
Author Response to Editor 

Dear Dr. Jan Seibert. 

Thank you for your comments to our author responses and corrections.   
To the Editor comments (grey text) in this first section, we provide author corrections (AC, blue text). 
The author corrections show the page and line to which the implemented corrections and changes are 
found in the provided track changes version of the revised manuscript. Hence, P6L3-5 indicates changes 
on page 6 and lines 3 to 5. This document further includes all author response (AR) and corrections (AC) 
made to the referees and the revised manuscript with tracked changes. 
 
We first address the editor comments thereafter the author response to each referee: 
 
Looking through your responses in the discussion phase, I have the following minor comments: 

 
#1: Reviewer 1: Your motivation for using a daily time step could be included in the text 

 
AC: P7L13-15 We have added “All temperature forecasts were aggregated to daily time steps since the 
operational HBV model runs on a daily time step, and the SeNorge data used as a reference provides 
only daily values.” 

 

#2: Reviewer 3: Please reconsider addressing the first comment. I agree with the reviewer that 

discussing seasons where temperature obviously has much less of an effect could be distracting. 

 
AC: We omitted the reference to summer and winter. We further removed these seasons from figure 5 
and updated the figure caption accordingly. 
Moved from section 4.2 to 3.2 P10L15-19: “For this paper, we chose to focus on the results for autumn 
and spring. Summer (July to September) was excluded due to the relatively small changes in CRPSS 
explained by (i) the skill of uncalibrated temperature forecasts are higher and the potential for 
improvement is lower, and (ii) there is less or no snow in summer, resulting in a reduced streamflow 
sensitivity to temperature. Winter (October to December) was excluded since it performs similarly as 
the autumn season.” 
Removing references to summer and winter in the following place: P10L13-14, P11L21-24, P13L10-11, 
P17L1+3+8 
 
#3: Reviewer 4: CRPS and the subscript version, I agree with the reviewer’s concern and would 
suggest to more clearly state that these refer to the same thing” 
 

AR: Firstly, we would like to emphasize that there are many recent examples in HESS where CRPSS is 

used as a multi-letter variable in equations: Sadri et al. (2018), Woldemeskel et al (2018), Lucatero et al 

(2018), Rogelis et al. (2018), Bazile et al., (2017). Since CRPSS is a well established abbreviation, we want 

to keep it in the text. In order to follow the HESS standard for notation in equations, and use single 

letter variables we did the following updates in the revised manuscript.  

 

AC: P10L5-7 We provided a sentence to clarify sec 3.2: “For readability, the abbreviation Scrp and Scrps 

used in the equation will be substituted with CRPS and CRPSS in the text hereafter”   

P9L11+20+21: We added explanations similar to “CRPS denoted as SCRP in Eq. 1” 
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Author Response to RC#1 

Thank you for a very positive feedback on our article. We appreciate the valuable comments that are 

helpful in order to improve the manuscript.  

We would like to apology for the missing references. The error emerged when we specified the HESS 

format, and un-intentionally deleted many references from the reference list. The main author should 

nonetheless have detected this flaw prior to posting.  

Replies and corrections are done as follows: the Author response (AR) is marked with red text, while the 

author’s suggestions to corrections (AC) are marked with blue text.  All Referee comments are kept in a 

black; we use page and line number when needed to specify the appropriate location. All page and line 

references from the author are to the provided track changes version of the revised manuscript. Hence, 

P6L3-5 indicates changes on page 6 and lines 3 to 5. 

 

Interactive comment on “Streamflow forecast sensitivity to air temperature forecast 
calibration for 139 Norwegian catchments” by Trine J. Hegdahl et al. 
 
Anonymous Referee #1 
Received and published: 6 November 2018 
 
General comments: 
This is a well written paper. It investigates the impact of temperature forecasts on streamflow forecast 
skill, especially considering the effect of pre-processing of temperature ensemble forecasts. The study is 
based on forecasts for a large number of catchments in Norway, thus providing a very comprehensive 
and systematic analysis. The paper provides an important contribution to the research and practical 
application of ensemble meteorological forecasts for streamflow forecasting. 
 
Detailed comments: 
1. Page 2, line 16-17. There are different ways of producing meteorological ensemble forecasts. 
Typically, also model physics are perturbed. 
AR: You are right. The ECMWF ensemble prediction system includes stochastic perturbation to the 
model physics. We will add to the sentence to address this aspect. 
AC: P2L22 We changed to “… are created by perturbing both the initial states of the original 
deterministic forecast and the physics tendencies of the ….” 
 
2. Page 5, line 18-19. Not clear here how catchment average precipitation and temperature are 
estimated. Are they based on the SeNorge data sets? If so, is it then necessary to apply elevation 
corrections for the model calibration, since elevation corrections have been applied for producing the SE 
Norge data sets? 
AR: We agree that the description of how temperature is used in the hydrological model is ambiguous 
and this will be clarified in the text. You are right that elevation correction is applied to the SeNorge 
dataset. Our set-up for the HBV models uses catchment average temperature as input, calculated from 
the SeNorge data.  The elevation correction mentioned in l18-19 refers to the internal correction in the 
HBV model. These are used to adjust catchment average temperature and precipitation, representing 
the catchment mean elevation, to each elevation zone in the HBV model. A linear elevation adjustment 
is applied to temperature, whereas an exponential adjustment is applied to the precipitation.  
AC: P6L6-9  We reformulated  
“The model uses catchment average temperature and precipitation as input. Each catchment is divided 
into 10 elevation zones, each covering 10% of the total catchment area. The catchment average 
precipitation and temperature are elevation adjusted to each elevation zone using catchment specific 
laps rates. 
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3. Page 6, line 17-20. Why use a daily time step for the streamflow forecasts? Meteorological forecasts 
with a 6-hour time step are available. 
AR: The operational HBV model used for flood forecasting runs on a daily time step. In addition, the 
SeNorge data that is used for model calibration and updating, provides only daily values.   
AC: P7L13-15 We have added “All temperature forecasts were aggregated to daily time steps since the 
operational HBV model runs on a daily time step, and the SeNorge data used as a reference provides 
only daily values.” 
 
4. Page 7, line 4-6. For the quantile mapping, a critical issue is the mapping of forecasts outside the 
range of observed data. How is this done? 

AR: MetNorway use parametric quantile mapping based on the hourly first 24h. When a forecast is 

outside the observation range, a 1:1 extrapolation is used. Therefore, if a forecast is 2°C higher than the 

highest percentile of forecasts used for calibration, then the calibrated forecast is 2°C higher than the 

same percentile for the reference.  
AC: P8L13-15 Rewritten “The same coefficients, based on mapping the first 24 hours, are applied to all 
lead times and ensemble members individually.  For forecasts outside the observation range, a 1:1 
extrapolation is used. I.e. if a forecast is 2°C higher than the highest mapped forecasted temperature, 
then the calibrated forecast is 2°C higher than the highest mapped reference temperature. ”   
 
5. Page 8, line 12-13. Alternatively, you could use persistent forecast as benchmark. This would be more 
appropriate for evaluating short-term forecast skill. 
AR: A persistent forecast will have some predictive skill in the short-range, but less for longer lead times. 
Engeland and Steinsland (2014; Fig. 4) show that the persistence did not add value after two days for 
selected Norwegian catchments. Pappenberger et al (2015) suggest using persistence as benchmark, 
based on a study of catchments larger than 6000km2. However, given our selection of catchments, 
which are relatively small, quick responding, and with rapid changes in weather, combined with an aim 
to evaluate at longer lead times, we choice not to use persistence as benchmark. Rather, we used 
climatology as a benchmark since: (1) it is straightforward to get climatology as an ensemble, and (2) the 
focus of study is a lead time of five days. The daily climatology represented as daily ensemble (not an 
average value) gives a good representation of seasonal variations. Moreover, for this lead time 
persistent forecast has small predictive power due to the relatively short memory of our catchments 
(e.g.  the streamflow autocorrelation for a time lag 5 days is less than 0.6 for about 80% of our 
catchments for the 25% highest flows).   
AC: We made no modifications.  
 
6. Page 12, section 5.3. There are a lot of repetitions in this section. I suggest including discussion on 
spatial patterns in sections 5.1 and 5.2. 
AR: We will carefully read and revise Section 5.3 to avoid repetitions, and consider rewriting 5.1 and 5.2, 
to include the discussion from 5.3. 
AC: P13L9-P15L15 We have revised and rewritten section 5.1 and 5.2 to include spatial patterns 
previously presented in section 5.3. The original section 5.3 (Spatial patterns) is in total removed. For 
both 5.1 and 5.2 the Section headings are updated. 
 
Technical corrections: 
1. Page 2, line 30. Evensen (2003) not in reference list. 
AR: Thanks; will be added 
AC: The reference is added to the reference list: “Evensen, G.: The Ensemble Kalman Filter: theoretical 
formulation and practical implementation. Ocean Dynamics, 53(4), p343-367, 2003.” 
 



Author Response to RC#1 

2. Page 4, line 27. “og” -> “and” 
AR: This will be corrected.  
AC: P5L11 Changed 
 
3. Page 11, line 20 and 24. Delete “Ivar”. 
AR: OK 
AC: P14L2+L6 Ivar is deleted in the citation  
 
 
 

References 

Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of 
catchments and several lead times. Water Resources Research 50(1), p182-197, 
doi:10.1002/2012WR012757, 2014. 
 

Pappenberg, F., et al.: How do I know if my forecasts are better? Using benchmarks in hydrological 

ensemble prediction. Journal of Hydrology, 522, 697-713. 2015 



Author Response to RC#2 

Thank you for the positive evaluation of our article. We appreciate the feedback that will contribute to 

improving the manuscript. 

We would like to apology for the missing references. The error emerged when we specified the HESS 

format, and un-intentionally deleted many references from the reference list. The main author should 

nonetheless have detected this flaw prior to posting.  

Replies and corrections are done as follows: the Author response (AR) is marked with red text, while the 

author’s suggestions to corrections (AC) are marked with blue text.  All Referee comments are kept in a 

black; we use page and line number when needed to specify the appropriate location. All page and line 

references from the author are to the provided track changes version of the revised manuscript. Hence, 

P6L3-5 indicates changes on page 6 and lines 3 to 5. 

 

 

Interactive comment on “Streamflow forecast sensitivity to air temperature forecast 
calibration for 139 Norwegian catchments”  
By Trine J. Hegdahl et al. 
 
Anonymous Referee #2 
Received and published: 15 November 2018 
 
This manuscript presents analyses of the sensitivity of streamflow forecasts to air temperature forecast 
calibration. The manuscript is well written, well structured, and I only have a few minor comments to 
the presentation, most of them just edits. 
 
I find the description of validation scores and evaluation scores in 3.2 somewhat short. The section could 
give a better description of the rank histograms, and what is actually meant by the different shapes. And 
what is meant by slope and convexity being “negatively oriented”? Something seems wrong with the 
last sentence. 
 
AR: Thank you for bringing this to our attention. We will provide some more details in the description of 
the rank histograms. By “negatively oriented”, we mean that lower values (of slope and convexity) are 
better (i.e. more reliable forecasts). We will revise the sentence to better explain the meaning of  
”negatively oriented”, and rephrase the last sentence to make it clear.  
AC: We applied the following changes: 

P8L28-31 “For reliable ensemble forecasts, the rank-histogram will be uniform (horizontal). A bias in 
the ensemble forecast is recognized as a slope in the rank-histogram, where a negative slope 
indicates over-estimation by the forecasts (and vice versa). A U-shape indicates that the ensemble 
forecast is under-dispersed whereas a convex shape indicates over-dispersion (Hamill, 2001).   
P9L2-3 “… and convexity are negatively oriented, i.e. lower values are better, and with an optimum 
value of zero ….”  

 
P2L5 three main componentS? 
AR: Thank you, will be corrected.  
AC: P2L8: “component” replaced by “components” 
 
 
P2L14 Langsrud et al, 1998a and 1998b are missing from reference list. What kind of statistical 
uncertainty models? (One line, to understand better what is different from the ensemble forecast) 
AR: The references will be added and the text revised explaining the uncertainty model referred to.  
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AC: P2L17-19 Rewritten “the uncertainty model accounts for the strong autocorrelation in forecast 
errors and estimates an uncertainty band around the deterministic temperature, precipitation and 
streamflow forecasts.”   
 
 
P4 2.1 Is Gjuvaa in the region South or East? Bulken is in the West region? 
AR: We agree that the current manuscript is somewhat unclear on this issue and in the revised 
manuscript, we suggest adding in parenthesis to which region each catchment belongs.  

AC: P5L11+13 “Bulken (W), Gjuvaa (E) … ” and for all later references to these catchments 

P5L14 We changed the following sentence: “Gjuvaa (E) is non-glaciered and located inland.”  
 
P5L20 PEST can be generic tools for parameter estimation or a particular software, what is it here? 
AR: We use the PEST software to estimate parameters. We will specify this in the revised manuscript. 
AC: P6L9-10 Rewritten “… we used the operational model setup which has been calibrated using the 
PEST software to establish model parameters (Doherty, 2015)” 
 
P6 2.2.4 / 3.1.1 Is the forecast from ECMWF point forecast (centre of the grid cell) or averages for the 
entire grid cell? 
AR: The ECMWF forecasts should be considered as average values within the grid box, see Owens (2018, 
fig 3.2.1) for details.  
AC: P7L23-24 We added to the ECMWF description: “The ECMWF grid temperature, which represents 
the average temperature for the grid cell, was interpolated from a horizontal resolution of 0.25 (~30 km) 
….” 
 
P7L23-24 “In this study, the ensemble range (…) visually assessed the sharpness.” Something seems 
wrong, rephrase. 
AR: Thank you. We will rephrase this sentence. We consider modifying this paragraph according to 
suggestions by RC#3, evaluate plot of empirical sharpness distribution.  
AC: P9L5-8 Rewritten “In this study, the temperature sharpness was assessed by first estimating the 
range between the 5th and the 95th percentile of the ordered ensemble forecasts for all issue dates, lead 
times and catchments. For streamflow, we estimated a relative sharpness by dividing the 5th to 95th 
percentile range by the ensemble mean. Thereafter, sharpness was determined for each catchment and 
lead time as the average range of all issue dates. ” 
 
P9L12-13 since “reliability has improved and some sharpness is maintained”. This could be better 
explained. 
AR: We will modify this part including evaluating plots of the empirical distribution of sharpness, ref. 
RC#3, and information above.  
AC: P11L1-2 Rewritten “A lead time of 5 days was chosen since reliability (convexity and slope) has 
improved and some sharpness is maintained, i.e. too large ensemble spread will increase the reliability 
but the forecast value will be reduced.”  
 
 
P6L24 I guess it should be “atmospheric lapse rate”? 
AR: You are quite right; will be corrected. 
AC: P7L27 “atmospheric”  
 
P8L17 remove s from catchments. 
P9L9 remove comma after convexity 
P10L7 they performs – remove S. 
AR: Thank you. 
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AC: P9L27, P10L29, P11L26 We corrected as suggested.  
 
 
P11L17 Rather than just sensitive, I think QM is unable to correctly map forecasts outside the 
observation range. 
AR: We will rephrase to enhance the problems of QM mapping outside the observational range. It is 
important to note that all statistical methods will have problems outside the observational range. (ref 
RC#3, and discussion in RC#4) 
AC: P13L16 Rewritten “Quantile mapping, as most statistical calibration methods, is sensitive to 
forecasts outside the range of calibration values and period (Lafon et al. 2013), this can be an 
explanation for too high correction in the highest Tens quantile.” 
In addition, we added a sentence P8L13-15 to clarify the use of quantile mapping: “The same 
coefficients based on mapping the first 24 hours, were applied to all lead times and members.  For 
forecasts outside the observation range, a 1:1 extrapolation was used.  I.e. if a forecast is 2°C higher 
than the highest mapped forecasted temperature, then the calibrated forecast is 2°C higher than the 
highest mapped reference temperature.” 
 
 
P12L2 temperatureS are? 
AR: Thank you; will be corrected. 
AC: P14L18 Changed 
 
P14 L29 ”elevation correction dependency on lapse rate” – is this correct? 
AR: We will rewrite to make this phrasing clearer  
AC: P17L29 Rewritten “… an elevation correction depending on lapse rate” 
 
P16L17 No publisher? 
AR: Thank you; will be corrected.  
AC: Added to the reference list. “Engeland, K., Renard, B., Steinsland, I., and Kolberg, S.: Evaluation of 

statistical models for forecast errors from the HBV model. Journal of Hydrology, 384(1), 142-
155, 2010.” 

 
Fig1 caption: Most of the catchments on the left are too small to be visible?  
AR: We agree. The western catchments are small and thus difficult to distinguish on the map. We will 
revise the figure accordingly and further suggest adding a note on the fact that catchments on the 
western coast are small in the figure legend. 
AC: P24L5-10 Rewritten Fig 1 caption:” The maps for Norway indicates the 139 catchments used in this 
study. The left map show the catchment boundaries including the location of four selected catchments. 
Please note that many catchments are relatively small and difficult to detect. The location of the gauging 
station for all catchments are shown in the right map.  Norway was grouped into five regions (N=North, 
M=Mid, W=West, S=South, and E=East), all regions are marked with different colors and regional 
boundaries.” 
 

 
Reference 
Owens, R G, Hewson, T D: ECMWF Forecast User Guide. Reading: ECMWF. doi: 10.21957/m1cs7h, 2018. 



Author Response to RC#3 

Thank you for the positive and good evaluation of our article. We appreciate the comments that are 

valuable and helpful in order to improve the manuscript.  

We would like to apology for the missing references. The error emerged when we specified the HESS 

format, and un-intentionally deleted many references from the reference list. The main author should 

nonetheless have detected this flaw prior to posting.  

Replies and corrections are done as follows: the Author responses (AR) are marked with red text, while 

the author’s suggestions to corrections (AC) are marked with blue text.  .  All Referee comments are kept 

in a black; we use page and line number when needed to specify the appropriate location. All page and 

line references from the author are to the provided track changes version of the revised manuscript. 

Hence, P6L3-5 indicates changes on page 6 and lines 3 to 5. 

 

Review of ‘Streamflow forecast sensitivity to air temperature forecast 
calibration for 139 Norwegian catchments’ by Trine Hegdahl et al. 
Jan Verkade, November 2018 
 
Overall impression 
This manuscript is suitable for publication. The research described in it has a clear objective which is to 
try and determine if ‘calibrated temperature ensemble forecasts’ result in better streamflow forecasts 
compared to the non-calibrated equivalents. The research setting, the approach and the data used is 
well described and the results are well laid out. I have a few concerns/questions/suggestions but these 
would require only minor revisions to the manuscript. 
 
 
Minor comments 
Overall 
• Multiple references are made to seasons in which the effect of temperature forecast calibration on 
streamflow was negligent. You’re right to point out that the reason is that temperature forecasts only 
matter if/when it affects the simulation of snowmelt processes. You could consider mentioning this in 
the start of the paper, explain that for this reason, you’re looking at only those seasons where 
temperature affects streamflow through either rain-falling-as-snow or through snowmelt, and then omit 
reference to the other seasons altogether. I find it a bit distracting from the main points. 
AR: This is a good suggestion. We found it useful to include all seasons in the first part of our analyses in 
order to highlight the differences between seasons, which subsequently provide the motivation for 
leaving some seasons out of the final analysis.  
AC: We omitted the reference to summer and winter. We further removed these seasons from figure 5 
and updated the figure caption accordingly. 
Moved from section 4.2 to 3.2 P10L14-19: “For this paper, we chose to focus on the results for autumn 
and spring. Summer (July to September) was excluded due to the relatively small changes in CRPSS 
explained by (i) the skill of uncalibrated temperature forecasts are higher and the potential for 
improvement is lower, and (ii) there is less or no snow in summer, resulting in a reduced streamflow 
sensitivity to temperature. Winter (October to December) was excluded since it performs similarly as 
the autumn season.” 
Removing references to summer and winter in the following place: P10L13-14, P11L20-24, P13L10-11, 
P17L1+3+8 
 
• For many hydrologists, the word ‘calibration’ has a different meaning from how it is used in your 
paper. 
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I acknowledge that your meaning is consistent with how many meteorologists would interpret it. I 
would recommend to address this issue by either use a different word (I believe HESSD readers may be 
more familiar with ‘post-processing’) or by addressing this in the text somewhere. 
AR: We agree that hydrologists might interpret the term “calibration” to “hydrological model 
calibration”, and we will clarify our use of the terminology as illustrated in Figure 2. Post-processing is, in 
our paper, a general term for any modifications applied to a raw meteorological forecast. We distinguish 
between calibration and downscaling, that both are post-processing methods. This is consistent with the 
terminology used by the Norwegian Meteorological Institute (MetNorway) 
(https://github/metno/gridpp).    
AC: P2L7-11 We rewrote to clarify the terminology used ”Post-processing refers to all techniques used 
to change the output from a meteorological model, and includes calibration (described above) and 
downscaling. Downscaling implies resampling from the original forecast grid size to a grid of higher 
resolution, and both statistical (e.g. interpolation) and dynamical (e.g. a regional weather forecast 
model) techniques, can be used (Schaake et. al., 2010). A recent review of post-processing methods are 
given in Li et al (2017) and the textbook edited by Vannitsem et al (2018)”  
 
• Citations aren’t always properly formatted. I think I’ve seen ((double parentheses)), for example. In 
S3.1.2, l12, a correct way to refer to the evidence would be (Seierstad, 2017) with the ‘personal 
communication’ listed in the bibliography. I think. I’ve also seen citation in which both first and family 
names are listed. May be good to verify against Copernicus citation rules. 
AR: Thank you.  
AC: The citations and references have been formatted according to the HESS standard.  
 
Abstract 
• l9-11 These sentences distract from the point you’re going to make. While the facts you state may 
have a place in the introduction, I would omit these from the abstract. 
AR: You are right. We will consider rewriting the abstract.  
AC: P1L9-14 We changed the first sentences as follows:  
“In this study, we used meteorological ensemble forecasts with the hydrological models to quantify the 
uncertainty in forecasted streamflow, with a particular focus on the impact of ensemble temperature 
forecasts. In catchments with seasonal snow cover, snowmelt is an important flood generating process.” 
 
• l20 ‘the HBV model is used to calculate streamflow’. The verb to calculate presumes certainty. Pls 
consider using estimate instead. 
AR: Thank you, we will change as suggested, i.e. using ‘estimate’ both in the abstract and in the text. 
AC: We changed as suggested P1L23, P2L20, P7L8+11+16, P10L25, P14L21. 
 
 
• l21 ‘influenced’. My understanding is that ‘influences’ (and the associated verb) are a thing of the 
mind 
(“Who are your main influences?” “Joan Baez”). For physical processes, I think ‘affected’ is more 
suitable. 
AR: Thank you. We will change ‘influence’ used as a verb to affect, and  to ’effect’ where ‘influence’ is 
used as a noun. 
AC: Changed to affects or in some cases effect: P1L24+27(affected), P2L8(affected), P10L20 (effect), 
P11L19 (affects) P16L8 (affects) + L25 (effect), P17L7 (effect) 
 
• l26 ‘however’. I don’t think this sentence contradicts anything that was stated before. Hence, the word 
‘however’ may be omitted. 
AR: Thank you, we will omit “however”.   



Author Response to RC#3 

AC: P1L31 Rephrased to “Overall, it is evident that temperature forecasts are important for streamflow 
forecasts in climates with seasonal snow cover.” 
 
Section 3.1.2 
• I am not entirely sure who provides the calibration parameters. L5 suggests MetN, but the sentence 
“To establish the calibration parameters. . . ” (l8) may be interpreted as an explanation of how the 
authors have done this.  

AR: MetNorway did the quantile mapping, and established the calibration parameters. The calibration 

parameters were originally used to bias correct the temperature forecasts as provided on yr.no (the 

Norwegian weather forecasting). We applied the Met-parameters to the raw ENS temperature forecasts 

of our selected period.  

AC: P8L8 We rephrased the sentence “To establish the calibration parameters MET Norway used both 

ENS re-forecast (Owens, 2018) and Hirlam data from July 2006 to December 2011 interpolated to a 5×5 

km2 grid.” 
 
 
In the Met Norway procedure, why aren’t temperature observations used? Are the HIRLAM reanalyses 
deemed to be sufficiently certain? This may deserve a few informed comments. 

AR: You are right to point out these differences in data sets used for calibration of forecasts and the 

hydrological model. First, as you mention, SeNorge and Hirlam are not the same data. Hirlam is a short-

range regional forecast model (4 km resolution) used in the operational weather forecast for the first 2 

days, whereas SeNorge is a dataset where observations are interpolated to a 1 km grid.  

In this study, we wanted to use the available operational method from MET Norway, and they use 

quantile mapping with Hirlam as a reference to calibrate the ECMWF ensemble forecast. Both Hirlam 

(for the first 2-3 days) and ECMWF (for the following 7-8 days) forecasts are used in the operational 

weather forecast (yr.no). Using Hirlam data to calibrate ECMWF will improve the transition between the 

forecasts. Hirlam is available as a sub daily grid and makes it possible for MET Norway to provide 

different calibration parameters for day and night, whereas SeNorge is only available as a daily grid and 

would not offer this possibility. 

Hirlam have less errors than ECMWF in the temperature forecast for Norway (Engdahl et al. 2015), and 

as we see from e.g. fig 6 and 7 that the calibration improves especially the cold biases in the ECMWF 

forecasts. When we evaluated the hydrological model, the temperature calibration improved, in most 

cases, the hydrological forecasts, providing an indirect confirmation that the HIRLAM temperature is less 

biased than the ECMWF temperature. Nevertheless, the results suggest that there might be 

improvements using the SeNorge data instead of Hirlam, but this needs to be tested (beyond the scope 

of this study). 

AC: P8L5-8 Rewritten “MET Norway uses Hirlam (Bengtsson et al., 2017) temperature forecast (on a 4×4 

km2) to provide a reference for the parameter estimation (calibration). Hirlam is suitable as a reference 

since it provides a continuous field covering all of Norway at a sub daily time step. In addition, Hirlam 

gives a higher skill and are less biased than the ENS (Engdahl et al., 2015). 

 

• If I am correct in understanding that both the raw and the calibrated ensembles have been provided 
by Met Norway then maybe this should be stated more clearly. Or is it the case that Met Norway 
computed the calibration parameters on a data set from 2006-2011 and that you applied these yourself 
to a data set ranging from March 2013 through Dec 2015? If so, maybe state this more bluntly? 
AR: Your second suggestion is correct. The raw ensembles from ECMWF (March 2013-Dec 2015) and the 
calibration parameters (based on data ranging from 2006-2011) were supplied by MET Norway, whereas 
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we did the calibration using the provided calibration parameters and available computer scripts 
(github/metno/gridpp).   
AC: We separate what MET Norway did from what we did. The first paragraph of section 3.1.2 contains 
the description of calibration parameters from MET Norway P8L2-15, whereas the second paragraph 
P8L16-21 what we did: 

(1) P8L8-9 added to the first paragraph: “To establish the calibration parameters MET Norway used 
both ENS re-forecast (Owens, 2018) and Hirlam data from July 2006 to December 2011, both 
interpolated to a 5×5 km2 grid… “ 

(2)  P8L16-17 added to the second paragraph: “In this study, we applied the calibration coefficients 
provided by MET Norway to the temperature forecasts for the period 2013-2015. Accordingly, 
the ENS was interpolated to the 5×5 km2 ….”  

 
 
• I am assuming that you used a HIRLAM reanalysis. Is that correct? If not, what lead times are you using 
and do the HIRLAM forecasts you used have the same max lead time as the ECMWF ensembles? I am 
only familiar with a few instances of HIRLAM and these all go out to just over 2 days max. 
AR: MetNorway used the operational Hirlam forecasts for the calibration period. It is correct that Hirlam 
does not cover the same lead times as ENS. Met Norway established the calibration parameters using 
the 24 first hours of the forecasts as the reference.  

AC: P8L13-15 We added a sentence to clarify this “The same coefficients, based on the first 24h 

mapped, are applied to all lead times and ensemble members individually.  For forecasts outside the 

observation range, a 1:1 extrapolation is used.  That is, if a forecast is 2°C higher than the highest 

mapped percentile, then the calibrated forecast is 2°C higher than the same percentile for the 

reference. “ 
 
 
• By off-setting Tens against Tcal, you create the impression that Tcal is not an ensemble forecast. 
Consider using Traw and Tcal instead. 
AR: We chose to use “ens” instead of “raw”, since an elevation-correction was applied the forecasts, and 
hence they are not actually “raw”.  
AC:  We added to existing text to underline that Tcal (and Qcal) is an ensemble.   P11L4-5+22-23, P12L29-
30, P13L9-10, P14L8 
 
• l29-30. The ‘assessment’ was done by you, not by the ensemble range. 
• On assessing sharpness: how confident are you that a visual assessment does the job? Pls consider 
plotting the empirical distribution of sharpness of all your forecasts and comparing those. 
AR: We will plot the empirical distribution of sharpness for all temperature ensembles, and rephrase the 
sentence concerning sharpness accordingly. 
AC: P9L5-8 Rewritten “In this study, the temperature sharpness was assessed by first estimating the 
range between the 5th and the 95th percentile of the ordered ensemble forecasts for all issue dates, lead 
times and catchments. For streamflow, we estimated a relative sharpness by dividing the 5th to 95th 
percentile range by the ensemble mean. Thereafter, sharpness was determined for each catchment and 
lead time as the average range of all issue dates.” 
 
• If you’re calibrating the temp ensembles on a leadtime by leadtime basis and on a grid cell by grid cell 
basis, chances are that you’ll change the temporal pattern (forecasted temperature as a function of 
time) as well as the spatial pattern. Does this in any way affect use in streamflow forecasting? I believe 
there are some techniques that may be helpful in trying to restore spatial-temporal relations (the 
Schaake shuffle springs to mind). Would these have a use in present study? 
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AR: We think that the calibration will not affect the spatial and temporal pattern significantly. The 
calibration function was applied to each ensemble member individually. We therefore kept the order of 
the ensemble members, both in space and time, and it was not necessary to use the Schaake shuffle.  
AC: We think this will be clearer by adding the following description to quantile mapping page 7, line 12-
13. (Response above): “… are applied to all lead times and ensemble members individually…”   
 
Section 3.2 
• Would it be fair to say that temperature forecasts are only relevant if they can discriminate between 
freezing and non-freezing situations? If so, would it be justified to focus more on this discrimination? 
Perhaps by defining an event (T<0, for example) for which one can compute a range of verification 
scores (false alarms, hits, ROC, Brier’s probability score, etc). I acknowledge that this would be feasible 
for temperature and less obvious for streamflow. 
AR: This is a good suggestion. Nonetheless, we think this is beyond the scope of this study. This could be 
an interesting topic for a future study.  
AC: No change 
 
 
 
Section 4 
• " To reduce the amount of presented results, the remaining part of this paper focuses on CRPSS for a 
lead time of 5 days." This is fine, but temperature forecast at 5-day lead time may not affect streamflow 
forecasts until a (much) longer lead time. Or conversely, streamflow forecasts at day 5 would have been 
affected by a day 2 temperature forecast (this is an example). As in some cases you’re comparing Q-
forecasts with T-forecasts, how have you accounted for this? 
AR: This is an interesting question. The streamflow forecast at day 5 will be affected by the temperature 
forecast the previous 4 days as well as day 5. However, for most catchments in this study, the 
concentration time is less than one day, and the streamflow will respond the same day as a major water 
input from rain or snow melt. For specific events, it is not evident which of the T-forecasts at day 1-5 is 
the most important for the Q-forecast at day 5. The sensitivity depends on the sequence of temperature 
and precipitation. Nevertheless, we think that using temperature CRPSS for day 5 is a good choice since 
the streamflow at day 5 is the most sensitive to the temperature at day 5 on average (which applies to 
all lead times). In addition, we see that the improvement in CRPSS across lead times is highly correlated 
and our results and conclusions would not change if we used temperature CRPSS for days 2, 3, or 4 
instead.  
AC: P14L26-28 Added “The same lead time was used to relate improvement in streamflow to 
temperature, we consider this robust since most catchments in this study have a concentration time of 
less than a day.“ 
 
 
Section 4.1 
• In the text, you refer to observed temp as To. In plots, as Tobs. Pls make this consistent. I recommend 
using Tobs throughout. 

AR: Thank you for highlighting the in-consistency in the use of Tobs and To. Since the SeNorge 

temperature is an interpolated product of the observations, we therefore prefer to use To.  

AC: P30L1-5 Changed to To in fig 4 and caption 

 
• L23-25. These sentences are better placed in a discussion section, I think. 
AR: OK. 
AC: Sentences were deleted P11L13-15 and rewritten for sec 5.3 P16L1-4 
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• L19 ‘influence’ is missing an ‘s’. Pls consider replacing by ‘affects’ though. 
AR: Thank you.  
AC: P11L19 We replaced “influence” with “affect”.  
 
Section 4.2 
“Scatter plots of the difference between CRPSS for calibrated and uncalibrated forecasts”. CRPSS in itself 
is a fairly abstract measure. The difference between two CRPSS scores is, I find, even more abstract. 
What’s the meaning of those values? As CRPSS is a skill of a forecast versus a baseline, why not simply 
calculate the CRPSS of the calibrated forecasts using the CRPS of the uncalibrated forecasts as a 
baseline? 
AR: We wanted to evaluate the skill of the uncalibrated forecasts as well. If we were to use the 
uncalibrated as a benchmark, we would not assess the quality of the original forecast, only the change 
between the uncalibrated and calibrated forecast.   
AC: No changes introduced. 
 
 
 
 

Section 5 

L7: ‘dispersion’ is not an expression of quality but a characteristic of an ensemble. Saying ‘dispersion 
improved’ makes little sense then? 
AR: Thank you. What we mean is that dispersion, as measured by rank histogram convexity, improved. 
AC: P13L1-3 We changed to “Even though both bias and dispersion (i.e. reliability) as measured by rank 
histogram slope and convexity improved with longer lead time, the reduced sharpness and increased 
uncertainty, resulted in a reduced skill (CRPSS).”  
 
Section 5.1 
• L11 “skill. . . depends”. Consider replacing by “skill. . . varies with”. 
AR: Thank you.  
AC: P13L9 We applied as suggested “The skill for both raw (uncalibrated) Tens and calibrated Tcal  
temperature ensembles varies with season.” 
 
• “Quantile mapping is sensitive to forecasts outside the range of calibration values and period”. I think 
it would be good to point out that this is true for any statistical post-processing procedure. 
AR: Good point.  
AC:  P13L16 “Quantile mapping, as most statistical techniques, is sensitive to forecasts outside the range 
of calibration values and period (Lafon et al. 2013), this may explain the too high correction in the 
highest Tens quantile. “ 
 
• Immediately following: “and can be a” –> “and this can be a” 
AR: Noted 
AC: P13L17 Changed as suggested 
 
• On the causes of temperature forecast bias. You go into some detail to explain a situation in which 
land is colder than sea. Would this be a typical situation for summer/winter? If so, can you more directly 
link this to some of the results you’re showing? 
AR: We will clarify that this is a typical situation of winter.  This is to some point already exemplified in 
the text, and we can underline in the text that the situations are typical for winter. (5.3 will be included 
in 5.1 and 5.2, and we will ensure to get this information in the revised manuscript):  
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AC: P13L20-28 Implemented and rewritten for the revised sec 5.1  “The most pronounced spatial 
pattern is the low autumn CRPSS for uncalibrated ensembles Tens in the coastal areas. This is seen from 
the boxplots for the regions West, Mid and North (Fig. 8) and in the plots of the western catchments 
Viksvatn and Foennerdalsvatn during winter months (Fig. 4). This cold bias is documented for the 
Norwegian coastal areas in the cold seasons by Seierstad et al (2016), and is mainly caused by the 
radiation calculations in the ECMWF model (Hogan et al., 2017). The coarse radiation grid results in 
warmer sea points being used to compute longwave fluxes applied over colder land points, causing too 
much cooling. This effect is seen for the temperature forecast for winter 2014 and 2015 for the coastal 
catchments in fig 4 (b) and (c), in contrast to the inland catchment (a) which is less biased.  The radiation 
resolution is improved in later model cycles (Hogan et al., 2017; Seierstad et al., 2016). In addition, the 
challenging steep coastal topography is not well represented by the spatial resolution in the ECMWF 
model (Seierstad et al., 2016). For inland catchments, and the regions “ 
 
Section 5.2 
L10 Grammatically, this sentence is awkward if not wrong. 
AR: Thank you; we will rephrase this sentence.  
AC: P14L29-P15L1 We rephrased “In summary, it can be concluded that to further improve streamflow 
forecasts during the snowmelt season, improved temperature forecasts are essential.  Streamflow 
forecasts during spring have the highest potential for improvements since the temperature forecasts 
were not, for a majority of the catchments, improved by the applied calibration.”  
 
Figures 
Overall 
Many figures use a lot of white space between various plots/panels. Consider reducing this or, even 
better, removing altogether. 
AR: We will reduce some white space in figure 1 and 3. 
AC: New figures provided P 
 
Figure 1 
• Do the grey polygons add up to 139 in total? If so, many must be really small?  
• Caption: consider using ‘boundaries’ instead of ‘limits’ 
AR: Yes. Especially on the western coast, the catchments are small. This will be clarified in the caption 
AC: P24L5-10 New caption text Fig 1: “Figure 1: The maps for Norway shows the 139 catchments used in 
this study. The left map show the catchment boundaries including the location of four selected 
catchments. Please note that many catchments are relatively small and difficult to detect. The location of 
the catchments’ gauging stations are shown in the right map. Norway is grouped into five regions 
(N=north, M=mid, W=west, S=south, and E=east), and all regions are marked with different colors and 
regional boundaries.” 

Figure 4 
• Why plot the ensemble mean and not all five ensemble members, possibly as horizontal lines? 
AR: It is not evident to us which modification the reviewer suggests. In this plot, the mean is for the 51 
ensemble members not five. If we were to plot all the members, it will be difficult to retain any 
information. By plotting the mean we show the bias in the forecast and by using the scatter plot, we also 
show that some biases are dependent on forecasted temperature (a conditional bias).  
AC: No changes introduced in the plots. 
 
• The axes of the plots in the right-hand column vary. Please consider unifying this. Also: please consider 
ensuring that horizontal and vertical axes are identical. Maybe they are, but the labeling isn’t. 
AR: We will unify the axes.   
AC: P30 The axis are unified in Fig 4.  
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Figure 5 
• What lead time are these plots for? 
AR: Thank you; we will add the lead time in the caption. 
AC: P32L5 Caption updated “All plots are presented for lead time 5 days.” 

 
• Is the lead time for T identical to that for Q? What is the ‘response time’ of the catchment to 
snowmelt? 
If not zero then shouldn’t this be taken into account somehow? 
AR: We use the same lead time for temperature as for streamflow.  See comment to section 4. 
AC: No changes applied. 
 
Please consider. . . 
• . . . removing data for seasons for which temperature has little or no effect on streamflow levels. 
AR: We would like to keep the plots for all seasons here. By showing the difference between the 
seasons, we think it is easier to understand the large variations we see.  
AC: No changes applied 
 
• . . . unifying horizontal and vertical axes. it took me a little while longer than I cared to realise that the 
light grey slanted line is the 1:1 diagonal. 
AR: We will consider changing the plots. However, unified axes means that we lose information about 
the regional distribution.. 
AC: P32 We unified the axis in Fig 5, and omitted summer and winter.  
 
 
Figure 6 
• What do you want the reader to compare? CRPSS(T) and CRPSS(Q)? Or CRPSS(spring) v 
CRPSS(autumn)? Pls ensure panels are ordered accordingly. 
AR: We wanted the reader, first of all, to compare CRPSS(T) and CRPSS(Q) Therefore, we placed 
CRPSS(T) and CRPSS(q) from the spring season on the first line and for the autumn season in the last 
line. Then the reader can evaluate how the improvements in temperature will affect improvement in 
streamflow, for both seasons. Secondary, we wanted to show the difference between seasons. Sub-
plots for each season are therefore arranged vertically, for both temperature (left) and streamflow 
(right).  
AC: No changes introduced. 
 
• pls ensure that within a row, panels have identical vertical axes so this comparison can indeed be done 
(i.e. the reader can then easily compare the top left with the top right plot)  
AR: We prefer to use different scales on the vertical axes within a row to increase the readability of each 
sub-plot. In particular, the plots of the CRPSS(Q) would be more difficult to read if we used the same 
scale as in the plots of CRPSS(T) in the left panel.   
AC: No changes 
 
Figure 10 
• The background colours have an effect on the colouring of Qens and Qcal. Please consider removing 
the background shades. Maybe replace these by threshold lines only? 
• Please consider removing the number of lines in the plot, for example by only showing a shaded area 
with no line at the edges thereof. 
• What is the purpose of showing both the ‘real’ observations and the ‘model streamflow with SeNorge 
observations’? Is this distinction made in the paper, and addressed? 
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• Consider reversing the order of the graphs. The 9d lead time graph was available before the 2d lead 
time graph? 
• The horizontal axis labeling is not in English. 
• As all horizontal axes are identical, pls consider removing white space between plots altogether and 
only label the axis of the bottom plot. 
AR: We will change the plots as suggested. We understand that the introduction of real observations in 
this figure is confusing, and we will therefore remove the real observation from the figure and from the 
text. 
AC: P38 New Fig 10 and updated caption. Updated the text P12L21-23 “The horizontal grey dotted lines 
represent mean annual flood, the 5-year and the 50-year floods (i.e. the operational flood warning 
levels) in this catchment.” 
 
• The warning levels aren’t relevant, are they? On reflection: you’re scoring the forecast ensembles 
using 
CRPSS and rank histograms. This shows absence of preference for doing well for ‘extremes’, even 
though the work appears to be inspired by forecasting for floods. How is this consistent? Maybe omit 
references to ‘floods’ altogether? 
AR: In Norway, we use the mean annual, the 5-year and the 50-year floods as exceedance thresholds to 
issue flood warnings. This figure connects the theoretical aspects to the operational implementation, 
and points to the importance of calibrated temperature for a flood warning system. 
AC: We kept the reference to flood levels, but removed the warning colors all together.  

 

  

 

New Reference: 

Engdahl, B. J. K and Homleid, M: Verification of Experimental and Operational Weather Prediction 

Models December 2014 to February 2015. Norwegian Meteorological Institute, METinfo (18/2015), 

2015 
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Thank you for the positive and thorough evaluation of our article. We appreciate the comments, which 

are valuable for us in order to improve the manuscript.  

We would like to apology for the missing references. The error emerged when we specified the HESS 

format, and un-intentionally deleted many references from the reference list. The main author should 

nonetheless have detected this flaw prior to posting.  

Replies and corrections are done as follows: the Author response (AR) is marked with red text, while the 

author’s suggestions to corrections (AC) are marked with blue text; we use page and line number to 

specify the appropriate location, where this is needed. All Referee comments are kept in a black; we use 

page and line number when needed to specify the appropriate location. All page and line references 

from the author are to the provided track changes version of the revised manuscript. Hence, P6L3-5 

indicates changes on page 6 and lines 3 to 5. 

 

Review of ‘Streamflow forecast sensitivity to air temperature forecast calibration for 139 
Norwegian catchments’ by Trine Hegdahl et al. 
Anonym referee#4 

Supplement:  

Especially in hydrometeorological predictions where methods from both the meteorological and the 

hydrological forecasting community are used, it is of major importance to carefully define the 

terminology and to coherently use throughout the manuscript.  

The current form of the manuscript shows a lack of precise formulations (e.g.: calibration, pre-

processing, skill) which should be revised to better communicate the content of the study. Some of the 

graphics should be enhanced to facilitate the readability and the caption are sometimes incomplete. In 

addition, more than 15 references mentioned in the text are missing in the reference list and should be 

added.  

AR: We thank you for the feedback. We would like to apology for the missing references. It seems to 

have been an error when we reformatted EndNote, which evidently lead to many references being 

deleted from the reference list.  The main author should nonetheless have detected this flaw prior to 

submitting the manuscript.  We will carefully revise the text to avoid inaccuracies in formulations. 

Furthermore, some additional references could be of interest within discussion to put the findings of the 

study into a broader picture. Many of the references especially concerning the meteorological forecast 

are user guides and or technical reports or personal communications, which is fine, but I would 

appreciate if some more peer-reviewed literature would be cited as there is a large body of existing 

literature concerning the verification of ECMWF temperature predictions.  

AR: We agree that it is better to use peer-reviewed literature. We chose to use technical reports and 

personal communication only when necessary and we found no other alternatives. In particular, there 

are not much peer-reviewed papers on the verification of the ECMWF temperature forecasts for Norway 

available. Hence, we chose to implement what is available of technical documentation.  

In general, the language could be clearer and more concise. To me it is not clear what the authors 

understand under the term pre-processing, at least in the beginning of the manuscript. E.g. in literature 

there is a distinction between dynamical and statistical downscaling (see e.g. Li et al. (2017), Yuan et al. 

(2015)) and statistical downscaling does include a bias-correction. In the present manuscript, the term 

downscaling does only refer to applying a laps rate correction and interpolation, what is not as 

downscaling is referred to in the literature.  
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However, I think it would be important for the reader to have a short general overview of what pre-

processing is in the introduction. In particular the term calibration, in the present manuscript used as a 

synonym for bias correction should be introduced more carefully because the term calibration is used by 

statisticians but in the meteorological, climatological and hydrological communities, the term bias 

correction is more common.  

AR: We acknowledge that the literature is not consistent in terminology, and particular the terminology 

differs between the forecasting and the climate projection communities.  

In our paper, we chose a terminology that is consistent with a large part of the literature, and that 

facilitates to explain the approaches we used. We use pre (and post)-processing as a general term, 

which includes all techniques applied to the raw temperature forecasts in order to improve the 

temperature output from the atmospheric model (i.e. downscaling and calibration are pre-processing 

techniques).  We pre-processed the temperature in two ways: (i) only downscaling, (ii) both downscaling 

and calibration, with the purpose to reveal the effect of temperature calibration. 

We used the term downscaling on the resampling from a low resolution for the ECMWF forecasts to the 

1x1km grid used for the SeNorge data, combined with a temperature correction using a temperature 

lapse rate. This terminology is used by e.g. UK Met office (Sheridan et al 2010, with references therein). 

Especially for areas with a complex terrain, where the resolution of the NWP poorly resolves the terrain, 

the correction for the discrepancy between model elevation and terrain are useful. In some literature, 

the term downscaling includes both bias correction and resampling, (ref Yuan et al 2015), but we did not 

use this terminology here. 

We used the term calibration on the statistical adjustments of bias and dispersion of the ensembles. The 

aim of calibration is to make the forecasts reliable in a statistical sense, i.e. 90% of the observations are 

within a 90% uncertainty interval. In particular, in the meteorological forecasting literature, calibration 

has this specific meaning (e.g. Gneiting, 2006) 

We think that to separate the pre-processing into downscaling and calibration is useful, but agree that 

the term downscaling might have a different signification in parts of the literature.  Our terminology is 

also, to a large degree, in accordance to the descriptions in Li et al (2017). Lie et al (2017) describes the 

main purposes of post-processing to be the following (1) correct bias and dispersion in the forecasts, (2) 

to preserve the predictive skill of the forecasts, (3) downscale the forecasts to the scale used in the 

applications, and (4) to generate ensemble members (…). Further, in the conclusion Li et al (2017) writes 

that their purpose is “… to calibrate the bias …” In the referred article, we hence see the term calibrate 

used consistently to describe the statistical properties of both the meteorological and the hydrological 

ensembles. We further think that using calibration, as part of the pre- and post-processing is a well-

established term for the hydrological community using ensemble forecasts. Calibrated ensembles and 

the calibration methods is more specific than only using only the term pre- or post-processing. 

Calibration strive for the ensemble to describe the mean and spread of the climatology they should 

represent.   

We have not included any description of the dynamical downscaling, as this usually includes a regional 

climate model with a different approach, and is not the scope for this study.  

AC: We added a description to clarify the use of pre-processing, calibration and downscaling. We further 

omitted the reference to post-processing (P2L32-P3L2) since in this study we focus on the calibration 

and downscaling of the meteorological forecasts, which from a hydrological perspective is pre-

processing. 
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P3L7-11 “Pre-processing (from a hydrological perspective) refers to all techniques used to change the 

output from a meteorological model, and includes calibration (described above) and downscaling. 

Downscaling implies resampling from the original forecast grid size to a grid of higher resolution, and 

both statistical (e.g. interpolation) and dynamical (e.g. a regional weather forecast model) techniques, 

can be used (Schaake et. al., 2010). A recent review of post-processing methods are given in Li et al 

(2017) and the textbook edited by Vannitsem et al (2018).” 

As you mention the forecasting period used for the study is only two and a half year long which might 

influence the results. You state this in the discussion but do not explain why it could be critical. I suggest 

that you discuss this explicitly. Namely, within such a short period, the interannual variability might not 

be sufficiently covered. In addition, using forecasts from different model Cycles (38r1 to 41r1) might 

have an influence of the skill as well because the adaption within a new cycle might enhance or 

decrease the forecast performance making the comparison between seasons difficult as it might not 

only originate from the particular season but might be influenced by model versions. I suggest including 

such limitations in the discussion.  

AR: We agree that the inter-annual variability might affect the calibration coefficients, and of course, 

there are aspects with the different model version that might affect the result. However, the changes 

applied to the different model-cycles did not remove the biases apparent in temperature forecasts (fig 

4).  

AC: P13L17-19 “The use of forecasts from different model cycles might affect the consistency in the 

forecasts. Moreover, the calibration parameters are sensitive to the representativeness of the 

calibration period” 

To apply Quantile mapping you do need the distribution of the forecast and the distribution of the 

observations. In section 3.1.2 you state that “MET Norway uses Hirlam temperature forecasts to provide 

the observational climatology used for parameter estimation”. I think here, more information is needed 

to enable the reader how the calibration is done. Are daily values used for the parameter estimation? Is 

it empirical or parametric QM used and how are values outside the range treaded (e.g. constant 

extrapolation)? 

Is it a member-by-member approach or are the same parameters used for all members?  

AR: MetNorway uses parametric quantile mapping based on the first 24h. When a forecast is outside the 

observation range, a 1 to 1 extrapolation is used. Therefore, if a forecast is 2⁰C higher than the highest 

percentile, then the calibrated forecast is 2⁰C higher than the same percentile for the reference. The 

same parameters are applied to all members and lead times.  

AC: P8L13-17 We added “The same coefficients, based on mapping the first 24 hours, were applied to all 

lead times and members.  For forecasts outside the observation range, a 1:1 extrapolation was used.  

I.e. if a forecast is 2°C higher than the highest mapped forecasted temperature, then the calibrated 

forecast is 2°C higher than the highest mapped reference temperature.” 

 

One critical point is that the calibration parameters are interfered from the Hirlam but the hydrological 

model is run with SeNorge observations. Why are not these observations used? The correction will 

account for the bias between ECMWF and Hirlam but I would expect that biases with SeNorge will at 

least slightly differ. Why don’t you use the observations from SeNorge to get your calibrations?  

In the summary it is stated that “The most obvious improvement in the forecasting chain is to use the 

same temperature information, the SeNorge temperature, for calibrating the temperature forecast that 

is used for calibrationg the hydrological model, generating …” (P14/L25-27).  
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But if I understand correctly from the manuscript SeNorge and Hrilam are not the same. I have troubles 

with this procedure as it is known that different forecast models do have different biases. To bias-

correct or calibrate ensembles the observations should be taken into account and not another forecast. 

In this case the bias between two forecasts will be corrected and not the bias of the forecast with regard 

to the observations.  

AR: You are right to point out these differences in data sets used for calibration of forecasts and the 

hydrological model. First, as you mention, SeNorge and Hirlam are not the same data. Hirlam is a short-

range regional forecast model (4 km horizontal resolution) used in the operational weather forecast for 

the first 2 days, whereas SeNorge is a dataset where observations are interpolated to a 1 km grid.  

In this study, we wanted to use the available operational method from MetNorway, and they used 

quantile mapping with Hirlam as a reference to calibrate the ECMWF ensemble forecast. Both Hirlam 

(for the first 2-3 days) and ECMWF (for the following 7-8 days) forecasts are used in the operational 

weather forecast (yr.no). Using Hirlam data to calibrate ECMWF will improve the transition between the 

forecasts. Hirlam is available as a sub daily grid and makes it possible for MetNorway to provide 

different calibration parameters for day and night, whereas SeNorge is only available as a daily grid and 

would not offer this possibility. 

Hirlam has less (smaller) errors than ECMWF in the temperature forecast for Norway (Engdahl et al. 

2015), and as we see from e.g. fig 6 and 7 in this manuscript, the calibration reduces the cold biases in 

the ECMWF forecasts. When we evaluated the hydrological model, the temperature calibration 

improved in most cases the hydrological forecasts, providing an indirect conformation that the Hirlam 

temperature is less biased than the ECMWF temperature.  

Furthermore, by the many interpolations used, there is a large uncertainty introduced which will lower 

the trust in the results. Interpolation of ECMEF and Hirlam to derive correction parameters, another 

interpolation to meet the hydrological model requirements.  

AR: We agree that there are uncertainties due to interpolation and downscaling. A temperature 

calibration that is tailored to the needs for the hydrological modelling would solve this challenge.   

AC: P13L5-7 We added “The calibration procedure applied in this study involves many interpolations 

and downscaling steps that increases the uncertainty in temperature forecasts. We believe that a 

catchment specific temperature calibration, tailored to the needs for hydrological forecasting, would 

solve this challenge.” 

Another point that should be discussed is if seasonal correction parameters are really sufficient or does 

it introduce artificial jumps between periods. In a climate context, seasonal windows for parameter 

estimation might be sufficient but in an operational forecasting context a shorter window should be 

taken into account if possible.  

AR: MetNorway provided unique parameters for each month. The parameters are based on a window of 

three months, which smooths the seasonal patterns. A three month window was chosen to ensure 

enough data for robust calibration parameters.  

In Section 3.2 where the CRPS is introduced you mention different notations (CRPS, Scrp) and same for 

the CRPSS. I think this is confusing, as later in the text only CRPS is used. I suggest only introducing one 

of the notations and stick to that.  

AR: We agree that this notation might introduce confusion.  The reason is the formatting standard of 

HESS where equations should only contain one capital letter with sub or super script. However, we find 

it appropriate to use CRPSS in the text since this is the abbreviation used in the community, and in the 
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equations, we used an alternative notation according to the HESS standard:  (Scrp and Scrps are only used 

in the equations). This approach is used in many HESS papers. 

AC: P10L5-7 We provided a sentence to clarify sec 3.2: “For readability, the abbreviation Scrp and Scrps 

used in the equation will be substituted with CRPS and CRPSS in the text hereafter”   

P9L11+14+20-21+27: We added explanations similar to “CRPS denoted as SCRP in Eq. 1” 

 

Specific comments:  

 

P1  

 

L7-14: You say the flood forecasting system uses deterministic forecasts for temperature and 

precipitation). But the ECMWF model you reference provides an ensemble of 51 members. Please state 

how this is used.  

AR: The operational system today, uses one deterministic forecast, not the ensemble forecasts. In our 
setup, the hydrological system is setup to run the 51 ensemble members.  We make sure that the same 
initial states are used for all members. This is explained in details in the main text, and in the abstract we 
keep the description simple. We think the suggested changes in the following point also covers this 
point.  

AC: P7L15-16 We added “In the forecasting mode each temperature ensemble member was used as 

input and run as separate deterministic forecasts.”   

L11-12: “An alternative approach is to use meteorological and hydrological ensemble forecasts” is 

somewhat misleading. Either you used ensemble meteorological forecasts in combination with 

hydrological models to generate ensemble streamflow forecasts or one uses a different methodology to 

produce hydrological ensembles forecasts. I suggest rewriting the sentence: “An alternative approach is 

to combine meteorological ensemble forecast with hydrological models to quantify the uncertainty in 

the forecasted streamflow”.  

AR: You are right. We apply the suggested rewriting. 
AC: P1L9-14 Rewritten “In this study, we used meteorological ensemble forecast as input to hydrological 
models to quantify the uncertainty in forecasted streamflow, with a particular focus on the effect of 
temperature forecast calibration on the streamflow ensemble forecast skill.” 

 

L14: “for an accurate forecasting of “, or “to accurately forecast streamflows”  

L15: Ensemble forecast of temperature from the ECMWF “ 

L16: “to improve the skill and reduce biases”  

AR: Thank you. We include the suggestion L14, L15, and L16 

AC: P1L15+17+18 Changed accordingly 

 

L18: why do you mention precipitation here? If it is not used for the calibration I would avoid it here.  
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AR: We mention precipitation since the “observed” precipitation and temperature was used to calculate 
the initial states of the hydrological model until the forecast issue day. We will consider omitting the 
sentence about SeNorge in the abstract. Ref RC#3, and discussion on abstract. 
AC:  P1L20-22 We omitted “Estimated observed daily temperature and precipitation were obtained 
from the SeNorge-dataset, which is station data interpolated to a 1×1 km2 grid covering all of Norway.”  

 

L20: was used to calculate the streamflow  

AR: Thank you. We include the suggestion 
AC:  P1L23  Included 

 

P2  

L1: Floods can damage… and can have a high …  

L5: componentS  

AR: Thank you.  
AC: P2L5 Changed “ Floods can severely …”  + P2L8 

 

L9: The reference “Müller et al.” is missing in reference list  

L14: Both reference “Langsrud 1998 a and b” are missing.  

AR: Thank you. 
AC: Uppdated in the Reference list 

 

L16: as a means to account for uncertainty in the forcing.  

AR: Thank you.  
AC: P2L22 Corrected 

 

L21: The Reference Cloke & Pappenberger, 2009 and Wetterhall et al., 2013 are missing  

L25: the ensembles can be calibrated  

L26: Hamill and Colucci, 1997 and Buizza et al, 2005 are both missing  

L29: Gneiting et al. 2005 is missing, Wilks and Hamill 2007 is missing, Raftery et al. 2005 is missing  

L30: Evens 2003 is missing  

L31: Gneiting et al. 2005 is missing, Wilks and Hamill 2007 is missing. The order of the references is 

different compared to L29. Bremnes, 2007 is missing.  

AR: All references are now included.   

AC: We updated the Reference list and added “Wang and Bishop” 

 

L31-32: This sentence is very general, it is arbitrary clear that different correction methods do correct 

the biases differently. I suggest either being more specific about single methods, or to summaries 

different methods to provide a better overview for the reader instead of listing available techniques. 
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Maybe cite some standard books for statistical bias correction and downscaling (Wilks, 2011) and for 

forecast verification (Jolliffe & Stephenson, 2011).  

AR: We will cite some standard books and papers that provides reviews of forecast calibration methods.  
AC: P3L10-11 We added the following sentence at the end of the paragraph: “A recent review of 
calibration methods are given in Li et al (2017) and the text book edited by Vanniitsem et al (2018)  

 Vannitsem,S. Daniel S. Wilks, Jakob W. Messner, Editor(s): (2018) Statistical Postprocessing of 

Ensemble Forecasts, Elsevier, ISBN 9780128123720, doi: 10.1016/B978-0-12-812372-0.09988-X. 

 Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., & Di, Z. (2017). A review on statistical postprocessing 

methods for hydrometeorological ensemble forecasting. Wiley Interdisciplinary Reviews: Water, 

4(December), e1246.  https://doi.org/10.1002/wat2.1246  

 

 

P3  

L1: snow cover without “–“  

AR: Thank you.  
AC: P3L12 Changed 

 

L2-4: This sentence is unclear to me. Can you elaborate what you mean?  

AR: We mean that an improvement in temperature forecast will not necessarily translate directly into an 
improvement of streamflow forecast. If temperatures are well below zero, an improvement in 
temperature forecasts has no effect on the streamflow forecasts, whereas for temperatures around 
zero degrees, the streamflow is very sensitive to temperature, in particular when it might turn on or of 
rain and/or snow melt.   
 
AC: P3L13-18 Rewritten “The sensitivity of daily streamflow to temperature is non-linear since 
streamflow depends on temperature thresholds for rain/snow partitioning and for snow melt/freeze 
processes. The latter depends on the state of the system, i.e. snow is needed to generate snowmelt. For 
temperatures well below 0oC, the streamflow is not sensitive to temperature, whereas for temperatures 
around 0oC relatively small changes in temperature might control if the precipitation falls as rain or 
snow, and consequently, whether streamflow is generated or not.” 

 

L5: Gragne, 2015 . missing reference  

AR: We will not use this reference in the modified manuscript 
AC: The reference will not be used. 
 

L7-8: Forecasting, downscaling and interpolation are three completely different things and the challenge 

is connected to much more than laps rate. For interpolation and downscaling a large part can be 

attributed to temperature height correction which depend to a large degree to laps rates. But 

forecasting of temperature is far more complex and related to chaos theory.  

Rephrase please.  

AR: You are quite right. We should not have included forecasting in this sentence. We are addressing the 
downscaling and interpolation of forecasts.  
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AC: P3L21 We removed “forecasting” from the sentence. 

 

L9: Again, missing references: Aguado and Burt, 2010; Pagès and Miro, 2010, Peter et al., 2010.  

AR: Thanks. We see that in the case of Peter, this is the first name, it should have been Sheridan et al. 
AC: P3L23 Updated references in text and in Reference list. 

 

L13: Alpine (capital A) as the study looks at catchments in the Alps.  

L15: “, found only modest….”,  

AR: Thank you.  

AC: P3L27 Corrected  

L17: I think the effect is not marginal, as you later on show with your results.  

AR: We used marginal to separate the effect of temperature from that of precipitation. We will change 
the sentence to ‘the isolated effect of…’ 
AC: P3L31 Changed to “isolated” 

 

L26: do you mean from both, the hydrological and the meteorological perspective?  

AR: Yes, we do. This will be clarified in the manuscript. 
AC: P4L6 Changed “Are there spatial patterns in the temperature and streamflow ensemble forecast skill 
and if so, can these be related to catchment characteristics?” 

 

L27: from the ECMWF, in addition I would mention the lead time here but maybe not the MET Norway 

pre-processing setup as you use the QM to pre-process the forecasts which is, if I understood correctly, 

not yet part of the pre-processing setup at MET Norway.  

AR: The information in line 27 is correct. The QM was (new techniques has been implemented recently) 
a part the operational pre-processing chain at MET Norway and used on the forecast published at yr.no. 
We chose to not mention lead time here since the choice to focus on lead time 5 days was based on 
preliminary results. 
AC: P8L4-5 In section 3.1.2 we add one sentence to clarify: “This grid calibration was used in the 
operational post-processing chain for meteorological forecast including the forecasts published on 
yr.no.” 

 

L28: Are the retrospective forecasts operational forecast for the period within 2013-2015? This could be 

misleading for readers or misinterpreted as reforecasts (or hindcasts) which are forecasts for the same 

day as the operational forecast but for the past 20 years using re-analyses for the initialization. Maybe 

rephrase to avoid any misinterpretation.  

AR: We chose retrospective to underline that we used the operational forecasts in retrospect. 
Nevertheless, we understand that this can be misinterpreted. We will rephrase the sentence. 
AC: P4L9-10 Rephrased “Three years of operational ECMWF forecasts from 2013-2015 were used to re-
generate streamflow forecasts, and the skill of temperature and streamflow forecasts were 
systematically evaluated for these catchments.” 
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L30: again, I think marginal is the wrong word, if the effect is assumed to be marginal, why should you 

analyze it in such detail.  

AR: OK 
AC: P4L11 Changed to “isolated”  

 

L31: Not clear to me. Do you mean that the observed precipitation is used to drive the hydrological 

model? Specify that to make it clearer.  

AR: Yes. The observed precipitation is used to drive the hydrological model.We will rephrase to make 
clearer 
AC: P4L11-13 Rewritten “To investigate the isolated effect of the temperature ensembles on the 
streamflow forecasts, the observed SeNorge precipitation (Tveito et al., 2005) was used instead of the 
precipitation ensemble forecasts when we re-generated streamflow forecasts, to run the hydrological 
model.” 
 

L33-P4L2: Maybe combine this with the preceding paragraph. This would make it less generic.  

AR: We will join the two paragraphs as suggested. 
AC: P4L14 Combined 

 

P4  

 

L5: spatial variations  

AR: Thank you.  
AC: P4L20 Changed. 

 

L6: rather high then steep?  

AR: The Mountains are both high and steep. However, we think that steep is the most important 
description of the high elevation gradients in the area. 
AC: We made no changes in the manuscript. 

 

 

L9: delete “flows”  

AR: Thank you.  
AC: P4L24 Deleted. 

 

L18: the smallest catchment has an area of only 3 km^2? Or is it a typo?  

AR: This is not a typo. There are several small catchments in our dataset, but only one of this size. 
AC: There will be no changes in the manuscript 
 
L21: what are the selection criteria for “data of sufficient quality”  
AR: This was inaccurate description since the catchments disregarded from the study was due to 
different reasons, both data retrieving and technical problems. For three catchments, we had problems 
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running the model with the reference data, one catchments there was an issue with the elevation 
correction, and for two catchments, there were technical problems during the regional analysis. We 
have a large dataset, so the exclusion of the six catchments will not change our conclusions.  
AC: P5L5-6 Rewritten “Of the 145 flood forecasting catchments, 139 were chosen as the basis for the 
study (Fig. 1).” 

 

L27: “og” seems to be Norwegian  

AR: Thank you.  
AC: P5L11 Corrected. 

 

L31: snowmelt driven flood event  

AR:  Thank you.  
AC: P5L16 Corrected as suggested. 

 

P5  

L5: write “available at SeNorge.no”  

AR:  Thank you.  
AC: P5L21 Corrected. 

L7: Mention what kind of interpolation is used (bilinear, kriging, …)  

AR: The SeNorge temperature is interpolated using kriging on de-trended temperature using standard 
temperature lapse rates.  
AC: P5L21-22 Rewritten “For this version, gridded temperature is calculated by kriging, where both the 
elevation and location of temperature stations are accounted for.” 

 

Section 2.2.1:  

Mention here that you use the precipitation data from this data set as a substitute of the precipitation 

forecasts (if this is the case).  

AR: Thank you. That is a good suggestion.  
AC:  P5L28-29 We added a sentence at the end of the paragraph “The SeNorge precipitation substitutes 
the precipitation forecasts in the ensemble forecasting chain, and hence the isolated effect of 
temperature calibration on streamflow forecastswas obtained”  

 

L15: constitutes as the basis  

AR: We prefer to keep the sentence as it is.   
AC: No changes will be introduced in the manuscript, 

 

L20: explain what PEST is.   

AR: We will modify the sentence and explain what PEST is.  
AC: P6L9-10 Modified “... which has been calibrated using the PEST software for parameter estimation 
(Doherty, 2015), …”  
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L21: Abbreviation NS (for Nash-Sutcliffe) not introduced before.  

AR: Thank you. We will be corrected in the manuscript. 
AC: P6L11-12 Changed to “Nash-Sutcliffe” 

 

Section 2.2.2:  

Is the calibration done for each catchment separately? Do the given values for the NS coefficient 

represent the mean for all catchments? Is this good? Please state how these values translate into 

performance compared with other hydrological models.  

AR: The calibration is done for each catchment separately. The mean is presented to give an impression 
of the performance, and of course, there is a great difference in  the NS-score between the catchments. 
We think that NS between 0.73 and 0.77 is ok. Within the range of NS-scores there are of course 
catchments where the models performs less optimal. Other models applied to the same catchments has 
a very similar performance, indicating that the quality of data (precipiptation, temperature and 
streamflow) is an important contribution to model uncertainty. Since we in this paper use the model 
streamflow in stead of the observed streamflows for evaluation of forecast, we think it is not necessary 
to provide more details on the calibration of the hydrological model   .   
AC: No changes introduced in the manuscript. 

 

L22: Missing Reference Gusong (2013), In reference list only Gusong 2016 is listed  

AR: Thank you.  
AC: P6L12 Corrected to “Gusong (2016)”. 

 

2.2.3  

To make this more coherent I suggest renaming this section into “Reference observations” (or similar) 

and in the latter part of the study refer to reference observations as well. Otherwise it is difficult to 

distinguish between the model stream flow and forecasted streamflow. E.g. on P6 L13 you write 

reference model run, I assume this is the same as model streamflow? This is somewhat confusing if you 

state it twice in 2 different paragraphs.  

AR: Thank you. We will change “model streamflow” to ”reference streamflow” in the section title and in 
the text. 
AC: P6L13+14+17+19 We changed to “reference streamflow”, throughout the text 

 

P6  

L6: write the lead time as well in days 246 hrs (i.e. 10 days). Why is it 246 hrs and not 240?  

AR: We used lead time 246 hours since we have used the forecast issued at 00:00 aggregated to daily 
values for the time period 06-06. We can change this to days. 
AC: P6L29-30 We added one sentence to clarify this “In this study, we used the forecasts issued at 00:00 
and aggregated daily values for the meteorological 24-hour period defined as 06:00-06:00 to provide 
forecasts for lead times up to nine days.” 

 

L7: The Reference “ECMWF (2018a)” does only provide the documentation and support page of the 

ECMWF. The Specific documentations can be downloaded. The scientific basis of the ENS system has 
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been discussed in multiple publications and it might be worth to reference some of them and point to 

this documentation for specific points only.  

AR: We would like to keep the sentence and reference as it is, since this is provides a detailed overview 
of the model cycles. We provide an additional sentence, including references, to the description of 
ECMWF.   
AC: P6L24-27 We moved and rephrased “In short, 50 ensemble members of ENS are generated by 
adding small perturbations to the forecast initial conditions and model physics schemes, subsequently 
running the model with different perturbed conditions. The ensemble represent the temperature 
forecast uncertainty. A more detailed description of the ECMWF ENS system is provided in e.g. Buizza et 
al. (1999) and Persson (2015).”  

 

L8: “the ensemble members of ENS are…”  

L9: “with different perturbed conditions to represent the …”  

AR: Thank you. 
AC: The sentences are rephrased, see P6L24-27 

 

  

3.1  

See comment to 2.2.3. I don’t get the difference between model streamflow and reference model run. If 

I understand correctly these are the same. If so, only describe it in one section. I think here it would be 

suitable. Reference run = model streamflow, use the same terminology if it is the same.  

AR: We will change ‘model streamflow’ to ‘reference streamflow’, but be prefer to keep section 2.2.3- 
since we in section 2 describes the data and models, whereas in section 3 we describe how we used the 
data. 
AC: We changed to “reference streamflow” throughout the text.  
 

Are the ENS forecast temporally aggregated as well?  

AR: The ENS are also temporally aggregated. Ref p7 l1-2 (3.1.1) and l15-16 (3.1.2), and fig 2.  
AC: P7L13-15 We added “All temperature forecasts were aggregated to daily time steps since the 
operational HBV model runs on a daily time step and the SeNorge data used as a reference provides 
only daily values.” 
 

 

L25: replace “include” with “referred to as”  

AR: Thank you.  
AC: P7L22 Changed “refers to” 
 

L27: Use the same units for both grids. ° or km^2. Best would be use both units for both grids, one of 

them in brackets.  

AR: We think it is more accurate to use use degress for the ECMWF grid, but we will add a parenthesis 
with the grid resolution in km. Hence, we use degrees and km for EC, only km for SeNorge 
AC: P7L25 We changed “ ...  resolution of 0.25° ( ~ 30km)” 
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3.1.1  

What is the rationale behind the choice of using a nearest neighbour technique?  

AR: We tested also other techniques, e.g. bilinear interpolation, which has a higher computational 
demand and creates larger output files, than the nearest neighbor interpolation. Since the quality of the 
forecasts temperature was almost similar, the reduced computing time and smaller storage 
requirements made the nearest neighbor method more useful.   

AC: We introduced no changes in the manuscript. 

 

P7  

 

L4: Bremnes 2007, 2004 are missing in the reference list.  

AR: Thank you.  

AC: We updated the Reference list. 

L8: Can you give a reference for the sentence “gives a higher skill and are less biased”  

AR: The reference is Engdahl et al 2015 

AC: P8L8 We included (Engdahl et al, 2015) in the text and to the Reference list. 

 

L20: Ensemble forecast verification does not only focus on reliability and sharpness. Therefore, different 

measures need to be taken into account (as well biases are important).  

AR: In this sentence we refer to a specific paper (Gneiting et al., 2007) where the reliability and 
sharpness is used for evaluation of forecasts. We also think the bias is a part of the evaluation according 
to reliability. If the forecast is biased it will not be reliable.  In the rank-histogram decomposition slope 
will identify bias in the forecasts.  

AC: We introduced no changes in the manuscript. 

L30: “lowest and highest forecasted value” does it mean the minimum and maximum? Why not the 10th 

and 90th percentile and the interquartile range. I think this gives a better estimate of the sharpness of 

the forecast as it does not only account for the most extreme members.  

AR: we agree that specific interquartile range might be a more robust measure for sharpness, and used 
the range between the 5th and the 95th percentile to evaluate the spread.  

AC: P9L5-8 We changed to “In this study, the temperature sharpness was assessed by first estimating the range 

between the 5th and the 95th 5 percentile of the ordered ensemble forecasts for all issue dates, lead times and 

catchments. For streamflow, we estimated a relative sharpness by dividing the 5th to 95th percentile range by the 

ensemble mean. Thereafter, sharpness was determined for each catchment and lead time as the average range of 

all issue dates.” 

 

  

 

P8  
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L12: I would rephrase the sentence. “which a skilful forecast should outperform” and write it in a single 

sentence.  

AR: We think the sentence is fine as it is. 

AC: We introduced no changes in the manuscript.  

 

L18: negative values mean (without s)  

AR: Thank you. 

AC: P10L1 Corrected 

 

L19: “which perform similar to the reference forecast (climatology in this case)”  

AR: Thank you.  

AC: P10L2 Changed to “implies that it performs similar to the benchmark (climatology in this case)”. 

 

L20: Do you use here the mean of the daily CRPS? (CRPS with overbar?)  

AR: Yes, in this case it refers to calculating the average (𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅) over all daily CRPS (without an overbar), 
for the months in question. 

AC: No changes introduced in the manuscript. 

L25-26: This sentence seems to be wrong.  

AR: We will reformulate the sentence. 

AC: P10L10-11 We rephrased “Finally, we used linear regression to identify relationships between 

catchment characteristics (elevation difference and catchment area) and the skill score (Tcal and Qcal 

CRPSS)” 

 

L27: Usually seasons are aggregate in winter = December-February (DJF), spring = mar-may (MAM) and 

so on. Can you explain your motivation to choose this definition of seasonal aggregation?  

AR: You are right about the usual definition of seasons. We used a different definition since we wanted 

to isolate a snowmelt season, that for most catchment most catchments is in the period April to June. . 

We think this better seasonal description for streamflow in Norway.  

AC: P10L14-15 We added one sentence “This definition of season is used to better capture a snowmelt 

season that for most Norwegian catchments is in the period April to June.” 

P9  

L8: as shown in figure…  

L9: no comma after “convexity”  

AR: Thank you.  

AC: P10L29-30 Corrected as suggested 
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The description about the slope and complexity is hard to follow. Could you give an example what the 

values really tell, e.g. how does a rank histogram look like with a complexity of 2000? I think rank 

histograms are very useful to be used for visually interpretation and the complexity and slope somehow 

lead to a reduction of the usefulness of the rank histogram at least to people not familiar with these 

parameters.  

AR: We used the convexity and slope since then it is much easier to provide aggregated information of 

forecast performance.  In our results, we do not focus on the values in themselves; the change of the 

values is the important information. We find that Jolliffe and Primo, 2007 provide detailed information.  

 

AC: P8L28-31 We rephrased and elaborated more on the rank-histogram evaluation “A bias in the 

ensemble forecast is recognized as a slope in the rank-histogram, where a negative slope indicates too 

warm temperature forecasts, and positive slope too cold forecasts. A U-shape indicates that the 

ensemble forecast is under-dispersed, whereas a convex shape indicates over-dispersed (Hamill, 2001).” 

 

L15: I recommend repeating what TO and Tens is to enhance the flow in the text.  

L27: Same here, mention the abbreviation in brackets in the text to help the reader.  

AR: For both comments above, we will repeat the meaning of abbreviations in the beginning of each 

section.  

AC: P11L4-5+17-18, P12L29-30, P13L9, P14L8 Changed as suggested for all sections. 

 

 

L29: “influenceS” ; Do you mean in streamflow skill or CRPSS?  

AR: All skill is measured by CRPSS. 

AC: P11L19-20 We rephrased “ … Fig 5 shows how the change in temperature CRPSS affects the change 

in streamflow CRPSS for spring and autumn.”  

  

 

P10  

 

L4: Do you know why there is no improvement during summer by using calibrated temperatures? Is it 

due to the absence of snow / snow-melt in summer?  

AR: There are two reasons for the small changes during summer (i) the skill of uncalibrated temperature 
forecasts are higher in summer and (ii) there is less or no snow in summer, and   that will reduce the 
streamflow sensitivity to temperature. Ref comments RC#3 and editor, we omitted the results for 
summer and winter. 

AC: P10L16-19 We added “Summer (July to September) was excluded due to the relatively small 

changes in CRPSS explained by (i) the skill of uncalibrated temperature forecasts are higher and the 

potential for improvement is lower, and (ii) there is less or no snow in summer, resulting in a reduced 

streamflow sensitivity to temperature. Winter (January to March) was excluded since it performs 

similarly as the autumn.” 
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L5: You often mention the Figure number in the last part of the sentence. I personally would prefer this 

information first what makes it easier to follow the text and figures at once; It reveals  

AR: We try to vary the placing of the figure number in a sentence and it is a question of style / 
preference.   

AC: We made no specific changes in the manuscript. 

 

L20: What is the significance level you used? I would mention this in the text.  

AR: For the slope of the regression lines being different from zero we used a significance level of p-
values < 0,05. This information is available in the caption text for fig. 9. We will include this in the text. 

AC: P12L12 We included “By indicating the significance and sign of the relationships, significant 

relationships were found for 12 out of 40 regression equations (5% significance level).” 

 

4.3  

What are the criteria you used to choose this flood event in May 2016? Mention the motivation for this 

specific event.  

AR: We wanted to present a snowmelt flood event during spring and the selected event in May 2013 in 
Bulken was a snowmelt flood.  

AC: P12L20 Changed to “2013”.  

 

L10: If possible embed this in the floating text and see separate comment to the figure.  

AR: We are not certain to which line this comment refer. 

AC: P12L19 We added “target days”, to ensure a consistency to figure 10. 

  

 

P11:  

 

L1: to make it clear I would add: “…increases with lead time (form upper to lower panel).” Linked to my 

comment on the caption in Figure 10 that it could be misinterpreted as a continuous forecast starting at 

may 16th.  

AR: Thank you. We will modify the sentence as suggested. 

AC: P12L26 Changed and we included the reordering of the panels (ref RC#3) “… with lead time (from 

lower to upper panel), … ”  

  

L4: “The box plots … show” (show without s)  

AR: Thank you.  

AC: P12L29 Corrected. 
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5 Discussion  

Here I would again use words instead of the Tens Tcal only: “Both raw (Tens) and calibrated (Tens) 

temperature forecasts were more skilful with …”. I think it makes the text more interesting to read. This 

could be adapted in different parts of the Manuscript, in the beginning of each section this should be 

repeated.  

AR: We will introduce the abbreviations in the beginning of the sections 

AC: P12L29-30 We changed according to suggestion.  

L5-9: “Overall, the grid calibration of temperature had a positive effect on both …”, but the lines before 

it states “…, resulted in reduced skill”. This is somehow contradictive, could you make this clearer?  

AR: The last sentence refer to the difference between raw and calibrated ensembles for all lead times, 
and we see that the grid calibration improves the performance for most scores and lead times. The 
previous statements are related to the development of performance for increased lead times. In short, 
the CRPSS is reduced for increased lead time, it is better for calibrated than raw ensembles. 
AC: P13L4-5 We changed the sentence “Overall, the grid calibration of temperature had a positive effect 
on both temperature and streamflow for most validation scores and lead times.” 

 

L18: missing reference Lafon et al. 2013  

L20: L24: wrong citation format Ivar Seierstad et al. (2016)  

AR: Thank you.  

AC: P13L23+27-28 we updated the citation (Seierstad et al, 2016) and the Reference list. 

Subtitles for 5.1 and 5.2 should be coherent “calibration for …” or “calibration for the…”  

AR: Thank you.  

AC: P13L8, P14L7 Subtitles are corrected 

L26: forecasts  

AR: Thank you.  

AC: P14L8 Corrected. 

 

P12  

L4: “Hence, calculated … “ word at wrong place within sentence.  

AR: Thank you.  

AC: P14L21 corrected to “Hence, estimated streamflow has a high…” 

L7 “indicate” delete additional s  

AR:  Thank you.  

AC: P14L24 Corrected. 

L18: “the bias in Tens is explained by” I think this statement is too strong. It can be an explanation, but I 

think it cannot be reduced to this single causality, as you state in the next sentence.  

AR: Thank you.  
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AC: This sentence is removed from sec 5.3, and content rewritten in sec 5.1 
 

L21: “The Tens CRPSS is skilful” forecasts have a positive CRPSS and are skilful. The current formulation 

is not logical, a CRPSS is not skilful.  

AR: We will rephrase to clarify that skillful refers to the forecast.  

AC: P13L29 We changed to “…, CRPSS show that the uncalibrated Tens is skillful for both…” 

 

L28: please state these characteristics very shortly again here.  

AR: We will modify as suggested. 

AC: P15L17-18 We changed the text as follows “Only a few significant relationships between the 

catchment characteristics, e.g. catchment area and elevation gradient, and skill were found”  

 

 

P13  

 

L1: I don’t understand what you mean with “the averaging effect on temperature skill dominates”.  

If I understand correctly, you could discuss here what the difference would be if you use a spatially 
distributed hydrological model (e.g. gridded version of the model with high resolution). The effect of 
temperature downscaling might be higher in this case because you do not average temperature again 
after the downscaling and the spatial distribution within a catchment would have a much larger effect 
especially in catchments with high spatial variability of soil properties, altitude and vegetation cover.  
 
AR: What we discuss in this paragraph is the effect of catchment size on the performance of the 
forecasts. We think that a forecast for small catchments are more sensitive than large catchments to the 
spatial pattern of forecasted temperature. The reasons are that (i) the smallest catchment are smaller 
than the grid size of the ECMWF model and (ii) it is more challenging to forecast weather on small 
spatial scales than large spatial scales. 
AC: P15L21-24 We rephrased “This result is not conclusive, but indicates that (i) the smallest catchment 
are smaller than the grid size of the ECMWF model and therefore very sensitive to the pre-processing (ii) 
it is more challenging to forecast weather on small spatial scales than large spatial scales. 

 

L13: “the calibrated temperature reduced the skill of the forecasted streamflow.” Please state what skill 

measure you mean here, did you calculate the CRPSS or bias for that specific event? In the result you 

only describe the range of the calibrated / uncalibrated ensembles but not a measure of skill.  

AR: You are right. In this sentence, the use of skill is misleading. We did not calculate a specific measure 
of skill, but merely point to fact that compared to the reference streamflow, the calibrated T forecast 
induce too high streamflow, and the error becomes larger. A better word would might be performance. 

AC: P16L12 Changed to “performance”  

 

L15-17: I think you would like to point out that other errors (in the meteorological dataset and the 

hydrological model) do influence the results. If so, the sentence should be rephrased. Now the reader 
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might think that forecasts are always getting worse if they are calibrated and this would be an argument 

against your conclusive statement in the summary on Page 14/L19-18.  

AR: We agree, and will add a sentence to clarify this. We will also remove streamflow observations from 
the figure and consequently from the discussion.  

AC: P16L13-15 Rewritten “Deterioration in the forecast performance using calibrated temperature is 

particular for this event. Other results provided in this study shows clearly that the calibrated 

temperature ensembles improve the streamflow ensemble forecasts on average.” 

 

Figures:  

 

Figure 1: write “grouped” instead of “divided”. Something is wrong in the first sentence “this study 

shown using”. Please rephrase.  

AR: We will rephrase the caption.   

AC: P24 Rephrased caption “The maps for Norway indicates the 139 catchments used in this study. The 

left map show the catchment boundaries including the location of four selected catchments. Please note 

that many catchments are small and difficult to detect. The location of the catchments gauging stations 

are shown in the right map. Norway was grouped into five regions (N=north, M=mid, W=west, S=south, 

and E=east), all regions are marked with colors and regional boundaries.” 

Figure 3:  

Avoid overlap of the boxplots to enhance the readability of the plot. There seem to be two line-artefacts 

on both sides of the figure.  

AR: We will have a look at the box-plots, the artefacts in the figures will probably disappear in the 
finishing stage, as all figures will be provided separately. We used partly overlapping boxes for each lead 
time to increase the readability of the figure, since it is easy to see to which boxes that belongs to the 
same lead time. We tried without, but found it then more difficult to read the plot.  

AC: No changes introduced. 

 

Figure4:  

In the text you write TO and in the Figure it corresponds to Tobs. Similarly, Tens and Tens-range. It might 

facilitate the text of the abbrevations are more consistent in the text, captions and the figures.  

AR: Thank you. This will be corrected a suggested  

AC: P30 We changed the figures, and correct “Tobs to To” in both plots.  

Figure 6:  

Line artefacts on the left of the figure.  

AR: The artefacts in the figures will probably disappear in the finishing stage; all figures will be provided 
separately.  

AC: We will check that the line artefacts are not present in the final manuscript. 

Figure 10:  
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It is hard to see the actual forecast. I suggest removing the background colors for the warning levels and 

just plot lines instead. The Figure can easily be misinterpreted as the individual plots (e.g. upper panel 

for lead day 2) look like a continuous forecast. Maybe it would be more suitable to plot boxplots instead.  

AR: OK. We will do some changes to this figure. Ref A#3. We prefer- however, to not use box-plots. We 
think that the use of lines and shaded areas increase the readability of the figures. 

AC: P38 We have changed the figure. The background colors and the streamflow observation are 

removed. 

Captions: Forecast issue date is the date when the forecast was issued, hence the x-axis could be 

different for each panel in this figure. I recommend adapting the caption to make this clearer, e.g. target 

day instead of issue date.  

AR: .Thank you. We will follow the suggestion. 

AC: P38 Changed to “target day” in the caption Fig 10, and in the text P12L19  

 

“model streamflow with SeNorge observations” this is QO. I would write it in brackets as you do for 

Qcal.  

AR: Thank you, we will follow the suggestion. 

AC: P38 Rewritten caption “Forecasted streamflow for the Bulken catchment fort lead times 9, 5 and 2 

days. Forecast target dates on the x-axis, and streamflow (m3s-1) on y-axis. Reference streamflow with 

SeNorge observations Qo (black solid line) , ensemble mean uncalibrated temperature Qens (blue line), 

ensemble mean calibrated Qcal (blue dotted line), ensemble range Qens (light violet area)  and ensemble 

range Qcal (light blue area). The grey dotted lines indicate the thresholds for mean annual, 5-year and 50-

year floods.” 
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Abstract. In this study, The Norwegian flood forecasting system is based on a flood forecasting model running on catchments 

located all across Norway. The system relies on deterministic meteorological forecasts and uses an auto-regressive post-10 

processing algorithm to achieve probabilistic streamflow forecasts and thus a measure of uncertainty. An alternative approach 

is to use we used meteorological ensemble forecast as input toand hydrological modelsensemble forecasts to quantify the 

uncertainty in forecasted streamflow, with a particular focus on the effect of temperature forecast calibration on the streamflow 

ensemble forecast skill. In catchments with seasonal snow cover, snowmelt is an important flood generating process. Hence, 

high quality air temperature data are important for to accuratelye forecasting of streamflows. In this study., tThe sensitivity of 15 

hydrological streamflow ensemble forecasts to the calibration of temperature ensemble forecasts was investigated using . 

Enensemble forecasts of temperature from ECMWF covering a period of nearly three years, from 01.03.2013 to 31.12.2015, 

were used. To improve the skill and reduce biases of the temperature ensembles, the Norwegian Meteorological Institute 

provided parameters for ensemble calibration. The calibration parameters are , derived using a standard quantile mapping 

method where Hirlam, a high resolution regional weather prediction model, was used as reference. Estimated observed daily 20 

temperature and precipitation were obtained from the SeNorge-dataset, which is station data interpolated to a 1×1 km2 grid 

covering all of Norway.  The operational flood-forecasting model, a A lumped HBV model distributed on 10 elevation zones, 

was used to calculate estimate the streamflow.  

The results show that temperature ensemble calibration influenced affected both temperature and streamflow forecast skill, but 

differently depending on season and region. We found a close to 1:1 relationship between temperature and streamflow skill 25 

change for the spring season, whereas for autumn and winter large temperature skill improvements were not reflected in the 

streamflow forecasts to the same degree. This can be explained by streamflow being less influenced affected by sub-zero 

temperature improvements, which accounted for the biggest temperature biases and corrections during autumn and winter. The 

skill differs between regions. In particular there is a cold bias in the forecasted temperature during autumn and winter along 

the coast, enabling a high improvement by calibration. The forecast skill which could was partly be related to elevation 30 

differences and catchment area. Overall, Iit is evident,  however, that temperature forecasts are important for streamflow 
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forecasts in climates with seasonal snow cover. This indicates that further studies are needed, specifically addressing catchment 

specific calibration methods, for improved air temperature forecasts.  

 

1 Introduction 

Floods might can severely damage infrastructure, buildings and farmland, and can have high economic impacts on society 5 

(Dobrovičová et al., 2015). Early warnings based on hydro-meteorological forecasts are an important flood mitigation measure 

and provide time to reduce flood damage. A flood forecasting system consists of a hydro-meteorological forecasting chain 

with three main components, all influenced affected by uncertainties: (i) observations used to establish the initial conditions 

for the catchment, (ii) meteorological forecasts used as forcing, and (iii) the hydrological model.   

The Norwegian flood forecasting system, operated by the Norwegian Water Resources and Energy Directorate (NVE), uses 10 

deterministic forecasts of air temperature and precipitation as forcing for hydrological models in 145 catchments across the 

country. Meteorological forecasts from the AROME-MetCoOp operational weather prediction model (Müller et al., 2017) are 

used for short range forecasts (day 1 and 2), whereas forecasts from the European Centre for Medium-Range Weather Forecasts 

(ECMWF, 2018a) high resolution model are used for medium range forecasts (day 3 to 9). All forecasts are provided by the 

Norwegian Meteorological Institute (MET Norway). The Hydrologiska Byråns Vattenbalans model (HBV) (Bergstrom, 1976; 15 

Sælthun, 1996; Beldring, 2008) is used as the hydrological forecasting model, which combined with statistical uncertainty 

models (Langsrud et al., 1998a; Langsrud et al., 1998b), provides probabilistic streamflow forecasts. The uncertainty model 

accounts for the strong autocorrelation in forecast errors and estimates an uncertainty band around the deterministic 

temperature, precipitation and streamflow forecasts (Langsrud et al., 1998a; Langsrud et al., 1998b).  

An alternative approach to calculate estimate probabilistic streamflow forecasts is to use meteorological ensemble forecasts 20 

from numerical weather prediction models as a means to account for uncertainty in the forcing.  The meteorological ensemble 

forecasts are created by perturbing both the initial states and the physics tendencies of the original deterministic forecast. The 

spread of the ensemble members can be interpreted as the uncertainty of the forecasts, where a large spread indicates large 

uncertainty (Buizza et al., 1999; Persson, 2015). Subsequently, the meteorological ensemble is used as forcing for a 

hydrological model to produce an ensemble of forecasted streamflow, referred to as a hydrological ensemble prediction system 25 

(HEPS). HEPS are increasingly being used in flood forecasting (Cloke and Pappenberger, 2009; Wetterhall et al., 2013). A 

HEPS adds value to a flood forecast by assessing the forecast uncertainty caused by uncertainties in one or several parts of the 

modelling chain.  

Raw (unprocessed) ensembles are rarely reliable in a statistical sense (Buizza, 1997; Wilson et al., 2007). Reliability means 

that the observation behaves as if it belongs to the forecast ensemble probability distribution (Leutbecher and Palmer, 2008). 30 

To improve reliability, the ensemble forecasts are can be calibrated by applying statistical techniques correcting bias and 

under/over-dispersion (Hamill and Colucci, 1997; Buizza et al., 2005; Persson 2015). From a hydrological perspective, pre-
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processing are techniques (i.e. downscaling and calibration) used on the meteorological ensembles and post-processing refers 

to techniques used on the hydrological ensembles. Examples of methods used to calibrate meteorological ensembles are 

ensemble model output statistics (EMOS) (Gneiting et al., 2005; Wilks and Hamill, 2007), Bayesian model averaging (BMA) 

(Raftery et al., 2005; Wilson et al., 2007), ensemble Kalman filters (Evensen, 2003; Verkade et al., 2013), non-homogenous 

Gaussian regression (Wilks and Hamill, 2007 ; Gneiting et al., 2005; Wilks and Hamill, 2007), quantile mapping (Bremnes, 5 

2007), and kernel dressing (Wang and Bishop, 2005). These methods differ in their sensitivity to length of training data and 

ensemble size, and how spread and bias are corrected. Pre-processing (from a hydrological perspective) refers to all techniques 

used to change the output from a meteorological model, and includes calibration (described above) and downscaling. 

Downscaling implies resampling from the original forecast grid size to a grid of higher resolution, and both statistical (e.g. 

interpolation) and dynamical (e.g. a regional weather forecast model) techniques, can be used (Schaake et. al., 2010). A recent 10 

review of pre-processing methods are given in Li et al (2017) and the textbook edited by Vannitsem et al (2018).  

In climates with seasonal snow -cover, snowmelt during the spring season is an important flood-generating process. In these 

climates, temperature is a key variable to classify the precipitation phase and to estimate the snowmelt rate. The sensitivity of 

daily streamflow to temperature is non-linear since streamflow depends on temperature thresholds for rain/snow partitioning 

and for snow melt/freeze processes. The latter depends on the state of the system i.e. snow is needed to generate snowmelt. 15 

For temperatures well below zero degree, the streamflow is not sensitive to temperature, whereas for temperatures around zero 

degree relatively small changes in temperature might control if precipitation falls as rain or snow, and consequently whether 

streamflow is generated or not., which may have long-memory effects due to the snow storage (Gragne, 2015). Most 

Norwegian catchments experience a seasonal snow -cover, but are otherwise diverse in terms of the length of the snow season 

and topographic complexity (Rizzie et al., 2017).  20 

Forecasting, dDownscaling, and interpolating air temperature in complex topography are challenging, mostly because 

temperature lapse rates depend on several factors, i.e. altitude, time and place, as well as specific humidity and air temperature 

(Aguado and Burt, 2010; Pagès and Miró, 2010; SheridanPeter et al., 2010).  Errors in forecasted temperature might result in 

a misclassification of precipitation phase and/or cause the hydrological forecasting system either to miss a flood event or 

provide a false alarm, caused by too high or too low snowmelt rates. It is therefore important to assess the relationship between 25 

temperature and streamflow forecasts. The importance of reliable temperature forecasts for streamflow forecasts is 

demonstrated for two Aalpine catchments during a heavy precipitation event in Ceppi et al. (2013). An interesting finding in 

this paper is that catchment elevation distribution, and by this area above the snowline, was important for how streamflow 

forecasts were affected by temperature uncertainty. Verkade et al. (2013), on the other hand, fouind only modest effects of 

temperature calibration on streamflow forecast skill as an average over several years for Rhine catchments.  30 

As far as the authors know, the marginal isolated effect of the uncertainties in temperature forecasts is not yet systematically 

investigated for a larger number of catchments in a cold climate. The large spatial and seasonal variations in snow accumulation 

and snowmelt processes found in cold regions with complex terrain require that both spatial and seasonal patterns in the 

performance of temperature and streamflow forecasts are evaluated. 
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The main objective of this study is to investigate the effect of temperature forecast calibration on the streamflow ensemble 

forecasts skill in catchments with seasonal snow cover, and to identify potential improvements in the forecasting chain. In 

particular, we address the following research question: 

• Are there seasonal effects of temperature calibration on the temperature ensemble forecast skill? 

• Are there seasonal effects of temperature calibration on the streamflow ensemble forecast skill? 5 

• Are there spatial patterns in the temperature and streamflow ensemble forecast skill and if so, can these be related to 

catchment characteristics? 

To answer these questions, we applied temperature ensemble forecasts from ECMWF combined with the pre-processing setup 

from the MET Norway, to 139 catchments in Norway. Three years of retrospective operational ECMWF forecasts from 2013-

2015 were used to re-generate streamflow forecastsd, and the skill of temperature and streamflow forecasts were systematically 10 

evaluated for these catchments. In order tTo investigate the marginal isolated effect of the temperature ensembles on the 

streamflow forecasts, the observed SeNorge precipitation (Tveito et al., 2005) was used instead of the precipitation ensemble 

forecasts, to run the hydrological model.  Finally, a flood eventcase study is presented, demonstrating the effect of temperature 

calibration on a single snowmelt induced flood event. We start by presenting the study area, data and hydrological model 

(HBV) used (Sect. 2). In Sect. 3, methods used to establish the hydro-meteorological forecasting chain, the skill metrics and 15 

evaluation strategy are presented. Section 4 contains the results, followed by a discussion in Sect. 5. Finally, in Sect. 6, the 

findings are summarized, conclusions are drawn, and further research questions are discussed.  

2 Study area, data and model 

2.1 Study area 

In Norway there are large spatial variations in climate and topography, and a recent overview over past, current and future 20 

climate is given in Hanssen-Bauer et al. (2017). The western coast has steep mountains, high annual precipitation (4000-5000 

mm/year) and a temperate oceanic climate. Inland areas have less precipitation, larger differences between winter and summer 

temperatures, and climatic zones from humid continental, to subarctic and mild tundra (according to the Köpper-Geiger system, 

see (Peel et al., 2007)). The mean annual runoff flows follows to a large degree the spatial patterns of precipitation. The two 

basic flood generating processes are snowmelt and rainfall (Vormoor et al., 2015). Most catchments in Norway have prolonged 25 

periods of sub-zero temperatures during winter, resulting in a seasonal snow storage, winter low flow, and increased 

streamflow during spring due to snowmelt. The relative importance of rainfall and snowmelt processes are decided by the 

duration of the snow accumulation season and the share of annual precipitation stored as snow. Across Norway two basic 

runoff regimes can be identified, (i) coastal regions with high flows during autumn and winter due to heavy rainfall and (ii) 

inland regions with high runoff during spring due to snowmelt (Vormoor et al., 2015). However, there are many possible 30 

transitions between these two basic patterns (Gottschalk et al., 1979).    
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The national flood-forecasting system builds on hydrological models providing streamflow forecasts in 145 catchments, 

covering most parts of Norway, varying in size (~3 to 15447 km2) and elevation difference (103 to 2284 m). The latter is 

calculated as the difference between the lowest and highest point on the hypsographic curve, ∆𝐻 = (𝐻100 − 𝐻0). The flood 

forecasting catchments are mostly pristine, although some do have minor (hydropower) regulations. Fourteen catchments have 

a glacier coverage of 5 % or more. Of the 145 flood forecasting catchments, 139 have data of sufficient quality, and were 5 

chosen as the basis for the study (Fig. 1). The catchments were grouped into five regions based on their location; North (N), 

South (S), West (W), Mid (M), and East (E) following Hanssen-Bauer et al. (2017) and Vormoor et al. (2016) (Fig. 1, right). 

These regions are defined by the boundaries of the major watersheds, and reflect major hydro-climatological zones. Rainfall 

floods dominate in South, West, and Mid, whereas snowmelt floods dominate in East and North. There is still a large variability 

in hydrological regimes within individual regions. Figure 1 includes the location of four catchments, for which results that are 10 

mo in this studyre detailed will be presented. Gjuvaa (E), Foennerdalsvatn (W) og and Viksvatn (W) were used to visualize 

the challenges in temperature forecasts, and both uncalibrated and calibrated ensemble values will be presented for these three 

catchments. Viksvatn (W) and Foennerdalsvatn (W) are located in Western Norway and are both catchments with some 

glaciers (~3 % and 47 % respectively). Gjuvaa (E) is non-glaciered and located inland southeast Norway (Fig. 1, left). The 

Bulken (W) catchment was chosen to demonstrate the effect of temperature calibration on the streamflow forecast for a 15 

snowmelt driven flood event. 

2.2 Observations, hydrological model and forecasts 

2.2.1 Interpolated precipitation and temperature observations– SeNorge data 

In Norway, a network of about 400 precipitation stations and 240 temperature stations provides daily temperature and 

precipitation values. These in situ observations are interpolated to create a gridded (1×1 km2) product, referred to as SeNorge 20 

(available at SeNorge.no, Tveito et al., 2005). In this study, we used version 1.1. For this version, gridded temperature is 

calculated by spatial interpolationkriging, where both the elevation and location of temperature stations are accounted for. The 

observed daily precipitation is corrected for under-catch at the gauges, and triangulation is used for spatial interpolation to a 

1×1 km2 grid. A constant gradient of 10 % per 100 m beneath 1000 meter above sea level (masl) and 5% per 100 m above 

1000 masl is applied to account for elevation gradients in precipitation (details can be found in Tveito (2002), Tveito et al. 25 

(2005), and Mohr (2008)). The SeNorge data are available from 01.01.1957, and in this study, we used data for the period 

01.03.2013 to 31.12.2015 in the forecasting mode and 01.01.1958 to 31.12.2012 to calculate the temperature and streamflow 

climatology (Sect. 3.2). The SeNorge precipitation substitute the precipitation forecasts in the ensemble forecasting chain, and 

hence the isolated effect of temperature calibration on streamflow forecasts was obtained. We hereby denote SeNorge 

temperature and precipitation, To[lat, lon, t] and Po[lat, lon, t]  respectively, where t is an index for observation time. Latitude (lat) 30 

and longitude (lon) represent the grid indexing.  



Revised manuscript with track changes 

6 

 

2.2.2 Hydrological model – HBV 

The HBV model (Bergstrom, 1976) as presented in Sælthun (1996) and Beldring (2008) constitutes as the basis for this study. 

The vertical structure of the HBV model consists of a snow routine, a soil moisture routine, and a response function that 

includes a nonlinear reservoir for quick runoff and a linear reservoir for slow runoff. Each catchment is divided into 10 

elevation zones, each covering 10% of the total catchment area. Catchment average precipitation and temperature that are 5 

elevation adjusted using catchment specific lapse rates were used as forcing. The model uses catchment average temperature 

and precipitation as input. Each catchment is divided into 10 elevation zones, each covering 10% of the total catchment area. 

The catchment average precipitation and temperature are elevation adjusted to each elevation zone using catchment specific 

laps rates. In this study, we used the operational model set-up which has been calibrated using the PEST software for parameter 

estimation (Doherty, 2015 ), with Nash-Sutcliffe (Nash and Sutcliffe, 1970) and volume bias as calibration metrics. The 10 

calibration, 1996-2012, gives mean NS Nash-Sutcliffe 0.77, with zero volume bias. The validation period, 1980-1995, shows 

mean NS Nash-Sutcliffe 0.73, with a mean volume bias of 5% (personal communication, Gusong , (20163)). 

2.2.3 Model Reference Streamflow 

Model Reference streamflow, Qo(c,t), where c is an index for catchment, was derived using SeNorge precipitation and 

temperature, aggregated to the catchment scale, as forcing to the HBV model (Fig. 2, see “Reference mode” in the green 15 

frame). In order to isolate the effect of temperature calibration on forecasted streamflow and avoid effects of hydrological 

model deficiencies, model reference streamflow was used as a reference benchmark when the streamflow forecasts were 

evaluated. Similarly, operational flood warning levels (here demonstrated for the case study basin, Bulken), are based on 

return-periods from model reference streamflow.  

2.2.4 Temperature ensemble forecasts 20 

We used the ECMWF temperature forecast ensemble (ENS) for the period 01.03.2013 to 31.12.2015 from an original grid 

resolution of 0.25° (i.e. model cycles/versions 38r1/2, 40r1, and 41r1 (ECMWF, 2018b)). This period covers model 

cycles/versions for which temperature grid calibration parameters are trained (40r1 and 41r1, see section 3.1.2) plus spring 

2013 (cycle 38r1/2) in order to include one more snow melt season. In short, 50 ensemble members of ENS are generated by 

adding small perturbations to the forecast initial conditions and model physics schemes, subsequently running the model with 25 

different perturbed conditions. The ensemble represent the temperature forecast uncertainty. A more detailed description of 

the ECMWF ENS system is provided in e.g. Buizza et al.(1999), Buizza et al.(2005) and Persson (2015). For each issue date 

d, 51 ensemble members Tens[lat, lon, m, l*] are provided for a lead time up to 246 hours, where m is the ensemble member and 

l* the lead time in 6 hours intervals. In this study, we used the forecasts issued at 00:00 and aggregated daily values for the 

meteorological 24-hour period defined as 06:00-06:00 to provide forecast for lead times up to nine days. The observational 30 

time t for a forecast is d + l*.  For a full description of the ECMWF ENS product, see ECMWF (2018a). In short, ENS is 
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generated by adding small perturbations to the forecast initial conditions and model physics schemes. Consequently 50 

ensemble members are generated running the model with different perturbed conditions, and represents the forecast uncertainty 

(Buizza et al., 1999; Persson, 2015).  

3 Methods  

3.1 Ensemble forecasting chain 5 

Figure 2 shows the forecasting modelling chain designed for this study. The green frame presents the observational reference 

model runmode that determines the internal states for the forecasting issue date, d, in the red frame. This model reference 

moderun was also used to calculate estimate model reference streamflow Qo[c,t] (see Sect. 2.2.3). SeNorge temperature and 

precipitation (To[c,t] and Po[c,t]) aggregated to each catchment c (To[c,t] and Po[c,t]) were used to  force the hydrological model 

in the observational reference mode. The red frame illustrates the forecasting mode, including the postre-processing of 10 

temperature forecasts. The hydrological ensemble forecasts were calculated estimated using downscaled raw temperature 

ensemble forecasts (Tens[c,m,l], see Sect. 3.1.1) or downscaled and calibrated temperature ensemble forecasts (Tcal[c,m,l], see 

Sect. 3.1.2), and observed precipitation (Po[c, d+1]) as forcing, where m is ensemble member and l is lead time in days. All 

temperature forecasts were aggregated to daily time steps since the operational HBV model runs on a daily time step and the 

SeNorge data used as a reference provides only daily values. In the forecasting mode, each temperature ensemble member was 15 

used as input and run as separate deterministic forecast. All hydrological forecasts were calculated estimated for all 9 lead 

times. Note that for each issue date d, the same internal states of the HBV model were used for all ensemble member runs. 

Thus two sets of streamflow ensemble forecasts (Qens[c,m,l] and Qcal[c,m,l]) that differ only by the applied temperature 

calibration, were derived. The following subsections provide details on the approach used for downscaling and calibration of 

the ensemble temperature forecasts (ENS). 20 

3.1.1 Temperature forecast downscaling  

Within In this paper the term downscaling includes refers to the interpolation of temperature from a low resolution grid to a 

high resolution grid where vertical temperature gradients are accounted for. The ECMWF grid temperature, which represent 

the average temperature for the grid cell, was interpolated from a horizontal resolution of 0.25° (~ 30 km) to the 1×1 km2 

SeNorge grid, using the nearest neighbour method and aggregated to daily values in order to match the spatial and temporal 25 

resolution of the SeNorge data. Due to elevation difference between the ECMWF and SeNorge grid elevations, we corrected 

the ensemble temperature at the 1×1 km2 scale by applying a standard atmospherice lapse rate of -0.65 °C/100 m. Finally, the 

downscaled temperature ensemble was aggregated to daily values and averaged over the catchment areas to provide Tens[c,m,l] 

for a given lead time and ensemble member.  
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3.1.2 Temperature grid calibration  

The grid temperature is calibrated using quantile mapping (Seierstad, 2016;, Bremnes, 2007, 2004) to remove biases by moving 

the ENS forecast climatology closer to the observed climatology. MET Norway provided temperature grid calibration 

parameters used in this study. This grid calibration was used in the operational post-processing chain for meteorological 

forecast including the forecasts published on yr.no. MET Norway uses Hirlam (Bengtsson et al., 2017) temperature forecast 5 

(on a 4×4 km2) to provide the observational climatology useda reference for parameter estimation (calibration). Hirlam is 

suitable as a reference since it provides a continuous field covering all of Norway at a sub daily time step. In addition, Hirlam 

gives a higher skill and are less biased than the ENS (Engdahl et al., 2015). To establish the calibration parameters MET 

Norway ,used both ENS re-forecast (Owens, 2018) and Hirlam data from July 2006 to December 2011 are interpolated to a 

5×5 km2 grid.  The ENS re-forecast is a 5 member ensemble generated from the same model cycle (40r1 and 41r1) as the ENS. 10 

For each grid cell, monthly unique quantile transformation coefficients are determined by using data from a three-month 

window centred on the target month,  (e.g. May analysis consists of April, May and June , personal communication (Seierstad, 

2017)). The same coefficients, based on mapping the first 24 hours, were applied to all lead times and members.  For forecasts 

outside the observation range, a 1:1 extrapolation was used.  I.e. if a forecast is 2°C higher than the highest mapped forecasted 

temperature, then the calibrated forecast is 2°C higher than the highest mapped reference temperature. 15 

For this study, we applied the calibration coefficients provided by MET Norway to the temperature forecasts for the period 

2013-2015. Accordingly, the ENS was interpolated to the 5×5 km2 grid for which the quantile mapping parameters coefficients 

were used to obtain the calibrated temperature ensembles (Tcal). Subsequently, the calibrated ensembles on the 5×5 km2 grid 

were downscaled to the 1×1 km2 grid following the same procedure as for the uncalibrated temperature ensemble (Tens, Sect. 

3.1.1). Finally, the calibrated temperature ensemble was aggregated to daily values and averaged over the catchment areas to 20 

provide Tcal[c,m,l]. 

3.2 Validation scores and evaluation strategy 

The evaluation focused on the performance of the temperature forecast ensembles, and the effect of both uncalibrated and 

calibrated temperature forecasts on the performance of the streamflow ensembles. A well performing ensemble forecast should 

be reliable and sharp, where reliability has the first priority (Gneiting et al., 2007). A forecast is considered reliable if it is 25 

statistically consistent with the observed uncertainty, i.e. 90% of the observations should verify within the 90% forecast 

interval. Rank-histograms are often used for visual evaluation of reliability, and show the frequencies of observations amongst 

ranked ensemble-members. For reliable ensemble forecasts, the rank-histogram will be uniform (horizontal). A bias in the 

ensemble forecast is recognized as a slope in the rank-histogram, where a negative slope indicates too warm temperature 

forecasts, and positive slope too cold forecasts. , whereas aA U-shape indicates that the ensemble forecast is under-dispersed, 30 

whereas a convex shape indicates over-dispersed (Hamill, 2001). In order to quantify the reliability, a decomposition of the 
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chi-square test statistics for the rank-histogram was used to describe the rank-histograms slope (bias) and convexity 

(dispersion) (Jolliffe and Primo, 2008). Both rank-histogram slope and convexity are negatively oriented,  i.e. lower values are 

better, with an optimal value of zero for un-biased and uniformly distributed data. The sharpness of a reliable forecast is 

described by the spread between the ensemble members, where a sharp forecast has a small spread and is the most useful 

(Hamill, 2007). In this study, the temperature sharpness was assessed by first estimating the range between the 5th and the 95th 5 

percentile of the ordered ensemble forecasts for all issue dates, lead times and catchments. For streamflow, we estimated a 

relative sharpness by dividing the 5th to 95th percentile range by the ensemble mean. Thereafter, sharpness was determined for 

each catchment and lead time as the average range of all issue dates. In this study, the ensemble range (i.e. the interval spanned 

by the lowest and highest forecasted values) visually assessed the sharpness. 

The continuous rank probability score (CRPS) or SCRP) is a summary of reliability, sharpness and uncertainty (Hersbach, 2000). 10 

CRPS (denoted as SCRP in Eq. 1) measures the distance between the observation xa and the ensemble forecast, where the latter 

is expressed by the cumulative density function 𝐹x(𝑥):  

𝑆CRP(𝐹x, 𝑥a) = ∫ [𝐹x(𝑥) − H(𝑥 − 𝑥a)]2𝑑𝑥
∞

−∞
, (1) 

where H is the Heaviside function that is zero when the argument is less than zero, and one otherwise (Hersbach, 2000). CRPS̅̅ ̅̅ ̅̅ ̅ 

was calculated as the average CRPS (SCRP) over the study period (01.03.2013 to 31.12.2015). CRPS̅̅ ̅̅ ̅̅ ̅  is similar to the mean 

absolute error for deterministic forecasts. The temperature CRPS̅̅ ̅̅ ̅̅ ̅ was computed using the SeNorge temperature To, as 15 

observations, whereas streamflow CRPS̅̅ ̅̅ ̅̅ ̅  used Qo[c,t] as observations. This evaluation approach allowed us to evaluate the 

marginal isolated effect of the uncertainties in the temperature forecasts since we can then, to a large degree, ignore 

uncertainties in the HBV model itself. 

Skill scores are convenient for comparison between forecast variables (e.g. temperature versus streamflow) and catchments 

since these scores are dimensionless. To calculate the continuous ranked probability skill score (CRPSS denoted as  or SCRPS) 20 

in Eq. 2), a benchmark score (CRPS̅̅ ̅̅ ̅̅ ̅
B denoted asor 𝑆B̅_CRP) which a skilful forecast score (CRPS̅̅ ̅̅ ̅̅ ̅

F odenoted asr 𝑆F̅_CRP) should 

outperform, is needed. For both temperature and streamflow, ensembles representing daily climatology were used as the 

benchmarks. Daily SeNorge temperature (To[c,t]) from 1958 to 2012 (i.e. 55 years) were used to create a climatological 

temperature ensemble of 55 members for each day of the year. Similarly, a daily streamflow climatology was established from 

model reference streamflow (Qo[c,t]) calculated by the HBV model, forced with the 55 years of temperature and precipitation 25 

(To[c,t] and Po[c,t]) from the SeNorge data.  

CRPSS (SCRPS) was calculated for each catchments according to Eq. (2) (Hersbach, 2000). 

𝑆CRPS =
𝑆̅B_CRP−𝑆̅F_CRP

𝑆̅B_CRP
, (2) 
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CRPSS varies from -∞ to 1, where one is a perfect score. Negative values means that the forecasts performs worse than 

climatology, and CRPSS equal to zero implies that it performs similar to the benchmark (climatology in this case). The seasonal 

skill score was calculated by averaging the daily CRPS only for the months belonging to the target season.  

The effect of the grid calibration on the temperature and streamflow forecast skill was evaluated by comparing the validation 

scores using both the uncalibrated (Tens) and the calibrated (Tcal) ensembles to generate the streamflow ensembles. For 5 

readability, the abbreviations SCRP and SCRPS used in the equation, will be substituted with CRPS and CRPSS in the text 

hereafter. 

Spatial patterns in the forecast performance for all 139 catchments, i.e. CRPSS and differences in CRPSS between calibrated 

and uncalibrated temperature, were mapped for Norway. Further, box plots for the five regions (see Fig. 1) were drawn to 

reveal potential regional patterns. Finally, we evaluated used using linear regression, whether the catchment characteristicsto 10 

identify relationships between catchment characteristics , (elevation difference and catchment area, ) had any influence oand 

n the skill score (Tcal and Qcal CRPSS). The linear regression analysis was done for combinations of seasons and regions.   

Seasonal variations in skill score were assessed by calculating CRPSS for the four two seasons winter (January to March), 

spring (April, to June), summer (July to September) and autumn (October to December). This definition of seasons is used to 

better capture a snowmelt season that for most Norwegian catchments is in the period April to June. For this paper, we chose 15 

to focus on the results for autumn and spring. Summer (July to September) was excluded due to the relatively small changes 

in CRPSS explained by (i) the skill of uncalibrated temperature forecasts are higher and the potential for improvement is lower, 

and (ii) there is less or no snow in summer, resulting in a reduced streamflow sensitivity to temperature. Winter (January to 

March) was excluded since it performs similarly as the autumn. 

Finally, the influence effect of temperature calibration on the flood warning level is illustrated for a snowmelt induced flood 20 

event in the Bulken catchment. In the operational flood warning system at NVE, the predefined warning flood thresholds are 

catchment specific and calculated return-periods are based on model reference streamflow, which is also the approach used 

herein.   

4 Results 

Temperature and streamflow forecasts were calculated estimated for 139 catchments, 1036 issue dates and 9 lead times. Figure 25 

3 presents a summary of the validation scores, CRPSS and the rank-histogram decomposition, in addition to sharpness, for all 

lead times. Each box plot shows the variations in the validation scores between the catchments. The rank-histogram slope and 

convexity describes bias and dispersion in the forecasts, respectively, both can be considered a measure for the reliability. As 

seen shown in Fig. 3, temperature slope and convexity, improve with increasing lead time, whereas CRPSS and sharpness gets 

poorer. For streamflow, slope and sharpness gets poorer,; convexity improves, whereas CRPSS shows small changes with lead 30 

time. To reduce the amount of presented results, the remaining part of this paper focuses on CRPSS for a lead time of 5 days. 

CRPSS was the chosen validation score since it contains information of reliability, uncertainty and sharpness, and enables a 
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comparison between catchments. A lead time of 5 days was chosen since reliability (convexity and slope) has improved and 

some sharpness is maintained, i.e. too large ensemble spread will increase the reliability but the forecast value will be reduced. 

4.1 Temperature forecasts  

Time series of SeNorge daily temperature To,, the range of raw (uncalibrated) temperature ensembles Tens ( (left panels), and 

scatter plots of ensemble mean for both raw Tens and calibrated and Tcal versus To (right panels) are shown for three selected 5 

catchments in Fig. 4. For Gjuvaa (E), a high altitude catchment in southeastern Norway (Fig. 1), To lies within the range of 

Tens for most days, and temperature forecast Tcal was improved by the temperature calibration. The well performing raw 

temperature forecasts for this catchment are representative for most catchments in eastern Norway. Representing western 

Norway, raw Tens in Viksvatn (W) has a seasonal cold bias that is reduced by the temperature calibration. The cold bias is 

typical for several catchments in the coastal regions West, Mid and North. Another western catchment, Foennerdalsvatn (W), 10 

has a similar cold bias in Tens to Viksvatn (W), but for Foennerdalsvatn the bias is notable for all seasons and even increases 

for Tcal (Fig. 4). The Foennerdalsvatn catchment is only 7.1 km2, has a high elevation, steep topography, 47% is covered by 

glaciers, and is located close to the coast. The combination of all these catchment characteristics can make forecasting difficult. 

Foennerdalsvatn is hence an example of how local conditions can be challenging and not well represented, neither by the 

numerical weather prediction model, nor by the calibration methods.    15 

4.2 Skill – relations to season, spatial location, and catchment characteristics  

Scatter plots of the difference between CRPSS for calibrated and uncalibrated forecasts for the temperature (Tcal and Tens) and 

streamflow (Qcal and Qens) ensembles are shown in Fig. 5. Each dot represents a catchment and the color indicates the region. 

The four two panels, one for each season,  in Fig. 5 shows how the change in temperature CRPSS influence affects the change 

in streamflow CRPSS for spring and autumn. For spring, the relationship is close to the 1:1 line, whereas for winter and autumn 20 

streamflow is less sensitive to the temperature calibration. In summer, there are only small changes in CRPSS for both 

temperature and streamflow. Based on these plots, we chose to present results for autumn and spring for the remaining part of 

the paper. The summer season was excluded due to the relatively small changes in CRPSS, whereas the winter season was 

excluded since it performs similarly as the autumn season.  

Catchment CRPSS for spring and autumn were sorted according to increasing CRPSS for Tens and Qens in Fig. 6. The figure 25 

reveals that Tens is more skillful in spring than in autumn when Tens has no skill (i.e. CRPSS<0) for about half of the catchments 

(i.e. they performs poorer than the climatology). In spring, 97% of catchments have skillful temperature forecasts. Temperature 

calibration improved the temperature skill for most catchments in autumn, whereas for many catchments in spring, the skill 

worsened. For streamflow, Qens, there are only small differences in CRPSS between spring and autumn (Fig. 6 right panels). 
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Calibration of temperature improved the skill for streamflow, Qcal, in autumn. Whereas for spring, the streamflow forecast 

skill followed the temperature skill change, and are both reduced and improved.  

CRPSS for uncalibrated temperature and streamflow forecasts, and the change in CRPSS, calculated as the difference in 

CRPSS between calibrated and uncalibrated forecasts, were mapped for all catchments. Fig. 7 and 8 show the CRPSS values 

for spring and autumn, respectively. The figures include box plots showing the variations in skill within each region, for both 5 

calibrated and uncalibrated forecasts. Neither Tens, nor Qens skill show any clear spatial pattern in spring (Fig. 7 left panel). 

For autumn, however, Tens has the lowest skill for the coastal catchments (Fig. 8 left panel). A coastal low CRPSS in autumn 

is also seen for Qens, even though less distinct compared to Tens. Both temperature and streamflow CRPSS were improved by 

calibration for the coastal regions (Fig. 8 right panel).  

Table 1 summarizes the result of the linear regression analysis between catchment characteristics (i.e. catchment area and 10 

elevation difference) and skill. By indicating the significance and sign of the relationships, significant relationships were found 

for 12 out of 40 regression equations (5% significance level). Elevation difference is negatively correlated to streamflow 

CRPSS for the regions East and Mid. Region East also has a negative correlation between streamflow CRPSS and catchment 

area as opposed to the other regions that have a positive correlation. For none of the regions the correlation changes sign 

between the seasons. Calibrated temperature and streamflow CRPSS plotted as a function of catchment area are presented for 15 

East and South in Fig. 9.   

4.3 Snowmelt flood 2013  

Forecasts and observations for a snowmelt driven flood are presented in Fig. 10 for in Bulken (W), located Win western 

Norway, are presented in Fig. 10. The figure shows forecasted streamflow for lead times 2, 5 and 9 days for the target dates 

May 16-26 20134. Note that for the lead times 2, 5 and 9 days, the forecasts for e.g. May 18, are issued on May 16, 13 and 9, 20 

respectively. The background colors indicate the flood warning levels; grhorizontal een: below mean flood, yellow: between 

mean andgrey dotted lines represent the mean annual, the 5-year and the flood, and orange: between 5-year and 50-year  floods 

(i.e. the operational flood warning levels) in this catchment. The highest warning level in Norway is red which represents 

stream flows exceeding the 50-year flood (not shown in Fig. 10). Figure 10 reveals how temperature calibration increases the 

streamflow for Bulken, leading to a change in warning level for all lead times. In addition we see how the ensemble spread 25 

increases with lead time (from lower to upper panel), from a narrow range around the ensemble mean for the lead time 2 days, 

to a very wide range for lead time 9 days.   

5 Discussion  

Box plots of validation scores for all catchments and lead times in Fig. 34 shows that, on average, both raw Tens  and calibrated  

Tcal  temperature ensembles were more skillful with a higher CRPSS, for shorter as compared to longer lead times, and that 30 
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Tcal was more skillful than Tens. Even though both bias and dispersion (i.e. reliability) as measured by rank histogram slope 

and convexity improved with longer lead time, the reduced sharpness and increased uncertainty, resulted in a reduced skill 

(CRPSS). For streamflow, the bias increased with longer lead time, while dispersion improved. Further, Qcal was slightly more 

skillful than Qens. Overall, the grid calibration of temperature had a positive effect on both temperature and streamflow for all 

most validation scores and lead times. The calibration procedure applied in this study involves many interpolations and 5 

downscaling steps that increases the uncertainty in temperature forecasts. We believe that a catchment specific temperature 

calibration, tailored to the needs for hydrological forecasting, would solve this challenge. 

5.1 Seasonal eEffect of temperature calibration for the temperature forecast skill 

The skill for both raw (uncalibrated) Tens and calibrated Tcal depends on temperature ensembles varies with season (Fig. 5 – 

8). The relatively small temperature skill improvements in spring and summer, and large skill improvements in autumn, and 10 

winter, can be explained by the skill of the raw ensembles Tens. The low skill for Tens in autumn and winter is caused by the a 

cold bias, and lays the ground for the large improvements seen for Tcal. The seasonal differences in skill and response to 

calibration show the importance of using seasonal calibration parameters. It is also apparent that the applied methods do not 

perform optimally for all seasons. For spring, the results show that several catchments have a reduction in the forecast skill 

after calibration. By inspecting the forecasts in detail, we found a too extensive correction of temperature for some days and 15 

catchments. Quantile mapping, as most statistical techniques, is sensitive to forecasts outside the range of calibration values 

and period (Lafon et al. 2013), and this can be an explanation for too high correction in the highest Tens quantile. The use of 

forecasts from different model cycles might affect the consistency in the forecasts. Moreover, the calibration parameters are 

sensitive to the representativeness of the calibration period.     

The most pronounced spatial pattern is the low autumn CRPSS for uncalibrated ensembles Tens in the coastal areas. This is 20 

seen from the boxplots for the regions West, Mid and North (Fig. 8) and in the plots of the western catchments Viksvatn and 

Foennerdalsvatn during winter months (Fig. 4). This cold bias is documented for the Norwegian coastal areas in the cold 

seasons by Seierstad et al (2016), and is mainly caused by the radiation calculations in the ECMWF model (Hogan et al., 

2017). The coarse radiation grid results in warmer sea points being used to compute longwave fluxes applied over colder land 

points, causing too much cooling. This effect is seen for the temperature forecast for winter 2014 and 2015 for the coastal 25 

catchments in fig 4 (b) and (c), in contrast to the inland catchment (a) which is less biased.  The radiation resolution is improved 

in later model cycles (Hogan et al., 2017; Seierstad et al., 2016). In addition, the challenging steep coastal topography is not 

well represented by the spatial resolution in the ECMWF model (Seierstad et al., 2016). For inland catchments, and the regions 

South and East, CRPSS show that the uncalibrated Tens is skillful for both autumn and spring; hence, the calibration has a 

smaller effect in these catchments.  30 
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The cold autumn bias in temperature forecasts is seen for catchments along the coast (Fig. 8). The relatively low skill and cold 

bias for sub-zero ECMWF temperature forecasts for the Norwegian coastal areas in cold seasons are documented by Ivar 

Seierstad et al. (2016). Temperature bias can have complex causes, but the coastal bias typical for Norway is mainly caused 

by radiation (Hogan et al., 2017). The coarse radiation grid in the ECMWF atmospheric model results in warmer sea points 

being used to compute longwave fluxes applied over colder land points, causing too much cooling. The radiation resolution is 5 

improved in later model cycles (Hogan et al., 2017; Ivar Seierstad et al., 2016).  

5.2 Seasonal Eeffect of temperature calibration for the streamflow forecast skill 

The skill of the temperature calibrated streamflow ensemble forecasts, Qcal, improved for most of the catchments for autumn, 

while both improved and reduced skill was seen for spring (Fig. 5 – 8). Autumn streamflow skill was improved by temperature 

calibration for all regions, the largest improvement was seen for the coast, and the regions West and Mid. Two possible 10 

explanations for this spatial pattern are (i) the improvement in temperature forecasts skill during autumn in these regions, and 

(ii) that many coastal catchments are more sensitive to calibration of temperatures since the temperatures are more frequently 

around zero degrees compared to the colder and dryer inland catchments. In spring, no clear spatial patterns are seen, neither 

for Qens, nor for the change in skill. 

It is also evident that, independent of the sign of the temperature skill change (Fig. 5), a change in temperature has a larger 15 

impact on streamflow in spring than a temperature change has on streamflow in autumn. An explanation may be that during 

autumn, for temperatures well below zero degrees, the forecasted streamflow is not affected by improved forecasted 

temperatures. During spring, temperatures are often close to the two threshold temperatures that control the phase of 

precipitation and the onset of snowmelt. , and sSuch periods are challenging to simulate correctly (Engeland et al., 2010). 

Additional important, for spring as opposed to autumn, is the snow storage at the end of winter, and the snowmelt contribution 20 

to streamflow. Hence, estimatedCalculated streamflow has a hence a high sensitivity to changes in temperature during spring, 

a sensitivity also described for Aalpine snow covered catchments by Ceppi et al. (2013). Verkade et al. (2013), on the other 

hand, found only marginal effects of pre-processing temperature and precipitation for the streamflow skill in the Rhine 

catchments. The results presented herein and in the cited papers, indicates that the effect of pre-processing depends on the 

hydrological regime (i.e. sensitivity to temperature), the initial skill of the forcing variables, and for which temporal periods 25 

(i.e. for specific events, seasons, or the whole year) the sensitivity is evaluated. The same lead time was used to relate 

improvement in streamflow to temperature, we consider this robust since most catchments in this study have a concentration 

time of less than a day. 

These results show that in order toIn summary, it can be concluded that to further further improve the skill of streamflow 

forecasts , temperature forecasts with high skill is most important during the snowmelt season, improved temperature forecasts 30 

are essential.  . Streamflow forecasts during spring have the highest potential for improvements since Forecasts during spring 

therefore have the highest potential for improvements since the temperature forecasts are not,  the temperature forecasts were 
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not for a majority of the catchments, improved by the applied calibration. For autumn, the substantial improvement in 

temperature forecast skill by grid calibration improves streamflow forecast skill, but the sensitivity is less than for spring.  

 

5.3  Spatial patterns 

The most pronounced spatial pattern was the low autumn CRPSS for Tens in the coastal areas, also evident from the boxplots 5 

for the regions West, Mid and North (Fig. 8). This seasonal cold bias is also clearly seen in the western catchments Viksvatn 

and Foennerdalsvatn (Fig. 4). The cold bias in Tens along the coast is explained by the radiative land heating and cooling in 

the coarse resolution forecasts (see Sect. 5.1). In addition, the challenging steep coastal topography is not well represented by 

the spatial resolution in the ECMWF model (Seierstad et al., 2016). For inland catchments, and the regions south and east, the 

Tens CRPSS is skillful for both autumn and spring; hence, the calibration has a smaller effect in these catchments.  10 

Autumn streamflow skill was improved by temperature calibration for all regions, the highest improvement was seen for the 

coast, and the regions West and Mid. From Viksvatn (Fig. 4 panel right) we found that the highest temperature improvements 

are seen in the temperature range around and below 0 °C.  For many coastal catchments, the climate in autumn and winter is 

partly mild, and temperatures around 0 °C will have an influence on streamflow.  In spring, no clear patterns are seen, neither 

for Qens, nor for the change in skill. 15 

5.45.3 Catchment characteristics and skill 

Only a few significant relationships between the catchment characteristics , e.g. catchment area and elevation gradient, and 

skill were found (Table 1). We expected to find the highest temperature skill in large catchments, due to averaging, and in 

catchments with small elevation differences, due to less elevation correction inaccuracy. No significant relationships between 

temperature skill and elevation difference was found for any combination of region or season. A positive relationship between 20 

temperature skill and catchment area was found for five out of ten regression equations. This result is not conclusive, but 

indicates that the averaging effect on temperature skill dominates that (i) the smallest catchments are smaller than the grid size 

of the ECMWF model and therefore sensitive to the pre-processing and (ii) it is more challenging to forecast weather on small 

spatial scales than large spatial scales..  

It was expected that streamflow skill would increase with catchment area due to averaging effects. Significant linear regression 25 

coefficients were found for Eeast and Ssouth but with different signs, the same tendencies for both spring and autumn. The 

interpretation of this result is therefore ambiguous. For elevation difference, a significant negative correlation was found for 

three out of ten datasets. This suggest that the downscaling approach has a potential to improve the streamflow forecasts. These 

results are not conclusive, and studies that are more detailed are needed to determine any significant relationships to catchment 

characteristics. 30 
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Forecasting in small catchments with particular characteristics may be challenging since they may not be well represented, 

neither by the numerical weather prediction model, nor by the calibration methods. In our dataset, Foennerdalsvatn (fig 4c) is 

such an example. The catchment area is only 7.1 km2, elevation is high, topography is steep, glaciers cover 47% of the 

catchment area, and it is located close to the coast. The combination of all these catchment characteristics can make forecasting 

difficult. Foennerdalsvatn is hence an example of how local conditions can be challenging and not well represented, neither 5 

by the numerical weather prediction model, nor by the calibration methods.    

5.55.4 Snowmelt flood 2013 

The snowmelt flood event (Fig. 10) illustrates clearly how temperature calibration influences affects forecasted ensemble 

streamflow. The increase in forecasted temperature by grid calibration, results in additional snowmelt and thus increased 

streamflow. The increased streamflow led to a change in the warning warning level, from green/yellow to yellow/red, and 10 

moves closer to the observationsbelow to above the 5-year flood. For this event, however, the use of calibrated temperature 

reduced the skill performance of the forecasted streamflow, Qcal. The model reference streamflow, Qo that is used as the 

reference, is better captured by the streamflow forecasts based on uncalibrated temperature forecasts, Qens. The deterioration 

in the forecast performance using calibrated temperature is particular for this event. Other results provided in this study shows 

clearly that the calibrated temperature ensembles improve the streamflow forecasts on average. This discrepancy reveals the 15 

other sources of errors; such as the uncertainty of the observed SeNorge precipitation and temperature, and the ability of the 

hydrological model to capture the highest flood peaks. These points are outside the scope of this study and will not be followed 

up further here, but are of course important for the performance of a flood forecasting system. 

Figure 10 reveals how theThe ensemble range for the snowmelt event clearly increases with increasing lead time. For a lead 

time of 2 days (lowerupper panel) the range is too narrow, while for a lead time of 9 days (lower upper panel), the wide 20 

forecasting intervals capture the events, but there is little information left in the forecasts.  

6 Summary and conclusion 

The main objective of this study was to investigate the effect of temperature forecast calibration on the streamflow ensemble 

forecast skill, and to identify potential improvements in the forecasting chain.  We applied a gridded temperature calibration 

method, and evaluated its influence effect on both temperature and streamflow forecasting skill. The seasonality in skill was 25 

evaluated and correlations to catchment characteristics and spatial patterns were investigated. Supported by the results 

presented in this paper, our answers to the research questions listed in the introduction are summarized as follows: 

Are there seasonal effects of temperature calibration on the temperature ensemble forecast skill? 

 The largest temperature skill improvements by calibration were found for low performing coastal catchments in 

autumn and winter.  30 
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 The effect of calibration on temperature skill was less clear in spring and summer. In spring, the calibrated temperature 

resulted in reduced skill for many catchments. 

 Smaller bias in spring and summer explained a higher Tens skill and hence, less room for improvements by calibration. 

Are there seasonal effects of temperature calibration on the streamflow ensemble forecast skill? 

 In autumn and winter, streamflow skill improved for most catchments. For spring, the calibration resulted in both 5 

better and worse skill.  

 In spring, changes in temperature skill had a higher influence effect on streamflow skill, compared to autumn and 

winter. Summer showed small changes for both temperature and streamflow.. 

Are there spatial patterns in the ensemble forecast skill and if so, can these be related to catchment characteristics? 

 The skill in temperature forecasts was the lowest in coastal catchment along the coast in West, Mid and North in 10 

autumn, caused by a cold bias in the forecasts (this was also the case for winter, although these results are not shown). 

 The largest improvement in skill for both temperature and streamflow was found for catchments with a cold bias in 

the temperature forecasts. 

 A regional division seemed useful to identify spatial patterns in temperature forecasts, whereas for streamflow the 

spatial patterns were not so obvious.  15 

 It was not possible to conclude a relationship between the catchment characteristics and skill.  

Snowmelt flood  

 Streamflow increased by temperature calibration, changing the flood warning level, clearly showing the importance 

of correct temperature calibration for catchments with snow during snowmelt season 

This study showed that the applied gridded temperature calibration method improved the temperature skill for most catchments 20 

in autumn and winter. Temperature forecasts have an impact on streamflow, and are important for seasons where temperature 

determines snowmelt and discriminates between rain and snowfall.  The improvement in temperature skill propagated to 

streamflow skill for some, but not all, catchments. This was to a large degree depending on region, and the skill of the 

uncalibrated ensemble.  

The most obvious improvement in the forecasting chain is to use the same temperature information, the SeNorge temperature, 25 

for calibrating the temperature forecast that is used for calibrating the hydrological model, generating the initial conditions for 

the hydrological system, and evaluating the performance. In particular, the calibrated temperature forecast could be improved 

during spring when the streamflow forecasts are the most sensitive to temperature. The pre-processing of temperature includes 

both the an elevation correction dependency depending on lapse rate and the calibration method. Lapse rate in this study is 

defined as a constant, but actually depends on weather conditions, location and elevation. In addition, the calibration method, 30 

here the quantile mapping, is sensitive to forecasted values outside the observation range, and other methods should be 

considered.  
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The conclusions in this study are based on a testing period of almost three years. Even if this is a relatively short testing periods, 

we believe that the large number of catchments to a large degree compensates for the short testing period and that the results 

and conclusions are therefore relatively robust.  

The conclusions herein are based on a large and relatively representative data-set from Norway, but we suggest that some of 

the main conclusions can be valid for regions with a similar climate. The most important general conclusion is that streamflow 5 

forecasts are sensitive to the skill of temperature forecasts, especially in the snow melt season. In addition, this study shows 

that reducing the cold temperature bias in in coastal areas results in improved streamflow forecasts, and that the postre-

processing need to account for seasonal differences in temperature forecasts (biases).       

7 Data  

Processed data is available by contacting corresponding author. Raw meteorological data must be required directly from 10 

ECMWF.  
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Table 1: Summary of significant correlations between CRPSS for calibrated temperature (Tcal) and streamflow (Qcal) ensembles 

and catchment characteristics, i.e., area and elevation difference (ΔH), for the five regions. Blue color indicates a significant positive 

relationship, red a significant negative relationship, and grey a non-significant relationship. Results are for a lead time of 5 days. 
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Figure 1: The maps for Norway with indicates the 139 flood forecasting catchments used in this study. The left map shown using the 

catchment boundaries including the location of four selected catchments. Please note that many catchments are relatively small and 

difficult to detect. The location of the catchments gauging stations are shown in the right map. (left map) and  the location of the 

gauging stations (right map). The location of the four example catchments are shown in the left map. The catchments are divided 5 
Norway was grouped into five regions (N=Nnorth, M=Mmid, W=Wwest, S=Ssouth, and E=Eeast), all regions are  marked with 

different colors and regional limits boundariesin the right map. 



Revised manuscript with track changes 

25 

 

 



Revised manuscript with track changes 

26 

 

 

Ensemble 
streamflow

Qcal[c,m,l]

Ensemble 
streamflow

Qens[c,m,l]

HBV-
Internal 
states[d]

Aggregation

Catchment daily mean

Temperature 
downscaling

Tcal[c,m,l]

Forecasting Mode - Issue date (d)

Reference Mode – Observation  time (t)

Model 
streamflow

Qo[c,t]

Temperature 

downscaling

Aggregation
Catchment daily mean Tens[c,m,l]

SeNorge - 
To[lat,lon,t] 
Po[lat,lon,t]

Aggregation 
Catchment mean

To[c,t]

Po[c,t]

Ensemble 
Temperature
Tens[lat,lon,m,l*]

Calibrated 
Temperature 
Tcal[lat,lon,m,l*]

HBV
139 catch

HBV-ens
139 catch

Temperature 
grid 

calibration
Po[lat,lon,(d+l)]

Aggregation 
Catchment 

mean
Po[c,(d+l)]

 



Revised manuscript with track changes 

27 

 

 

Figure 2: Conceptual diagram of the ensemble forecasting chain. The upper green frame shows the reference mode that is the 

calculation of modelled reference streamflow using the HBV model with catchment aggregated daily mean values of SeNorge 

temperature (To) and precipitation (Po). In the forecasting mode, the lower red frame, ECMWF temperature ensembles are 

downscaled to 1×1 km2 prior to catchment aggregation. Calibrated temperature (Tcal) is estimated from Tens, applying a grid 5 

calibration at 5×5 km resolution. Daily average forecast values (Tens or Tcal) and observed precipitation (Po) are used to force the 

hydrological model at forecasting issue date (d), with internal states from the reference mode.   
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Figure 3: Summary of temperature and streamflow scores for all lead times. Each box represents the 139 catchments values averaged 

over all issue dates. Rank-histogram test decomposition for slope and convexity is shown in first and second column respectively and 

CRPSS in the third column. The forth column show sharpness for the uncalibrated forecasts. Temperature in the top row and 5 
streamflow in the bottom row. Results are based on the full dataset, and are shown for both uncalibrated (light blue) and calibrated 

(blue) ensembles at lead times 1 to 9 days. For slope and convexity, zero is the optimal value, and the scales are reversed so that the 

optimal value is on the top, corresponding to CRPSS optimal value at 1.0.  
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Figure 4: Timeseries of temperature for Gjuvaa (aupper), Viksvatn (bmiddle) and Foennerdalsvatn (clower) showing the range of 

uncalibrated temperature ensemble forecast (Tens-range, lightblue area) for the period 2013-2015,  SeNorge observations are shown 

as black  lines. Scatter plots show ensemble mean temperature for both calibrated (𝑻cal, blue) and uncalibrated (𝑻ens, lightblue) 

temperature plotted against SeNorge temperature (Tobs). Lead time is 5 days. 5 
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Figure 5: Difference in CRPSS for uncalibrated and calibrated temperature for spring and autumnthe four seasons. The Ddifference 

in temperature skill is plotted on the y-axis and the difference in streamflow skill on the x-axis. The grey diagonal represent the 1:1 

line. Catchment values are color indexed by region. All plots are presented for lead time 5 days. 5 
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Figure 6: Temperature (Tens and Tcal, first column) and streamflow (Qens and Qcal, second column) CRPSS for SPRING (top) and 

AUTUMN (bottom). The catchments are ordered by increasing CRPSS for Tens and Qens (light blue dots), the catchment calibrated 

values (Tcal and Qcal) are plotted as blue circles. All results are presented for lead time 5 days. 
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Figure 7: Spring CRPSS for uncalibrated forecasts (left maps) and CRPSS difference between calibrated and uncalibrated forecasts 

(right maps) for temperature (upper panel) and streamflow (lower panel). A darker blue color (left maps) indicates an optimal 

performance (maximum CRPSS=1.0), pink a CRPSS of zero, and red a negative value. A green color (right maps) indicates a positive 

effect of temperature calibration on the skill, yellow means no effect, and orange color indicates a negative effect. The boxplots show 5 
temperature and streamflow CRPSSs grouped by region (Fig. 1). All results are presented for lead time 5 days. 
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Figure 8: Autumn CRPSS for uncalibrated forecasts are presented to the left where darker blue color indicates an optimal 

performance (maximum CRPSS=1.0), pink color represents a CRPSS of zero, and red negative. The difference in CRPSS between 

calibrated and uncalibrated forecasts are presented to the right, where green color indicates a positive effect of temperature 5 
calibration on the skill, yellow zero, and orange color indicates a negative effect. The boxplots of both calibrated and uncalibrated 

temperature and streamflow CRPSS show catchments grouped by region (Fig. 1). All results are presented for lead time 5 days. 
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Figure 9: Temperature (top panels) and streamflow (bottom panels) CRPSS for the two regions East (E) and South (S), plotted as a 

function of catchments area for both autumn and spring. The colored dots show the CRPSS for the respective regions whereas the 5 
grey circles show the CRPSS for all 139 catchments. The linear regression line is plotted along with its p-value (significantly different 

from zero for p-values < 0.05). All results are presented for lead time 5 days. 
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Figure 10: Forecasted streamflow for the Bulken catchment fort lead times 92, 5 and 29 days. Forecast issue target dates on the x-

axis, and streamflow (m3s-1) on y-axis. Observed streamflow (red dotted line), model Reference streamflow with SeNorge 

observations Qo (red black solid line), , ensemble mean uncalibrated temperature Qens (blue line), ensemble mean calibrated Qcal 5 

(blue dotted line), ensemble range Qens (light violet area) ensemble range Qcal (light blue area), ensemble mean Qens (blue dotted 

line) and  ensemble range Qcal (light blue area)ensemble range Qens (light grey area). The background colorsgrey dotted lines 

indicate the warning level green, yellow, and orangethresholds for mean annual, 5-year and 50-year floods.  
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