

A conceptual model of organochlorine fate from a combined analysis of spatial and mid/long-term trends of surface and ground water contamination in tropical areas (FWI)

4 Philippe CATTAN^{1,2}, Jean-Baptiste CHARLIER³, Florence CLOSTRE^{4,5}, Philippe
 5 LETOURMY^{6,7}, Luc ARNAUD⁸, Julie GRESSER⁹, Magalie JANNOYER¹⁰

- 6 ¹CIRAD, UPR GECO, Montpellier, F-34398, France.
- 7² GECO, Univ Montpellier, CIRAD, Montpellier, France.
- 8 ³ BRGM, Univ. Montpellier, Montpellier, F-34000, France
- 9 ⁴CIRAD, UPR HortSys, Le Lamentin, F-97285, Martinique, France.
- 10 ⁵HortSys, Univ Montpellier, CIRAD, Montpellier, France.
- ⁶ CIRAD, UPR AIDA, Montpellier, F-34398, France.
- 12 ⁷ AIDA, Univ Montpellier, CIRAD, Montpellier, France.
- ⁸ BRGM, Fort-de-France, F-97200, Martinique, France
- ⁹ ODE, Fort-de-France, F-97201, Martinique, France
- ¹⁰ CIRAD, DGDRS, Montpellier, F-34398, France.
- 16 Correspondence to: Philippe Cattan (philippe.cattan@cirad.fr)

Absract. In this study, we investigated the management of long-term environmental pollution by organic 17 pollutants such as organochlorine pesticides. We set out to identify conditions that are conducive to reducing 18 19 pollution levels for these persistent molecules and then propose a conceptual model of organochlorine fate in water. Our approach looked at spatio-temporal changes in pollutant contents in surface water (SW) and 20 groundwater (GW) on a large scale, in order to decipher the respective roles of soil, geology, hydrology and past 21 22 treatment practices. The case of chlordecone (CLD) on the island of Martinique (1,100 km²) was selected given 23 the sampling campaigns carried out since 2007 over more than 150 sites. CLD, its metabolite chlordecone-5bhydro (5bCLD) and the metabolite/parent compound ratio were compared. As regards the spatial variability of 24 water contamination, our results showed that banana cropping areas explained the location of contaminated SW 25 26 and GW, whereas the combination of soil and geology factors explained the main spatial variability in the 5bCLD / CLD ratio. For temporal variability, these conditions defined a high diversity of situations in terms of 27 the duration of pollution, highlighting two groups: water draining old geology & ferralsols or vertisols vs. recent 28 29 geology & andosols. A theoretical leaching model provided some key information to help interpret downward trends in CLD and 5bCLD observed in water. Lastly, a conceptual model of organochlorine fate is proposed to 30 explain the diversity of the 5bCLD/CLD ratio in water. Our conclusions highlight the combined role of soil and 31 groundwater residence time for differentiating between conditions that are more conducive, or not, to the 32 33 disappearance of CLD from the environment. This paper presents a model that provides an overall perception of 34 organochlorine pesticide fate in the environment.

35

36 Keywords

37 Pesticide; Surface water; Groundwater; Temporal dynamics; Chlordecone 1

38 1 Introduction

The pollution of rivers and aquifers by persistent organic pollutants (POPs) and organochlorine pesticides is a 39 global issue (Gonzalez et al., 2012; Masih et al., 2014; Montuori et al., 2014; Zhang et al., 2004). Their long-40 41 term persistence after application (i.e. several decades to several centuries) raises the question of what is polluted 42 and to what level, and how to manage and live with pollution. Moreover, the environment is not uniformly contaminated. Interactions between human pesticide application practices and environmental conditions lead to 43 high variability in the contamination level of environmental compartments. This variability can be perceived by 44 observing surface water (SW) and groundwater (GW) contamination. 45 Globally, changes in pesticide applications over several decades have resulted in downward and upward trends 46 for pesticide concentrations in SW (Ryberg and Gilliom, 2015; Stone et al., 2014). This is also the case for GW, 47 48 for which contamination trends have illustrated the leaching of pesticides from soils towards aquifers on a 49 regional scale (Bexfield, 2008; Kolpin et al., 2004; Lapworth et al., 2006). Quality in SW is highly correlated to that in GW, due to strong interactions between aquifers and rivers on a catchment scale. Surprisingly, there is a 50 lack of studies combining both SW and GW observations in order to characterize pollution in all the 51 compartments (shallow and deep) of the hydrological cycle. Thus, this article addresses the issue of the 52 53 conditions and processes that determine the spatial distribution of a persistent pollutant in water on a regional scale, investigating the case of chlordecone contamination in the French West Indies. 54 Chlordecone (CLD, C₁₀Cl₁₀O; CAS number 143-50-0; 491 g mol⁻¹) is an organochlorine classified as a POP (U. 55 S. Environmental Protection Agency, 2012; UNEP, 2007). Numerous issues stem from CLD use in the French 56 West Indies (FWI) (Lesueur Jannoyer et al., 2017). CLD was used from 1970 to 1993 to control the black weevil 57 (Cosmopolites sordidus) in banana plantations. Application intensity greatly depended on the farmers 58 (Cabidoche et al., 2009; Della Rossa et al., 2017; Levillain et al., 2012) and introduced high spatial variability in 59 60 soil contamination. Despite its worldwide ban in 1992, CLD continues to contaminate aquatic ecosystems in different parts of the world (Coat et al., 2011; Luellen et al., 2006). As a consequence, CLD-polluted soils in 61 FWI go on to contaminate GW (Arnaud et al., 2017; Gourcy et al., 2009) and rivers (Bocquene and Franco, 62 2005; Coat et al., 2011; Crabit et al., 2016; Mottes et al., 2015; Observatoire de l'Eau de la Martinique et al., 63 2012). This pollution raises concerns, as CLD causes adverse effects on health, both from acute and 64 environmental exposure (Cannon et al., 1978; Cordier et al., 2017; Multigner et al., 2015). 65 66 The persistence of pesticides in soils and their transfer to percolation water depend on various processes, such as degradation and sorption, influenced by molecule properties, and the soil and climate context (Arias-Estévez et 67 al., 2008). For CLD, adsorption on soil aggregates, hence the risk of water pollution, greatly depends on soil 68

type, as indicated by the partitioning coefficient (Koc) between the sorbed part on soil organic matter, which varies from 2.5 to 20 m³ kg⁻¹ (Cabidoche et al., 2009; Woignier et al., 2012). Moreover, at depth, contrasting

71 residence times in aquifers of several years to several decades partly account for the variability in GW

72 contamination by CLD (Gourcy et al., 2009).

73 Recent studies highlighted the fact that degradation can occur for this molecule (Fernández-Bayo et al., 2013;

- 74 Mouvet et al., 2017). CLD-5b-hydro (5bCLD, $C_{10}Cl_9HO$; CAS number 53308-47-7; 456 g mol⁻¹) is a mono-
- 75 hydrochlordecone, which can be produced as an impurity during CLD manufacturing (Cabidoche et al., 2009;
 - 2

76 Fernández-Bayo et al., 2013). It has also been obtained experimentally by degradation of CLD through photolysis and microbial degradation (Orndorff and Colwell, 1980; Wilson and Zehr, 1979). Orndorff and 77 78 Colwell (1980) interpreted the in situ value of 5bCLD content as an indicator of the degradation process. 79 Studying both the fate of the parent and metabolite compounds, or their ratio, provides a more complete understanding of the transportation of the molecule (Farlin et al., 2017; Gassmann et al., 2013; Kolpin et al., 80 2004). 5bCLD has been found in soils, waters and food webs, along with CLD but at much lower levels (Borsetti 81 82 and Roach, 1978; Clostre et al., 2015; Coat et al., 2011; Devault et al., 2016; Observatoire de l'Eau de la 83 Martinique et al., 2012). To sum up, in FWI, human practices and the physical environment lead to high variability conditions for CLD 84 and 5bCLD that may impact the environment. Our aim was to identify the conditions that are conducive to a 85

86 decrease in pollution levels, in order to propose a conceptual model of organochlorine fate in water. We focus here on river contamination, which is driven by all the environmental compartments, being consequently an 87 integrative survey site of land-use, soil variability, and aquifer contributions. Based on the sampling campaigns 88 89 in Martinique (FWI) since 2007, we explore river contamination trends over time and the relationships between 90 surface and underground CLD rates in water. Spatial and temporal distributions of contamination are interpreted according to soil and geology mapping, hydrology and past CLD treatment practices. This work will lead on to 91 identifying areas with a low or high impact on water pollution, in order to manage polluted areas more 92 93 effectively.

94 2 Material and methods

95 2.1 Study site

96 Location and climate. The study area covered the volcanic island of Martinique (1,100 km²) in the French West 97 Indies in the Caribbean (Figure 1). The climate is tropical, hot and humid. Annual rainfall is almost a linear 98 function of altitude (0 to 1,500 m ASL) and ranges from 2,500 to 10,000 mm on the east coast, and 1,000 to 99 10,000 mm on the west coast.

100 Geology. Eight volcanic units (grouped into 3 simplified types according to the age of the volcanic arcs) have 101 been identified (Germa et al., 2010, 2011) - see Figure 3 for an overview of the geological map: (1) Basal Complex and Sainte Anne Series (24.8±0.4-20.8±0.4 Ma) for the older arc; (2) Vauclin-Pitault Chain 102 103 $(16.1\pm0.2-8.44\pm0.12 \text{ Ma})$ and (3) South-western Volcanism $(9.18\pm0.16-7.10\pm0.10 \text{ Ma})$ for the intermediate arc; 104 and (4) Morne Jacob volcano (5.14±0.07-1.54±0.03 Ma), (5) Trois Ilets Volcanism (2.358±0.034 Ma and 346±27 ka), (6) Carbet Complex (998±14 to 322±6 ka), (7) Mount Conil (543±8 to 127±2 ka) and (8) Mount 105 106 Pelée (126±2 ka to present) for the recent arc. The volcanism is andesitic with predominantly explosive 107 volcanoes. Geological formations are thus composed by ash flows, lava flows, and reworked formations (e.g. lahars and debris flows) channelled in peripheral valleys, and atmospheric fallout on a larger scale. Such geology 108 generates a high spatial variability of lithology strata and contrasting weathering levels between geological units. 109 110 Soils. Two climate sequences of soils (IUSS Working Group WRB, 2014) are found in Martinique according to Colmet-Daage et al. (Colmet-Daage et al., 1965) - see Figure 3 for an overview of the soil map: (1) ferralitic 111

112 soils (latosols) -> ferralsols -> vertisols and (2) andosols -> nitisols. All primary minerals of andesitic rocks are 113 weathered, so that soils have a high content of secondary minerals: halloysite for nitisols, halloysite and Fe-114 oxihydroxides for ferralsols, and allophane for andosols. In addition, Martinique has skeletic andosols and young 115 raw soil containing pumice gravels, deriving from recent pyroclasts. All these soil types are acidic. Carbon 116 contents are unusually high for tropical soils, in particular for untilled andosols, and range from 10 to 140 g kg⁻¹ 117 according to Cabidoche et al. (2009) and Brunet et al. (Brunet et al., 2009). These features may induce large 118 differences in pesticide fate in soils. Since the soil types "poorly developed soil on ash and pumice" and "andosol" are similar and rich in allophanes, in this study they have been grouped under the designation 119 'andosol'. Likewise, fersiallitic soils and ferralsols have been grouped under the designation 'ferralsol' (very 120 dominant among the two soil types), as they are both rich in kaolinites and they are intergrades resulting from 121 122 the alteration of ferralitic soils (Colmet-Daage et al., 1965; Quantin et al., 1991). 123 Hydrology, hydrogeology and contamination. High rainfall intensities during tropical storms generate flash floods with a torrential regime in the rivers of Martinique. Permeable soils in the Lesser Antilles favour 124 125 infiltration and aquifer recharge (Charlier et al., 2008). As a consequence, hydrological studies on a catchment scale showed that the water budget on an annual scale is mainly controlled by underground processes, limiting 126 surface runoff contributions (Charlier et al., 2008, 2011). Stream flows are greatly influenced by SW/GW 127 interactions, leading to consider that GW drainage is a major process of river contamination (Arnaud et al., 2017; 128 129 Charlier et al., 2009; Morgenstern et al., 2015; Mottes et al., 2015). At depth, most of the volcanic aquifers are small, a few km² at most, as a result of the complex geological structure, which has undergone several phases of 130 131 volcanism, erosion and weathering (Lachassagne et al., 2014; Vittecoq et al., 2015). As shown by Charlier et al. 132 (Charlier et al., 2015), who compared the hydrogeological functioning of aquifers with contrasting lithologies 133 and age formations, the groundwater residence time is highly variable, between a few years for recent unweathered formations, to several decades for old weathered formations. It may result in various levels of river 134

135 contamination by CLD linked to the hydrogeological context of the catchment.

136 2.2 Building up the Database

137 2.2.1 CLD and 5bCLD sampling in water

138 The study period ran from the end of 2009/early 2010 to 2014. Since 2009-2010, 5bCLD has been analysed on a 139 routine basis with CLD. For SW, we used data from a programme monitoring water quality carried out by the Martinique Water Office throughout Martinique and from a research programme implemented by CIRAD 140 141 (CIRAD, F-97285 Le Lamentin, Martinique, France) in the Galion watershed in Martinique. Sampling was carried out manually according to standard NF EN ISO 5667-3 and the FD T 90-523-1 guideline. For GW, we 142 143 used data from a programme monitoring groundwater quality carried out by BRGM throughout Martinique. The 144 sampling methodology was based on standard NF EN ISO 5667-3, and the FD T 90-523-3 and FD X31-615 guidelines. Before sampling in wells, at least three purge volumes were pumped with a submersible pump until 145 stabilization of the chemical groundwater parameters. Samples were stored at 5°C and shipped in ice coolers to 146 147 the BRGM analytical laboratory in Orléans, France. 148

149 2.2.2 CLD and 5bCLD analysis

150 5bCLD is the main CLD co- and alteration product of CLD for which a commercial analytical standard is

151 available. Reference standards for CLD and 5bCLD were purchased from Dr. Ehrenstorfer GmbH (Augsburg,

152 Germany) for both laboratories.

153 For SW, samples were analysed at the LDA26 laboratory. CLD and 5bCLD sample analyses were carried out by liquid/liquid extraction (Dichloromethane and ethyl acetate 80/20) followed by Ultra-High-Performance liquid 154 chromatographic separation and mass spectrometric identification. An Ultra-High-Performance liquid 155 chromatography tandem mass spectrometry analysis was performed with a Thermo electron system (TSQ 156 Quantum Ultra) or ABSciex system (API4000 or API4000 Q-Trap). The compounds were separated on an 157 Alltima C18 (5 μ m-150 x 2.1mm). Two transitions were monitored 506.7 > 426.5 and 506.7 > 424.5 for CLD 158 159 and 472.6 > 392 and 472.6 > 454.5 for 5bCLD. 2.4D d3 was used as the internal standard for calibration. The 160 key parameters of the method (linearity, repeatability, interday precision, specificity, extraction efficiency and limit of quantification) were validated in accordance with the standard NF T 90-210 method (AFNOR 2009). 161 The CLD and 5bCLD limits of quantification were determinated by spiking natural surface water samples. 162 For GW, samples were analysed at the BRGM laboratory in Orléans, France. A gas chromatography tandem 163 164 mass spectrometry analysis was carried out with a Bruker system (Marne la Vallée, France) composed of a GC450 gas chromatography apparatus equipped with an 1177 injector, a Combi Pal (CTC) autosampler and a 165 166 300MS triple quadrupole mass spectrometer. The injector was equipped with a $4 \times 6.3 \times 78.5$ mm liner with

fibreglass and Sky[™] deactivation. The compounds were separated on an Rxi-1MS (30 m, 0.25 mm ID, 0.25 μm) column from Restek (Lisses, France). CLD and 5bCLD analyses of water samples were carried out by liquid/liquid extraction followed by gas chromatographic separation and mass spectrometric identification. The key parameters of the method (linearity, repeatability, interday precision, specificity, extraction efficiency and limit of quantification) were validated in accordance with the standard NF T 90-210 method (AFNOR, 2009).

172 The CLD and 5bCLD limit of quantification were determined by spiking natural water samples.

Both the LDA26 and BRGM laboratories are accredited for pesticide analysis and are involved in proficiency testing schemes organized by ANSES (French Agency for Food, Environmental, and Occupational Health and Safety), thereby ensuring the quality and coherence of the results. The limits of CLD and 5bCLD quantification in water were different for LDA26 and BRGM: 0.01 and 0.03 μ g.L⁻¹, respectively. By convention, the limits of detection were set at one third of the limits of quantification, i.e. 0.003 and 0.01 μ g.L⁻¹ for LDA26 and BRGM, respectively.

179 2.2.3 Value assessment and factors

180 Value assessment. For calculation, a value of 10% of the quantification limit was assigned when the compound

181 was not detected (i.e. 0.001 for LDA26 or 0.003 μ g L⁻¹ for BRGM), and an intermediate value of 0.006 μ g L⁻¹

182 was assigned when the compound was detected but not measurable at LDA26.

183 Factors. The statistical analysis set out to assess the effect of various environmental factors - soils, geology,

184 hydrological sectors, historical banana area, and time - on CLD and 5bCLD concentrations and on the 5bCLD /

185 CLD ratio, determined at each sampling point. For the soil factor, as the water at one sampling site originated

- 186 from a watershed possibly draining various soil types, we associated each sampling point with the main soil type
- 187 of the watershed drained by the sampling point according to the soil map of Colmet-Daage et al. (1965). For the
- 188 other factors, each sampling point was associated with the factor value at the sampling point.

189 2.3 Selection of data and statistical analysis

190 2.3.1 Range of contamination values

The relevance of contamination was assessed according to the EU 'Water Framework' and 'Quality of drinking 191 192 water' Directives (European Union, 1998, 2000) and their transposition into French law (French government, 193 2001). Three thresholds of water contamination classes stemmed from these directives: 0.1, 0.5 and 2.0 µgL⁻¹. The first two regulatory thresholds apply to the mean annual content in tap water intended for human 194 195 consumption: 0.1 μ gL⁻¹ is the threshold for each pesticide (threshold applying to CLD), and 0.5 μ gL⁻¹ is the threshold for the sum of all pesticides. Raw water exceeding these thresholds needs to be treated for human 196 consumption. The third value, 2.0 µgL⁻¹ is the threshold beyond which, according to the regulation, water can no 197 longer be termed drinkable even after treatment. The threshold values of 0.1 and 0.5 µgL⁻¹ are also chosen to 198 199 define good environmental status.

200 2.3.2 Data selection

Global data set. For SW, the data set consisted of 1,866 analyses from 136 sampling points and 76 rivers. The analyses were not evenly distributed. Most of the sampling points had a low measurement frequency (105 had fewer than 5 analyses) and only 18 sampling points had more than 50 analyses covering the entire 2009-2014 period. However, the number of analyses per complete year varied between 188 and 352. For GW, the data set consisted of 282 analyses from 21 sampling points and 6 water bodies. Basically, sampling occurred twice a year at each sampling point. At three sampling points, sampling occurred monthly in some years.

207 Data selection for statistical models. For statistical analysis, we discarded data where CLD concentrations were 208 below detection limits (and consequently 5bCLD concentrations too, as 5bCLD concentrations are always lower 209 than CLD), as they would have led to an inappropriate ratio value (ratio of 1 according to the value assessment 210 rule described below). Additionally, although we gathered data from contaminated areas, some of the water 211 samples were contaminated with CLD, but no 5bCLD was detectable. For the statistical analysis, we kept all the data (with and without measurable 5bCLD) from sampling points for which at least half the samples had 212 measurable 5bCLD contents (≥ 0.03 or 0.01 µg L⁻¹). This avoided overestimating the concentration for the 213 214 sampling point, which would have been the case if we had discarded all the data with no measurable 5bCLD. For 215 SW, we selected 963 data items. This SW data set covered 38 sampling points out of a total of 136. For GW, we 216 selected 123 data items. This GW data set came from 7 sampling points.

217 Data selection for temporal analysis on specific rivers. In order to highlight differences between pesticide

trends depending on the sampling point, we chose rivers for which the analysis covered the entire 2009-2014
period. This led to the selection of 14 sampling points, all having more than 50 analyses. As stated above, we

220 discarded analyses where CLD and 5bCLD contents were below detection limits.

221 2.3.3 Statistical analysis

- 222 Models. To ensure that the residue distribution of the analysis of variance (ANOVA) model followed the
- 223 assumptions of equal variance and normality, we used log transformed (natural log) data. We analysed our SW
- 224 and GW data sets by a multi-way analysis of variance using the MIXED procedure in SAS software (SAS
- 225 Institute Inc, 2002). The effects to be taken into account in the models were chosen by comparison of the AIC
- 226 (Akaike Information Criterion).
- 227 Model 1 was used on the SW data set to test different effects on the CLD content, the 5bCLD content and the
- 228 ratio of the 5bCLD content to the CLD content in SW. The soil and geology factors were dependent on each
- 229 other. For this reason, only combinations of these 2 factors were considered in the model.
- 230 Eq. (1) $Y_{ijklm} = \mu + \alpha_i + \beta_{ij} + \gamma_t + D_{ijk} + \varepsilon_{ijtkl}$
- 231 where Y_{ijklm} is the observation (i.e. ln(5bCLD), ln(CLD) or ln(5bCLD /CLD)), μ is the general mean, α_i is the
- (soil x geology) type effect, β_{ij} the hydrological sector effect for each (soil x geology) type, γ_t is the date effect,
- 233 D_{ijk} the random effect of the sampling point for each (soil x geology) type and ϵ_{ijtkl} is the residual error.
- 234 Model 2 was used on the GW data set. Both soil and geological factors were totally correlated for the GW data
- 235 set, making it impossible to distinguish the soil effect from geology; likewise for groundwater basins and
- 236 hydrographic sectors. Consequently, only soil and hydrogaphic sectors were tested for model 2:
- 237 Eq. (2) $Y'_{ijklm} = \mu' + \alpha'_i + \beta'_{ij} + \gamma'_t + D'_{ijk} + \varepsilon'_{ijtkl}$
- 238 where Y'_{ijklm} is the observation (i.e. ln(5bCLD), ln(CLD) or ln(5bCLD / CLD)), μ' is the general mean, α'_i is the
- soil type effect, β'_{ij} the hydrogaphic sector effect for each soil, γ'_t the date effect, D'_{ijk} the random effect of the
- 240 sampling point for each soil and ϵ'_{ijtkl} is the residual error.
- 241 As our data set was log transformed, dispersion indices were calculated as half the difference between the limits
- 242 of the confidence interval (confidence coefficient: 0.68).
- 243 The significance of the sampling point effect was assessed by comparison of 2 log-likelihood from the models
- with and without the sampling point as the random effect, as this difference followed a chi-square distribution under the null hypothesis.
- 246 Trend analysis. For SW, to study temporal trends, we selected estimated means of the time series for each date.
- 247 Autocorrelations were assessed with the Durbin-Watson test and monotonic trends were assessed with the Mann-
- 248 Kendall (MK) test. We calculated Sen trends for each variable (CLD, 5bCLD and ratio) in order to compare
- 249 dynamics for the two compounds.

250 2.3.4 Conceptual model of CLD fate

- 251 A simple iterative leaching model was developed to assess the evolution of CLD, 5bCLD and the 5bCLD / CLD
- 252 ratio over time. This model expressed that the 5bCLD / CLD ratio in water equally depended on degradation and
- transfer rates as well as the remaining storage of CLD and 5bCLD in soils. The governing equations are given below:
- 255 Eq. (3): CLD storage in soil $CLD(t+1) = CLD(t) CLD(t) \times T_{CLD} CLD(t) \times C_{degrad}$
- 256 Eq. (4): 5bCLD storage in soil $5bCLD(t+1) = 5bCLD(t) 5bCLD(t) \times T_{5bCLD} + CLD(t) \times C_{degrad}$
- 257 Eq. (5): ratio in water $5bCLD/CLD = (CLD(t) \times T_{CLD})/(5bCLD(t) \times T_{5bCLD})$ 7

- $258 T_{CLD}$ and T_{5bCLD} are the rates of lixiviation for CLD and 5bCLD, respectively, C_{degrad} the rate of CLD degradation
- 259 into 5bCLD, and t the time. CLD and 5bCLD are expressed in units of mass. According to data reported by
- 260 Cabidoche et al. (2009), considering an area of 1 m^2 and that pollutants are distributed within the first 0.3 m of 261 is T_{max} is $T_{\text{ma$
- 261 soil, T_{CLD} is expressed as follows:
- 262 Eq. (6): $T_{CLD} = \frac{R}{K_{oc} \times (C/1000) \times D \times (0.3 \times 1000)}$
- 263 where Koc (L kg⁻¹) is the partitioning coefficient between the sorbed part on soil organic matter and the
- dissolved part in water, D (kg dm⁻³) the bulk density, C (g kg⁻¹) the soil carbon content, and R (mm) the annual amount of rainfall.
- 266 The calculation steps are given below:
- 267 the initial CLD and 5bCLD stocks are set to 100 and 0 units of mass respectively
- 268 calculation of leached CLD quantities (Eq. (3))
- calculation of degraded CLD quantities, i.e. transformed in 5bCLD (Eq. (3))
- 270 calculation of remaining CLD quantities (Eq. (3))
- 271 calculation of leached 5bCLD quantities (Eq. (4))
- 272 calculation of remaining 5bCLD quantities (Eq. (4))
- calculation of mass ratio in water (Eq. (5)) that accounts for concentration ratio since the two
- 274 compounds are leached with the same water quantities.

275 3 Results

276 3.1 Variability of CLD contamination and its relationships with 5bCLD

277 Figure 2 shows the relationship between the means of 5bCLD and CLD in rivers at each sampling point. We

- 278 found that the water 5bCLD content was at least tenfold lower than the water CLD content. However, there was
- 279 not a unique relationship between 5bCLD and CLD. The frequency distribution of the means of the 5bCLD to
- 280 CLD ratio in SW and GW clearly showed that a threshold of 0.07 divided the data set into two groups: a low and
- a high ratio around 0.02 and 0.1, respectively.

282 3.2 Spatial analysis

283 3.2.1 General distribution

Figure 3 presents the CLD concentrations (top) and the 5bCLD/CLD ratio (bottom) for SW (square/triangle) and

285 GW (star) throughout Martinique, according to hydrological sectors (left), soil (middle), and geology. The top of

286 Figure 3 shows that the most challenging areas relative to CLD contamination were mainly situated in the

287 northern Atlantic and central part of Martinique. The distribution for the 5bCLD / CLD ratio was different. The

bottom of Figure 3 shows that the group with the high ratio (>0.07) was mainly located either in the highly

- 289 contaminated northern areas, or in some parts of the low-contamination areas in southern and western
- 290 Martinique.

291 We observed overall consistency between the distribution of SW and GW contamination: the higher the CLD

- 292 content or 5bCLD / CLD ratio for SW, the higher the CLD content or 5bCLD / CLD ratio for GW. However, the
- 293 west coast displayed some exceptions, since we observed contaminated GW (low contamination most of all)
- while CLD was not detected in the rivers in the neighbourhood. Similarly, the 5bCLD / CLD ratio for GW
- $295 \quad \text{belonged to the high value group (>0.07 \ \mu\text{g L}^{-1}\text{), while the 5bCLD / CLD ratio for SW belonged to the low value}$
- 296 group, or was not available because of no contamination.

297 3.2.2 Impact of physical conditions

298 Land-use practices: high level of contamination in historical banana areas

Globally, for the water CLD content, the SW and GW contamination sites matched with the historical banana areas since 1970, i.e. during CLD application. Surprisingly, SW and GW contamination occurred outside these banana areas. This was mostly with low concentrations under 0.1 μ g l⁻¹ and rarely with the higher levels (one point in the South-West for GW, far from the banana area,). Most of these isolated points had a high 5bCLD / CLD ratio, leading the 5bCLD / CLD ratio not to match the banana field distribution, suggesting past CLD

304 misuse.

305 Hydrographic sector: a functional relationship between measurement points

Introducing hydrographic subsectors made it possible to establish a functional relationship between measurement 306 point data. Notably, this helped to explain why some points close to each other did not have the same 307 308 contamination level. For example, the CLD content of hydrographic subsector 1 (see Figure 3 left for locations) was different from hydrographic subsector 2 even though the points in each zone had the same contamination 309 310 level. However, some differences could occur on the north-east coast. This was encountered in zone 3, where the 311 contamination levels seemed to be linked to the altitudinal gradient. Contamination increased downwards in coherence with the banana field distribution along the coast at the lowest altitudes. The statistical results 312 313 summarized in Table 1 confirm this interaction between hydrographic sectors and soil /geology for CLD and 314 GW. However, no effect was found for the 5bCLD content and the 5bCLD / CLD ratio. 315 Soil type: a factor explaining some ratio variations in SW

Table 1 shows significant differences in GW CLD contamination according to the soil/geology pair: GW on nitisols, which are associated with old formations (older than 1 My), was more contaminated than on andosols associated with recent formations (1My to present). This did not result in any significant difference for SW. However, for SW, we observed significant differences for the 5bCLD / CLD ratio, opposing a low ratio for nitisols to a higher ratio for andosols (Figure 4). We also noted a higher ratio for vertisols. This statistically confirmed the result mapped in Figure 3, showing high 5bCLD / CLD ratios on vertisols in southern Martinique.

322 Geology: a factor explaining ratio variations in SW and GW

323 The age of the main geological units was used as an indicator of hydrogeology and notably residence time in the

- 324 aquifers, which is linked to pesticide transfer kinetics in GW, as well as in SW fed by it. Thereby, shorter
- 325 residence times were observed for more recent formations. It can be seen in Figure 3 that the highest CLD
- 326 contents in water matched with recent geological formations in the banana cropping area (northern half of the
- 327 island). Medium and low CLD contents were observed in other older geological units, or outside banana

- 328 cropping areas. As regards the 5bCLD / CLD ratio, the highest values were only observed in the most recent
- 329 units (0.5 My to present), for the most contaminated water bodies in the North Atlantic area (not shown).
- 330 It is interesting to note that the soil effect depended on geology. Figure 4 illustrates this, presenting the mean
- ratio for each soil type according to the age of the geological formations. For andosols and ferralsols/andosols,
- the ratio appeared to be significantly higher for recent geology.
- 333 To sum up, banana cropping areas explained the location of contaminated SW and GW, whereas the
- 334 combination of soil and geology factors explained the main spatial variability of the 5bCLD / CLD ratio, with
- 335 the highest values in the North associated with recent geological units and the highest values in the South
- 336 associated with vertisols.

337 3.3 Temporal analysis

338 3.3.1 Pesticides evolve differently in GW

339 Figure 5 illustrates pesticide trends in GW for the three longest available time series. The mean CLD content 340 globally decreased for two sites (Chalvet and Source Morne Figue) and remained stable for Lelene, while the 5bCLD content had a more erratic evolution, probably due to the greater influence of hydrological conditions 341 342 (climatic seasonality). As pointed out by Arnaud et al. (2016), these contamination periods correspond to rising 343 and falling groundwater levels, and therefore to periods of aquifer recharge. For the two sites showing a decrease in water CLD content, water 5bCLD contents below the detection limit appeared less frequently, and completely 344 345 disappeared in the case of the Source Morne Figue site after 2011. This was consistent with an increase in 346 5bCLD content, or at least with a more regular occurrence of positive values. Lastly, despite the impossibility of generalizing behaviour with the limited sampling sites and available period series, the groundwater data sets 347 348 showed an interesting evolution pattern with, in some cases, a decrease in CLD content associated with an 349 increase in water 5bCLD content.

350 3.3.2 In SW: the pesticide concentration and ratio globally decreased

From all the available data, we observed a highly significant downward trend in mean river concentrations for

- the CLD content, 5bCLD content and the 5bCLD / CLD ratio in water (a slope of -0.008, -0.028, -0.018,
- respectively). It is interesting to note that the decreasing trend for the 5bCLD content was about threefold higher than for the water CLD content.
- More specifically, Figure 6 shows the evolution of water CLD content for the 14 rivers with the highest measurement frequency. Globally, the mean Sen trend was -0.008 for the log, meaning that the CLD content was
- 357 halved after 7.5 years. Although most of the rivers showed a significant decrease in water CLD content, some of
- them were characterized by a constant level of contamination (Saint Pierre, Pont RN Rouge) and even one by a
- slight increase (Camping Matouba). Independently, we noted a high variation in the level of contamination.
- 360 A further analysis of temporal evolution (Figure 7) highlighted a relationship between Sen trends for CLD and
- the mean water 5bCLD contents (regression p-value =0.06): the lower the water 5bCLD content, the greater the
- 362 decrease in water CLD content. A similar trend was observed for the 5bCLD / CLD ratio (regression p-
- 363 value=0.05), while the relationship was not significant for mean water CLD content. This means that the

- 364 decrease intensity did not depend on water CLD content. Figure 7a and 7b (left: sen CLD vs. mean CLD) shows
- 365 favourable situations at the bottom left, where strong decreases in water CLD content were associated with a low
- 366 water CLD content in SW, which gives hope for pollution mitigation. Adversely, in the situations at the top right
- 367 of the figure, the pollution level is likely to last for a long time.
- 368 Additionally, Figure 7b shows that the weakest decreases in water CLD content were partly associated with
- 369 recent (0.1 My to present) geological formations and that the highest decreases were associated with older ones.
- 370 Lastly, regarding soils, Figure 7a shows that while andosols were distributed over the entire range of Sen trends,
- 371 ferralsols and vertisols characterized large decreases in water CLD content.
- 372 To sum up, high water CLD contents decreased with low water 5bCLD contents and low 5bCLD / CLD ratios
- 373 were encountered for basins situated on old geology and mostly ferralsols or vertisols. On andosols and recent
- 374 geology, the water CLD content did not vary over the study period, and the water 5bCLD content and 5bCLD /
- 375 CLD ratio were high. These conditions define a high diversity of situations with regard to the duration of 376 pollution.

377 3.4 Model simulation

In order to grasp the complex fate of CLD and 5bCLD, we used the simple model presented Sect. 2.3.4. It is an 378 iterative leaching model investigating the theoretical fate of CLD and 5bCLD in water, accounting for CLD and 379 5bCLD lixiviation rates (T_{CLD} and T_{5bCLD}), as well as the rate of CLD degradation into 5bCLD (C_{degrad}). Table 2 380 381 gives the results of the optimization processes in order to assess T_{5bCLD} and C_{degrad} from realistic values of T_{CLD} and the 5bCLD / CLD ratios. Thus, according to Eq. 6 (see Sect. 2.3.4), T_{CLD} may vary from 0.017 for an 382 andosol (And model) to 0.15 for a nitisol (Nit model), considering the respective values given by Cabidoche et 383 384 al., (2009) of 20,000 and 2,000 L kg⁻¹ for Koc, 0.55 and 1.1 for bulk density D, 70 and 20 g kg⁻¹ for soil carbon content C, and 4,000 and 2,000 mm for annual rainfall R. We targeted the 5bCLD / CLD ratios of 0.1 and 0.025 385 in water (cases And1, Nit1 and And2, Nit2, respectively), which corresponded to the median 5bCLD / CLD 386 387 ratios of SW for the two groups identified in Sect. 3.1. We applied a constraint on the 5bCLD / CLD ratios in 388 soil, considering they should lie between 0.01 and 0.017, referring to the median value encountered for andosols and nitisols, respectively (Clostre et al., 2015). 389 390 Figure 8 shows the results of two simulations: simulation And1 corresponds to an andosol situation with high

soil retention, and simulation Nit2 to a nitisol situation with low soil retention (Table 2). Notice that, according
to Eq. (3) and (4), Figure 8 shows the leached quantities of CLD and 5bCLD, not the concentration. However,
since the two compounds are lixiviated with the same water quantities, the shape of concentration curve and
quantity curve do not differ.
The simulation results showed that the ratio increased with time over the entire period up to a plateau (see Figure

- 8). A decrease in the ratio was not simulated, although a global trend was noted for our observed data on thewhole. At one sampling point, such a decrease could occur with an increase in lixiviation conditions (not
- shown), which may have been linked to land use changes. More likely, it could have been an artefact due the
- 399 difficulty in determining low values near the quantification threshold.

- 400 CLD decreased exponentially in the modelling approach. The current decrease we mainly observed in SW fitted
- 401 with this dynamic (linear decrease in log scale, Figure 6). Interestingly, we found that the decrease rate for
- 402 andosols (simulation And2 Figure 8) was far lower than for nitisols (simulation Nit1). This matched with the
- 403 andosol situation, where no significant decrease in the river was observed.
- 404 5bCLD first increased and then decreased at the same time as CLD. This may explain why we found a 5b CLD /
- 405 CLD ratio increase, whereas a 5bCLD decrease was observed. Our simulations also showed that T_{5bCLD} must be
- 406 higher than T_{CLD} otherwise the ratio increased continuously without a plateau. Optimization processes also gave
- 407 a higher value for T_{5bCLD} (Table 2), given that high ratios are unlikely when T_{CLD} is high (0.15) since it yields a
- 408 T_{5bCLD} of 1 (meaning that all 5bCLD is leached).
- 409 Lastly, despite difficulties in predicting what would happen for each location, our simulations gave interesting
- 410 insights for a better understanding of the global dynamics of the 5bCLD / CLD ratio and explained some of the
- 411 observations in water.

412 4 Discussion

413 Our results showed high spatial and temporal variability for water CLD content in SW and GW contamination.

- 414 By relating water CLD content to its metabolite compound, 5bCLD, we highlighted physical conditions relative
- 415 to soils and geology that may explain its variability in water, but also in the dynamics of pollution trends. We
- 416 summarized our conclusions in a conceptual scheme presented below.

417 4.1 CLD is degraded and contamination decreases

First of all, the CLD content in SW matched with the areas where CLD had been applied, i.e. in banana cropping 418 419 areas, irrespective of geology and soils. This was consistent with a global link between the location of 420 contaminated soil areas and the location of contaminated rivers, as shown on a watershed scale by Della Rossa 421 (Della Rossa et al., 2017). Surprisingly, we found that, overall, the soil type had no significant effect on water CLD content in SW, although large differences in CLD content were usually encountered in soils (Clostre et al., 422 2015; Devault et al., 2016). This paradoxical result was consistent with previous work showing that the most 423 contaminated soils are not the most contaminant for water, owing to their different capacity to retain the 424 425 molecule (Cabidoche et al., 2009; Levillain et al., 2012; Woignier et al., 2012). In other words, two types of soils 426 with different CLD contents may release the same quantity of CLD into water. However, our simulations 427 showed (see Figure 8) that over a long time scale, CLD contents in a river will quickly decrease for basins draining soils such as nitisols due to their low capacity to retain CLD. 428 429 In this environment, our results were in line with CLD degradation, being visible over a decadal time period

- 430 despite its strong persistence in the environment. This was hypothesized by observing the distribution of 5bCLD
- 431 / CLD ratios in water (median of 0.03; 1st centile of 0.006) with a far higher median and first centile value than
- 432 in the commercial product Curlone[©] (ratio of 0.0011). This was consistent with the result obtained by Devault et
- 433 al. (2016), who found high 5bCLD / CLD ratios in soils and, in particular, larger amounts of 5bCLD than should
- 434 have been applied using commercial formulations.

The water CLD content in SW decreased as well as the water 5bCLD content and the 5bCLD / CLD ratio. Given the mean Sen trends of about -0.008 for CLD (see Sect. 3.3.2), it takes about 40 years to yield the threshold of 0.1 μ g L⁻¹ during baseflow periods (flood flow periods being rarely sampled) given a current concentration of 0.5 μ g L⁻¹ on average. This trend was higher than that expected by Cabidoche et al. (2009), maybe because the authors underestimated the degradation process, which is still not greatly documented. However, it was consistent with the results obtained by Crabit (Crabit et al., 2016) based on a storage approach that assessed the duration of CLD pollution of a river of a watershed at 60 years.

442 4.2 Hypothesis relative to leaching processes

443 One of the main questions in this paper was what the 5bCLD / CLD ratio represents. To answer this sensitive 444 issue, we differentiated between three dimensions. A temporal dimension because the 5bCLD / CLD ratio is 445 supposed to increase over time with degradation progress. A spatial dimension since the 5bCLD / CLD ratio may 446 depend on local degradation conditions. A dynamic dimension since the 5bCLD / CLD ratio may depend on the 447 mobility properties of both molecules, CLD and 5bCLD.

448 The temporal dimension was firstly related to the long application period (from 1970 to 1993 for CLD), given that land-use changes led to different application phases in the 70s and 80s and that land-use changes are 449 correlated with soil contamination levels (Desprats et al., 2004). Secondly, comparing simulation results to 450 measurement time series, the temporal dimension could also be grasped observing GW, if we consider that the 451 452 residence time within the aquifer gives a temporal window on the water infiltration conditions (Gourcy et al., 453 2009; Tesoriero et al., 2007). The residence time - estimated by the water apparent age - depends on hydrogeological properties, and thus to the geological context (type of lithology and its weathering level, 454 455 geometry of the geological deposits, etc.). For example, we observed that high 5bCLD / CLD ratios were mainly located in the waters of northern Martinique, where rivers drain recent geological formations. In that area, 456 unweathered formations favour rapid transfers and thus low GW residence times of several years (Arnaud et al., 457 458 2017; Gourcy et al., 2009). Thus, in that area, GW is young and probably today mainly composed of waters that 459 percolated in the last decade with a 5bCLD / CLD ratio close to the current 5bCLD / CLD ratio in soil leaching waters. Conversely, the highest groundwater residence times in more weathered geological formations probably 460 characterize older GW (residence time of several decades) where the 5bCLD / CLD ratio may reflect an earlier 461 462 5bCLD / CLD ratio in soil leaching waters - closer to the ratio in the commercial product - during periods of 463 application or just several years after, leading to lower 5bCLD / CLD ratios in water. 464 The spatial dimension is hard to grasp since some of the variability can be attributed to the spatio-temporal variability of land-use changes over the application period. Considering that soil might be an important factor, 465 466 the results from Clostre et al. (2015) show that distribution of the 5bCLD / CLD ratio weakly differs from one

soil to another, with a median value of around 0.011 [0.002 0.077] in andosols and 0.017 [0.007 0.081] in

468 nitisols. This does not mean that degradation does not depend on soil, but it does mean that we cannot assess it.

469 It is interesting to note that the simulations accounting for nitisols and andosols in Table 2 give close values of

470 0.14% and 0.16% of degradation rate, respectively. The soil factor could therefore not be considered decisive in

471 explaining spatial degradation intensity.

- 472 For the dynamic dimension, our theoretical leaching model helped to represent how contamination evolved. On
- 473 the whole, the simulations accounting roughly for andosol and nitisol conditions tallied well with our
- 474 observations or with results from the literature: i) a large decrease in CLD was associated with a low 5bCLD /
- 475 CLD ratio, and ii) nitisol situations are more conducive to a contamination decrease than andosol situations,
- 476 considering pollution duration as noted by Cabidoche (Cabidoche et al., 2009).
- 477 Lastly, this discussion shows that the combined role of geology and soils together may explain 5bCLD / CLD
- ratio levels. In a comprehensive way, we derived a conceptual scheme of water contamination on a regionalscale.

480 4.3 A conceptual scheme of water contamination on a regional scale

481 We propose a conceptual scheme in Figure 9 to explain differences in 5bCLD / CLD ratios in water. We first 482 assumed that degradation occurs in soils. This process, which is combined with other processes determining CLD and 5bCLD fate in soil, results in a general increase in water 5bCLD content and in the 5bCLD/CLD ratio, 483 484 which is more or less pronounced depending on the soil. Hydrogeology teaches us that SW today could either be 485 a signal of ancient infiltrations and transfers underground, several decades ago, when 5bCLD/CLD ratios in soils were low (long residence time), or a signal of recent percolations, several years ago, when 5bCLD/CLD ratios in 486 487 soils were high (short residence time). Thus, soil properties and residence times both contribute to explaining the current impact on water quality in SW. This explanation is consistent with high 5bCLD/CLD ratios in northern 488 489 Martinique on recent geological formations, and low 5bCLD/CLD ratios elsewhere. For high 5bCLD/CLD ratios 490 in the South on vertisols, we can speculate that the degradation process was greater in this soil type (like soil 2 in Figure 9) because lixiviation is lower in the southern area with a lower rainfall rate. This may explain the higher 491 492 5bCLD/CLD ratios in SW, as simulated by a previous model, despite a longer residence time in the aquifers. 493 All of these results identify a set of conditions that favour the disappearance of CLD from the environment, 494 namely ferralsols with low retention properties on older geological formations, while others - notably andosols

495 with high retention rates on recent formations - are more risky.

496 5 Conclusion

The aim of this paper was to identify conditions that are conducive to a decrease in organochlorine pollution 497 levels in Martinique (FWI). We adopted an unusual approach that accounted, on the one hand, for the 498 interactions between aquifers and rivers on a catchment scale and, on the other hand, for the fate of CLD and its 499 compound 5bCLD. This approach was fruitful and led to the proposal of a global scheme of water contamination 500 501 on a regional scale accounting for physical conditions relative to soils and geology. This scheme coherently links the various amounts of chlordecone (CLD) and its metabolite 5bCLD in SW and GW. It explains both their 502 503 variability in water, but also in the dynamics of pollution trends. 504 Our results have several implications for evaluating diffuse pollution of agricultural origin. The spatial analysis

505 of metabolite/parent compounds provided some interesting information for identifying risky areas, or areas

- 506 where persistent pollutants are more likely decreasing. This also provided some insights into key parameters that
- 507 control these conditions and environmental vulnerability to agricultural pollution. This led to implications 14

- 508 regarding where and how to act to reduce impacts. Another implication is to promote continuous long-term
- 509 observations as opposed to one-off sampling, completing modelling approaches: in our case, long CLD time
- 510 series revealed a faster decrease than that expected by previous model predictions. Lastly, such a spatial and
- 511 temporal overview is required on a large scale to help stakeholders manage pollution on a territory scale,
- 512 accounting for the main characteristics of the landscape. This is the main challenge for the OPA-C Observatory
- 513 in FWI (Cattan et al., 2017).

514 Acknowledgments

- 515 We are grateful to the Water Office, the general council, and the environment, planning and housing agency in
- 516 Martinique for the data they provided on surface waters. Data sets on groundwater were provided by BRGM. We
- 517 should like to thank the LDA26 and BRGM laboratories for pesticide analyses.

519 6 References

- 520 AFNOR: Water quality - Protocol for the initial method performance assessment in a laboratory., 2009.
- 521 Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.-C. and García-Río,
- L.: The mobility and degradation of pesticides in soils and the pollution of groundwater resources, Agric. 522
- Ecosyst. Environ., 123(4), 247-260, doi:10.1016/j.agee.2007.07.011, 2008. 523
- 524 Arnaud, L., Charlier, J.-B., Ducreux, L. and Taïlamé, A.-L.: Groundwater quality assessment., in Crisis 525 Management of Chronic Pollution: Contaminated Soil and Human Health., CRC Press., 2017.
- 526 Bexfield, L. M.: Decadal-Scale Changes of Pesticides in Ground Water of the United States, 1993-2003, J. 527 Environ. Qual., 37(5_Supplement), S-226, doi:10.2134/jeq2007.0054, 2008.
- 528 Bocquene, G. and Franco, A.: Pesticide contamination of the coastline of Martinique, Mar. Pollut. Bull., 51(5-529 7), 612-619, 2005.
- 530 Borsetti, A. P. and Roach, J. A. G.: Identification of kepone alteration products in soil and mullet, Bull. Environ. 531 Contam. Toxicol., 20, 241-247, 1978.
- 532 Brunet, D., Woignier, T., Lesueur-Jannoyer, M., Achard, R., Rangon, L. and Barthès, B. G.: Determination of 533 soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS), 534
- Environ. Pollut., 157(11), 3120-3125, doi:10.1016/j.envpol.2009.05.026, 2009.
- 535 Cabidoche, Y.-M., Achard, R., Cattan, P., Clermont-Dauphin, C., Massat, F. and Sansoulet, J.: Long-term
- 536 pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts 537 for current residue, Environ. Pollut. Spec. Issue Sect. Ozone Mediterr. Ecol. Plants People Probl., 157(5), 1697-1705, 2009. 538
- 539 Cannon, S. B., Veazey, J. M., Jackson, R. S., Burse, V. W., Hayes, C., Straub, W. E., Landrigan, P. J. and 540 Liddle, J. A.: Epidemic kepone poisoning in chemical workers, Am. J. Epidemiol., 107, 529–37, 1978.
- Cattan, P., Tonneau, J. P., Charlier, J.-B., Ducreux, L., Voltz, M., Bricquet, J.-P., Andrieux, P., Arnaud, L. and 541
- 542 Jannoyer, M.: The challenge of knowledge representation to better understand environmental pollution, in Crisis

543 Management of Chronic Pollution: Contaminated Soil and Human Health., CRC Press., 2017.

- 544 Charlier, J.-B., Cattan, P., Moussa, R. and Voltz, M.: Hydrological behaviour and modelling of a volcanic tropical cultivated catchment, Hydrol. Process., 22(22), 4355-4370, 2008. 545
- 546 Charlier, J.-B., Cattan, P., Voltz, M. and Moussa, R.: Transport of a nematicide in surface and ground waters in a 547 farmed tropical catchment with volcanic substratum, Geophys. Res. Abstr., 11, 2009.
- 548 Charlier, J.-B., Lachassagne, P., Ladouche, B., Cattan, P., Moussa, R. and Voltz, M.: Structure and 549 hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: A multi-disciplinary 550 experimental approach, J. Hydrol., 398(3-4), 155-170, doi:doi: 10.1016/j.jhydrol.2010.10.006, 2011.
- 551 Charlier, J.-B., Arnaud, L., Ducreux, L., Ladouche, B., Dewandel, B., Plet, J., Lesueur-Jannoyer, M. and Cattan, P.: Caractérisation de la contamination par la chlordécone des eaux et des sols des bassins versants pilotes 552
- guadeloupéen et martiniquais, rapport du projet CHLOR-EAU-SOL, ONEMA, BRGM, CIRAD., 2015. 553
- 554 Clostre, F., Cattan, P., Gaude, J.-M., Carles, C., Letourmy, P. and Lesueur-Jannoyer, M.: Comparative fate of an
- 555 organochlorine, chlordecone, and a related compound, chlordecone-5b-hydro, in soils and plants, Sci. Total
- 556 Environ., 532, 292-300, doi:10.1016/j.scitotenv.2015.06.026, 2015.
- 557 Coat, S., Monti, D., Legendre, P., Bouchon, C., Massat, F. and Lepoint, G.: Organochlorine pollution in tropical
- 558 rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation, Environ. Pollut., 159(6), 1692-
- 559 1701, doi:doi: 10.1016/j.envpol.2011.02.036, 2011.
 - 16

- Colmet-Daage, F., Lagache, P., Crécy, J. de, Gautheyrou, J., Gautheyrou, M. and Lannoy, M. de:
 Caractéristiques de quelques groupes de sols dérivés de roches volcaniques aux Antilles françaises, Cah.
 ORSTOMSérie Pédologie III, 3, 91–121, 1965.
- 563 Cordier, S., Muckle, G., Kadhel, P., Rouget, F., Costet, N., Dallaire, R., Boucher, O. and Multigner, L.:
- Chlordecone Impact on Pregnancy and Child Development in French West Indies, in Crisis Management of Chronic Pollution: Contaminated Soil and Human Health., CRC Press., 2017.
- 565 Chronic Pollution: Contaminated Soil and Human Health., CRC Press., 2017.
- Crabit, A., Cattan, P., Colin, F. and Voltz, M.: Soil and river contamination patterns of chlordecone in a tropical
 volcanic catchment in the French West Indies (Guadeloupe), Environ. Pollut., 212, 615–626,
 doi:10.1016/j.envpol.2016.02.055, 2016.
- Della Rossa, P., Jannoyer, M., Mottes, C., Plet, J., Bazizi, A., Arnaud, L., Jestin, A., Woignier, T., Gaude, J.-M.
 and Cattan, P.: Linking current river pollution to historical pesticide use: Insights for territorial management?,
 Sci. Total Environ., 574, 1232–1242, doi:10.1016/j.scitotenv.2016.07.065, 2017.
- 572 Desprats, J.-F., Comte, J.-P. and Chabrier, C.: Cartographie du risque de pollution des sols de Martinique par les 573 organochlorés., BRGM., 2004.
- 574 Devault, D. A., Laplanche, C., Pascaline, H., Bristeau, S., Mouvet, C. and Macarie, H.: Natural transformation of
- chlordecone into 5b-hydrochlordecone in French West Indies soils: statistical evidence for investigating longterm persistence of organic pollutants, Environ. Sci. Pollut. Res., 23(1), 81–97, doi:10.1007/s11356-015-4865-0,
 2016.
- 578 European Union: Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human 579 consumption, Brussels., 1998.
- 580 European Union: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 581 establishing a framework for Community action in the field of water policy, Luxembourg., 2000.
- Farlin, J., Bayerle, M., Pittois, D. and Gallé, T.: Estimating Pesticide Attenuation From Water Dating and the
 Ratio of Metabolite to Parent Compound: J. Farlin Groundwater XX, no. X: XX-XX, Groundwater, 55(4), 550–
 557, doi:10.1111/gwat.12499, 2017.
- Fernández-Bayo, J. D., Saison, C., Voltz, M., Disko, U., Hofmann, D. and Berns, A. E.: Chlordecone fate and
 mineralisation in a tropical soil (andosol) microcosm under aerobic conditions, Sci. Total Environ., 463–464,
 395–403, doi:10.1016/j.scitotenv.2013.06.044, 2013.
- French government: Décret n° 2001-1220 du 20 décembre 2001 relatif aux eaux destinées à la consommation
 humaine, à l'exclusion des eaux minérales naturelles., 2001.
- Gassmann, M., Stamm, C., Olsson, O., Lange, J., Kümmerer, K. and Weiler, M.: Model-based estimation of
 pesticides and transformation products and their export pathways in a headwater catchment, Hydrol. Earth Syst.
 Sci., 17(12), 5213–5228, doi:10.5194/hess-17-5213-2013, 2013.
- Germa, A., Quidelleur, X., Labanieh, S., Lahitte, P. and Chauvel, C.: The eruptive history of Morne Jacob volcano (Martinique Island, French West Indies): Geochronology, geomorphology and geochemistry of the earliest volcanism in the recent Lesser Antilles arc, J. Volcanol. Geotherm. Res., 198(3–4), 297–310, doi:10.1016/j.jvolgeores.2010.09.013, 2010.
- 597 Germa, A., Quidelleur, X., Labanieh, S., Chauvel, C. and Lahitte, P.: The volcanic evolution of Martinique 598 Island: Insights from K–Ar dating into the Lesser Antilles arc migration since the Oligocene, J. Volcanol.
- 599 Geotherm. Res., 208(3–4), 122–135, doi:10.1016/j.jvolgeores.2011.09.007, 2011.
- 600 Gonzalez, M., Miglioranza, K. B., Shimabukuro, V., Quiroz Londoño, O., Martinez, D., Aizpún, J. and Moreno,
- 601 V.: Surface and groundwater pollution by organochlorine compounds in a typical soybean system from the south
- 602 Pampa, Argentina, Environ. Earth Sci., 65, 481–491, doi:10.1007/s12665-011-1328-x, 2012.
 - 17

- 603 Gourcy, L., Baran, N. and Vittecoq, B.: Improving the knowledge of pesticide and nitrate transfer processes 604 using age-dating tools (CFC, SF6, 3H) in a volcanic island (Marinique, French West Indies), J. Contam.
- 605 Hydrol., 108(3–4), 107–117, doi:10.1016/j.jconhyd.2009.06.004, 2009.
- IUSS Working Group WRB: World reference base for soil resources 2014 International soil classificationsystem for naming soils and creating legends for soil maps, FAO, Rome., 2014.
- 608 Kolpin, D. W., Schnoebelen, D. J. and Thurman, E. M.: Degradates provide insight to spatial and temporal 609 trends of herbicides in ground water, Ground Water, 42(4), 601–608, 2004.
- Lachassagne, P., Aunay, B., Frissant, N., Guilbert, M. and Malard, A.: High-resolution conceptual
 hydrogeological model of complex basaltic volcanic islands: a Mayotte, Comoros, case study, Terra Nova,
 26(4), 307–321, doi:10.1111/ter.12102, 2014.
- Lapworth, D. J., Gooddy, D. C., Stuart, M. E., Chilton, P. J., Cachandt, G., Knapp, M. and Bishop, S.: Pesticides
 in groundwater: some observations on temporal and spatial trends, Water Environ. J., 20(2), 55–64,
 doi:10.1111/j.1747-6593.2005.00007.x, 2006.
- Lesueur Jannoyer, M., Cattan, P., Woignier, T. and Clostre, F., Eds.: Crisis management of chronic pollution:
 contaminated soil and human health, CRC Press, Boca Raton., 2017.
- 618 Levillain, J., Cattan, P., Colin, F., Voltz, M. and Cabidoche, Y.-M.: Analysis of environmental and farming 619 factors of soil contamination by a persistent organic pollutant, chlordecone, in a banana production area of
- 620 French West Indies, Agric. Ecosyst. Environ., 159(0), 123–132, doi:10.1016/j.agee.2012.07.005, 2012.
- Luellen, D. R., Vadas, G. G. and Unger, M. A.: Kepone in James River fish: 1976–2002, Sci. Total Environ.,
 358(1–3), 286–297, doi:10.1016/j.scitotenv.2005.08.046, 2006.
- Masih, A., Lal, J. K. and Patel, D.: Contamination and Exposure Profiles of Persistent Organic Pollutants (PAHs and OCPs) in Groundwater at a Terai Belt of North India, Water Qual. Expo. Health, 6, 187–198, doi:10.1007/s12402.014.0126.6.2014
- 625 doi:10.1007/s12403-014-0126-6, 2014.

Montuori, P., Cirillo, T., Fasano, E., Nardone, A., Esposito, F. and Triassi, M.: Spatial distribution and partitioning of polychlorinated biphenyl and organochlorine pesticide in water and sediment from Sarno River and Estuary, Southern Italy, Env. Sci Pollut Res, 21, 5023–5035, doi:10.1007/s11356-013-2419-x, 2014.

Morgenstern, U., Daughney, C. J., Leonard, G., Gordon, D., Donath, F. M. and Reeves, R.: Using groundwater
age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment
into Lake Rotorua, New Zealand, Hydrol. Earth Syst. Sci., 19(2), 803–822, doi:10.5194/hess-19-803-2015,
2015.

Mottes, C., Lesueur-Jannoyer, M., Charlier, J.-B., Carles, C., Guéné, M., Le Bail, M. and Malézieux, E.:
Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model, J.
Hydrol., 529, 909–927, doi:10.1016/j.jhydrol.2015.09.007, 2015.

Mouvet, C., Dictor, M.-C., Bristeau, S., Breeze, D. and Mercier, A.: Remediation by chemical reduction in
laboratory mesocosms of three chlordecone-contaminated tropical soils, Environ. Sci. Pollut. Res., 24(33),
25500–25512, doi:10.1007/s11356-016-7582-4, 2017.

Multigner, L., Kadhel, P., Rouget, F., Blanchet, P. and Cordier, S.: Chlordecone exposure and adverse effects in
 French West Indies populations, Env. Sci Pollut Res, 1–6, doi:10.1007/s11356-015-4621-5, 2015.

- 641 Observatoire de l'Eau de la Martinique, Office de L'Eau de la Martinique and Asconit Consultants:
- 642 Détermination de la contamination des milieux aquatiques par le chlordécone VOLET 4: Investigations
- 643 complémentaires -Renforcement du maillage géographique sur les cours d'eau d'intérêt piscicole., 2012.

644 Orndorff, S. A. and Colwell, R. R.: Microbial transformation of Kepone, Appl. Environ. Microbiol., 39, 398– 645 406, 1980.

- Quantin, P., Balesdent, J., Bouleau, A., Delaune, M. and Feller, C.: Premiers stades d'altération de ponces
 volcaniques en climat tropical humide (montagne pelée, martinique), Geoderma, 50, 125–148,
 doi:10.1016/0016-7061(91)90030-w, 1991.
- 649 Ryberg, K. R. and Gilliom, R. J.: Trends in pesticide concentrations and use for major rivers of the United 650 States, Sci. Total Environ., 538, 431–444, doi:10.1016/j.scitotenv.2015.06.095, 2015.
- 651 SAS Institute Inc: SAS/STAT Software: Release 9.3, SAS Institute Inc., Cary, North Carolina., 2002.

652 Stone, W. W., Gilliom, R. J. and Ryberg, K. R.: Pesticides in U.S. Streams and Rivers: Occurrence and Trends 653 during 1992–2011, Environ. Sci. Technol., 48(19), 11025–11030, doi:10.1021/es5025367, 2014.

Tesoriero, A. J., Saad, D. A., Burow, K. R., Frick, E. A., Puckett, L. J. and Barbash, J. E.: Linking ground-water
age and chemistry data along flow paths: Implications for trends and transformations of nitrate and pesticides, J.
Contam. Hydrol., 94(1–2), 139–155, doi:10.1016/j.jconhyd.2007.05.007, 2007.

- U. S. Environmental Protection Agency: Estimation Programs Interface SuiteTM for Microsoft[®] Windows,
 Washington, DC, USA., 2012.
- UNEP: Report of the Persistent Organic Pollutants Review Committee on the work of its third meeting.Addendum. Risk management evaluation on chlordecone, Geneva, Switzerland., 2007.

Vittecoq, B., Reninger, P. A., Violette, S., Martelet, G., Dewandel, B. and Audru, J. C.: Heterogeneity of hydrodynamic properties and groundwater circulation of a coastal andesitic volcanic aquifer controlled by tectonic induced faults and rock fracturing - Martinique island (Lesser Antilles - FWI), J. Hydrol., 529, 1041–

664 1059, doi:10.1016/j.jhydrol.2015.09.022, 2015.

Wilson, N. K. and Zehr, R. D.: Structures of some Kepone photoproducts and related chlorinated
pentacyclodecanes by carbon-13 and proton nuclear magnetic resonance, J. Org. Chem., 44, 1278–1282,
doi:10.1021/j001322a020, 1979.

Woignier, T., Clostre, F., Macarie, H. and Jannoyer, M.: Chlordecone retention in the fractal structure of volcanic clay, J. Hazard. Mater., 241–242, 224–230, doi:10.1016/j.jhazmat.2012.09.034, 2012.

Zhang, Z., Huang, J., Yu, G. and Hong, H.: Occurrence of PAHs, PCBs and organochlorine pesticides in the
Tonghui River of Beijing, China, Environ. Pollut., 130, 249–261,
doi:http://dx.doi.org/10.1016/j.envpol.2003.12.002, 2004.

Table 1: Effects of physical conditions on the contamination level of surface water (model 1) and groundwater (model 2), showing probability levels of tested factors

674

	CLD	5b	ratio
Model 1: surface water			
Soil x geology	0.7210	0.5989	<0.0001
Soil x geology x Hydrographic sector	0.9077	0.1377	<0.0001
Date	<0.0001	<0.0001	<0.0001

Model 2 : groundwater			
Soil (or geology)	0.0228	0.8143	0.1209
Soil (or geology) x Hydrographic sector	0.0674	0.2811	0.6333
Date	<0.0001	<0.0001	<0.0001

Bold: statistically significant at the 0.05 probability level <u>Underlined italics</u>: statistically significant at the 0.10 probability level

676	Table 2: CLD (Cdegrad) degradation rate and 5bCLD (T5bCLD) lixiviation rate stemming from optimization
677	processes based on two target values of the 5bCLD / CLD ratio in leaching water (cases 1 and 2) and two hypotheses
678	for the CLD (TCLD) lixiviation rate account

Hypothesis	Target Parar		Parameters	Optimization	results
	5bCLD / CLD ratio		T _{CLD}	C_{degrad}	T _{5bCLD}
And1		0.025	0.017	0.0010	0.0988
And2		0.1	0.017	0.0014	0.1242
Nit1		0.025	0.15	0.0016	0.2584
Nit2		0.1	0.15	0.0126	1

679

681 8 Figure captions

Figure 1: Location and relief of the island of Martinique (FWI) in the Caribbean

Figure 2: Relation between CLD and 5bCLD means at each sampling point for Surface Water and Groundwater; distributions of the mean of the 5bCLD / CLD ratio are given below the 2D plot.

Figure 3: Water CLD content (top) and 5bCLD / CLD ratio (bottom) distributions for SW (square) and GW (star), according to hydrological sectors (left), soils (middle) adapted from Colmet Daage (1965), and geology (right) adapted from Germa et al. (2011). Large squares are relative to sample points having more than ten sampling dates and small squares having fewer than ten sampling dates.

Figure 4: Mean 5bCLD / CLD ratio (natural logarithm) according to soil types and to the age of the geological formations. Ferr_And, Nit_And and Vert_Ferr account for watersheds with two main types of soil, namely Ferrasols and Andosols, Nitisols and Andosols, Vertisols and Ferralsols.

Figure 5: CLD (top) and 5bCLD (bottom) trends in GW for the three longest time series (y scale is in natural logarithm). Soil and geology are: andosol and 0.1 My to present for the Chalvet and Chez Lelene sites; nitisol and 16.1 My to 8.5 My for the Source Morne Figue site. Sen trends and p-values show a significant CLD decrease for Chalvet and Source Morne Figue. We found 5bCLD decreased at Chez Lelene while it increased at Source Morne Figue

Figure 6: CLD (natural logarithm) trends in SW according to geology and soil type. Sen trend and confidence interval; p value of the Modified Mann-Kendall test for serially correlated data using the Yue and Wang variance correction approach. CLD content significantly decrease (p value <0.05) for 10 out of 14 rivers. Thick Lines (Pont RN1 and AEP-Vive-Capot) account for high decrease (lower than percentile 0.1 of Sen trends); thin lines (Camping Macouba and Saint Pierre) account for low decrease (higher than percentile 0.9).

Figure 7: Sen trends of CLD vs. mean log content of CLD, 5bCLD, and 5bCLD / CLD ratio (from left to right – natural logarithm) in SW, according to a) soil, and b) geology.

Figure 8: Theoretical evolution of CLD and 5bCLD lixiviation, as well as the 5bCLD / CLD ratio for the two models illustrating 1) conditions for andosols with high soil retention (Model And2 in Table 2 – continuous lines) and 2) conditions for nitisols with low soil retention (Model Nit1 in Table 2- dashed line).

Figure 9: CLD fate in soils and residence time combined to explain 5bCLD/CLD ratio levels in SW. For SW draining GW with a long residence time, leaching occurred during the application period with a low 5bCLD/CLD ratio whatever the soil type. For SW water draining GW with a short residence time, leaching occurs nowadays from soil with a higher 5bCLD/CLD ratio depending on soils and reflecting CLD fate in soils.

Figure 2: Relation between CLD and 5bCLD means at each sampling point for Surface Water and Groundwater; distributions of the mean of the 5bCLD / CLD ratio are given below the 2D plot.

Figure 3: Water CLD content (top) and 5bCLD / CLD ratio (bottom) distributions for SW (square) and GW (star), according to hydrological sectors (left), soils (middle) adapted from Colmet Daage (1965), and geology (right) adapted from Germa et al. (2011). Large squares are relative to sample points having more than ten sampling dates and small squares having fewer than ten sampling dates.

Figure 4: Mean 5bCLD / CLD ratio (natural logarithm) according to soil types and to the age of the geological formations. Ferr_And, Nit_And and Vert_Ferr account for watersheds with two main types of soil, namely Ferrasols and Andosols, Nitisols and Andosols, Vertisols and Ferralsols.

693 Formation ages are in My

696

Figure 5: CLD (top) and 5bCLD (bottom) trends in GW for the three longest time series (y scale is in natural logarithm). Soil and geology are: andosol and 0.1 My to present for the Chalvet and Chez Lelene sites; nitisol and 16.1 My to 8.5 My for the Source Morne Figue site. Sen trends and p-values show a significant CLD decrease for Chalvet and Source Morne Figue. We found 5bCLD decreased at Chez Lelene while it increased at Source Morne Figue

Figure 6: CLD (natural logarithm) trends in SW according to geology and soil type. Sen trend and confidence interval; p value of the Modified Mann-Kendall test for serially correlated data using the Yue and Wang variance correction approach. CLD content significantly decrease (p value <0.05) for 10 out of 14 rivers. Thick Lines (Pont RN1 and AEP-Vive-Capot) account for high decrease (lower than percentile 0.1 of Sen trends); thin lines (Camping Macouba and Saint Pierre) account for low decrease (higher than percentile 0.9).

Figure 7: Sen trends of CLD vs. mean log content of CLD, 5bCLD, and 5bCLD / CLD ratio (from left to right – natural logarithm) in SW, according to a) soil, and b) geology.

Figure 8: Theoretical evolution of CLD and 5bCLD lixiviation, as well as the 5bCLD / CLD ratio for the two models illustrating 1) conditions for andosols with high soil retention (Model And2 in Table 2 – continuous lines) and 2) conditions for nitisols with low soil retention (Model Nit1 in Table 2- dashed line).

Figure 9: CLD fate in soils and residence time combined to explain 5bCLD/CLD ratio levels in SW. For SW draining GW with a long residence time, leaching occurred during the application period with a low 5bCLD/CLD ratio whatever the soil type. For SW water draining GW with a short residence time, leaching occurs nowadays from soil with a higher 5bCLD/CLD ratio depending on soils and reflecting CLD fate in soils.

