
Manuscript hess-2018-386 entitled “Linear Optimal Runoff 

Aggregate (LORA): A global gridded synthesis runoff product” 

We would like to thank the anonymous reviewer for their constructive comments on our 

manuscript. This document outlines our responses to their comments and the improvements 

made to the manuscript.  

 

Response to overall comments and questions 

(1) I miss a few explicit examples explaining why runoff is at all useful, especially at 0.5 

degrees. The argument is that accurate estimates of runoff are critical to inform climate 

change adaptation strategies, to guide appropriate water management in agriculture and to 

enable the assessment of the impact of anthropogenic activities on ecosystems. However, 

what does runoff at 50x50 km resolution even mean? It is in terms of scale too far off from 

being operationally relevant. Thus, a stronger justification using examples is called for. 

 

We thank the reviewer for their suggestion: We have replaced the text with: 

 

Characterizing its dynamics and magnitudes is a major research aim of hydrology and 

hydrometeorology and a critical importance to improve our understanding of the current 

conditions of the large-scale water cycle and predict its future states. More accurate 

estimates also provide additional constraint for climate model evaluation.   

 

(2) I also miss some references to the earliest work on runoff fields, e.g. Fekete et al. 2002: 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/1999GB001254  

 

We agree with the reviewer, the study of Fekete et al. (2002) is an important example of how 

streamflow observation and model outputs can be combined to generate runoff fields. We have 

now referred to their study in the text  

…, several other studies attempted to correct the runoff outputs directly rather than the 

model parameters, for example by bias-correcting model runoff outputs based on 

streamflow observations (Fekete et al., 2002; Ye et al., 2014), 

 

(3) Regarding to previous work and scales, I would like to call the authors’ attention to a 

recent publication by Barbarossa et al.( https://www.nature.com/articles/sdata201852). 

They provide discharge estimates at 1 km resolution. I move that these are probably more 

representative for local runoff than those obtained from GHMs at half degree resolution? 

 



We thank the reviewer for pointing out this study. We of course agree that FLO1k better 

represents small streams due to its higher spatial resolution. However, FLO1k does not 

necessarily provide more accurate estimates for large rivers. Additionally, FLO1k only provides 

information about the mean, minimum, and maximum annual flow, which limits its usefulness. 

In contrast, LORA provides valuable information about flow timing and the seasonal runoff 

distribution. The two datasets are thus quite different and in some ways complementary. In the 

revised paper we now cite Barbarossa et al. (2018). 

(4) Section 2.3: I find that there is too little info on the method used to compute the weights. 

I don’t think that it should be necessary read another paper to comprehend the essentials 

of the methods used. So, I would want some more explanation on how the weights are 

calculated.  

 

As noted in our response to Reviewer 1 and below, we have included significantly more detail 

about this in the revised manuscript. 

 

For instance:  

- How are correlations between models accounted for?  

An error covariance matrix is calculated for the participating models. The weights are functions 

of this error covariance matrix. We provide more details below 

- Are the weights allowed to be negative?  

Yes, weights can be negative 

 

- Is the sum of the weights adding up to one?  

Yes, the weights add up to one. 

If this is the case, one has to add another equation and transform a constrained 

optimization to an unconstrained one using Lagrange multipliers. 

This is correct, we constrained the weights to sum up to one, and we transformed the problem of 

minimizing  ∑ (𝜇q
j
− 𝑄j)2J

j=1  to a problem of minimizing a function that involves a Lagrange 

multiplier. 

We have now detailed the weighting method in the text: 

 

At each gauged basin, we built a linear combination 𝜇𝑞 of the participating modelled 

streamflow datasets 𝑥 (i.e. Ragg in small basins and modelled streamflow, q, in large 

basins) that minimized the mean square difference with the observed streamflow Q at that 

basin such that: 𝜇𝑞
𝑗
= ∑ 𝑤𝑘(𝑥𝑘

𝑗
−𝐾

𝑘=1 𝑏𝑘) where 𝑗 ∈ [1, 𝐽] are the time steps and  𝑘 ∈

[1, 𝐾] represent the participating models, 𝑥𝑘
𝑗
 (i.e., integrated runoff  𝑅𝑎𝑔𝑔𝑘

𝑗
 over the 

basin areas in small basins and modelled streamflow at a gauge location 𝑞𝑘
𝑗
 in large 

basins) is the value of the participating dataset in m3 s-1 at the  jth time step of the kth 

participating model, the bias term 𝑏𝑘 is the mean error of  𝑥𝑘 in m3 s-1. The set of weights 

𝑤𝑘 provides an analytical solution to the minimization of  ∑ (𝜇𝑞
𝑗
− 𝑄𝑗)2𝐽

𝑗=1  subject to the 

constraint that  ∑ 𝑤𝑘 = 1
𝐾
𝑘=1 , where 𝑄𝑗 is the observed streamflow at the jth time step. 



This minimization problem can be solved using the method of Lagrange multipliers by 

finding a minima for  

𝐹(𝑤, ) =
1

2
[

1

(𝐽−1)
∑ (𝜇𝑞

𝑗
− 𝑄𝑗)2] − ((∑ 𝑤𝑘

𝐾
𝑘=1 ) − 1)𝐽

𝑗=1 . 

The solution to the minimization of 𝐹(𝑤, ) can be expressed as =
𝐴−11

1𝑇𝐴−11
 , where 1𝑇 =

[1,1, . . . ,1]⏞      
𝑘 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

 and 𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑘 × 𝑘 error covariance matrix of the participating datasets 

(after bias correction), i.e. A=(

𝑐1,1 ⋯ 𝑐1,𝑘
⋮ ⋱ ⋮
𝑐𝑘,1 … 𝑐𝑘,𝑘

). A is symmetric and the term 𝑐𝑎,𝑏 is the 

covariance of the ath and bth bias corrected dataset after subtracting the observed 

dataset, while each diagonal term 𝑐𝑘,𝑘is the error variance of dataset k. We note here that 

the solution presented here is based on the performance of the participating products 

(diagonal terms of A) and the dependence of their errors (accounted for by the non-

diagonal terms of A). For derivation see Bishop and Abramowitz (2013). 

We then derived the weighted runoff dataset by applying the computed weights on the 

bias corrected runoff estimates of the participating models. The weighted runoff dataset 

is expressed as:  

𝜇𝑟
𝑗
=∑𝑤𝑘(𝑟𝑘

𝑗
− 𝑏′𝑘)

𝐾

𝑘=1

 

Where 𝑟𝑘
𝑗
 is the value of runoff estimate in 𝑘𝑔 𝑚−2𝑠−1 of the kth participating model at 

the jth time step and 𝑏′𝑘 is its runoff bias in 𝑘𝑔 𝑚−2𝑠−1.  

 

Line 8-10 page 5: This seems to assume that travel times are less than a month because it 

neglects routing? 

Yes, this is worth mentioning. It is a limitation that has possibly led to an overestimation in the 

computed uncertainties over large basins. We have now added this to the text. 

Given that there are no direct observations for runoff, uncertainties were computed from 

the discrepancy between the modelled runoff aggregates and observed streamflow. This 

ignored the lag time between LORA integrated runoff and observed streamflow at the 

mouth of the river and induced biases that possibly led to overestimated uncertainty over 

large gauged basins.  

 (6) Lines 11-13 page 5: “It provides better estimates than simply calculating the standard 

deviation of the involved products”. Is that really the case? If your weighting method is 

optimal and you have bias-corrected correctly would the following estimator for each pixel 

not be unbiased (i and j are different products bias corrected): 

 



By moving a window T over time you get your time varying variance 

 

We thank the reviewer for his suggestion. We think that while the suggested formula provides 

time varying uncertainty estimates associated to the weighted runoff, it does not account for the 

dependence between ri,t and rj,t which is likely to lead to an overestimation of uncertainty. 

Meanwhile, the ensemble dependence transformation process that we applied in this paper to the 

participating products transforms the dependent estimates to statistically independent estimates. 

We don’t really have observations for runoff, so we can’t test our method for deriving 

uncertainty on runoff, however we can test it on streamflow (i.e. runoff aggregates). We have 

performed out-of-sample tests to show that the distribution of the errors over the gauged basin is 

similar to the distribution of their errors when they are considered ungauged. We have now 

explained how we have performed this test and showed the results in the manuscript:  

The uncertainty estimates computed at the gauged basins represent the deviation of (the 

spatial aggregate of) our weighted product (𝑅𝑎𝑔𝑔𝜇) from the observed streamflow, since 

the in-sample uncertainty estimates are calculated from the variance of the transformed 

ensemble, which by design equals MSE of 𝑅𝑎𝑔𝑔𝜇 against observations (i.e. error 

variance of 𝑅𝑎𝑔𝑔𝜇). To test if the uncertainty estimates perform well out-of-sample (i.e. 

at the ungauged basins), we took a gauged basin, but instead of constraining the 

weighting using observed streamflow from this basin, we constructed model weights by 

using the three most similar donor basins. We could then calculate MSE of 𝑅𝑎𝑔𝑔𝜇 

against observations from the three donor basins, denoted by MSEin, which provides us 

with the uncertainty estimates calculated in-sample (√𝑀𝑆𝐸𝑖𝑛), since the observational 

data used in this case is the same dataset that was used to train the weighting. We also 

calculated the MSE of the aggregated weighted product against the actual observation of 

the gauged basin and denoted this MSEout. √𝑀𝑆𝐸𝑜𝑢𝑡 represents the uncertainty estimates 

computed out-of-sample, since the comparison was performed against observational data 

that has not been used to train the weighting. We repeated the out-of-sample test for all 

the gauged basins. 

We displayed the results of the out-sample-test by showing the ratio √𝑀𝑆𝐸𝑜𝑢𝑡 /√𝑀𝑆𝐸𝑖𝑛 . 

If the approach is succeeding, we expect that this ratio is around one, indicating that the 

values of MSEin and MSEout are close to each other. We used a box and whisker plot, 

where each sample is a different basin, to show the results. 

 

We have also commented on the results: 

Critically though, the fact that the weighting delivers improvement over all models when 

the weights are transferred from similar basins indicate that the dissimilarity technique is 

succeeding and can be effectively used at the ungauged basins by feeding the weighting 

with data from the most similar basins with streamflow observations. Furthermore, the 

boxplot in Fig 5 shows that, overall, when the uncertainty estimates are computed out-of-



sample they are very similar to what they would have been if they were computed in-

sample. This demonstrates that the dissimilarity technique can be effectively used to 

derive not only the weighting product but also its associated uncertainties at the 

ungauged basin. 

 

 

Figure 5: Box and whisker plots displaying the ratio of (1) the uncertainties of the spatial aggregate of the weighted product 

computed out-of-sample to (2) the uncertainties of the spatial aggregate of the weighted computed in-sample. 

 

(7) Line 20-25 page 5: transferring the weights from donors to receptors. Are one set of 

weights obtained jointly for the three donor catchments or are three sets of weights 

averaged and transferred? 

 

Yes, this was not clear in the text. One set of weights is obtained jointly from the three donor 

catchments. We clarified this in the text. 

 

We then implemented the weighting technique on the ensemble of 11 (in small basins) or 

eight (in large basins) model outputs by matching Ragg calculated across the selected 

donor basins with the observed streamflow. This resulted in one set of weights and bias 

ratios obtained jointly from the three donor basins.  

 

(8) Line 11 on page 10. Why compare only with VIC? Why not GLDAS (4 models). 

Good question. At the time of analysis, GLDAS version1 model outputs had either a very short 

common period with LORA or a coarse resolution (1°) and showed a significant disagreement 

with observation when we interpolated them to a 0.5° grid. We clarified this in the text. 

Other global estimates of total runoff are also available such as GLDAS and Multi-scale 

Synthesis and Terrestrial Model Intercomparison Project (MsTMIP; Huntzinger et al., 

2016), however we haven’t compared LORA with these datasets because they either have 



a short common period with LORA, or a coarser resolution (i.e. 1o) and showed a 

significant disagreement with observation when interpolated to a 0.5° grid. 

 

(9). Table 2: why not add the estimated total runoff volumes from GRDC (also globally in 

km3). It would be good to see what the global runoff volume is in this product compared to 

other estimates. 

Good idea. We have now added the average total yearly volume of discharged water from LORA 

and observation  

 
Table 2: A comparison of mean annual runoff (mm/year) of 16 major basins covering different climate 

zones around the world  for LORA and VIC (Zhang et al., 2018), the yearly volume of LORA runoff 

aggregates (i.e. flow in Km3) and observed annual flow (Km3) over the basins and  mean annual 

uncertainty values associated with LORA runoff are shown and the adjusted VIC annual runoff values 

within 5% error bounds for water budget closure are displayed. Observed annual flow is given only if 

data from all contributing stations is available over a whole year over for at least 17 years out of 33 

years covered in this study.  

Basin 
VIC 

mm/year 

VIC adjusted for 

water budget 

closure 

mm/year 

LORA 

(Runoff) 

mm/year 

LORA 

(uncertainty) 

mm/year 

LORA 

yearly flow ± 

uncertainty 

Km3 

 

Observed 

yearly flow 
Km3 

Dominant 

climate 

Amazon 1048 1029 1151 360 6763 ± 2115 - Tropical wet 

Amur 135 129 219 115 428 ± 225 325 

Humid 

continental and 

semi-arid 

Columbia 318 293 333 101 218 ± 66 209 
Semi-arid and 

highlands 

Congo 407 404 358 147 1292 ± 532 1240 
Tropical wet 

and tropical dry 

Danube 272 265 260 125 199 ± 95 205 

Marine Humid, 

continental and 

humid 

subtropical 

Indigirka 132 120 228 171 78  ±  59 53 Subarctic 

Lena 142 134 301 137 731 ± 332 557 Subarctic 

Mackenzie 189 173 191 110 323 ± 186 294 Subarctic 

Mississippi 220 215 212 123 616 ± 359 581 

Humid 

continental and 

humid 

subtropical 

Murray-

Darling 
42 41 15 6 12 ± 5 - 

Arid and semi-

arid 

Niger 198 194 106 41 239 ± 87 170 Arid, semi-arid 



and tropical dry 

Olenek 114 106 230 208 48 ± 43 40 Subarctic 

Parana 278 279 189 97 471 ± 247 600 

Marine and 

humid 

subtropical 

Pechora 342 308 420 420 131 ± 131 153 
Tundra and 

subarctic 

Yenisei 217 195 324 203 828 ± 520 612 Subarctic 

Yukon 149 139 229 102 188 ± 83 214 Subarctic 

 

 

(10) Line 27 on page 10: reduced performance in dry climates. Apart from the reasons 

mentioned, another possible cause could be the fact that GHMs are probably less proficient 

in representing runoff processes in arid basins where often runoff is local and will not 

always be turned into streamflow 

 

Great point. We have now added this in the text to read:  

 

It follows from Fig. 8 that the runoff values computed over dry climates tend to be less 

reliable than those in other regimes. This is perhaps due to biases in the WFDEI 

precipitation forcing that are propagated and intensified in the simulated runoff (Beck et 

al., 2017a). Another possible reason is the reduced proficiency of models in representing 

runoff dynamics in arid climates where runoff tends to be highly non-linearly related to 

rainfall and often evaporates locally without reaching a river system (Ye et al., 1997). 


