term 

𝑐𝑘,𝑘 is the error variance of dataset k. We note here that the solution presented here is based on the performance of the 

participating products (diagonal terms of A) and the dependence of their errors (accounted for by the non-diagonal terms of 5 

A). For derivation see Bishop and Abramowitz (2013). 

We then derived the weighted runoff dataset by applying the computed weights on the bias corrected runoff estimates of the 

participating models. The weighted runoff dataset is expressed as:  

𝜇r
j
= ∑ 𝑤k(𝑟k

j
− b′k)

K
k=1 At each gauged basin, we built a linear combination 𝜇q  of the participating modelled streamflow 

datasets 𝑥 (i.e. Ragg in small basins and modelled streamflow, q, in large basins) that minimized the mean square difference 10 

with the observed streamflow Q at that basin such that: 𝜇q
j
= ∑ 𝑤k(𝑥k

j
−K

k=1 𝑏k) where 𝑗 ∈ [1, J] are the time steps and  𝑘 ∈

[1, K] represent the participating models, 𝑥𝑘
𝑗
 (i.e., Raggk

j
 in small basins and 𝑞k

j
 in large basins) is the value of the participating 

dataset in m3 s-1 at the  jth time step of the kth participating model, the bias term 𝑏k is the mean error of  𝑥k in m3 s-1. The set of 

weights 𝑤k provides an analytical solution to the minimization of  ∑ (𝜇q
j
− 𝑄j)2

J
j=1 , where 𝑄𝑗 is the observed streamflow at 

the jth time step (for derivation see Bishop and Abramowitz (2013)). 15 

We then derived the weighted runoff dataset by applying the computed weights on the bias corrected runoff estimates of the 

participating models. The weighted runoff dataset is expressed as:  

𝜇r
j
=∑𝑤k(𝑟k

j
− b′k)

K

k=1

 

Where 𝑟k
j
 is the value of runoff estimate in kg m−2s−1 of the kth participating model at the jth time step and b′k is its runoff bias 

in kg m−2s−1.  20 

To calculate the runoff bias b′k, we assumed that for each model k and at each time j the bias ratio of a model (defined as the 

ratio of the model error to the simulated magnitude) is the same for streamflow and runoff estimates Eq. (1). In small basins, 

the bias ratio of modeled streamflow was calculated by using Raggk
j
 instead of the modeled streamflow 𝑞k

j
 Eq. (2). 

[
𝑞k
j
− Qj

𝑞
k
j = 

b′k

𝑟
k
j ]basin  (1) 

[
Raggk

j
− 𝑄j

Ragg
k
j = 

b′k

𝑟
k
j ]basin  (2) 25 
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We note that there no empirical evidence in the literature that the assumptions presented in Eq. 1 and Eq. 2 are valid. However, 

given that these assumptions constitute a part of our overall approach that we tested and proved its success later in this paper, 

the validity of these assumptions is very likely to hold true. 

To avoid over-fitting when applying the weighting approach, we limited the number of participating models so that the ratio 

of number of records (i.e. total number of available monthly observations within the period of study) to number of models 5 

does not fall below ten10.  As a result of this, when required, we discarded the models that had the highest bias (i.e. left terms 

in Eq (1, 2)) until the threshold was met. The weighting and the bias correction occasionally resulted in negative runoff values, 

we replaced any negative values with zero. Table S1 shows examples of weights and bias ratios calculated for the participating 

models over a range of river basins. It shows that HBVS, JULES1, JULES2 and SURF2 didn’t participate in the weighting 

over the large basins (i.e. Amur, Indigirka, Mississippi, Murray-Darling, Olenek, Parana, Pechora and Yenisei) since these 10 

models don’t have estimates for streamflow which are needed to construct the weights over large basins. For the smaller 

Copper River basin, however, runoff estimates from all models participated in deriving weighted runoff estimates. Table S1 

also shows that in many cases, models were assigned negative weights. While this might not be expected in typical 

performance-based weighting, it is possible when weighting is based on error covariance as well as their performance 

differences in this formulation. We show below how the weights can be modified to non-negative weights. 15 

We implemented the ensemble dependence transformation process detailed in Bishop and Abramowitz (2013) to compute the 

gridded time-variant uncertainty associated with the derived runoff estimates, following the same approach as in Hobeichi et 

al. (2018). For any particular gauged basin, we first calculated the spatial aggregate of our weighted runoff estimate, Raggμ , 

then quantified sr
2, the error variance of Raggμ  with respect to the observed streamflow Q over time and space. We then 

transformed the constituent modelled estimates so that their variance about Raggμ  at a given time step σr
2j, averaged over all 20 

time steps where we have available streamflow data for the current basin, is equal to sr
2. This transformed ensemble provides 

us with uncertainty estimates that (a) are varying in time and space, and (b) accurately reflects our ability to reproduce the 

observed streamflow. It provides a much more defensible uncertainty estimate than simply calculating the standard deviation 

of the involved products. We then used √σr
2j

 as the spatially and temporally varying estimate of uncertainty standard deviation, 

which we will refer to below simply as ‘uncertainty’. For more details about how this technique was implemented we refer 25 

readers to Hobeichi et al. (2018).We implemented the ensemble dependence transformation process detailed in Bishop and 

Abramowitz (2013) to compute the gridded time-variant uncertainty associated with the derived runoff estimates. For any 

given gauged basin, we first calculated the spatial aggregate of our weighted runoff estimate Ragg𝜇, then quantified 𝑠𝑞
2, the 

error variance of Ragg𝜇 with respect to the observed streamflow Q over time as: 

𝑠𝑞
2 =

∑ (Ragg𝜇
𝑗 − 𝑄𝑗)2𝐽

𝑗=1

𝐽 − 1
 30 
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Then, we wished to guarantee that the variance of the constituent modelled estimate 𝜎𝑞
2𝑗 about  Ragg𝜇

𝑗 at a given time step, 

averaged over all time steps where we have available streamflow data, is equal to 𝑠𝑞
2, such as  𝑠𝑞

2 = 
1

𝐽
∑ 𝜎𝑞

2𝑗𝐽
𝑗=1 .  

Since the variance of the existing constituent products do not, in general, satisfy this equation. We transformed them so that it 

does. This involved first modifying the set of weights 𝑤 to a new set �̃� such that  

�̃� =
𝑤𝑇+(𝛼−1)

1𝑇

𝐾

𝛼
 , where 𝛼 = 1 − 𝐾𝑚𝑖𝑛(𝑤𝑘) and 𝑚𝑖𝑛(𝑤𝑘) is the smallest negative weight (and 𝛼 is set 1 if all 𝑤𝑘 are non-5 

negative). This ensures that all the modified weights  �̃�𝑘  are positive. We then transform the individual estimates 𝑥𝑘
𝑗
  to �̃�𝑘

𝑗
 

where �̃�𝑘
𝑗
= Ragg𝜇

𝑗 + 𝛽(�̅�𝑗 +  𝛼(𝑥𝑘
𝑗
− �̅�𝑗)  − Ragg𝜇

𝑗)  and 𝛽 = √
𝑠𝑞
2

1

𝐽
∑ ∑ 𝑤�̃�(�̅�

𝑗+ 𝛼(𝑥
𝑘
𝑗
−�̅�𝑗) −Ragg𝜇

𝑗)2𝐾
𝑘=1

𝐽
𝑗=1

.  

The weighted variance estimate of the transformed ensemble can be defined as 

 𝜎𝑞
2𝑗
= ∑ �̃�𝑘(�̃�𝑘

𝑗
− Ragg𝜇

𝑗)2𝐾
𝑘=1  and ensures that the equation  

1

𝐽
∑ 𝜎𝑞

2𝑗𝐽
𝑗=1 = 𝑠𝑞

2  holds true. Furthermore, √𝜎𝑞
2𝑗

 is the 

temporally varying estimate of uncertainty standard deviation of the transformed ensemble that (a) is varying in time, and (b) 10 

accurately reflects our ability to reproduce the observed streamflow.  

We refer the reader to Bishop and Abramowitz (2013) for proofs. 

In order to estimate √𝜎𝑟
2𝑗

 , the uncertainty of the runoff attributes 𝜇𝑟
𝑗
 at each point in time and space, we first transformed the 

runoff fields  𝑟𝑘
𝑗
 to �̃�𝑘

𝑗
 by applying the same transformation parameters 𝛼 and 𝛽 such that �̃�𝑘

𝑗
= 𝜇𝑟

𝑗
+ 𝛽(�̅�𝑗 +  𝛼(𝑟𝑘

𝑗
− �̅�𝑗)  −

𝜇𝑟
𝑗
). We then calculated the error variance 𝜎𝑟

2𝑗
= ∑ �̃�𝑘(�̃�𝑘

𝑗
− 𝜇𝑟

𝑗
)2𝐾

𝑘=1 . 15 

Finally, we used √𝜎𝑟
2𝑗

 as the spatially and temporally varying estimate of runoff uncertainty standard deviation, which we will 

refer to below simply as ‘uncertainty’. It provides a much more defensible uncertainty estimate than simply calculating the 

standard deviation of the involved products.  

We note that for a given basin,  √𝜎𝑞
2𝑗

 represents the uncertainty of the modelled streamflow i.e. Ragg𝜇
𝑗 , while √𝜎𝑟

2𝑗
  

represents the uncertainty of modelled runoff at each grid cell across the basin. This means that at every time step, there is one 20 

value for √𝜎𝑞
2𝑗

 per basin, and one value for  √𝜎𝑟
2 per grid across the basin. 

2.4 Deriving runoff estimates at the ungauged river basins 

Implementing the weighting approach requires observed streamflow to constrain the weighting, which we do not have at 

ungauged river basins (defined in section 2.1). To address this, we used the modelled and observed streamflow from the three 

most similar gauged river basins, based on pre-defined physical and climatic characteristics, to derive model weights at each 25 

ungauged basin. The selected gauged river basins served as donor basins to the ungauged receptor basins. We then 
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implemented the weighting technique on the ensemble of 11 (in small basins) or eight (in large basins) model outputs by 

matching Ragg calculated across the selected donor basins with the observed streamflow. This resulted in one set of weights 

and bias ratios obtained jointly from the three donor basins . Finally, we transferred the weights and bias ratios computed at 

the donor basins to the receptor basin and subsequently computed the associated uncertainty values. 

Most of the gauged river basins were classified as donor basins. Some, however, were excluded from being donors where we 5 

found (based on Ragg or modeled streamflow time series and metric values) that none of the models was able to simulate the 

streamflow dynamics. These basins are mainly located in areas of natural lakes, in mountainous areas covered with snow, or 

in wet regions with intense rainfall. We therefore (subjectively) decided that those excluded basins should be assigned to a 

“non–donor and non–receptor” category.  

We applied the method presented in Beck et al. (2016) to calculate a similarity index S between a donor basin a and a receptor 10 

basin b expressed as: 

𝑆a,b = ∑
|𝑍p,a−𝑍p,b|

IQRp

7
p=1  (3) 

Where p denotes the climatic and physiographic characteristics as in Table 4 of Beck et al. (2016). This includes aridity 

index, fractions of forest and snow cover, soil clay content, surface slope, and annual averages of precipitation and potential 

evaporation. 𝑍p,a and 𝑍p,b are the values of the characteristic p at donor and receptor basins, respectively. IQRp is the 15 

interquartile range of characteristic p calculated over the land surface, excluding deserts (defined by an aridity index > 5, see 

Table 4 of Beck et al. (2016))  and areas covered with permanent ice during most of  the year (defined by climate zones 

Tundra, Subarctic and Ice cap using a simplified climate zones map (Fig. S1) created by the Esri Education Team for 

ArcGIS online (World Climate Zones – Simplified; Esri Education Team, 2014)). From Eq. 3 it follows that the most similar 

donor a to a receptor b is the one that has the lowest index value with basin b. We applied this approach to identify the 3 20 

three most similar donors for every receptor basin. The dissimilarity technique has been previously applied to find ten donors 

for one receptor. Given that all the selected donors must have very close similarity indices, we found by trial and error that 

increasing the number of donor basins might introduce donor basins that have a significantly different similarity index, and 

that setting the number of donor basins to three seemed most appropriate. 

 25 

In very large basins, physiographic and climatic heterogeneity can result in misleading basin-mean averages. We therefore 

excluded highly heterogeneous basins from the list of donors and classified them as ‘non-donor and non-receptor’ basins, and 

also broke up large heterogeneous receptor basins by climate groups into smaller basin zones and then treated them as separate 

basins to effectively receive sets of weights and bias ratios from the donor basins to the separate parts. Here we defined large 

heterogeneous basins as basins with areas greater than 1,000,000 km2 and covering climate zones that belong to at least two 30 

groups of 1) Tropical Wet, 2) Humid continental, Humid subtropical, Mediterranean and Marine, 3) Tropical Dry, Semi–arid 

and Arid, 4) Tundra, Subarctic and Ice cap and 5) Highlands. Climate classification is based on the simplified climate zones 

map (World Climate Zones climate zones map; Esri Education Team, 2014) defined above. We used this particular climate 
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map because it comprises only 12 broad climate groups (compared to more than 30 in other climate maps e.g. Köppen–Geiger). 

This reduced the divisions made to large heterogenous basins, while ensuring that the resultant basin zones of individual basins 

have very distinct climate characteristics. Figure 3 shows the spatial coverage of the donor basins, receptor basins and non-

donor and non-receptor basins..  Figure 2 shows the spatial coverage of the donor basins, receptor basins and non-donor and 

non-receptor basins, and Fig. 3 summarizes the steps carried out to derive the weighted runoff product for the global land.   5 

2.5 Out-of-sample testing 

To test that this approach is producing a runoff estimate at receptor basins (using transferred weights from the most similar 

gauged basins) that is better than any of the individual models, we performed an out-of-sample test. In this test, we selected a 

gauged basin and treated it as a receptor basin, constructing model weights by using the three most similar donor basins. We 

could then compare: (a) observed streamflow; (b) the in-sample weighted product (WPin) derived by using observed streamflow 10 

for this basin to weight models; (c) an out-of-sample weighted product (WPout) derived by constructing the weighting at the 

three most similar basins, and; (d) the individual model estimates at each basin. We calculated four metrics of performance for 

WPin, WPout and each of the 11 datasets: Mean Square Error  MSE=mean(Ragg – observed streamflow)2; Mean Bias=mean| 

Ragg – observed streamflow |; Correlation COR=corr(observed streamflow, Ragg) and Standard Deviation (SD) difference= 

σRagg − σobserved streamflow. We repeated the out-of-sample test for all the gauged basins (donor basins and non-donor and 15 

non-receptor basins). 

We displayed the results of the out-sample-test by showing the percentage performance improvement of WPout compared to 

WPin  and each individual model, yielding 12 different values of performance improvement. If the approach is succeeding, we 

expect that both WPout and WPin will perform better than any of the models used in this study, and also WPin should be in better 

agreement with the observed streamflow when compared to WPout. 20 

We used box and whisker plots to show the results of performance improvement of WPout calculated relative to WPin and the 

11 datasets across all the gauged basins. The lower and upper hinges of a boxplot represent the first (Q1) and third (Q3) quartiles 

respectively of the performance improvement results and the line inside the boxplot shows the median value. The extreme of 

the lower whisker represents the maximum of 1) min(dataset) and 2) (Q1 - IQR), while the extreme of the upper whisker is the 

minimum of 1) max(dataset) and 2) (Q3 + IQR)), where IQR represents the interquartile range (i.e. Q3 - Q1 ) of the performance 25 

improvement results. A median line located above the 0 axis is an indication that the out of sample weighting offers an 

improvement in more than half of the basins.  

The uncertainty estimates computed at the gauged basins represent well the deviation of the spatial aggregate of our weighted 

product (𝑅𝑎𝑔𝑔𝜇) from the observed streamflow, since the in-sample uncertainty estimates are calculated from the variance of 

the transformed ensemble, which by design equals MSE of 𝑅𝑎𝑔𝑔𝜇 against the observation (i.e. error variance of 𝑅𝑎𝑔𝑔𝜇). To 30 

test if the uncertainty estimates perform well out-of-sample (i.e. at the ungauged basins), we performed another out of sample 

test. In this test, we took a gauged basin, but instead of constraining the weighting using observed streamflow from this basin, 
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we constructed model weights by using the three most similar donor basins. We could then calculate MSE of 𝑅𝑎𝑔𝑔𝜇 against 

observation from the three donor basins, and we denoted this by MSEin, which represents the uncertainty estimates calculated 

in-sample, since the observational data used in this case is the same dataset that was used to train the weighting. We also 

calculated the MSE of the aggregated weighted product against the actual observation of the gauged basin and we denoted this 

by MSEout. MSEout represents the uncertainty estimates computed out-of-sample, since the comparison was performed against 5 

observational data that has not been used to train the weighting. We repeated the out-of-sample test for all the gauged basins. 

We displayed the results of the out-sample-test by showing the ratios of MSEin to MSEout. If the approach is succeeding, we 

expect that this ratio is around one, indicating that the values of MSEin and MSEout are close to each other. We used a box and 

whisker plots to show the results. 

 10 

3 Results 

The results for the out-of-sample test are displayed in the box and whisker plots presented in Fig. 4 (a - d). 

The MSE and Mean bias plots in Fig. 4 (a and d) indicate that across almost all the gauged basins WPout performs better than 

each of the individual models. Similarly, the COR plot in Fig. 43 (c) shows that the out-of-sample weighting has in fact 

improved the correlation with observational data across almost all the gauged basins. The SD difference plot (Fig. 4 (b)) shows 15 

a significant improvement of WPout relative to the models, but the number of basins that benefit from this improvement 

decreased, perhaps because the variability of the individual members of the weighting ensemble is not necessarily temporally 

coincident at all the basins, resulting in decreased variability. The negative performance improvement of WPout  relative to 

WPin across all metrics (first boxplot, Fig. 4 (a-d)) indicates that the weighting performs better in-sample than out-of sample, 

which is to be expected. Critically though, the fact that the weighting delivers improvement over all models when the weights 20 

are transferred from similar basins indicate that the dissimilarity technique is succeeding and can be effectively used at the 

ungauged basins by feeding the weighting with data from the most similar basins with streamflow observations. Furthermore, 

the boxplot in Fig. 5 shows that, overall, when the uncertainty estimates are computed out-of-sample they are very similar to 

what they would have been if they were computed in-sample. This demonstrates that the dissimilarity technique can be 

effectively used to derive not only the weighting product but also its associated uncertainties at the ungauged basin. 25 

Based on the improvement that the weighting approach implemented in both gauged and ungauged basins offers over Ragg 

estimates computed for 11 individual model runoff estimates, in terms of MSE, SD difference, COR and Mean Bias against 

observed streamflow data, we now present details of the mosaic of the individual weighted runoff estimates derived across all 

the basins that we name LORA. At the gauged basins, the weighting was trained with the Ragg of the modelled runoff at the 

individual basins and constrained with the observed streamflow. At ungauged basins, the dissimilarity approach was first 30 

implemented to find the three most similar basins, then the weighting was trained on the combined datasets from these three 
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basins. Subsequently, weights were transferred to the ungauged basins and applied to combine the runoff estimates at the 

individual basins.  

The eight modelled runoff datasets listed in Table 1 as part of the tier1 ensemble were recently included in a global evaluation 

by Beck et al. (2017a). In their analysis, they computed a summary performance statistic that they termed OS by incorporating 

several long-term runoff behavioural signatures defined in Table 3 of Beck et al. (2017a) and found that the mean of runoff 5 

estimates from four models only (LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) performed the best in terms of  OS̅̅̅̅  

(i.e. mean of OS over all the basins included in their study) relative to each individual modelled runoff estimates and the mean 

of all the modelled runoff estimates. In this study, we calculated the mean runoff from the four best products found by Beck 

et al. (2017a), that is (LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG. Hereafter, we refer this as “Best4”, and we 

calculated four statistics (RMSE, SD difference, COR and Mean bias defined here as mean(dataset-obs)) for Ragg computed 10 

from LORA, Best4 and each of the 11 runoff datasets across all the gauged basins. The boxplots in Fig. 65 (a-d) display the 

results. 

The RMSE plot in Fig. 6 5(a) shows that LORA has the lowest RMSE values with the observed streamflow. All of the 

component models exhibit a similar performance in RMSE. Similarly, LORA has overall the least SD difference with 

observations (Fig. 65 (b)) across more than half of the basins. The Mean bias plot in Fig. 6 5(d) shows a non-significant positive 15 

bias in LORA relative to the observation at the majority of the basins. Best4, HBV-SIMREG, PCR-GLOBWB and particularly 

LISFLOOD exhibit a positive mean bias across most of the basins but with much higher bias magnitude compared to that of 

LORA. HTESSEL and SURFEX estimates from both tiers (i.e tier1 and tier2) together with JULES (tier2) and WGAP3 show 

negative and positive bias distributed evenly across the basins. LORA shows the highest temporal correlation with the observed 

streamflow at more than half of gauged basins (Fig. 65 (c)). The low RMSE and Mean bias values relative to the other estimates 20 

is partly due to the bias correction applied before the weighting. While all the performance metrics calculated here show that 

LORA outperforms Best4, these metrics do not allow us to assess how well LORA performs in terms of bias in the runoff 

timing, replicating the peaks or representing quick runoff, with the exception of the correlation metric. These aspects were 

studied in more detail in Beck et al. (2017a) and showed that Best4 performs well in these performance metrics.  

All the models involved in deriving LORA with the exception of  HBV-SIMREG were found in the study of (Beck et al., 25 

2017a)  to show early spring snowmelt peak and an overall significant underestimation of runoff in the snow-dominated basins. 

To see how well LORA performs at high latitudes, we examined the gauged basins located at higher latitudes (>60°) and we 

calculated two statistics – COR and mean bias – as in Fig. 56 (c-d) but this time for the snow-dominated basins only. We 

display the results in Fig. 76. 

The temporal correlation plot in Fig. 76 (a) shows that LORA is in better agreement with observed streamflow at snow-30 

dominated basins compared to the ensemble of all the gauged basins on the globe (Fig. 65 (c)) with an overall average 

improvement of 7%.  Similarly, HBV-SIMREG shows an improved correlation with the observed streamflow at snow-

dominated basins with an average improvement of 14%, this agrees with the results reported by Beck et al. (2017a) who 
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attributed the improved performance of HBV-SIMREG in snow-dominated regions to a snowfall gauge undercatch correction. 

The overall performance of Best4 and LISFLOOD do not change in terms of spatial correlation; on the contrary, all the 

remaining products show a degraded performance. Figure 76 (b) shows that LORA exhibits small biases across snow-

dominated basins relative to participating models. Conversely, with the exception of LISFLOOD, all the tier1 products 

including Best4 show a negative mean bias across more than half of the snow-dominated basin, in particular HTESSEL, 5 

JULES, SURFEX and W3RA show a large negative bias at most of these basins. This agrees with the negative bias found in 

the study of Beck et al. (2017a) in all tier1 products except LISFLOOD.  These results indicate that LORA is likely to slightly 

overestimate runoff in high latitudes whereas all tier1 products with the exception of LISFLOOD tend to underestimate runoff 

in these regions, and that this underestimation is larger for HTESSEL, JULES, SURFEX and W3RA. Tier2 products show 

both positive and negative bias across the basins. Their bias is of a lower magnitude than that found in tier1 products. That is 10 

probably because the forcing precipitation used to derive tier 2 outputs (i.e. MSWEP) has less biases than that used to derive 

tier1 estimates (i.e. WFDEI corrected using CRU-TS3.1). We also calculated the two metrics, SD difference and mean bias as 

in Fig. 65 (a and b), but we found no noticeable differences in the performance of any of the products relative to that found 

globally in Fig. 65 (a and b). The results displayed in Fig. 65 and Fig. 76 are discussed further below.  

We calculated the seasonal relative uncertainty expressed as the ratio of the seasonal average uncertainty to seasonal mean 15 

runoff (i.e. 
mean runoff uncertainty

mean runoff
) over the period 1980 – 2012.We calculated the seasonal relative uncertainty expressed as the 

ratio of average uncertainty to mean runoff (i.e. 
mean runoff uncertainty

mean runoff
) for the period 1980 – 2012. This metric is intended to 

show some indication of the reliability of the derived runoff, with results displayed in Fig. 87.  Regions in red show grid cells 

that satisfy 
mean runoff uncertainty

mean runoff
< 1, while those shown in yellow are regions where the value of mean runoff uncertainty are 

larger than the value of the associated mean runoff itself. Regions in blue are grid cells that have a zero mean runoff and hence 20 

an undetermined relative uncertainty.  The global maps in Fig. 78 show a consistent low reliability in Sahel, Indus basin, 

Parana, the semi-arid regions of Eastern Argentina, Doring basin in South Africa, red river sub-basin of the Mississippi, 

Burdekin and Fitzroy basins in North-East Australia and many regions of the Arab Peninsula. The areas at the higher latitudes 

in Asia and North America show high reliability during Jun-Jul-Aug and low reliability during the rest of the year. Parts of 

Madeiry sub-basin – a major sub-basin of the Amazon – show low reliability during June-Nov. The basins in Central America 25 

show high reliability in all seasons except in Mar-May while River basins in Somalia show low reliability during the austral 

summer and winter. River basins in the far east show low reliability in spring and autumn and a higher reliability in winter and 

summer. 

Figure 98 displays the seasonal cycles of Ragg for LORA and Best4 and the observed streamflow over 11 major river basins. 

To generate this plot, we calculated the average Ragg for each month over the period of availability of observed streamflow. 30 

The shaded regions represent the range of uncertainty  aggregates associated with the derived runoff. In the Amazon basin, 

LORA overestimates runoff in the wet season and underestimates it in the dry season, but the observed streamflow during the 
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dry season still lies within the error bounds of LORA.  LORA shows good agreement with the observed cycle in the Mississippi. 

In the Niger and Murray-Darling basins, while LORA overestimates the observed streamflow, it shows a much better 

agreement compared to Best4 which strongly overestimates runoff. In the Parana basin, LORA underestimates the observed 

streamflow in all seasons except summer. In the subarctic basins, LORA shows different behavior within the individual basins. 

In Pechora and Olenek, LORA represents well the seasonal cycle and the magnitude of runoff, whereas in the Amur, Lena and 5 

Yenisei, LORA shows an early shift of the runoff peak and an overall overestimation of runoff. In the Indigirka, LORA 

overestimates the spring peak, but the observed seasonal cycle lies within the error bounds.   

 

 

Finally, wWe compared our mean annual runoff (mm/year) with those estimated by a well-known land surface hydrological 10 

model the Variable Infiltration Capacity (VIC; Liang et al., 1994) model as well as adjusted VIC estimates after enforcing the 

physical constraints of the water budget  in the study of Zhang et al. (2018) over comparable temporal and spatial scale for 16 

large basins chosen from different climate zones on the globe. The mean annual runoff was computed over the period 1984 - 

2010 instead of 1980 – 2012 to maximize the temporal agreement with the study of Zhang et al. (2018). We also showed the 

average annual volume of water that discharges from these basins computed from LORA and the observational data. 15 

Table 2 shows that for some basins VIC and LORA agree well in estimating mean annual runoff (i.e. difference between 

LORA and at least one of VIC and VIC adjusted for budget closure <10%). This threshold is met in the Amazon, Columbia, 

Congo, Danube, Mackenzie and Mississippi. The basins that show a larger difference between VIC and LORA but show that 

VIC estimates lie within the uncertainty bounds of LORA (i.e. between LORA-uncertainty and LORA+uncertainty) include 

the Indigirka, Olenek, Parana, Pechora, Yenisei and Yukon. Large discrepancies between VIC and LORA are found in Lena 20 

and the Murray-Darling. Other global estimates of total runoff are also available such as GLDAS and Multi-scale Synthesis 

and Terrestrial Model Intercomparison Project (MsTMIP; Huntzinger et al., 2016), however we haven’t compared LORA with 

these datasets because they either have a short common period with LORA, or a coarser resolution (i.e. 1o) and showed a 

significant disagreement with observation when interpolated to a 0.5° grid. 

Finally, we provide in Fig. S8 an example of runoff fields in an individual month (e.g. May, 2003). 25 

 

4 Discussion 

The results of the out-of-sample test suggest that deriving runoff estimates in an ungauged basin by training the weighting with 

streamflow data from similar basins - in terms of climatic and physiographic characteristics - is successful. While the runoff 

product derived by using weights from external basins outperforms the runoff estimates from the individual models, the 30 

weighted runoff derived in-sample offers overall even more capable runoff estimates.  
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It follows from Fig. 8 that the runoff values computed over dry climates tend to be less reliable than those in other regimes. 

This is perhaps due to biases in the WFDEI precipitation forcing that are propagated and intensified in the simulated runoff 

(Beck et al., 2017a). Another possible reason is the reduced proficiency of models in representing runoff dynamics in arid 

climates where runoff tends to be highly non-linearly related to rainfall and often evaporates locally without reaching a river 5 

system (Ye et al., 1997).It follows from Fig. 2 and Fig. 7 that the runoff values computed over dry climates tend to be less 

reliable than those in other regimes. This is perhaps due to the biases in the WFDEI precipitation forcing that intensify in the 

arid and semi-arid regions and propagate in the simulated runoff .  Also, due the lower density of gauged basins in the arid and 

semi-arid climates compared to other regimes, receptor basins are dominant over dry climates,  which reduces the skill of the 

weighting to produce good runoff estimates.  This is also in line with our conclusions from Fig. 43 that the weighting provides 10 

more reliable results in the gauged basins.  

All the tier1 model outputs involved in this study with the exception of HBV-SIMREG were found by Beck et al. (2017a) to 

show early spring snowmelt in the snow-dominated basins. Both the Yenisei and the Lena are large basins (2.6 and 2.4 million 

km2, respectively), and hence – as noted in Sect. 2.2 – only models that had estimates of both streamflow and runoff were used 

to derive LORA at these basins, and therefore HBV-SIMREG – whose inclusion would have improved the weighting - was 15 

excluded. Beck et al. (2017a) also found that LISFLOOD has the best square root-transformed mean annual runoff among the 

tier1 datasets and perfoms well in terms of temporal correlation in all climates, this agrees with the high temporal correlation 

of LISFLOOD seen in Fig. 65 (c) and Fig. 76 (a), and also explains the highest weights attributed to LISFLOOD in the majority 

of snow-dominated basins (Table S1). Because of this, and because LISFLOOD tends to overestimate runoff across half of the 

snow-dominated basins (as shown in Fig.76 (b)) LORA exhibits a positive bias across half of the snow-dominated basins (Fig. 20 

76 (b)) and particularly in Lena, Amur and Yenisei basins  (Fig. 98) .  

Further, we provide in Fig. S2 the spatial distribution of correlation results from Fig. 6 (c). The basins are colour-coded by 

their temporal correlation with the observed streamflow and the number of basins in each category is given. Basins in yellow 

are those where LORA is highly correlated with the observation while dark blue basins are those where LORA exhibits a 

negative correlation with the observation. It can be noted from Fig. 6(c) that occurrence of negative correlation is extremely 25 

unusual  which explains why these were considered outliers and were not shown in the box and whisker plot. Likely, low 

correlation basins are unusual and constitute less than 12% of the number of basins (excluding basins with negative 

correlation). Also, the median value is above 0.8, which is higher than any constituent estimates. We selected a basin from 

each correlation range and examined the timeseries of LORA and the observed streamflow more closely (Fig. S3-S7), in 

particular illustrating the uncertainty estimate of LORA. In Ganges, LORA captures well the observed time-series dynamic 30 

with a tendency to over-estimate streamflow peak in August (Fig. S3). Over Madeira basin, LORA is able to represent 

reasonably well most of the climatic variability found in the observation (Fig. S4). In Congo, the catchment has an irregular 

time-series dynamic, LORA is in principle able to capture a large part of the climatic variability in the observation (Fig. S5). 

In Lena, the observation shows a peak in June and a second less significant peak in September (Fig. S6). Both peaks are 
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captured by LORA during most of the time series with a tendency to underestimate the late summer peak and overestimate the 

early summer peak. In the upper Indus, LORA does not capture the magnitudes of observed streamflow and shows a reversed 

seasonal cycle which explains why it exhibits negative correlation with the observation (Fig.S7). Zhang et al. (2018) found 

disagreement between simulated runoff from three LSMs and observed streamflow over Indus basin which they expected to 

be due to errors in the observational data from GRDB dataset. 5 

 

Pan et al. (2012) and Sheffield et al. (2009) assumed that the errors in the measured streamflow are inversely proportional to 

the area of the basins and ranges between 5% and 10%. Whereas Di Baldassarre and Montanari (2009) analyzed the overall 

error affecting streamflow observations and found that these errors range between 6% and 42%. In earlier studies, the errors 

in streamflow  measurement were estimated to range from 10% to 20%  (Rantz, 1982; Dingman, 1994). In the study of Zhang 10 

et al. (2018), the error ratios of VIC were set to be 5%. In this study, we used the weighting approach to compute gridded 

uncertainty values based on the discrepancy between the Ragg of the derived runoff and the associated observational dataset 

in each gauged basin or alternatively, based on the discrepancy between Ragg of the derived runoff and the associated 

observational dataset from three similar basins in the case of ungauged basins. The derived gridded uncertainty changes in 

time and space. Our uncertainty estimates show higher values than those set for VIC, and additionally the estimated values 15 

and their reliability change with climate and season (Fig. 87). It follows from Table 2 that in most of the basins the mean 

annual runoff uncertainty exceeds 30% of the values of the associated runoff itself. In fact, when the values of runoff approach 

zero (i.e. in arid and semi-arid regions during the hot climate or in the snow dominated basins during winter) it is expected that 

the uncertainty values become very close to the associated runoff estimates and eventually the error ratio becomes high. It is 

not surprising that the estimated relative uncertainties exceed the error ratios of the observations. Also the change of the 20 

uncertainty values with time and space is consistent with the fact that the individual datasets that were used to derive LORA 

exhibit performance differences in different climates and terrains (Beck et al., 2017a). 

Figure 109 shows the Mean seasonal runoff (mm/year) calculated for the period 1980 – 2012. There is consistently low runoff 

in arid regions and high runoff in wet regions across all the seasons. High latitudes in America and Asia exhibit no runoff 

during the snow season and high runoff during Mar-Aug when snow melts. Overall, there is a clear agreement between the 25 

spatial distribution of runoff and the different climate regimes. This is particularly reflected in Madagascar where the 

differences in runoff pattern match the different climate regimes across the island. LORA captures the high wetness in the 

monsoonal seasons and exhibits a shift in magnitude during the wet monsoon in the lower Amazonn during Oct-May, the 

upper Amazon during Jun-Aug, South Asia during Jun-Nov, Central Sahel in August and Guinea Coasts in June, July, 

September and October.  30 

As discussed in Hobeichi et al. (2018), the weighting approach has its own advantages and drawbacks. One limitation is that 

a common imperfection in all the individual products is likely to propagate into the derived product. The early spring runoff 

peak found in both LORA and the datasets that were used to derive it is an example of this limitation. On the other hand, the 
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seasonal runoff cycle of LORA in both Pechora and Olenek (i.e. two snow-dominated basins) indicate that LORA was able to 

capture the seasonal signal and the timing of the runoff peak very well as opposed to the constituent products and Best4, which 

also suggests that the weighting has the ability to overcome the weaknesses of the individual products. Additionally, it was 

shown in Beck et al. (2017a) that tier1 products consistently overestimate runoff in arid and semi-arid regions due to a bias in 

the WFDEI precipitation forcing, this appears in the massive overestimation exhibited by Best4 in Niger and Murray-Darling 5 

(Fig. 98), however the weighting was able to eliminate a large amount of this overestimation, which also emphasizes the ability 

of the weighting approach to mitigate limitations in individual models. Another limitation arises from the scarcity of observed 

streamflow particularly in the arid regions and from the quality of the observational data itself.  As noted earlier, the errors in 

GRDB dataset were reported to range between 10% and 20% and were found by Di Baldassarre and Montanari (2009) to have 

an average value that exceed 25% across all the studied river basins. Also, given that there are no direct observations for runoff, 10 

uncertainties were computed from the discrepancy between the modelled runoff aggregates and observed streamflow. This 

ignored the lag time between LORA integrated runoff and observed streamflow at the mouth of the river and induced biases 

that possibly led to overestimated uncertainty over large gauged basins. 

The weighting technique allows the addition of new runoff estimates when they become available. This will be particularly 

beneficial if the future estimates represent reasonably the runoff peak in the snow-dominated regions.  15 

5 Conclusion 

In this study, we presented LORA, a new global monthly runoff product with associated uncertainty. LORA was derived for 

1980–2012 with monthly temporal resolution at 0.5° spatial resolution by applying a weighting approach that accounts for 

both performance differences and error covariance between the constituent products.  

To ensure full global coverage, we used a similarity index to transfer weights and bias ratios constructed from gauged basins 20 

with similar climatic and physiographic characteristics to ungauged basins. This allows the derivation of runoff in areas where 

we do not have observed streamflow. 

We showed that this approach is succeeding, that LORA performs better than any of its constituent modelled products in a 

range of metrics, across basins globally and especially in the higher latitudes. However, LORA tends to overestimate runoff 

and shows an early snow-melt peak in some snow-dominated basins. LORA was not found to significantly overestimate runoff 25 

in arid and semi-arid regions as opposed to the constituent products. 

The approach and product detailed here offers the opportunity for improvement as new streamflow and modelled runoff 

datasets become available. It presents a new, relatively independent estimate of a key component of the terrestrial water budget, 

with a justifiable and well constrained uncertainty estimate.  
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HTESSEL 1 HTESS1 Streamflow & 

Total runoff 

0.5° (Balsamo et al., 2009, 2011)  

2 HTESS2 streamflow & 

Total runoff 

0.25° (Balsamo et al., 2009, 2011) 

JULES 1 JULES1 Total runoff 0.5° (Best et al., 2011) 

2 JULES2 Total runoff 0.25° (Best et al., 2011) 

LISFLOOD 1 LISF Streamflow & 

Total runoff 

0.5° (Burek, P., van der Knijff, J., 

de Roo, 2013; Van Der 

Knijff et al., 2010) 

PCR-GLOBWB 1 PCRG Streamflow & 

Total runoff 

0.5° (Van Beek and Bierkens, 

2008)  

SURFEX 1 SURF1 Streamflow & 

Total runoff 

0.5° (Decharme et al., 2011, 

2013) 

2 SURF2 Total runoff 0.25° (Decharme et al., 2011, 

2013) 

W3RA 1 W3RA Streamflow & 

Total runoff 

0.5° (Van Dijk et al., 2014; Van 

Dijk and Warren, 2010) 

WaterGAP3 1 WGAP3 Streamflow & 

Total runoff 

0.5° (Flörke et al., 2013) 

HBV-SIMREG 1 HBVS Total runoff 0.5° (Beck et al., 2016) 

 

Table 2: A comparison of mean annual runoff (mm/year) of 16 major basins covering different climate zones around the world  for 

LORA and VIC (Zhang et al., 2018), the yearly volume of LORA runoff aggregates (i.e. flow in Km3) and observed annual flow 

(Km3) over the basins and  mean annual uncertainty values associated with LORA runoff are shown and the adjusted VIC annual 

runoff values within 5% error bounds for water budget closure are displayed. Observed annual flow is given only if data from all 5 
contributing stations is available over a whole year over for at least 17 years out of 33 years covered in this study.A comparison of 

mean annual runoff (mm/year) of 16 major basins covering different climate zones around the world  for LORA and VIC (Zhang 

et al., 2018), the mean annual uncertainty values associated with LORA runoff are shown and the adjusted VIC annual runoff values 

within 5% error bounds for water budget closure are displayed. Observed annual flow is given only if data from all contributing 

stations is available over a whole year over for at least 17 years out of 33 years covered in this study.  10 
 

Basin 
VIC 

mm/year 

VIC adjusted 

for water 

budget closure 

mm/year 

LORA 

(Runoff) 

mm/year 

LORA 

(uncertainty) 

mm/year 

LORA 

yearly flow 

± 

uncertainty 

Km3 

 

Observed 

yearly 

flow 

Km3 

Dominant 

climate 

Amazon 1048 1029 1151 36057 
6763 ± 

21157148 
- Tropical wet 

Amur 135 129 219 115 
428 ± 

225428 
325 

Humid 

continental 

and semi-arid 

Columbia 318 293 333 101 218 ± 66218 209 
Semi-arid and 

highlands 

Congo 407 404 358 147 
1292 ± 

5321292 
1240 

Tropical wet 

and tropical 

dry 



22 

 

Danube 272 265 260 125 199 ± 95199 205 

Marine 

Humid, 

continental 

and humid 

subtropical 

Indigirka 132 120 228 171 78 ± 5978 53 Subarctic 

Lena 142 134 301 137 
731 ± 

332731 
557 Subarctic 

Mackenzie 189 173 191 110 
323 ± 

186323 
294 Subarctic 

Mississippi 220 215 212 123 
616 ± 

359615 
581 

Humid 

continental 

and humid 

subtropical 

Murray-

Darling 
42 41 15 6 12 ± 512 - 

Arid and 

semi-arid 

Niger 198 194 106 41 239 ± 87239 170 

Arid, semi-

arid and 

tropical dry 

Olenek 114 106 230 208 48 ± 4348 40 Subarctic 

Parana 278 279 189 97 
471 ± 

247471 
600 

Marine and 

humid 

subtropical 

Pechora 342 308 420 420 
131 ± 

131131 
153 

Tundra and 

subarctic 

Yenisei 217 195 324 203 
828 ± 

520828 
612 Subarctic 

Yukon 149 139 229 102 188 ± 83188 214 Subarctic 
 

 

Basin 
VIC 

mm/year 

VIC adjusted 

for water 

budget closure 

mm/year 

LORA 

(Runoff) 

mm/year 

LORA 

(uncertainty) 

mm/year 

Dominant climate 

Amazon 1048 1029 1151 357 Tropical wet 

Amur 135 129 219 115 
Humid continental and 

semi arid 

Columbia 318 293 333 101 Semi-arid and highlands 

Congo 407 404 358 147 
Tropical wet and 

tropical dry 

Danube 272 265 260 125 

Marine Humid, 

continental and humid 

subtropical 

Indigirka 132 120 228 171 Subarctic 
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Lena 142 134 301 137 Subarctic 

Mackenzie 189 173 191 110 Subarctic 

Mississippi 220 215 212 123 
Humid continental and 

humid subtropical 

Murray-

Darling 
42 41 15 6 Arid and semi-arid 

Niger 198 194 106 41 
Arid, semi-arid and 

tropical dry 

Olenek 114 106 230 208 Subarctic 

Parana 278 279 189 97 
Marine and humid 

subtropical 

Pechora 342 308 420 420 Tundra and subarctic 

Yenisei 217 195 324 203 Subarctic 

Yukon 149 139 229 102 Subarctic 

 

 

Figures 

 

Figure 1: Spatial coverage of gauged and ungauged river basins and location of stream gauges. 5 
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Figure 2: Spatial coverage of donor basins, receptor basins and non-donor and non-receptor basins. 
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Figure 23. Flow chart summarizing the steps carried out to derive the weighted runoff product for the global land surface. 
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Figure 3: Spatial coverage of donor basins, receptor basins and non-donor and non-receptor basins. 
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Figure 4: Box and whisker plots displaying the percentage improvement that the weighted product (WPout) offers when tested out-

of-sample, using four metrics: MSE (a), SD difference (b), COR (c) and Mean bias (d), when compared to the weighted product 

derived from in-sample data (WPin), and each runoff product involved in this study. Box and whisker plots represent values 

calculated at 482 gauged basins. See Table 1 for dataset abbreviations. The lower and upper hinges of a boxplot represent the first 

(Q1) and third (Q3) quartiles respectively of the performance improvement results and the line inside the boxplot shows the median 5 

value. The extreme of the lower whisker represents the maximum of 1) min(dataset) and 2) (Q1 - IQR), while the extreme of the 

upper whisker is the minimum of 1) max(dataset) and 2) (Q3 + IQR)), where IQR represents the interquartile range (i.e. Q3 - Q1 ) of 

the performance improvement results. A median line located above the 0 axis is an indication that the out of sample weighting offers 

an improvement in more than half of the basins. 

 10 

Figure 5: Box and whisker plots displaying the ratio of (1) the uncertainties of the spatial aggregate of  the weighted computed in-

sample to (2) the uncertainties of the spatial aggregate of the weighted product computed out-of-sample 
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Figure 65: Four statistics, (a) RMSE, (b) SD difference, (c) COR and (d) Mean bias, calculated for LORA, Best4 (i.e. the simple 

average of runoff estimates from LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this 

study at the gauged basins. See Table 1 for dataset abbreviations. 

 

 5 

Figure 76: Two statistics, (a) COR and (b) Mean bias, calculated for LORA, Best4 (i.e. the simple average of runoff estimates from 

LISFLOOD, WaterGAP3, W3RA and HBV-SIMREG) and each runoff product involved in this study at the gauged basins located 

at the high latitudes (>60°). See Table 1 for dataset abbreviations. 
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Figure 87: Seasonal reliability, defined as  high ( 
𝒎𝒆𝒏 𝒓𝒖𝒏𝒐𝒇𝒇 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

𝒎𝒆𝒂𝒏 𝒓𝒖𝒏𝒐𝒇𝒇
< 𝟏, in red), low (

𝒎𝒆𝒏 𝒓𝒖𝒏𝒐𝒇𝒇 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

𝒎𝒆𝒂𝒏 𝒓𝒖𝒏𝒐𝒇𝒇
≥ 𝟏, in yellow) and 

undetermined (mean runoff = 0, in blue). 
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Figure 98: Seasonal cycle of Runoff aggregates from LORA and Best4 compared with the observed streamflow over 11 major basins. 

Runoff aggregates and the observed streamflow were averaged for each month across the period of availability of observation. The 

shaded regions shows the aggregated uncertainty derived for LORA.  
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Figure 109: Mean seasonal runoff calculated for the period 1980 – 2012 
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