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Abstract 18 

In this study, 25 years mean monthly out flow discharge data of Farakka barrage was used (i.e., 19 

from 1949 to 1968). Farakka barrage is located between on Ganga River. Spatial and temporal 20 

variation in flow rate for any particular area is very common due to various meteorological and 21 

other factors existing in nature. But large variations in these factors cause extreme events (e. g., 22 

floods and droughts).Monthly outflow discharge for a particular critical month are predicted 23 

using statistical models (ARMA Model and Copula Model).  Different Copulas (i.e., Normal, t, 24 

Frank, Clayton, Gumbel-Hoggard, Ali-Mikhail-Haq) are used for this purpose and the copula 25 

model is selected based on distribution functions (Normal distribution, Lognormal distribution, 26 

Extreme value type-1 distribution, Generalized Extreme value type, Gamma distribution, 27 

Weibull distribution, Exponential distribution). The distribution is selected based on the Mean 28 

square error (MSE), Akaike Information Criterion (AIC), and Bayesian Information Criterion 29 

(BIC). The model parameters were computed using the Maximum Likelihood (ML) estimation 30 

method.  31 
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1. Introduction 34 

An accurate flood-frequency analysis is critical for the design of many civil infrastructures such 35 

as drainage system and flood proof walls. Copula word is taken from Latin language and the 36 

meaning of copula is link and the concept of copula was introduced in mathematical and 37 

statistical manner  by Sklar (1959) in a theorem that describes a copula as a function. Afterwards, 38 

many researchers such as Genest and MacKay (1986), Genest and Rivest (1993) and Nelsen 39 

(1999), Favre et al. (2004), Genest and Favre (2007) and Salvadori and De Michele (2007) used 40 

in hydrology applications. Crucial steps for copulas modeling are driving the bivariate 41 

distribution of  peak flow and volume, volume and duration, peak flow and duration (Zhang and 42 

Singh, 2006). Archimedean copulas (Clayton, Frank, Gumbel-Hoggard, Ali-Mikhail-Haq, 43 

Indpendance and Joe) can be used for bivariate modeling peak flow and volume, volume and 44 

duration, peak flow and duration. 45 

Dependence structure of data set is captured by copulas, thus they are used for describing the 46 

dependence of o extreme output values and also useful for depandence non parametric 47 

measurement. Statistical dependence among three random variables two copulas are used for 48 

modeling. The Archimedean copulas are prepared by association measurement of Kendall’s tau 49 

(Osorio et al. 2009). The probability density function for the two-dimensional random variable 50 

representing volume and time is given in graphic form. The graphs both represents Clayton 51 

copula and Gumbel-Hougaard functions. The Gumbel-Hougaard copula was best suited for this 52 

study because it shows lower value in selection criterion function. Gumbel-Hougaard copula 53 

shows better matching of empirical and theoretical distribution function. The results obtained in 54 

the study, risk values at extreme analyzed values of controlled discharge and flood control 55 

capacity are not monotonic. It represents that simulations were completed for sets of only 10000 56 

cycle elements and only 10000 cycles (Twaróg, 2016). Peak flow and hydrograph volume both 57 
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can be jointly studied by bivariate approach (e.g., Goel et al. 1998; Yue et al. 1999; Favre et al. 58 

2004; Shiau et al. 2007). The selection of the, different criterion should be consider among the 59 

candidate copula (Chowdhary et al. 2011; Requena et al. 2013). The first criterion is the 60 

goodness-of-fit test which relates the ability of copula to characterize the data (Genest et al. 61 

2009), The second criterion is estimation of kendall's tau return period estimation by copula. It 62 

relates the adequacy of copula, for a large copula value t ϵ[0, 1], which is based on the Kendall’s 63 

function KC(t) = P[Cϴ(u1, u2) ≤ t] (Genest and Rivest,1993). The third criterion is the estimation 64 

of Akaike Information Criterion (AIC) (e.g., Zhang and Singh, 2006). A copula-based model and 65 

a distributed hydro-meteorological model and a copula-based model can be studied by 66 

combining extension of observed flood series (Requena, et al. 2015). Significant number of 67 

researchers found in their research that Gumbel-Hougaard copula as the most suitable choice to 68 

model the dependence structure relating to the peak flow discharge and the flood volume (De 69 

Michele et al., 2005; Zhang and Singh, 2007, Karmakar and Simonovic, 2009 and Li et al., 70 

2013). A copula-based approach was used to derive a bivariate distribution function of two 71 

constituent flood variables, with regard to a real-world case study. It was found to provide an 72 

effective and straightforward strategy for inferring probability functions from multivariate 73 

sample data. Powerful tests developed inside copula framework allowed to investigate the 74 

empirical dependence structure in an accurate manner, especially with respect to the evaluation 75 

of tail dependencies (Balistrocchi, 2017). The dependence of copula model between intensity and 76 

rain fall duration, both properties of marginal distribution and dependence between intensity  and 77 

storm duration were preserved. The Joint cumulative distribution functions represents 78 

dependence between independent variables of their marginal distribution of copula (Joe, 1997 79 

and Nelsen, 2006). Gaussian copula was used for generation of 1020 synthetic data sets. Among 80 
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the data sets, 21 data sets lies beyond the range of acceptance so these data sets were omitted. Of 81 

course it is not possible to cover all input-output cases in trained models the extrapolation limit 82 

are required (Hooshyaripor  et al. 2014). Best copula model can be selected by coarse grid model 83 

selection with supposedly known marginal parameters in which 15 families of copulas were 84 

divided into 4 categories and selection with uncertain marginal parameters (Parent et al. 2013). 85 

Copula is a tool for modeling multivariate distribution in which input is the marginal 86 

distribution. Multivariate distribution function couples to the corresponding marginal 87 

distribution. (Poulin et al., 2007; Salvadori et al., 2007). The monsoon rainfall of Assam, 88 

Meghalaya and Nagaland, Manipur, Mizoram, Tripura, Gumbel–Hoggard copula model was well 89 

simulates for rain fall estimation (Ghosh, 2010). Marginal distributions and correlations values 90 

are used to simulate the Gaussian model. They were taken four case studies to demonstrate its 91 

usefulness in the reference of determination of field significance analysis, analysis of regional 92 

risk , frequency analysis and design of hydrograph derivation by QdF models. (Renard et al. 93 

2007). Copulas are very good tool to model multivariate data and they are very useful in 94 

financial economics as well and in the analysis of multivariate survival data. Dependent variables 95 

are very useful Monte Carlo simulations  for copula model. It estimates the structural 96 

dependence of the data set and describe accurately for dependence of extreme out come. 97 

(Muhaisen, et al. 2006). Multivariate probability distributions with arbitrary marginal can be 98 

constructed in a flexible manner with the introduction of copulas (Wang et al.  2001). Major 99 

issue of a copula is the compatibility with dimensions though they were successfully tested and 100 

applied on several hydrological problems. (Kao and Govindaraju, 2008). Application of copula 101 

in the engineering problem need moderate and minimal computational effort and accuracy of the 102 

output is also satisfactory (Kao et al., 2012). For two copula approach the spatial dependence of 103 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-380
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 December 2018
c© Author(s) 2018. CC BY 4.0 License.



6 
 

rainfall dependence in sub-basins decreases up to 18 %. To predict decrease runoff error spatial 104 

rainfall dependence could be recommended for copula modeling (Razmkhah, 2016). 105 

The aim of this paper is to generate the out flow discharge data at Farakka barrage using 106 

Copulas. In this study, Normal Copula, T- Copula, Frank Copula, Clayton Copula, Gumbel-107 

Hoggard (GH) copula, Ali-Mikhail-Haq(AMH) copula are used and best copula is selected for 108 

generation of discharge data based on copula parameters, Mean square error(MSE), Akaike 109 

Information criterion(AIC), Bayesian Information criterion (BIC). 110 

ARIMA model was developed to forecast monthly inflow discharge in a reservoir system 111 

(Mohan et al., 1955 ). Criteria for model selection are residual variance(Katz et al. 1981), Akaike 112 

information criteria ( Akaike 1974) and Posterior probability criteria (Kashyap 1977). 113 

2. Copulas used for study 114 

Copulas are alternative methods for dealing with multivariate extremes, and these are very 115 

popular in recent times. Consider  a moment pair of random variables U and V, with their 116 

distribution functions F(u) = P [U ≤ u] and G(v) = P [V ≤ v], respectively, and a joint distribution 117 

function H (u, v) = P [U ≤ u, V ≤ v].  Each pairs having of real numbers (u, v), associated three 118 

numbers: F(u), G(v), and H (u, v) and each numbers are lie in the interval [0,1].    In other words, 119 

each pair of real numbers i.e. (u, v)  leads to a point {F(u), G(v)} in the unit square [0, 1]×[0, 1], 120 

and this ordered pair in turn corresponds to a number H(u, v) in [0,1]. We will show that this 121 

correspondence, those values are assign in the joint distribution function to each values of 122 

ordered pair in the individual distribution functions. Such functions are named as copulas.  123 

A copula is used as a tool in modeling multivariate distribution in which marginal distributions 124 

are input data and neglect restrictions mentioned in pervious text. Copula means couples or joins 125 
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multivariate distribution functions to their corresponding distribution functions of their 126 

corresponding marginal distribution functions (Poulin et al., 2007; Salvadori et al., 2007).  127 

Definition which is given below is given by Sklar (1959), if p-dimensional distribution function 128 

then F can be written as: 129 

F (u1, u2, u3…………., up) = C(F(u1), F(u2), F(u3))                        (1)                                                  130 

where F1, ……., Fp= Marginal distribution functions. If F1, …….    Fp are continuous then the 131 

copula C is unique and has the representation (Poulin et al., 2007): 132 

C(x1, x2,…….  .  xp) = F(F-1(x1),F
-1(x2),………….  F-1(xp)),            (2)                                                          133 

                                  0 ≤ x1, ………,xp ≤ 1 134 

Copula is expressed for two random variables, U and V, with their CDFs, respectively, as Fu(u) 135 

and Fv(v), let X = Fu(u) and Y =Fv(v), Where, X and Y are random variables which is uniformly 136 

distributed with their values x and y.  The list copulas and its equations with generating function 137 

is shown in Table 1. 138 

Table 1. : List of Copulas and its equation, generating function and relation with τ. 139 

S. 
No.   

Copula Equation Generating 
function 

Relation with 
τ 

1 Normal C(x1,x2,……….  xp) = P[U1 ≤ F-1
1(x1),U2 

≤ F-1
2(x2),……, Up ≤ F-1

p(xp)] 
  

2 T C(x1, .    .    .    , xd) = F(F−1
1 (x1), .    .    .    

, F−1
d (xd)) 

  

3 Frank Cϴ(x,y) = 
�

�
ln[1+

[���(��)��][���(��)��]

���(�)��
 Ф(t) = 

ln[
���(��)��

���(�)��
] 

τ = 1-
�

�
[D1(-ϴ) 

-1] 

4 Clayton Cϴ(x,y) = [x-ϴ + y-ϴ -1]-1/ϴ Ф(t) = t-ϴ - 1 τ = 
�

���
 

5 Gumbel-
Hoggard 

Cϴ(x, y) = exp{-[(-ln x)ϴ +(-ln y )ϴ]1/ϴ} Ф(t) = (-ln t)ϴ τ = 1- ϴ-1 

6 Ali-
Mikhail-
Haq 

Cϴ(x,y) = 
��

���(���)(���)
 Ф(t) =ln[ 

���(���)

�
] 

τ = (
����

�
) -2/3 

(1-1/ϴ)2 ln(1-
ϴ) 

 140 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-380
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 December 2018
c© Author(s) 2018. CC BY 4.0 License.



8 
 

Where,  141 

ϴ= Parameter which controlling the dependence between x and y. 142 

 Ф= Generator of the copulas. 143 

Debye function is expressed as follows. 144 

Dn (β,x) = 
�

�� ∫
��

(����)�
dt

�

�
           (3) 145 

D1 (1,ϴ)=  
�

ϴ
∫

�

����

ϴ

�
dt         (4) 146 

 147 

3. Dataset used for Copulas 148 

Mean monthly discharge at Farakka barrage data set about twenty-five years from 1949 to 1973 149 

data has taken from Water Resources Information System of India at Farakka barrage project, 150 

Farakka, West Bengal, India.   151 

The observed data set are divided into two parts. One part contains twenty years’ data (from 152 

1949 to 1968) has been used for parameter estimation i.e. in model calibration, next five years’ 153 

data (from1969 to 1973) has been used for model validation and testing.    Parameter estimation 154 

data is arranged such a way that pre-monsoon (December to May) and post monsoon (June to 155 

November) data is separated and making two series of dataset for copulas.     156 

4. Selection of distribution for Copulas 157 

For modeling of controlled outflow, bivariate Copula has taken in this study.  As Copula accepts 158 

CDF of variables, distribution functions of two variables, should be known. The distribution 159 

functions are chosen on the basis of AIC, BIC values, k-s test and probability plots.  The 160 

distributions that are tested to know the parent distribution of two variables are normal 161 

distribution, lognormal distribution, extreme value type I distribution, generalized extreme value 162 

distribution, gamma distribution, weibull and exponential distributions. We used data set for 163 
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different times i.e., from Dec. -May 1949 to Dec. -May 1968 (Figure 1), from Jun. -Nov. 1949 to 164 

Jun. -Nov. 1968 (Figure 2), Dec. -May 1949 to Dec. -May 1968 (Figure 3), Jun. -Nov. 1949 to 165 

Jun. -Nov. 1968 (Figure 4), Dec. -May 1949 to Dec. -May 1968 (Figure 5), Jun.-Nov.1949 to 166 

Jun. -Nov. 1968 (Figure 6). 167 

The violet colour represents the data set for different times and red colour represents normal 168 

distribution, green colour represents lognormal distribution, etc as shown in Figures 1-6. Figure 1 169 

represents cumulative distribution function of data points along with all distributions in pre 170 

monsoon seasons (Dec.- May 1949 to Dec.-May 1968).  171 

Figure 2 represents cumulative distribution function of  data points along with all distributions in 172 

post monsoon seasons (Jun. - Nov. 1949 to Jun. - Nov 1968). Figure 3 represents Probability 173 

density function of data points along with all distributions in post monsoon seasons (Dec.- May 174 

1949 to Dec.-May 1968). Figure 4 represents Probability density function of  data points along 175 

with all distributions in post monsoon seasons (Jun. -Nov. 1949 to Jun. -Nov. 1968). Select the 176 

standard distribution which is best fit for original data sets. Violet colour of Figure 5 represents 177 

the data points and other colour represents the various distributions of mean monthly discharge 178 

(Dec. -May 1949 to Dec. -May 1968) Select the best fit standard probability distribution. Violet 179 

colour of this Figure 6 represents the data points and other colour represents the various 180 

distributions of mean monthly discharge (Jun.-Nov.1949 to Jun. -Nov. 1968). Selection of the 181 

distribution function can be based the best fit for original data sets. 182 
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Figure 1. CDF of mean monthly discharge(m
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Figure 2. CDF of mean monthly discharge (m
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Figure 3. PDF of mean monthly discharge(m
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Figure 4.  PDF of mean monthly discharge
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Figure 5.  Probability of mean monthly discharge
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Figure 6. Probability of mean monthly discharge(m
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4.1 Mean square Error (MSE) or Mean squared deviation (MSD)  202 

It is measurement of the mean of the squares of the errors or deviations i.e., the difference 203 

between the estimator and what is estimated value (Table 2). MSE represents the risk function 204 

corresponding to the expected value of the squared error loss or quadratic loss. The difference in 205 

the MSE because of randomness.    Lowest value of AIC is good for model.   206 

MSE = Σ
(����� ����)�

�
                             (5)                                                                                             207 

Where, 208 

ecdf = Empirical Cumulative Density Function 209 

Pcdf = Predicted Cumulative Density Function 210 

 211 

4.2 Akaike Information Criterion (AIC) 212 

For a given data set and given set of models . AIC measures relative quality of statistical 213 

methods and it compute the each model's quality, relative to other models quality (Table 2). 214 

Hence, AIC criteria is used for model selection and lowest value of AIC is proffered for model. .   215 

 AIC = n*ln (MSE) + 2K + 
��∗(���)

�����
                        (6)                                                                           216 

Where, 217 

n = Number of data points.   218 

K = Number of parameters. 219 

   220 
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4.3 Bayesian Information Criterion (BIC) 221 

It is a model selection criterion , model is selected among the finite set of model. Model with 222 

lowest value of BIC is preferred (Table 2). It is mainly based on likelihood function and it having 223 

approximate same conditions as Akaike information criterion (AIC).     224 

BIC = n*ln(MSE) + K*ln(n)                                            (7)                                                                   225 

Where, 226 

n = Number of data points.   227 

K = Number of parameters.   228 
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Table 2. Statistic of distributions of data. 

Data Distribution MSE AIC BIC 

June-Nov.   Normal 0.19185140 -194.02150 -188.54911 

Dec. -May Normal 0.18211572 -200.27095 -194.79857 

June-Nov.   Lognormal 0.19240251 -193.67728 -188.20489 

Dec. -May Lognormal 0.19197824 -193.94219 -188.46980 

June-Nov.   Extreme value type 1 0.17340721 -206.15091 -200.67853 

Dec. -May Extreme value type 1 0.14660442 -226.29948 -220.82709 

June-Nov.   Gen.extreme value 0.09875020 -271.61252 -263.45694 

Dec. -May Gen. extreme value 0.09914008 -271.13967 -262.98409 

June-Nov.   Gamma 0.19490464 -192.12678 -186.65439 

Dec.-May Gamma 0.19024585 -195.02997 -189.55758 

June-Nov.   Weibull 0.19556132 -191.72315 -186.25077 

Dec.-May Weibull 0.17272273 -206.62552 -201.15314 

June-Nov.   Exponential 0.16679494 -212.88491 -210.13132 

Dec.-May Exponential 0.11907597 -253.32532 -250.57173 

June-Nov.   Kernel_normal 0.16931844 -211.08299 -208.32939 

June-Nov.   Kernel_box 0.16880085 -211.45037 -208.69678 

June-Nov.   Kernel_triangle 0.16920205 -211.16550 -208.41191 

June-Nov.   Kernel_epanechnikov 0.16901130 -211.30086 -208.54727 

Dec.  -May Kernel_normal 0.18343705 -201.47214 -198.71855 

Dec.  -May Kernel_box 0.18311280 -201.68445 -198.93085 

Dec.  -May Kernel_triangle 0.18327642 -201.57727 -19882367 

Dec.  -May Kernel_epanechnikov 0.18321604 -201.61681 -198.86322 
 

  

 229 

  230 
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4.4 Kolmogorov – Smirnov test 231 

The Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of 232 

continuous, one-dimensional probability distributions that can be used to compare a sample with 233 

a reference probability distribution (one-sample K–S test), or to compare two samples (two-234 

sample K–S test) (Table 3). The two-sample K–S test is one of the most useful and general 235 

nonparametric methods for comparing two samples, as it is sensitive to differences in both 236 

location and shape of the empirical cumulative distribution functions of the two samples. In the 237 

Figure 7 and 8, green colour shows empirical CDF and red colour shows generalized extreme 238 

value of CDF. On the basis of Figure 7, generalized extreme value distribution is representing 239 

best fit for cumulative distribution function (Jun.-Nov.1949 to Jun. -Nov. 1968). Further, on the 240 

basis of Figure 8, generalized extreme value distribution is represents best fit for cumulative 241 

distribution function (Dec. -May 1949 to Dec. -May 1968). 242 

Table 3.  k-s statistics of distributions of data. 243 

K - S Test 

Data Distribution H p k-s cv 

June-Nov.   Normal 0 0.0509 0.1222 0.1225 

Dec.-May Normal 1 0.0336 0.129 0.1225 

June-Nov.   Lognormal 0 0.0691 0.117 01225 

Dec.-May Lognormal 0 0.3695 0.0824 0.1225 

June-Nov.   Extreme value type 1 1 0.0015 0.1712 0.1225 

Dec.-May Extreme value type 1 1 0.000055 0.207 0.1225 

June-Nov.   Gen. extreme value 0 0.092 0.1118 0.1225 

Dec.-May Gen. extreme value 0 0. 669 0.0649 0.1225 

June-Nov.   Gamma 0 0.1526 0.1021 0.1225 

Dec.-May Gamma 0 0.1784 0.0989 0.1225 
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June-Nov.   Weibull 0 0.1162 0.1075 0.1225 

Dec.-May Weibull 0 0.1046 0.1095 0.1225 

June-Nov.   Exponential 0 0. 0748 0.1156 0.1225 

Dec.-May Exponential 1 6.16E-17 0.3939 0.1225 

June-Nov.   Kernel_normal 1 0. 0286 0.1315 0.1225 

June-Nov.   Kernel_box 1 0. 0141 0.1421 0.1225 

June-Nov.   Kernel_triangle 1 0.0255 0.1333 0.1225 

June-Nov.   Kernel_epanechnikov 1 0.0195 0.1374 0.1225 

Dec.-May Kernel_normal 0 0.8141 0.0567 0.1225 

Dec.-May Kernel_box 0 0.8095 0.057 0.1225 

Dec.-May Kernel_triangle 0 0.8221 0. 0562 0. 1225 

Dec.-May Kernel_epanechnikov 0 0.8074 0.0571 0.1225 

 244 

 245 

 246 

 247 
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Figure 7.  CDF of GEV 
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Figure 8.  CDF of GEV distribution for 
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CDF of GEV distribution for Jun.-Nov.1949 to Jun. -Nov. 1968

F of GEV distribution for ( Dec. -May 1949 to Dec. -May 1968
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5. Copula parameter estimation 252 

Table 4. : Copulas and its parameter. 253 

Parameter 

Copula  

model rho nu MLE MSE AIC BIC 

Gaussian -0.2338 3.38 0.002125 -736.448 -732.69 

t -0.2344 3.79E+06 3.37 0.002126 -734.331 -731.65 

Frank -1.1424   4.557 0.00206 -740.190 -736.44 

AMH -1 2.284 0.002072 -739.477 -735.72 

Clayton 1.  45E-06 0.6685 0.002209 -731.817 -728.06 

GH 1 -7.2E-07 0.002201 -732.216 -728.46 

 254 

 255 

For a best copula model MLE should be high and MSE, AIC, BIC should be minimum from the 256 

above data frank is best model for predicting the data (Table 4). Figure 9 shows the probability 257 

density variation from green to red, green having lowest probability density and green colour 258 

having maximum probability density. It also represents the probability density function and 259 

cumulative distribution function for frank copula which is best for prediction of discharge data. 260 

 261 
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Figure 9. PDF and CDF for Frank copula. 

 262 

6. Validation test of Copula 263 

Validation test of Frank Copula is performed by comparing observed and empirical CDF in 264 

calibration and validation test. Here, observed CDF is CDF of Frank Copula and Empirical CDF 265 

is taken from some non-parametric method (Table 5). Formula of empirical CDF of copula is 266 

given below. In the Figure 10, the blue points shows data points at calibration and validation 267 

state. Blue points represents data points in calibrated and validation stage by Frank copula as 268 

shown in Figure 10. 269 

Table 5. : Statistics in calibration and validation test. 270 

Statistics Calibration Test Validation Test 

MSE 0. 00206 0. 00147 

R^2 0. 94 0.9 

 271 

 272 

 273 
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Figure 10.  CDF of observed and empirical copula in calibration and validation state.
 274 
 275 

7. Statistical Approach for ARMA 276 

 277 
In this approach linear type stationary ARMA models are fitted by observed discharge data 278 

where stationary means the ARMA models that are generated from a time series does not 279 

changing its underlying probability distribution function (pdf) from which different 280 

time series are pulled out. In loose sense stationarity indicates time series has constant mean and 281 

variance throughout the process where time series is the collection of random variables, plotted 282 

corresponding of its time, follow on their own di283 

auto regressive term indicates lag of time series value and moving average is the lag in error 284 

term. Generally, ARIMA is conventional class of model where “I” integration term indicates 285 

order of difference required to do the time series stationary but in this study it is done by 286 

normalizing all the discharge data through its long term mean and standard deviation287 

The mathematical form of normalization is given below288 

�� =  
��� ��

��
  ………            289 
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changing its underlying probability distribution function (pdf) from which different 

time series are pulled out. In loose sense stationarity indicates time series has constant mean and 

variance throughout the process where time series is the collection of random variables, plotted 

corresponding of its time, follow on their own distribution (figure. 11). In ARMA model AR i.e. 

auto regressive term indicates lag of time series value and moving average is the lag in error 

term. Generally, ARIMA is conventional class of model where “I” integration term indicates 

uired to do the time series stationary but in this study it is done by 

normalizing all the discharge data through its long term mean and standard deviation

The mathematical form of normalization is given below. 

       

 

CDF of observed and empirical copula in calibration and validation state. 

is approach linear type stationary ARMA models are fitted by observed discharge data 

where stationary means the ARMA models that are generated from a time series does not 

changing its underlying probability distribution function (pdf) from which different values of 

time series are pulled out. In loose sense stationarity indicates time series has constant mean and 

variance throughout the process where time series is the collection of random variables, plotted 

. In ARMA model AR i.e. 

auto regressive term indicates lag of time series value and moving average is the lag in error 

term. Generally, ARIMA is conventional class of model where “I” integration term indicates 

uired to do the time series stationary but in this study it is done by 

normalizing all the discharge data through its long term mean and standard deviation (figure. 12). 

  (8) 
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Where, Xi=Value of mean monthly discharge, X=Long term average,σ�=Long term standard 290 

deviation, i=1 to N, N is total number of data point in monthly step. The normalization or 291 

differencing  in the data is not only make it stationary but also removes periodicity from the time 292 

series where periodicity can be defined as correlation i.e. linear association of data with the 293 

previous some lag value of data. As we are interested to only capture unknown information from 294 

a process which are unknown due to noise or random term (stochastic factor in the process), so 295 

deterministic part in terms of long term mean, periodicity, seasonality, trend, sudden drop or 296 

jump is necessary to remove from the time series since these deterministic terms already reflects 297 

known information about the process, are not required to model. Generally monthly discharge 298 

time series shows periodicity and seasonality in the data set and it is necessary to remove before 299 

calibrate (finding Parameter of model) to ARMA model as this type of model is developed to 300 

capture unknown information from noise i.e. random process.   301 

The observed data set are divided into two parts. One part contains twenty years’ data (from 302 

1949 to 1968) has been used for parameter estimation i.e. in model calibration, next five years’ 303 

data (from1969 to 1973) has been used for model validation and testing. The mean monthly 304 

discharge data used for model calibration may have serial correlation i.e. any data in particular 305 

time step depends on its previous adjacent data and may follow so on. The time series plot of 306 

observe discharge depicts this serial correlation, seasonality or periodicity in terms of 307 

information contain in the series by showing some regularity or similar oscillation of the series. 308 
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Figure 11: Time series plot of discharge (cumec) starting from (Jan. 1949 to Dec. 1973). 

 

 309 

 

Figure 12: Time series plot of Standardized discharge (cumec) starting from (Jan. 1949 to 
Dec. 1973). 

 310 

 311 

 312 

8. Spectral Analysis 313 

The observe time series is analyzed in frequency domain to indicate exactly in which months 314 

periodicity present in the data that is only indicates by correlogram. In this frequency domain 315 
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analysis an assumption is taken as time series is a random sample of a process over time and is 316 

made up of oscillations of all possible frequencies. The time series is approximated by signal 317 

process contains deterministic term in wave form and noise or random term by which the 318 

information is extracted from time series and shows prominent spike in variance spectrum plot. 319 

The contributing equations for spectral analysis are given below 320 

 321 

X�= α�+ ∑ [α� 
���/�,�/�
��� cos(2πf�t) +  β�sin (2πf�t)] + ε�                                       (9a) 322 

f� =
�

�
  ;  P = 

�

��
; α� =  x�         (9b) 323 

α� =  
�

�
∑ x�cos (2πf�)�

���                k = 1,2,3,…….M     (9c) 324 

β� =  
�

�
∑ x�sin (2πf�)�

���                k = 1, 2, 3, …….M     (9d) 325 

 326 

Where; 327 

N = Observation numbers, Xt = Observe rainfall data, t= Time step in month 328 

 P = Periodicity in the data, X� = Mean of the series (average monthly rainfall) 329 

αk = Cosine wave form, βk = Sine wave form of time series. 330 

M = Maximum lag typically consider 0.25N. 331 

Values of αk and βk  in equation number 7 are valid up to k = N/2. 332 

 333 

8.1.  Line spectrum 334 

The spike in the line spectrum confirms the presence of particular month periodicity in the data 335 

(Figure 13 and Table 6 )and lime spectrum is plot between spectral density versus angular 336 
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frequency. It is also known as variance spectrum. Line spectrum plot is drawn by using discharge 337 

data and standardized discharge data.338 

Ik = 
�

�
 [ α�

� +  β�
�] ;                k = 1, 2,339 

α� =  
�

�
∑ x�cos (2πf�)�

���                340 

β� =  
�

�
∑ x�sin (2πf�)�

���                341 

      342 

ω� =  
���

�
;  k = 1, 2, ………., M 343 

Where, ω� = Angular frequency and I344 

N = Observation numbers, 345 

 346 

 347 

Figure 13: Plot of spectral density versus angular frequency.
 

 348 

 349 

25 

frequency. It is also known as variance spectrum. Line spectrum plot is drawn by using discharge 

data and standardized discharge data. 

;                k = 1, 2,3, ………., M    

               k = 1,2,3,…….M      

               k = 1, 2, 3, …….M     

;  k = 1, 2, ………., M        

= Angular frequency and Ik = Spectral density. 

: Plot of spectral density versus angular frequency. 

frequency. It is also known as variance spectrum. Line spectrum plot is drawn by using discharge 

   (10a)     

  (10b)     

  (10c)          

  (11) 
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Table 6: Showing the spectral density and frequency data corresponding to spikes. 350 

Spike Spectral density (Ik) 

(sq-mm) 

Angular frequency 

(��)(rad/M)  

Periodicity (Months) 

1 4.05 * 1010 0.52 12 

2 4.48 * 109 1.05 6 

3 4.60  * 109 1.6 4 

 351 

9. Model Description 352 

Auto regressive moving average models are developed using white noise series. In the present 353 

study the information form observed time series has captured not only developing ARMA (p, q) 354 

model but also by pure AR (p) and MA (q) model. The block diagram for AR (p), MA (q) and 355 

ARMA (p, q) process are shown below. 356 

 357 

 358 

  W[k]                                                                                  X[k]    AR Model 359 

 360 

 361 

 362 

  ∑ 

 

A(Z) 
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X[k] = ∑an*X[k-n] + W[k], where X[k] = Discrete value or kth sequence of random variable 363 

(discharge), an = AR parameter for nth order sum over n=1to N, N = number of data point, X[k-364 

n] = nth lag of random variable (discharge), A(Z) = AR polynomial equation, W[k] = Error term 365 

associated in the model prediction. 366 

 367 

    W[k]               X[k]  MA Model 368 

 369 

X[k]=∑bn*W[k-n], where X[k]=Discrete value or kth sequence random variable (rainfall), bn = 370 

MA parameter for nth order sum over n = 0 to M-1, M = number of error point, W[k-n] = nth lag 371 

of white noise or error term, B(Z)=MA polynomial equation, W[k] = Error term associated in the 372 

model prediction. 373 

W[k]          X[k]ARMA Model 374 

 375 

 376 

X[k] = ∑an*X[k-n] + ∑bn*W[k-n], where X[k] = Discrete value or kth sequence of random 377 

variable (discharge), an = AR parameter for nth order, X[k-n] = nth lag of random variable 378 

(discharge) sum over for n=1to N, N=number of data point, a (Z)=AR polynomial equation, 379 

W[k] = Error term associated in the model prediction (white noise), bn = MA parameter for nth 380 

order sum over n=0 to M-1, M=number of error point, W[k-n] = nth lag of white noise or error 381 

term, B(Z)=MA polynomial equation. 382 

A(Z) 

B(Z)   ∑ 

 

A(Z) 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-380
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 December 2018
c© Author(s) 2018. CC BY 4.0 License.



28 
 

An ARMA (p, q) model which having  autoregressive order i.e. p and moving average order i.e. 383 

q can be expressed as following from of equation. 384 

Xt – Φ1 Xt-1 – Φ2 Xt-2  - ….- Φp Xt-p = εt + Ѳ1εt-1 +Ѳ2εt-2+….+Ѳpεt-p4         (12)                                     385 

Φ(L)Xt = Ѳ(L) εt , Φ(L) = 1- ∑ ��
��� j�� and  Ѳ(L) = ∑ Ѳ�

��� j��                (13) 386 

Where, Back shift operator ��Xt = Xt-j, it shift the value for j th lag. 387 

10. Model Calibration 388 

 389 

Two types of model (prediction model) has developed using white noise series but model 390 

identification and parameter estimation are not done by conventional Box-Jenkins and Yule-391 

Walker method. In this present study model identification has done by picking up some 392 

candidate ARMA model of order up to ten and five for AR and MA process as for most 393 

hydrologic cases AR parameter (table 7) and MA parameter (table 8). The model selection is 394 

based maximum likelihood estimate (MLE) criteria for prediction model. The underlying 395 

equations for MLE criteria for model selection which are used for present study has given in 396 

following form. 397 

MLE criteria: MLE = - 
�

�
ln(σi) - ni         (14) 398 

Where, N is the total data sets those are used for model calibration, σi is the variance of residual 399 

series where residual is the difference between observe data and corresponding to model output 400 

and ni is the total number of parameter of a model. 401 

The parameter, MLE values for candidate models are shown in table below. 402 
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Table 7: Showing only AR parameter for ARMA model. 403 

    AR PARAMETERS       

MODELS ɸ1 ɸ2 ɸ3 ɸ4 ɸ5 ɸ6 ɸ7 ɸ8 ɸ9 ɸ10 

ARMA(1,0) 0.66451          

ARMA(2,0) 0.60492 0.09057         

ARMA(3,0) 0.60295 0.07795 0.02135        

ARMA(4,0) 0.60080 0.06671 -0.06864 0.15228       

ARMA(5,0) 0.58985 0.07236 -0.07197 0.10985 0.07035      

ARMA(6,0) 0.58063 0.05453 -0.05759 0.10015 -0.01679 0.14551     

ARMA(7,0) 0.58787 0.05451 -0.05024 0.09341 -0.01130 0.18096 -0.06163    

ARMA(8,0) 0.58702 0.05674 -0.05001 0.09497 -0.01299 0.18255 -0.05265 -0.01534   

ARMA(9,0) 0.58727 0.05783 -0.05312 0.09458 -0.01517 0.18504 -0.05505 -0.02823 0.02195  

ARMA(10,0) 0.58604 0.05918 -0.04949 0.08478 -0.01712 0.17845 -0.04629 -0.03598 -0.01817 0.06831 

ARMA(1,1) 0.75312          

ARMA(2,1) 1.39970 -0.43496         

ARMA(3,1) -0.05225 0.52430 0.00826        

ARMA(4,1) 1.24323 -0.31924 -0.11346 0.12318       

ARMA(5,1) 1.33450 -0.37355 -0.12367 0.15158 -0.03725      

ARMA(6,1) 0.28522 0.22950 -0.03610 0.07931 0.01672 0.16687     

ARMA(7,1) 0.74461 -0.03680 -0.05859 0.10082 -0.02648 0.18399 -0.08480    

ARMA(8,1) -0.20826 0.52546 -0.00582 0.05756 0.05380 0.17932 0.10911 -0.08011   

ARMA(9,1) -0.19884 0.51957 -0.00903 0.05670 0.05344 0.17970 0.09762 -0.07628 0.01668  

ARMA(10,1) 0.56699 0.07040 -0.04841 0.08390 -0.01537 0.17811 -0.04268 -0.03706 -0.01876 0.06879 

ARMA(10,2) -0.26579 -0.29836 0.50422 0.09413 0.02310 0.25209 0.10769 0.09484 -0.09784 0.05943 

ARMA(10,3) 0.51149 -0.07838 0.78081 -0.33277 -0.05451 0.24153 -0.11466 -0.01912 -0.17039 0.13406 

ARMA(10,4) 0.38327 0.00193 0.77221 -0.22377 -0.10340 0.23160 -0.08697 -0.02519 -0.17577 0.11709 

ARMA(10,5) -1.13146 -0.06556 0.95650 0.77413 0.07620 -0.10191 0.33892 0.13060 -0.20583 -0.18946 

ARMA(1,2) 0.88700          

ARMA(1,3) 0.93403          

ARMA(1,4) 0.93193          

ARMA(1,5) 0.93484          

ARMA(2,2) -0.02219 0.53793         

ARMA(2,3) 0.21627 0.65017         

ARMA(2,4) 0.19993 0.67908         
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ARMA(2,5) 0.23180 0.66432         

ARMA(3,2) 0.64304 0.68470 -0.38491        

ARMA(3,3) 0.42446 0.65453 -0.16819        

ARMA(3,4) -0.21319 0.15327 0.78757        

ARMA(3,5) -0.72403 0.74153 0.76954        

ARMA(4,2) 0.69864 0.48430 -0.37004 0.11205       

ARMA(4,3) -0.37744 1.04098 0.50283 -0.33690       

ARMA(4,4) -0.42158 1.00669 0.53456 -0.29754       

ARMA(4,5) 0.49824 -0.28955 0.00477 0.62246       

ARMA(5,2) -0.50475 -0.14324 0.64171 0.13615 0.05173      

ARMA(5,3) -0.39712 -0.33977 0.55777 0.19782 -0.01648      

ARMA(5,4) -0.66573 0.97770 0.86047 -0.19813 -0.14756      

ARMA(5,5) -0.17019 0.61541 -0.04977 -0.06419 0.40870      

ARMA(6,2) 0.35887 -0.35880 0.29042 0.13706 -0.04217 0.24540     

ARMA(6,3) 0.42395 -0.24326 0.70088 -0.18135 -0.08643 0.20389     

ARMA(6,4) 0.39509 -0.20829 0.69730 -0.14510 -0.11156 0.19805     

ARMA(6,5) 0.08679 0.26106 -0.29711 0.48029 0.60613 -0.29824     

ARMA(7,2) -0.17285 -0.32911 0.46577 0.11014 0.03296 0.19965 0.14650    

ARMA(7,3) -0.00080 -0.29558 0.54497 0.01053 0.00388 0.20120 0.12022    

ARMA(7,4) 1.36622 -0.64456 0.93643 -0.80636 0.06862 0.28351 -0.21098    

ARMA(7,5) 0.07913 0.23442 -0.31250 0.48226 0.60847 -0.29135 0.02455    

ARMA(8,2) -0.06562 0.56493 -0.08504 0.05863 0.04780 0.16703 0.08868 -0.09679   

ARMA(8,3) -0.66504 -0.38677 0.35814 0.33139 0.05602 0.22303 0.23437 0.17652   

ARMA(8,4) 0.96323 -0.34874 0.82988 -0.53430 0.01236 0.20510 -0.08258 -0.08917   

ARMA(8,5) -1.07677 -0.28472 0.64295 0.49656 0.08941 -0.03977 0.43053 0.33915   

ARMA(9,2) -0.28074 -0.29950 0.52283 0.11113 0.02688 0.25629 0.13284 0.07980 -0.11560  

ARMA(9,3) -0.40831 -0.32266 0.46804 0.18178 0.04158 0.25586 0.16121 0.10094 -0.10421  

ARMA(9,4) -0.62826 0.98023 0.80696 -0.29996 -0.08852 0.21088 0.05200 -0.13123 -0.07542  

ARMA(9,5) -1.1315 0.65017 0.78081 0.48226 -0.11156 0.28351 0.08868 -0.08917 -0.1758  

 404 

 405 
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Table 8: Showing only MA parameter and constant for ARMA model. 406 

   MA Parameters  Constant 

MODELS θ1 θ2 θ3 θ4 θ5  

ARMA(1,0)      -0.00051 

ARMA(2,0)      -0.00129 

ARMA(3,0)      -0.00139 

ARMA(4,0)      -0.00351 

ARMA(5,0)      -0.00456 

ARMA(6,0)      -0.00525 

ARMA(7,0)      -0.00497 

ARMA(8,0)      -0.00477 

ARMA(9,0)      -0.00501 

ARMA(10,0)     -0.00559 

ARMA(1,1) -0.16221     -0.00215 

ARMA(2,1) -0.82815     -0.00338 

ARMA(3,1) 0.66709     0.00311 

ARMA(4,1) -0.66822     -0.00463 

ARMA(5,1) -0.75677     -0.00408 

ARMA(6,1) 0.30166     -0.00591 

ARMA(7,1) -0.15794     -0.00470 

ARMA(8,1) 0.79691     -0.00455 

ARMA(9,1) 0.78870     -0.00475 

ARMA(10,1) 0.01917     -0.00562 
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ARMA(10,2) 0.87471 0.90483    0.00162 

ARMA(10,3) 0.19815 -0.77084 0.45834   -0.01064 

ARMA(10,4) 0.21564 0.19305 -0.75702 -0.11842  -0.01140 

ARMA(10,5) 1.78713 1.23513 -0.25609 -1.00000 -0.67359 -0.03063 

ARMA(1,2) -0.33688 -0.16404    -0.00522 

ARMA(1,3) -0.35536 -0.15329 -0.15629   -0.00608 

ARMA(1,4) -0.35436 -0.15683 -0.15869 0.01476  -0.00611 

ARMA(1,5) -0.35372 -0.15800 -0.15768 0.01995 -0.02017 -0.00608 

ARMA(2,2) 0.62654 -0.03828    0.00221 

ARMA(2,3) 0.35863 -0.42746 -0.26765   -0.01054 

ARMA(2,4) 0.37873 -0.42551 -0.28864 -0.05125  -0.01094 

ARMA(2,5) 0.36628 -0.40484 -0.26811 -0.07566 -0.09411 -0.01076 

ARMA(3,2) -0.09104 -0.63486    -0.00590 

ARMA(3,3) 0.15828 -0.52132 -0.18806   -0.00865 

ARMA(3,4) 0.77956 0.30867 -0.57369 -0.18270  -0.01575 

ARMA(3,5) 1.35415 0.09708 -0.76904 -0.36178 -0.14700 -0.01603 

ARMA(4,2) -0.11722 -0.50226    -0.00684 

ARMA(4,3) 1.01092 -0.42902 -0.79243   -0.01703 

ARMA(4,4) 1.06432 -0.37089 -0.81084 -0.04031  -0.01738 

ARMA(4,5) 0.08596 0.39643 0.17633 -0.41673 -0.30529 -0.00931 

ARMA(5,2) 1.12739 0.92096    0.01845 

ARMA(5,3) 1.02365 1.06681 0.12434   0.01720 

ARMA(5,4) 1.31475 -0.15571 -1.00000 -0.28767  -0.01530 
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ARMA(5,5) 0.78848 -0.10724 -0.07385 0.08787 -0.31487 -0.01845 

ARMA(6,2) 0.23672 0.56680    0.00669 

ARMA(6,3) 0.16843 0.41609 -0.56455   -0.00732 

ARMA(6,4) 0.19811 0.39653 -0.57059 -0.04465  -0.00843 

ARMA(6,5) 0.54966 0.11588 0.33089 -0.21262 -0.80621 -0.01506 

ARMA(7,2) 0.77331 0.87867    0.00266 

ARMA(7,3) 0.59455 0.73423 -0.18396   -0.00062 

ARMA(7,4) -0.78780 0.25034 -0.96854 0.50600  -0.00029 

ARMA(7,5) 0.56501 0.13511 0.35062 -0.18961 -0.79343 -0.01516 

ARMA(8,2) 0.65268 -0.12361    -0.00555 

ARMA(8,3) 1.26941 1.23172 0.38231   0.02268 

ARMA(8,4) -0.37589 0.20412 -0.86433 0.21865  -0.00413 

ARMA(8,5) 1.78003 1.50000 0.18756 -0.54292 -0.54283 0.04868 

ARMA(9,2) 0.88633 0.91781    0.00390 

ARMA(9,3) 1.01837 1.02326 0.13147   0.01121 

ARMA(9,4) 1.28045 -0.18837 -1.00000 -0.27298  -0.01673 

ARMA(9,5) 1.35415 -0.1533 -0.757 -0.3618 -0.67359 -0.011398 

 407 

10.1 Maximum likelihood rule 408 

A likelihood value for every of the candidate models (table 9)is calculated which model 409 

represents highest likelihood value is chosen for data generation. Gaussian process, general 410 

expression of log-likelihood function for the ith model is given below. 411 

�� = ln( �[�, ��� ]) − ��                                                                                                                 (15) 412 
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It may be approximated as- 413 

�� =  −
�

�
ln(��) − ��                                                                                                                    ( 16) 414 

Where, Li is the likelihood value, z represents a vector of  historical series i.e. parameter vector, 415 

MA and parameters (θ1, θ2,……..; φ1,φ2,……;σi), σi represents the residual variance and ni is the 416 

number of parameters. As the number of parameters increase, the likelihood value decreases.  417 

Table 9: Showing MLE values constant for ARMA model. 418 

Models MLE Values Models MLE Values Models MLE Values 

ARMA(1,0) 6.473 ARMA(10,2) -14.515 ARMA(5,2) -16.810 

ARMA(2,0) 53.207 ARMA(10,3) -15.273 ARMA(5,3) -29.974 

ARMA(3,0) 4.812 ARMA(10,4) -17.592 ARMA(5,4) -37.916 

ARMA(4,0) 4.546 ARMA(10,5) -51.252 ARMA(5,5) -13.428 

ARMA(5,0) 3.268 ARMA(1,2) 5.395 ARMA(6,2) -39.489 

ARMA(6,0) 0.671 ARMA(1,3) 2.531 ARMA(6,3) -9.516 

ARMA(7,0) -0.729 ARMA(1,4) 1.738 ARMA(6,4) -9.926 

ARMA(8,0) -1.772 ARMA(1,5) 0.438 ARMA(6,5) -18.510 

ARMA(9,0) -2.787 ARMA(2,2) 2.875 ARMA(7,2) -22.491 

ARMA(10,0) -2.796 ARMA(2,3) -7.629 ARMA(7,3) -17.672 

ARMA(1,1) 6.031 ARMA(2,4) -7.240 ARMA(7,4) -20.179 

ARMA(2,1) 1.747 ARMA(2,5) -12.101 ARMA(7,5) -18.904 

ARMA(3,1) -30.943 ARMA(3,2) -7.923 ARMA(8,2) -17.325 

ARMA(4,1) 1.620 ARMA(3,3) -8.838 ARMA(8,3) -26.489 

ARMA(5,1) 0.698 ARMA(3,4) -9.603 ARMA(8,4) -13.709 
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ARMA(6,1) -0.723 ARMA(3,5) -43.814 ARMA(8,5) -39.369 

ARMA(7,1) -1.542 ARMA(4,2) -5.464 ARMA(9,2) -26.378 

ARMA(8,1) -4.142 ARMA(4,3) -29.525 ARMA(9,3) -26.855 

ARMA(9,1) -5.747 ARMA(4,4) -30.252 ARMA(9,4) -44.180 

ARMA(10,1) -4.396 ARMA(4,5) -6.041 ARMA(9,5) -37.972 

 419 

11. Model Validation 420 

In the present study ARMA(2,0) (table 9)models has selected as one time step ahead and 421 

prediction model by Maximum MLE criteria respectively. The selected model is validate to 422 

examine whether the assumptions  used for selection of the model are valid.  423 

11.1 Significance of residual mean 424 

This test examines the validity of the assumption that the error series e(t) has zero mean. A 425 

statistic η(e) is defined as: 426 

ɳ(e) = 
��/��⃑

��/�            (17) 427 

Where, e�⃑  = Estimated residual mean. 428 

 ρ = Estimated residual variance. 429 

The statistic η(e), approximated distribution as t(α, N–1), α represents the significance level at 430 

test is being carried out. If the value of η(e) <t (α, N–1),(table 10) then the mean of the residual 431 

series is not significantly different from zero (-)ve series passes the test. 432 

Table 10: Showing the statistic η(e). 433 
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 434 

� α N t (α, N–1) η(e) 

0.161472 .05 30 1.699 0.1 

 435 

 436 

The value of η(e) <t (α, N–1) (i.e.1.22<1.699). It shows that mean of the residual series is not 437 

significantly different from zero (-) series passes the test. 438 

12. Results and Discussion 439 

Outflow data for future are generated by using Frank Copula. The sample size for data 440 

generation is taken 100 and 1000. These generated values are compared with observed validation 441 

data set. The comparison and the individual dependence of generated samples are also shown in 442 

Figure 15, which represents observed data in red color and generated data in blue, data  443 

generation by copula with sample size 100 and 1000 of kendall's tau 0.25 and 0.32, respectively. 444 

Figure 16 describes dependence structure for 100 generated samples i.e. Copula is a statistical 445 

theory on dependence and measurement of association.    446 

 447 
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Figure 15.  Data generation by Frank Copula. 
 
 448 

 449 

 450 

 

Figure 16.  Dependence structure for 100 generated samples. 
 
 451 

 452 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-380
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 December 2018
c© Author(s) 2018. CC BY 4.0 License.



38 
 

 

Figure 17.  Dependence structure for 1000 generated samples. 
 
 453 
 454 

Figure 17 describes dependence structure for 1000 generated samples i.e. Copula is a statistical 455 

theory on dependence and measurement of association and teal colour shows generated data set 456 

month vise. Dependence structure of a multivariate distribution is described by copula, it might 457 

be appropriate to use measures of dependence which are copula-based. Linear correlation 458 

coefficient can be opposed by the concordance measure spearman's rho and kendall's tau as well 459 

as tail dependence and it is expressed by under laying copula. 460 

Figure 20  is a time series of discharge data, blue colour represents observed data from jan. 1968 461 

to dec. 1973 and red colour represents generated data from jan. 1974 to dec. 2004. The green 462 

colour shows observed data set and red colour shows generated data set. When generated data set 463 

is small, it shows good results because errors incorporated are less in comparison to large data 464 

set generation. 465 

In the study area, has analyzed that best model in ARMA (2,0) model, and Frank Copula model 466 

for generating discharge data at Farakka barrage on the basis of Mean Square Error (MSE), 467 
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Coefficient of determination (R2
468 

Copula is the best model for generating outflow discharge data at Farakka barrage.  469 

 470 

Figure18: Comparison of Observed and predicted data for Frank Copula model.
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2) (Figure 18 and Figure 19). Based upon all above test Frank 

Copula is the best model for generating outflow discharge data at Farakka barrage.  

: Comparison of Observed and predicted data for Frank Copula model.

 

R² = 0.915

20000 30000 40000 50000 60000
Observed discharge (Cumec)

Based upon all above test Frank 

Copula is the best model for generating outflow discharge data at Farakka barrage.   

 

: Comparison of Observed and predicted data for Frank Copula model. 
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Figure 19 Comparison of Obser

 472 

 473 

474 

Figure 20. Time series of observed data and generated data475 

476 

477 
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Comparison of Observed and predicted data for ARIMA(2,0) model.

. Time series of observed data and generated data.

 

 

 

ved and predicted data for ARIMA(2,0) model. 
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13. Conclusion 478 
 479 
Copula based study and ARMA models are used in this study Frank copula is selected among the 480 

copulas based on parameter for discharge data generation and ARMA(2,0) is selected among the 481 

ARMA models. Errors incorporated in the copula model is less in comparison to the ARMA(2,0) 482 

model and the value of Coefficient of determination (R2) for Frank is close to one i.e  0.915. 483 

Frank copula estimated better result over ARMA(2,0). 484 

A copula based study which can be used to derive bivariate distribution function of flow rate 485 

variables and it shows the real world case study. Best suited model for this study is frank copula 486 

among all above copula in term of non parametric tests i.e. AIC, MSE, BIC and Kolmogrov-487 

Smirnov test. When generated data sample data set, copula shows convergence of sample data 488 

set to estimated population. Copula models are an alternative approach and in this study Frank 489 

Copula model is used for data generation at Farakka barrage. Bivariate series are prepared based 490 

on pre monsoon and post monsoon outflow data. Moreover they are very useful in this study of 491 

dependent variable. Copula is very useful for describing the dependence of extreme outcome 492 

because it captures the structural dependence of data. The autocorrelation is not captured in the 493 

bivariate model . 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 
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