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Abstract. Groundwater travel time distributions (TTDs) provide a robust description of the subsurface mixing behavior and

hydrological response of a subsurface system. Lagrangian particle tracking is often used to derive the groundwater TTDs.

The reliability of this approach is subjected to the uncertainty of external forcings, internal hydraulic properties, and the

interplay between them. Here, we evaluate the uncertainty of catchment groundwater TTDs in an agricultural catchment using

a 3-D groundwater model with an overall focus on revealing the relationship between external forcing, internal hydraulic5

properties, and TTD predictions. Eight recharge realizations are sampled from a high-resolution dataset of land surface fluxes

and states. Calibration-constrained hydraulic conductivity fields (Ks fields) are stochastically generated using the null-space

Monte Carlo (NSMC) method for each recharge realization. The random walk particle tracking (RWPT) method is used to track

the pathways of particles and compute travel times. Moreover, an analytical model under the random sampling (RS) assumption

is fitted against the numerical solutions, serving as a reference for the mixing behavior of the model domain. The StorAge10

Selection (SAS) function is used to interpret the results in terms of quantifying the systematic preference for discharging

young/old water. The simulation results reveal the primary effect of recharge on the predicted mean travel time (MTT). The

different realizations of calibration-constrained Ks fields moderately magnify or attenuate the predicted MTTs. The analytical

model does not properly replicate the numerical solution, and it underestimates the mean travel time. Simulated SAS functions

indicate an overall preference for young water for all realizations. The spatial pattern of recharge controls the shape and breadth15

of simulated TTDs and SAS functions by changing the spatial distribution of particles’ pathways. In conclusion, overlooking

the spatial nonuniformity and uncertainty of input (forcing) will result in biased travel time predictions. We also highlight the

worth of reliable observations in reducing predictive uncertainty and the good interpretability of SAS functions in terms of

understanding catchment transport processes.
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1 Introduction

Travel/transit time distributions (TTDs) of groundwater provide a description of how aquifers store and release water and

pollutants under external forcing conditions, which has significant implications for interdisciplinary environmental studies.

For example, remarkable time-lags of the reaction of streamflow with outer forcings and considerable amounts of “old water”

(i.e., water with an age of decades or longer) in streamflow have been observed in many studies (Howden et al., 2010; Stewart5

et al., 2012). Moreover, the legacy nitrogen in groundwater storage may dominate the annual nitrogen loads in agricultural

basins (Wang et al., 2016; Van Meter et al., 2016; Van Meter et al., 2017). Groundwater TTDs offer important insights into

the vulnerability of aquifers to pollution spreading, and they are critically important for the environmental assessment of non-

point-source agricultural contamination (Böhlke and Denver, 1995; Böhlke, 2002; Molnat and Gascuel-Odoux, 2002; Eberts

et al., 2012). TTDs shed light on the quantification of the long-term influence of agricultural contamination, which is crucial10

for water quality and sustainability.

The accurate quantification of groundwater travel time at a regional scale is extremely challenging. A primary difficulty

is that the complex geometric, topographic, meteorologic, and hydraulic properties of hydrologic systems control the flow

and mixing processes and therefore define the unique shape of the travel time distribution (TTD) (Leray et al., 2016; Hale

and McDonnell, 2016; Engdahl et al., 2016). The other difficulty is that the groundwater system is intricately and tightly15

coupled to land surface hydrologic processes. The fundamental characteristics and the coupled nature determine the response

of a catchment to outer forcings such as anthropogenic climate change, artificial abstraction, and agricultural and chemical

contamination (Tetzlaff et al., 2014; van der Velde et al., 2015; Heße et al., 2017).

The techniques for determining groundwater TTDs can be categorized into two groups: geochemical approaches and nu-

merical modeling approaches (McCallum et al., 2014). In geochemical approaches, the lumped parameter models are often20

used to interpret the catchment-scale observation of an environmental tracer concentration. Environmental tracer datasets can

be divided into those representing the concentration distribution of young water (e.g., 3H, SF6, 85K, and CFCs) and those

representing the concentration distribution of old water (e.g., 36Cl, 4He, 39Ar, and 14C). Additionally, the analytical StorAge

Selection (SAS) function is a cutting-edge tool for characterizing transport processes in lumped, time-varying hydrologic sys-

tems at the hillslope/catchment scale (Botter et al., 2011; Rinaldo et al., 2011; Van Der Velde et al., 2012; Harman, 2015;25

Danesh-Yazdi et al., 2018). This framework provides a clear distinction between the travel time (the time spent by a water

parcel or a solute from its entrance to the control volume until its exit) and the residence time (the age of the water parcel

or the solute existing in the control volume at a particular time). The SAS function has been successfully applied to interpret

environmental tracer data through some assumptions of the mixing mechanism (Benettin et al., 2015, 2017). However, ana-

lytical approaches fall short in representing the dispersion of transport processes caused by catchment heterogeneity. Strong30

heterogeneity leads to significant aggregation error of mean travel times (MTTs) when using analytical models to interpret the

tracer data (Kirchner, 2016; Stewart et al., 2016).

In contrast to such an analytical approach, physically based numerical models can explicitly describe the geometry, topogra-

phy, and geological structures, and they can represent the flow paths of individual water particles. Physically based numerical
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models are structurally complex and computationally expensive and often have more parameters than lumped parameter mod-

els do. These models can be classified as Eulerian approaches or Lagrangian approaches (Leray et al., 2016). The Eulerian

approach directly solves the partial differential equations (PDEs) derived from mass conservation with “age mass” as the pri-

mary variable (Goode, 1996; Ginn, 2000; Engdahl et al., 2016). The Lagrangian approach, including the smoothed particle

hydrodynamics (SPH) approach and the random walk particle tracking (RWPT) approach, is numerically robust and less re-5

strictive on time-step size in solving advection-dominated problems (Tompson and Gelhar, 1990). Consequently, Lagrangian

methods are more promising in simulating complex real-world transport processes, as they avoid spurious mixing error in grid-

fixed Eulerian methods (Benson et al., 2017). Therefore, the Lagrangian approach has been widely used to simulate large-scale

reactive transport and biogeochemical problems (Park et al., 2008; de Rooij et al., 2013; Selle et al., 2013).

A reliable application of groundwater transport modeling is subject to many sources of uncertainty, including measurement,10

model structural, and parameter uncertainty (Beven, 1993). Specifically, the reliability of model prediction suffers from the

uncertainty of external forcings, the uncertainty of internal hydraulic characteristics, and the interplay between them (Ajami

et al., 2007). The spatially sparse measurements of recharge lead to a biased characterization of spatiotemporal patterns of

recharge (Healy and Scanlon, 2010; Cheng et al., 2017). On the other hand, the spatial scarcity of hydrogeological data always

hampers the right characterization of aquifer properties such as porosity and permeability, thus allowing a range of various15

realistic parameter values. The best-fit parameter may suffer from a fitting error caused by overparameterization and equifinality

(Schoups et al., 2008). Such biased parameters cause uncertain predictions because parameter error may compensate for model

structural defects (Doherty, 2015). Accordingly, predictive uncertainty can be hardly assessed in a precise way.

Biased characterization of the hydrodynamic system and oversimplified assumptions will lead to a problematic prediction

of TTDs. Many past studies offer insights into the influence of recharge and hydrogeological configuration on the prediction20

of TTDs. For example, some research studies have been devoted to the development of analytical solutions for the idealized

catchment (or aquifer) under some essential assumptions and simplifications (Neuman, 1972; Haitjema, 1995; Engdahl et al.,

2016; Leray et al., 2016). Among them, Haitjema (1995) derived an analytical solution in an idealized groundwatershed under

steady-state conditions and the Dupuit-Forchheimer assumption and found that the groundwater mean travel time appears to

be only dependent on recharge, saturated aquifer thickness, and porosity, provided that the hydraulic conductivity is locally25

homogeneous. Basu et al. (2012) evaluated analytical, GIS, and numerical approaches for the prediction of groundwater TTDs

and found that the simulated TTDs show a moderate difference. Many recent studies have reported the dependency of transient

TTDs on the temporal variability of input forcings (Benettin et al., 2015; Yang et al., 2018; Remondi et al., 2018; Kaandorp

et al., 2018), but the dependency of TTDs (as well as SAS functions) on the spatial variability of input forcings has rarely been

studied.30

Although studies on catchment-scale groundwater TTDs are numerous, comprehensive uncertainty analysis that aims to

unveil the different roles of external forcing and internal hydrostratigraphic structure using both a numerical model and SAS

functions is scarce. In this regard, two important questions are the following: (1) How does the uncertainty of recharge (includ-

ing its spatial nonuniformity) and hydraulic conductivities affect the TTD predictions in a mesoscale agricultural catchment,
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provided that the model is constrained to reality and groundwater head observations? (2) How does the uncertainty of inputs

(forcings) and parameters influence the prediction of systematic preference for young/old water?

In this paper, we aim to answer these questions through a detailed (uncertainty) analysis of an example application in a

mesoscale real-world catchment. In doing so, we establish a detailed groundwater model coupled to a random walk particle

tracking system for predicting groundwater TTDs. The groundwater model OpenGeoSys (OGS) is used to simulate the ground-5

water flow, while the input forcing is fed by the mesoscale hydrologic model (mHM) via the coupling interface mHM-OGS

(Jing et al., 2018). The numerical model follows the steady-state assumption of groundwater flow systems. This assumption is

made because at the regional scale, the groundwater flow process has a much larger time scale than that of the high-frequency

oscillation of recharge, which essentially dampens the effect of recharge oscillation (Leray et al., 2016). An ensemble of

simulations using multiple recharge realizations and multiple equifinal hydraulic conductivity (Ks) fields is established. An10

analytical model is used as a reference for unveiling the mixing mechanism of the system. The StorAge Selection function is

also used to interpret the simulation results of the numerical model, with an overall aim to quantify the predictive uncertainty

of systematic preference for young/old water.

2 Site Description

The candidate site in this paper is the Nägelstedt catchment, located in central Germany (see Figure 1). With an area of15

approximately 850 km2, the Nägelstedt catchment is a headwater catchment of the Unstrut river. The terrain elevation of

this area varies from 164 m to 516 m a.m.s.l. (above mean sea level). It is a subcatchment of the Unstrut basin, one of the

most intensively used agricultural regions in Germany. About 88% of the land in this site is marked as arable land, which is

significantly higher than the average level of Thuringian (Wechsung et al., 2008). The agricultural nitrogen input has varied

over the years and locations, from 5 - 24 kg/ha in the soils of the lowlands to 2 - 30 kg/ha in the feeding area (Wechsung et al.,20

2008). The mean annual precipitation is approximately 660 mm.

The dominating sediment in the study area is the Muschelkalk (Middle Triassic). The Muschelkalk has an overall thickness

of about 220 m, and it has been divided into three subgroups according to mineral composition: Upper Muschelkalk (mo),

Middle Muschelkalk (mm), and Lower Muschelkalk (mu). The Upper Muschelkalk (mo) is mainly composed of limestone,

marlstone and claystone, and it forms fractured aquifers (Seidel, 2003; Jochen et al., 2014; Kohlhepp et al., 2017). The Middle25

Muschelkalk (mm) deposits are composed of evaporites, including dolomit marlstone, gypsum, dolomit limestone and eroded

salt layers. The Lower Muschelkalk (mu) is composed of massive limestone (Seidel, 2003; McCann, 2008; Jochen et al.,

2014). The Muschelkalk formation consists of limestone sediments, which may form fractured and karst aquifers. A recent

study demonstrated that karstification and the development of conduits are limited at the base of the Upper Muschelkalk at the

Hainich critical zone in the Nägelstedt catchment (Kohlhepp et al., 2017). In the middle of the study area, Keuper deposits,30

including Middle Keuper (km) and Lower Keuper (ku), overlay the Muschelkalk formation. The Lower Keuper formation forms

the low permeable aquitard on top of the Upper Muschelkalk aquifer (Seidel, 2003; Kohlhepp et al., 2017). Lithologically, the
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Figure 1. The Nägelstedt catchment used as the test catchment for this study (Jing et al., 2018). a) An overview of the Nägelstedt catchment

and the locations of the monitoring wells used in this study. b) 3-D view highlighting the arrangement of alluvium and soil and cross-sectional

view of the study area. c) 3-D view highlighting the zonation of the sedimentary aquifer-aquitard system. Note that the Muschelkalk layers

(mo, mm and mu) are divided into more permeable subunits (mo1, mm1 and mu1) and less permeable subunits (mo2, mm2, and mu2).

Muschelkalk aquifer system is a “layer-cake” aquifer system that contains interbedded marlstone aquitards (Aigner, 1982;

Merz, 1987; Kohlhepp et al., 2017).

Eighteen monitoring wells distributed in this area are used to calibrate the model (Figure 1a, in which the well W0 is

abandoned in this study due to the proximity to the outer edge). The geological layers to which the wells belong are listed as

follows: 5 wells in Middle Keuper (km), 4 in Lower Keuper (ku), 6 in Upper Muschelkalk (mo), 2 in Middle Muschelkalk5

(mm), and 1 in alluvium.
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3 Methodology and materials

3.1 Numerical model

We use the coupled model mHM-OGS, proposed by Jing et al. (2018), to simulate terrestrial hydrological processes. This

coupled model was developed for extending the predictive capability of mHM from land surface processes to the subsurface

flow and transport processes. Specifically, mHM (Samaniego et al., 2010; Kumar et al., 2013) is used to partition water budget5

components, while the porous media simulator OGS (Kolditz et al., 2012) is used to compute groundwater flow and transport

processes by using mHM-generated recharge as driving forces. For details on the coupled model mHM-OGS, please refer to

Jing et al. (2018).

The catchment water storage is conceptually partitioned into soil zone storage and deep groundwater storage; the two cor-

responding components are computed by mHM and OGS, respectively. The soil zone dynamics of TTD has been well studied10

using mHM in a previous work (Heße et al., 2017). Hence, in this paper, we perform explicit forward modeling of the saturated-

zone TTD through a 3-D OGS groundwater model by using the mHM-generated recharge as the external forcing.

In this study, we focus on the travel times in the saturated zone. Saturated groundwater flow is characterized by the continuity

equation and Darcy’s law:

S
∂ψp

∂t
=−∇ · q + qs (1)15

q =−Ks∇(ψp− z) (2)

where S is the specific storage coefficient in confined aquifers, or the specific yield in unconfined aquifers [1/L]; ψp is the

pressure head in the porous medium [L]; t is the time [T]; q is the specific discharge or the Darcy velocity [LT-1]; qs is the

volumetric source/sink term [T-1]; Ks is the saturated hydraulic conductivity tensor [LT-1]; and z is the vertical coordinate [L].

We use the RWPT method to track the particle movement. The RWPT method is embedded in the source codes of OGS20

(Kolditz et al., 2012; Park et al., 2008). Derived from stochastic physics, RWPT is under the assumption that the advection

process is deterministic and the diffusion-dispersion process is stochastic. The theoretical background of the RWPT method is

described in detail in Appendix A.

3.2 Numerical model setup

3.2.1 Boundary conditions25

The steady-state model configuration is achieved using a temporally averaged recharge of the simulated daily recharges over

a long period (1955–2005). The gridded recharges estimated by mHM are interpolated and then assigned to each grid node

on the upper surface of the OGS mesh using a bilinear interpolation approach. No-flow boundaries are assumed at the outer

edges that are defined by catchment divides, except for the northwestern and northeastern edges, where fixed-head boundaries

are applied (Wechsung et al., 2008). The streams are assigned with fixed-head boundaries, wherein the heads are equal to the30

long-term averaged water levels. For the steady-state system and the one-way coupled model, baseflow component generated
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Table 1. Adjustable ranges of the hydraulic parameters.

Hydraulic conductivity Ks [m/s]

soil alluvium km ku mo1 mm1 mu1

Upper limit 9.0× 10−4 2.0× 10−3 9.0× 10−4 8.5× 10−5 8.0× 10−4 9.1× 10−4 2.0× 10−5

Lower limit 5.0× 10−5 4.5× 10−6 1.0× 10−6 9.6× 10−7 9.0× 10−7 3.1× 10−7 2.0× 10−8

Figure 2. Recharge realizations used in this study (unit: mm). They were sampled from a high-resolution dataset of land surface fluxes for

Germany (Zink et al., 2017).

by OGS proves to be consistent with the baseflow estimated by mHM, implying that the water budget in the subsurface system

is essentially closed (Jing et al., 2018). Neumann boundaries are prescribed for 7 drinking water production wells. However,

the amount of pumping makes up only around 3% of the total amount of outflow, and it therefore has a marginal influence on

the water budget (Wechsung et al., 2008).

3.2.2 Modeling procedures5

The numerical experiment to explore the uncertainty of TTDs is performed through the following workflow:

1. Eight spatially distributed recharge realizations are sampled from a high-resolution dataset of land surface fluxes for

Germany, in which mHM is used to simulate land surface hydrological processes. The details of the dataset and the

sampling method are described in the following section.

2. For each recharge realization, a series of equally probable realizations of Ks fields are generated using the null-space10

Monte Carlo (NSMC) method.
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The NSMC method takes advantage of the hybrid Tikhonov-TSVD method in the parameter estimation code PEST to

produce Monte Carlo realizations of parameters (Tonkin and Doherty, 2009; Doherty and Hunt, 2010). This approach is

able to efficiently generate an ensemble of parameter fields that are conditioned to expert knowledge and measurements.

Here, the observations of groundwater levels from 18 spatially distributed monitoring wells are used to calibrate the OGS

model (the locations of monitoring wells are illustrated in Figure 1a). Before generating parameter sets, we calibrate5

the model to obtain the best-fit hydraulic conductivities, as well as a covariance matrix of the parameter probability

distributions. On the basis of this information, many fully distributed Ks fields are randomly generated from a uniform

distribution of hydraulic conductivity values (Doherty, 2015). As shown in Table 1, the range of hydraulic conductivities

is predefined based on values obtained from a geological survey (Wechsung et al., 2008). As a result, a total of 400

parameter sets conditioned on both observations and reality are generated for the uncertainty analysis.10

3. In each parameter realization, a large number of particles are injected through the top surface of the groundwater model.

The spatial density of particles is proportional to the spatially distributed recharge rates.

To accurately interpret the travel time distribution, a large number of particles (e.g., approximately 80 000 particles in

the case study) is released into the top surface of the groundwater model. The released particles serve as samples of

water parcels for deriving their travel time distributions. In doing so, the density of particles is set proportional to the15

recharge at the corresponding grid cell (Figure 3). Each particle tracer represents a volumetric recharge rate of around

700 m3/year.

4. An ensemble of forward simulations using the RWPT method is performed over all realizations of Ks fields.

In each realization of the ensemble parameter sets, forward simulations of particle tracking are performed. In this study,

we focus on the predictive uncertainty within the convection process. Therefore, the molecular diffusion coefficients are20

universally set to 0 for all ensemble simulations. The porosity of the study domain is set to 0.2 universally. Through the

above procedures, the flow paths and the corresponding residence times can be fully traced in the model at random times

and locations, facilitating the detailed characterization of TTDs.

In parallel to this analysis, a sensitivity analysis for the spatial variability of recharge is also performed. Two different

recharge scenarios are compared for this purpose: (1) the spatially distributed recharge generated by mHM and (2) the uniform25

recharge that is equal to the spatial average of the distributed recharge. Other parameters, including the porosity and the

hydraulic conductivity, remain identical in these two recharge scenarios.

3.2.3 Recharge realizations

A high-resolution dataset of land surface fluxes and states across Germany is used for sampling recharge scenarios. This

dataset was established on the basis of a daily simulation with 4 km spatial resolution using mHM for a time span of 60 years30

(1951–2010) (Zink et al., 2017). This dataset consists of an ensemble (100 realizations) of land surface variables, including

evapotranspiration, groundwater recharge, soil moisture and discharge, with a spatial resolution of 4 km. A total of 100 re-
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Figure 3. Two different spatial distributions of particle tracers for the RWPT method. a) The mass-weighted distribution of particles based

on the recharge estimated by mHM. This is the default spatial pattern of particle tracers in this study. b) The uniformly distributed particle

tracers used in the uniform recharge scenario.

alizations of land surface states are all conditioned on the observed daily discharge, and each of them has been derived by

incorporating the uncertainty of parameterization caused by the heterogeneity of geometry, topography and geology. The mod-

eled datasets are further validated against observation-based evapotranspiration and soil moisture data from eddy covariance

stations (Heße et al., 2017). The derived recharges show a good correspondence with the estimation from the Hydrologic Atlas

of Germany (Zink et al., 2017).5

Eight representative recharge realizations (R1-R8) are sampled from 100 realizations for this study to save computational

time. To enhance the representativeness of the samples, the 100 recharge realizations are sorted in an ascending order by their

spatial averages. The selected recharge realizations are uniformly sampled from the sorted recharge realizations. In doing so,

the maximum and minimum recharges are included in the samples such that the whole range of recharge realizations is fully

covered.10

3.2.4 3-D stratigraphic model

A 3-D stratigraphic mesh is established on the basis of hydrogeological characterizations elaborated in Section 2 (Figure 1).

This mesh is based on data obtained from Thuringian State office for the Environment and Geology (TLUG) and its generation

is described in Fischer et al. (2015). The structured mesh is composed of 310 599 nodes (132 rows, 140 columns, and 82

vertical layers). The 3-D cell size of 250 m, 250 m, and 10 m in the x-, y- and z-directions is used in this study. Based on the15

German stratigraphy (Menning, 2002), the Middle Muschelkalk, the Upper Muschelkalk, the Lower Keuper, and the Middle

Keuper outcrop in the Nägelstedt catchment. Accordingly, a stratigraphic aquifer system with 10 geological units is set up.

The uppermost 10 m of the mesh has been separated as a soil layer, while an alluvium layer consisting of high-permeability

sandy gravel is set at the nodes beneath and near streams (Figure 1). Each of the Muschelkalk layers is further divided into two

categories: the more permeable parts (mo1, mm1, and mu1) and the less permeable parts (mo2, mm2, and mu2) (see Figure20

1). For each of the Muschelkalk units, the permeability of the less permeable part is tied to the corresponding more permeable

part with a factor of 0.1. The equivalent porous medium approach is applied to characterize the karst aquifer of the Upper

Muschelkalk (mo). This approach translates the parameters describing highly heterogeneous hydraulic properties at the point
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Figure 4. Box-plot of stochastically generated hydraulic conductivity (Ks) for each geological layer in 8 recharge realizations. Note that the

parameters mo2, mm2, and mu2 are not shown in this figure because the less permeable subunits of the Muschelkalk (mo2, mm2, and mu2)

are tied with the respective more permeable subunits (mo1, mm1, and mu1) with a factor of 0.1.

scale to the equivalent homogeneous medium at the regional scale to avoid adding redundant parameters and therefore avoid

overfitting.

3.2.5 Parameter uncertainty

Multiple calibration-constrained Ks fields were stochastically generated for each recharge realization. Figure 4 shows the

box-plot of generated hydraulic conductivities in all realizations categorized by geological unit. The hydraulic conductivity5

of the Lower Muschelkalk (mu) has the highest uncertainty (10−8 - 10−5 m/s) because the conductivity of mu is insensitive

to groundwater head observations, given that it is the deepest geological layer and that no monitoring well is located in this
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Figure 5. Observed and simulated groundwater heads for each parameter and recharge realization. The results of 400 realizations (R1K1 -

R8K50) are categorized by recharge realization and shown in different panels.

layer (Table B1). The other parameters fluctuate moderately and are constrained within one order of magnitude in most of the

recharge realizations. Hydraulic conductivities of several permeable layers (mo, mm, alluvium, and soil) increase from R1 to

R8, which is not surprising because the hydraulic conductivity increases with increasing recharge and constant groundwater

head. Moreover, the hydraulic conductivities of the above layers are roughly linearly correlated to the corresponding recharge

in each recharge realization. Figure 5 shows the simulated and observed groundwater heads for all 400 realizations. All of the5

400 realizations are well constrained to observations, with the root mean square error (RMSE) of groundwater level residuals

being lower than 4.6 m in all of the considered recharge realizations.

3.3 Theory of analytical StorAge Selection function

The travel time is defined as the time spent by a moving element (either a water particle or a solute) in a control volume of

a hydrologic system. In principle, the control volume can be defined at arbitrary spatial scales (i.e., from the molecular scale10

to the regional scale). Considering a hydrologic system in which the input flux (J) and the output fluxes (Q1,Q2, ...,Qn) are

known, each parcel of water within the system is tagged using its current age τ . The age-ranked storage ST = ST (T,t) is

defined as the mass of water in the system with age τ < T . The backward form of the master equation (ME) for TTD in a

control volume can be expressed as follows (Botter et al., 2011; Van Der Velde et al., 2012; Harman, 2015):

∂ST

∂t
= J(t)−

n∑
j=1

Qj(t)
←−
P Qj

(T,t)− ∂ST

∂T
(3)15
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with boundary condition ST (0, t) = 0, where T is the residence time of the oldest water parcel in storage ST ; t is the chrono-

logical time;
←−
P Qj

(T,t) is the cdf of the backward travel time distribution of output flux Qj ; J(t) is the input flux at time t;

and Qj(t) is the output flux at time t. Specifically in this study, J is the groundwater recharge, and Q is composed of two

components: the stream baseflow and the abstraction at production wells.

The StorAge Selection (SAS) function describes the fraction of water parcels leaving the control volume at time t, which is5

selected from the age-ranked storage ST . Following the above definition, the SAS function can be linked with the backward

travel time distribution
←−
P Q(T,t) (Harman, 2015):

ΩQ(ST , t) =
←−
P Q(T,t) (4)

for ST = ST (T,t). ΩQ is the cumulative form of the StorAge Selection (SAS) function.

Three instances of SAS functions using gamma distribution are shown in Figure 9a. In case the age distribution of each10

outflow is uniformly selected from all water storages with various ages, the outflux TTDs turn into a random sample of the

storage residence time distribution (RTD). The random sampling (RS) is equivalent to the uniform SAS function (Figure 9a).

Many past studies have also considered the random sampling as a proper description of the sampling behavior for heterogeneous

catchments (Cartwright and Morgenstern, 2015; Benettin et al., 2015; Heße et al., 2017). Eq. (4) in this case has the analytical

solution (Harman, 2015; Danesh-Yazdi et al., 2018):15

pS(T,t) =←−p Q(T,t) =
J(t−T )

S(t)
exp
[
−

t∫
t−T

Q(τ)

S(τ)
dτ
]

(5)

where pS(T,t) is the pdf of the residence time distribution and S(t) is the storage at time t. Specifically, in the case of a

steady-state hydrodynamic system, Eq. (5) is further simplified into an exponential form:

←−p Q(T ) =
J

S
exp
(
− J

S
T
)

(6)

Eq. (6) is the analytical solution of backward TTD under the RS assumption.20

In the idealized saturated groundwater aquifer, Eq. 6 is equivalent to the analytical solution derived by Haitjema (1995).

Based on Dupuit–Forcheimer’s assumption, Haitjema (1995) derived a formula about the frequency distribution of residence

time:

ps(T ) =
1

T
exp
(
− T

T

)
(7)

T =
nH

J
(8)25

provided that nH/J is constant over the entire domain, the recharge is spatially uniform, and the aquifer is locally homoge-

neous, where n is the porosity, H is the saturated aquifer thickness, and T is the weighted mean travel time in the aquifer.

3.4 Linking the SAS functions to the physically based numerical model

Danesh-Yazdi et al. (2018) developed an approach to link the analytical SAS functions to the fully distributed numerical model.

Although differing in numerical model and particle tracking scheme, we apply the same approach to link the SAS functions30
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and the numerical model in this study. Eq. (3) under the steady-state condition can be further simplified as:

∂ST

∂T
=Q(1−ΩQ(ST )). (9)

By combining Eq. (4) and Eq. (9), the age-ranked storage ST can be calculated directly under the steady-state assumption:

ST (T ) =Q
(
T −

T∫
0

←−
P Q(τ)dτ

)
. (10)

Combining Eq. 10 with Eq. 4, the SAS function can be directly computed from the simulated backward TTD using numerical5

model.

3.5 Predictive uncertainty of TTDs

The theoretical framework of predictive uncertainty in this paper is based on Doherty (2015). As indicated in Bayes’ theorem,

the parameters of a model retain uncertainty, given that they have been adjusted to best-fit values achieved during calibration.

Nevertheless, the uncertainty of parameters is subject to constraints. One of the constraints resides in the fixed adjustable range10

of parameters, in which expert knowledge must be respected. Another constraint is exerted by the parameterization process.

While the computationally expensive Bayesian approach offers a complete theoretical framework for predictive uncertainty

evaluation, practical modeling efforts are often based on model calibration and a subsequent analysis of error or uncertainty

in post-calibration predictions (Doherty, 2015). Ideally, the best-fit parameters achieved through calibration can reduce the

predictive error to a minimum, with the minimum predictive error being the inherent uncertainty. However, the best-fit param-15

eter is always biased from the true parameter because the essential imperfection of the model may facilitate or hamper the

achievement of the minimum. Therefore, the motivation of uncertainty analysis in this study is to quantify and minimize the

predictive uncertainty of travel time distributions, given that the parameters are plausible and that the model can reproduce well

the groundwater heads.

4 Results20

For the sake of clarity, we number the recharge realizations from R1 (with the lowest recharge rate) to R8 (with the highest

recharge rate). For each recharge realization, 50 Ks fields are numbered from K1 to K50. Accordingly, R1K1 represents the

Ks field K1 in the recharge realization R1.

4.1 Uncertainty of TTD predictions

Flow paths of particle tracers in a random parameter realization (R5K1) are displayed in Figure 6, serving as a visual reference25

for the regional groundwater flow pattern and the residence time distributions. In this realization, the deep low-permeability

geological layers (e.g., mm2 and mu2) act as low-permeability aquitards. Therefore, the majority of streamlines do not enter

these geological layers (Figure 6).
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Figure 6. 3-D view of flow pathlines of some particles in realization R5K1. Note that only a limited number of particle pathlines are displayed

here.

Figure 7 displays both the simulated TTDs using 50 Ks fields for 8 recharge realizations (orange solid lines) and the

reference TTDs, represented by fitted blue dash-dot curves using the exponential model (Eq. 6). The ensemble average (µ)

and the coefficient of variation (cv) of MTTs for each recharge realization are also calculated and shown in Figure 7. Note

that if the number of parameter realizations is sufficiently large, the ensemble average of MTTs (µ) will converge to the

simulation result using the best-fit parameters achieved through model calibration (Doherty, 2015). Noticeable variability of5

TTDs can be observed with respect to different recharge realizations. Generally, the µ values show a decreasing trend from

166.5 yrs in recharge realization R1 to 110.9 yrs in recharge realization R8, with only two exceptions (R3 and R6), which

is not surprising based on the inversely linear dependency between recharge J and µ, indicated by Eq. 8. In each recharge

realization, the different realizations of Ks fields manipulate the mean travel time. cv varies from 7.81% (for R5) to 15.56%

(for R3), indicating a modest degree of uncertainty propagated from Ks estimation to TTD prediction.10

The exponential model under the RS assumption is fitted to the ensemble averaged TTD of numerical solutions (see black

lines in Figure 7) using Eq. 6. As shown in Figure 7, the shape of numerically simulated TTDs significantly deviate from the

exponential distribution under the RS assumption, indicating a nonuniform sampling behavior of different water ages. The

TTDs of numerical simulations are more right-skewed than the analytical TTDs under the RS assumption. This phenomenon

reveals that the catchment TTD cannot be replicated by the single random sampling store.15

Based on Eq. 8, we can approximate the “effective volume” of water involved in the transport process in the aquifer. The

effective volume of groundwater storage related to the transport process is calculated and shown in Table 2. The effective

volumes of storage (Seff) estimated by the numerical solutions range from 9.8 m to 12.0 m, whereas the Seff estimated by

the analytical solution range from 6.8 m to 7.5 m. The groundwater storage that contributes to the streamflow is significantly
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Table 2. Effective groundwater storages related to the transport process for each recharge realization.

Effective volume of storage [m]

R1 R2 R3 R4 R5 R6 R7 R8 mean

Seff (numerical) 10.7 10.6 12.0 10.5 9.8 10.2 10.2 10.6 10.6

Seff (analytical) 6.9 6.9 7.5 7.1 6.8 6.9 6.9 7.2 7.0

smaller than the total groundwater storage (48.3 m). This difference is because most of the released particles only exist in

the upper permeable layers rather than spread evenly over the whole aquifer/aquitard system. We are aware that this is only a

first-order approximation because the analytical solution is only rigorously valid for the idealized homogeneous aquifer system

(Haitjema, 1995).

Moreover, we assess the propagation to the MTT predictions from input and parameter uncertainty yielded by the 8 recharge5

realizations and the Monte Carlo realizations of hydraulic conductivities. Figure 8a depicts the distribution of MTTs of the

ensemble simulations. The MTTs of the 400 realizations range from 87 to 212 yrs. At the same time, the ensemble average of

MTTs over all realizations of recharges and Ks fields is 135.1 yrs, and the coefficient of variation is 18.93%. Figure 8b depicts

the relationship between the ensemble average of MTTs and the spatially averaged recharge rates. We observe a roughly

inversely proportional relationship between the ensemble average of MTTs and the spatially averaged recharge rates (Figure10

8b). The standard deviations (σ) of simulated MTTs range from 12.9 yrs (for R6) to 24.7 yrs (for R3).

4.2 Uncertainty of young/old water preference

Figure 9a provides an intuitive illustration of the relationship between the cumulative rank SAS functions and the systematic

preference for discharging water with different ages. Figure 9b shows the cumulative rank SAS functions of all ensemble

simulations (obtained from 400 realizations of Ks fields in 8 recharge scenarios). The figure is categorized into 8 groups by15

different colors and line styles, each representing a recharge realization. Generally, the system has a weak preference to select

younger water as discharge, despite different recharge realizations and Ks realizations. Nevertheless, a moderate variation in

SAS functions for the ensemble simulations can be observed. The variation of interest is introduced by the spatial distribution

and velocity of flow pathlines that are controlled by different Ks fields. For example, a more permeable shallow aquifer layer

will activate more flow pathways in this layer and thus will introduce a stronger preference for young water. Particularly, the20

significant variation in hydraulic conductivities in the deepest geological layer (e.g., Lower Muschelkalk) has a pronounced

impact on the discharge of old water. With a thickness of up to 100 m, the hydraulic conductivity of this layer controls how

many water parcels can enter into this layer and how deep the flow paths can develop. This effect can be evidenced by a large

difference in the SAS functions related to old ages and a relatively smaller difference in those related to young ages in Figure

9b.25
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Figure 7. Travel time distributions of ensemble simulations and analytical solutions categorized by recharge realization. The orange lines

show the simulated TTDs of all realizations of Ks fields for each recharge realization. The black lines denote the ensemble averaged TTDs

of each recharge realization. The blue dash-dot line is the fitted analytical TTD under the RS assumption. The analytical MTT, the mean (µ),

and the coefficient of variance (cv) of the simulated MTTs are also shown in this figure.

4.3 Sensitivity to the spatial pattern of recharge

Figure 10a depicts the sensitivity of simulated TTDs and MTTs to the spatial distribution of recharge, while Figure 10b shows

the sensitivity of the cumulative SAS function to the spatial pattern of recharge. The reference simulation is set up using

the spatially uniform recharge that is equal to the spatial average of the spatially distributed recharge, while all of the other

parameters in these two simulations are held identical. The different spatial distributions of recharge have a clear effect on5

the shape of TTDs. It appears that the most evident difference between the TTDs of the two recharge scenarios occurs at the
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Figure 8. Uncertainty quantification: Monte Carlo simulations of MTT predictions categorized by recharge realization. Panel a) shows a

histogram of MTT predictions. Panel b) shows the relationship between the ensemble averaged MTT (µ) and the spatially averaged recharge.

The error bars represent the standard deviation of MTTs (σ) for each recharge realization.
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Figure 9. Cumulative rank SAS functions as a function of normalized age-ranked storage. (a) Schematic of cumulative rank SAS functions

parameterized by gamma distribution with the shape parameter a = 0.5, 1, and 2. (b) Cumulative rank SAS functions of the ensemble

simulations (light grey lines) and the ensemble average for each recharge realization.

early period. Additionally, the simulated MTT using the uniform recharge appears to be smaller than that using the spatially

distributed recharge. Figure 10b indicates that the simulation using uniform recharge has a consistently stronger preference
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Figure 10. Sensitivity of a) TTDs and MTTs and b) SAS functions to the spatial pattern of recharge.

for sampling young water than the simulation using spatially distributed recharge. Nevertheless, both scenarios show a general

preference for young water.

The difference in TTDs and SAS functions is not induced by the variability in internal hydraulic properties, since the

two simulations share the same Ks field. Rather, it is mainly induced by the different flow paths of particle tracers in the two

recharge scenarios. The spatially distributed recharge simulated by mHM reveals that the upstream mountainous area has higher5

recharge rates than those in the lowland plain. By contrast, the uniform recharge scenario neglects this spatial nonuniformity.

This difference results in the following: (a) under a uniform recharge scenario, more particle tracers enter the system from

locations near the streams at lowland plains (Figure 3b), indicating that more particle tracers are transported in the local flow

system rather than in the regional flow system (Toth, 1963); and (b) higher recharge rates at lowland plains accelerate the

particles’ movement in this area and shorten their travel times. As such, local particle flow paths within the shallow aquifer10

layer at lowland plains are activated, leading to a stronger preference for sampling local flow paths in shallow aquifer layers

and therefore a stronger preference for young ages. Our findings are in line with the observations by Kaandorp et al. (2018),

wherein the authors found a relatively higher preference for the selection of older water in the upstream area than that in the

downstream area of the Springendalse Beek catchment.

5 Discussion15

5.1 Uncertainty of external forcing, internal property, and TTD predictions

In the idealized aquifers where groundwater flow is Dupuit-Forchheimer type, the recharge is uniform, and the aquifer is locally

homogeneous. TTD is controlled by recharge, saturated aquifer thickness, and porosity, and it is independent of hydraulic
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conductivity (Haitjema, 1995). In a real-world catchment with complex geometry and topography, stratigraphic aquifers, and

nonuniform recharge, our numerical exploration demonstrates that the groundwater TTD is dependent on both recharge and

the hydrostratigraphic Ks field.

The mechanisms behind the effects of the recharge rate and the Ks field are different. Given that the spatial pattern of

recharge remains the same, a higher recharge rate intensifies the fluxes for the complete range of flow pathways. This process5

forces water downward in the recharge zones and upward to the discharge area. As such, flow rates through all flow pathways

are increased equally, and the spatial distribution of flow pathways is not changed. The corresponding SAS function is also

not changed (Botter et al., 2010; Cartwright and Morgenstern, 2015; Kaandorp et al., 2018). In contrast, a different Ks field

activates flow pathways in more permeable layers, deactivates flow pathways in less permeable layers, changes the spatial

distribution of flow pathways, and therefore changes the shape of the SAS function (Harman et al., 2016; Kim et al., 2016).10

We also underline the value of observational data in reducing predictive uncertainty in simulated TTDs. In this study, the

majority of model parameters can be adequately conditioned by spatially distributed groundwater head observations (Figure

4). Provided that most of the hydraulic conductivities are constrained to the model-to-measurement misfit and reality, the TTD

predictions can also be effectively bounded. This is evidenced by Figure 7, from which moderate values of cv ranging from

7.81% to 15.56% in different recharge realizations can be observed. The ensemble averaged MTTs for different recharge real-15

izations also have a high cv (15.70%), implying that the TTD prediction appears highly sensitive to recharge. Our findings are

in line with Danesh-Yazdi et al. (2018), in which the interplay between recharge and subsurface heterogeneity was investigated

and a strong dependency of TTDs on the recharge was observed.

5.2 Analytical model and SAS functions

The analytical solution of TTD, assuming a random sampling of water, cannot properly replicate the TTD of numerical simu-20

lation in the study domain. In the stratigraphic aquifer with complex topography and diffuse recharge, the analytical solution

using Eq. 6 underestimates the MTT. Note that this conclusion holds when the simulated TTD has a relatively larger long-tail

behavior than the exponential distribution. Such observations have also been reported for other real-world aquifers (Basu et al.,

2012; Eberts et al., 2012; Kaandorp et al., 2018). This finding can be seen as an extension of Basu et al. (2012), in which

the authors found a moderate discrepancy between the analytical solution using Eq. 6 and the numerical solution in a small25

catchment.

It is obvious that the analytical solution under the RS assumption cannot explicitly include the impact of the distributed

hydraulic properties of stratigraphic aquifers and the spatially nonuniform recharge. The above limitations of analytical models

may introduce a significant predictive error for the TTD predictions, as shown in Figure 7. Moreover, the effective volume of

storage related to the transport process Seff is calculated utilizing the numerical solutions of distributed models. As a first-order30

approximation of effective storage volume, it suggests that only a small fraction of total groundwater volume is involved in the

active hydrologic cycle.

The SAS function provides a good interpretability for simulation results using the fully distributed model in terms of char-

acterizing the preference for releasing water of different ages. We find that the SAS functions are weakly dependent on the Ks
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fields in the stratigraphic aquifer system, but the overall preference for young water does not change. This weak dependency

can be explained by the fact that different realizations of Ks fields modify the spatial distribution of particle flow paths. The

overall tendency for young groundwater in the saturated aquifer has been reported by many past studies (Danesh-Yazdi et al.,

2018; Kaandorp et al., 2018; Yang et al., 2018). Our study links the explicit simulations of travel times and the analytical SAS

functions and offers original insights into the uncertainty propagated from recharge and the Ks fields to the SAS functions.5

5.3 Dependency of TTDs and SAS functions on the spatial pattern of forcings

The sensitivity of the TTDs and SAS functions to the spatial pattern of recharge forcings can be explained mainly by the

different flow paths of particle tracers, resulting primarily from the spatially heterogeneous fields of recharge across the study

catchment. For the regional groundwater system, the spatial variation of recharge determines the distribution of starting points

of the flow pathlines of tracer particles. For example, more particles will be injected from recharge zones that are typically10

located in high-elevation regions, resulting in a higher weight of flowlines starting from high-elevation regions. The pronounced

spatial variability of recharge also controls the systematic (water age) preference for particles existing from the system (to river

discharge) that originated from different regions and therefore exerts a strong control on the shape of the SAS function.

In the study catchment, an oversimplified spatially uniform recharge results in a smaller MTT and a stronger preference

for discharging young water compared to those taking the spatial variability of recharge. Such observations are conditioned to15

site-specific features of the study catchment, which is noticed only when the following apply: (a) a site is located in a headwater

catchment under a humid climate condition; (b) the recharge rate in areas close to the drainage network is generally lower than

that in areas far away from the drainage network; and (c) the system is under (near) natural conditions, meaning that artificial

drainage and pumping do not dominate the groundwater budget.

The assumption of spatially uniform input forcing has been widely applied in regional-scale subsurface hydrologic models20

(Zghibi et al., 2015; Yang et al., 2018). Our study indicates that a reasonable characterization of spatial pattern of recharge is

crucial for reliable TTD prediction. Unfortunately, it is quite challenging to confidently quantify the groundwater recharge at

the regional scale under today’s technique due to the lack of reliable measurements (Healy and Scanlon, 2010; Cheng et al.,

2017; Zink et al., 2017). Appropriate techniques should be chosen to estimate groundwater recharge according to the study

goals and the spatial and temporal scales.25

5.4 Implications for the applied groundwater modeling

Uncertainty limits the applicability of groundwater models. Most of the applied groundwater models are deterministic models

that use direct values of inputs and parameters instead of probabilistic distributions of them. Specifically, both the model

inputs and the inversion process are deterministic, leading to a deterministic best-fit parameter set achieved during model

calibration. Our study reveals limitations of the above modeling procedure and suggests that the probabilistic distribution30

of inputs and parameters should be considered for the applied modeling. The main limitation is that the single exclusive

assignment of recharge is inadequate for the simulation of transport processes because the error can be propagated from inputs

to the conditioned parameters (e.g., hydraulic conductivities) through the calibration process (Figure 4). This accumulated
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error will further lead to a seriously biased prediction of travel times. Additionally, the modeling workflow used in this study

is computationally more efficient than the Bayesian approach and is suitable for complex real-world applications.

The degree of predictive uncertainty is highly dependent on the parameterization scheme. Some highly parameterized models

are potentially ill-posed due to the paucity of data and therefore cannot be constrained by the available calibration dataset. In this

case, the predictive uncertainty of TTDs is potentially high (Weissmann et al., 2002; Danesh-Yazdi et al., 2018). Stratigraphic5

aquifer models with zoned parameters are still widely used for applied groundwater modeling because the field representation

of local-scale heterogeneity is difficult. Given that the aquifer model is stratigraphic and the number of parameters is less than

the number of observations, most of the adjustable parameters can be effectively bounded. In this case, the uncertainty of input

data (e.g., recharge) appears to have a primary influence on the TTD predictions. Note that here, we do not account for the

error caused by model structural deficiency.10

6 Conclusions

In this study, we explore the relationship between the uncertainty of recharge, calibration-constrained hydraulic conductivity

realizations, and predictions of groundwater TTDs. Using both a physically based numerical model and a lumped analytical

model, a comprehensive case study is performed in an agricultural catchment (the Nägelstedt catchment). The RWPT method

is used to track the water samples through the modeling domain and compute their travel times. Moreover, the analytical model15

is fitted against the numerical solutions to provide a reference for the effective storage and sampling behavior of the system.

Based on this study, the following conclusions are made:

1. In the Nägelstedt catchment model, the simulated MTTs are strongly dependent on the recharge rate and weakly depen-

dent on the postcalibrated Ks field. We highlight the importance of recharge quantification and the worth of reliable data

in reducing the predictive uncertainty of TTDs.20

2. The framework of the SAS function provides a good interpretability of simulated TTDs in terms of characterizing the

systematic preference for sampling young/old water as outflow. On the basis of this framework, we find that the ensem-

ble simulations have a consistent preference for young water, despite the different recharge and hydraulic conductivity

realizations. Our study provides a novel modeling framework to explore the effect of input uncertainty and parame-

ter equifinality on TTDs and SAS functions through a combination of calibration-constrained Monte Carlo parameter25

generation, a numerical model, and a SAS function framework.

3. Both the shape and the breadth of catchment groundwater TTDs and SAS functions are sensitive to the spatial distribution

of recharge. Therefore, a reasonable characterization of the spatial pattern of recharge is crucial for the reliable TTD

prediction in the catchment-scale groundwater models.
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Appendix A: Random walk particle tracking

Random walk particle tracking solves a diffusion equation at local Lagrangian coordinates rather than the classical advection-

diffusion equation, which can be expressed as:

x(ti) = x(ti−1) +v(x(ti−1))∆t+Z
√

2D(x(ti−1)∆t (A1)

where x denotes the coordinates of the particle location, ∆t denotes the time step size, and Z denotes a Gaussian random5

number, with the mean being zero and the variance being unity.

The velocity v in Eq. (A1) is replaced by v∗
i to maintain consistency with the classical advection-dispersion equation

(Kinzelbach, 1986). The expressions of v∗
i and the hydrodynamic dispersion tensor Dij are:

v∗
i = vi +

3∑
i=1

∂Dij

∂xij
(A2)

Dij = αT |v|δij + (αL−αT )
vivj

|v| +Dd
ij (A3)10

where δij denotes the Kronecker symbol, αL denotes the longitudinal dispersion length, αT denotes the transverse dispersion

length, Dd
ij denotes the tensor of the molecular diffusion coefficient, and vi denotes the mean pore velocity component in the

ith direction.

The stochastic governing equation of 3-D RWPT can therefore be expressed as:

xt+∆t = xt +
(
Vx(xt,yt,zt, t) +

∂Dxx

∂x
+
∂Dxy

∂y
+
∂Dxz

∂z

)
∆t+

√
2Dxx∆tZ1 +

√
2Dxy∆tZ2 +

√
2Dxz∆tZ3 (A4)15

yt+∆t = yt +
(
Vy(xt,yt,zt, t) +

∂Dyx

∂x
+
∂Dyy

∂y
+
∂Dyz

∂z

)
∆t+

√
2Dyx∆tZ1 +

√
2Dyy∆tZ2 +

√
2Dyz∆tZ3 (A5)

zt+∆t = zt +
(
Vz(xt,yt,zt, t) +

∂Dzx

∂x
+
∂Dzy

∂y
+
∂Dzz

∂z

)
∆t+

√
2Dzx∆tZ1 +

√
2Dzy∆tZ2 +

√
2Dzz∆tZ3 (A6)

where x, y, z are the spatial coordinates of a particle, ∆t is the time step, and Zi is a random number with a mean of zero and

a unit variance.

Appendix B: Composite parameter sensitivity20

The PEST algorithm calculates the sensitivity with respect to each parameter of all observations (with the latter weighted as

per user-assigned weights), namely the “composite sensitivity” (Doherty, 2015). The composite sensitivity of parameter i is

defined as cspi =
[JtQJ]

1/2
ii

n , where J denotes the Jacobian matrix that includes the sensitivities of all predictions to all model

parameters, Q is the weight matrix, and n is the number of observations with nonzero weights. In this study, all weights assigned

to observations are equally set to 1. Table B1 displays the composite parameter sensitivities in each recharge realization. The25

mean composite parameter sensitivities of calibrations in all recharge realizations are also included in this table. The hydraulic

conductivity of the Middle Muschelkalk (mm) is highly sensitive to groundwater head observations, whereas that of the Lower
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Table B1. Composite parameter sensitivities to the groundwater head observations.

Recharge realizations
Parameter sensitivities [-]

soil alluvium km ku mo mm mu

R1 6.01 1.89 0.58 1.50 9.47 20.45 0.23

R2 6.15 1.93 0.49 1.52 9.62 20.61 0.35

R3 4.05 1.78 1.38 1.91 7.20 25.84 0.82

R4 5.97 1.91 0.39 1.56 9.41 20.99 0.19

R5 7.31 1.86 0.31 1.34 10.09 19.40 0.015

R6 5.87 1.90 0.39 1.67 9.50 21.03 0.23

R7 7.77 1.93 0.57 1.93 10.53 19.07 0.41

R8 5.03 1.87 0.48 1.81 9.07 22.64 0.11

mean 6.77 1.88 0.57 1.66 9.36 21.25 0.29

Muschelkalk (mu) is insensitive to groundwater head observations. The sensitivity of mu, however, varies widely between

different recharge realizations, from the highest one in R3 (0.82) to the lowest one in R5 (0.015).
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