Value of uncertain streamflow observations for hydrological modelling

Simon Etter1, Barbara Strobl1, Jan Seibert1,2, Ilja van Meerveld1

1Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden

Correspondence to: Simon Etter (simon.etter@geo.uzh.ch)

Abstract. Previous studies have shown that a hydrological model can be parameterized using on a limited number of streamflow measurements for otherwise ungauged basins. Citizen science projects can collect such data but an important question is whether these observations are informative given that these streamflow estimates will be uncertain. We address the value of inaccurate streamflow estimates for calibration of a simple bucket-type runoff model for six Swiss catchments. We pretended that only a few observations were available and that these were affected by different levels of inaccuracy. The initial inaccuracy level was based on a log-normal error distribution that was fitted to streamflow estimates of 136 citizens for medium-sized streams. Two additional levels of inaccuracy, for which the standard deviation of the error-distribution was divided by two and four, were used as well. Based on these error distributions, random errors were added to the measured hourly streamflow data. New time series with different temporal resolutions were created from these synthetic time series. These included scenarios with one observation each week or month and scenarios that are more realistic for crowdsourced datasets with irregular distributions throughout the year or a focus on spring or summer. The model was then calibrated for the six catchments using the synthetic time series for a dry, an average and a wet year. The performance of the calibrated models was evaluated based on the measured hourly streamflow time series. The results indicate that streamflow estimates from untrained citizens are not informative for model calibration. However, if the errors can be reduced, the estimates are informative and useful for model parameterization. As expected, the model performance increased when the number of observations used for calibration increased. The model performance was also better when the observations were more evenly distributed throughout the year. This study indicates that uncertain streamflow estimates can be useful for model calibration but that the estimates by citizen scientists need to be improved by training or more advanced data filtering before they are useful for model calibration.

1 Introduction

The application of hydrological models usually requires several years of precipitation, temperature and streamflow data for calibration, but these data are only available for a limited number of catchments. Therefore, several studies have addressed the question how much data are needed to calibrate a model for a catchment where continuous streamflow data are not available.
Yapo et al. (1996) and Vrugt et al. (2006) concluded that most of the information to calibrate a model is contained in 2-3 years of continuous streamflow data and that no more value is added when using more than eight years of data. Perrin et al. (2007) showed that streamflow data for 350 randomly sampled days out of a 39 year period were sufficient to obtain robust model parameter values for two bucket-type models, TOPMO, which is derived from TOPMODEL concepts (Michel et al. 2003), and GR4J (Perrin et al., 2003). Brath et al. (2004) concluded that at least three months of continuous data were required to obtain a reliable calibration. Other studies have shown that discontinuous streamflow data can be informative for constraining model parameters (Juston et al., 2009; Pool et al., 2017; Seibert and Beven, 2009; Seibert and McDonnell, 2015). Juston et al. (2009) concluded that the information content of a subset of 53 days of streamflow data was the same as 1065 days of data from which the subset was drawn. Seibert and Beven (2009) found that model performance reached a plateau level for 8-16 streamflow measurements collected throughout a one-year period. They, furthermore, showed that the use of streamflow data for one event and the corresponding recession resulted in a similar calibration performance as data for the six highest measured streamflow values during a two-month period. These results are encouraging for the calibration of hydrological models for ungagged basins based on a limited number of high quality measurements, but the question remains how informative low quality data are. An alternative approach to high quality streamflow measurements in ungagged catchments is to use citizen science. Citizen science has been proven to be a valuable tool to collect various kinds of environmental data (Dickinson et al., 2010), including hydrological data (Buytaert et al., 2016). Citizen science approaches use simple methods to enable a large number of citizens to collect data and allow local communities to contribute data to support science and water management. Citizen science approaches can be particularly useful in light of the declining stream gauging networks (Ruhi et al., 2018; Shiklomanov et al., 2002) and to complement the existing networks. However, citizen science projects that collect streamflow or stream level data in flowing waterbodies are still rare. Two examples are the CrowdHydrology project (Lowry and Fienen, 2013) and a project in Kenya (Weeser et al., 2018), which both ask citizens to read stream levels at staff gauges and to send these as text messages to a central database. Estimating streamflow is obviously more challenging than reading levels from a staff gauge but citizens can apply the stick-method to estimate the flow velocity, the width and average depth of the stream and thus obtain a rough estimate of streamflow.

However, these streamflow estimates may be so inaccurate that they are not useful for model calibration. It is therefore necessary to evaluate the requirements of hydrological models, not only in terms of the amount and temporal resolution of data, but also in terms of the achievable quality by the citizen scientists before starting a citizen science project. The effect of rating curve uncertainty on model calibration has been quantified in recent studies (e.g. McMillan et al. 2010; Horner et al. 2018) but the potential value of sparse datasets with large uncertainties (such as those from crowdsourced streamflow estimates) has not been evaluated so far. Therefore, the aim of this study was to determine the effects of observation inaccuracies on hydrological model calibration when only a limited number of observations are available. The specific objectives of this paper are to determine (i) whether the streamflow estimates from citizen scientists are informative for model calibration or if these errors need to be reduced (e.g. through training) to become useful and (ii) how the timing of the
streamflow observations affects the calibration of a hydrological model. The latter is important for citizen science projects, as it provides guidance on whether it is useful to encourage citizens to contribute streamflow observations during a specific time of the year.

2 Methods

To assess the potential value of crowdsourced streamflow estimates for hydrological model calibration, the HBV-model (Bergström, 1972) was calibrated against streamflow time series for six Swiss catchments, as well as different subsets of the data that represent citizen science data in terms of errors and temporal resolution. Similar to the approach used in several recent studies (Ewen et al., 2008; Finger et al., 2015; Fitzner et al., 2013; Haberlandt and Sester, 2010; Seibert and Beven, 2009), we pretended that only a small subset of the data were available. In addition, various degrees of inaccuracy were assumed. The value of these data for model calibration was then evaluated by comparing the model performance for the subset of data to the performance of the model calibrated with the complete measured streamflow time series.

2.1 HBV model

The HBV (Hydrologiska Byråns Vattenbalansavdelning) model was originally developed at the Hydrologiska Byrån Vattenavdelning unit at the Swedish Meteorological and Hydrological Institute (SMHI) by Bergström (1976). The HBV model is a bucket-type model that represents snow, soil, groundwater and stream routing processes in separate routines. In this study, we used the version HBV-light (Seibert and Vis, 2012).

2.2 Catchments

The HBV-light model was set up for six 24-186 km² catchments in Switzerland (Table 1 and Figure 1). The catchments were selected based on the following criteria: i) there is little anthropogenic influence, ii) they are gauged at a single location, iii) they have reliable streamflow data during high flow and low flow conditions (i.e. no complete freezing during winter and a cross section that allows accurate streamflow measurement at low flows), and iv) there are no glaciers. The six selected catchments (Table 1) represent different streamflow regime types (Aschwanden and Weingartner, 1985). The snow dominated highest elevation catchments (Allenbach and Riale di Calneggia) have the largest seasonality in streamflow, i.e. the biggest differences between the long-term maximum and minimum Pardé coefficients, followed by the rain and snow dominated Verzasca catchment. The rain dominated catchments Murg, Guerbe and Mentue consequently have the lowest seasonal variability in streamflow (Table 1). The mean elevation of the catchments varies from 652 to 2003 m asl (Table 1). The elevation range of each individual catchment was divided in 100 m elevation bands for the simulations.

2.3 Measured data

Hourly runoff time series for the six study catchments were obtained from the Federal Office for the Environment (FOEN; see Table 1 for the gauging station numbers). The average hourly areal precipitation amounts were extracted for each study
catchment from the gridded CombiPrecip dataset from MeteoSwiss (Sideris et al., 2014). This dataset combines gauge and radar precipitation measurements at an hourly timescale and 1 km2 spatial resolution and is available since 2005. We used hourly temperature data from the automatic monitoring network of MeteoSwiss (see Table 1 for the stations) and applied a gradient of -6 °C per 1000 m to adjust the temperature of each weather station to the mean elevation of the catchment. Within the HBV model, the temperature was then adapted for the different elevation zones using a calibrated lapse rate.

As recommended by Oudin et al. (2005), potential evapotranspiration was calculated using the temperature-based potential evapotranspiration model of (McGuinness and Bordne, 1972) using the day of the year, the latitude and the temperature. This rather simplistic approach was considered sufficient because this study focused on differences in model performance relative to a benchmark calibration.

2.4 Selection of years for model calibration and validation

The model was calibrated for an average, a dry and a wet year to investigate the influence of wetness conditions and the amount of streamflow on the calibration results. The years were selected based on the total streamflow during summer (July-September). The driest and the wettest years of the period 2006-2014 were selected based on the smallest and largest sum of streamflow during the summer. The average streamflow years were selected based on the proximity to the mean summer streamflow for all the years 1974-2014 (1990-2014 for Verzasca). For each catchment the years that were the 2nd-closest to the mean summer streamflow for all years, as well as the years with the 2nd-lowest and 2nd-highest streamflow sum were chosen for model calibration (see Table 2). We did this separately for each catchment because for each catchment a different year was dry, average or wet. For the validation, the year closest to the mean summer streamflow and the years with the lowest and the highest summer streamflow sums (see Table 2). We used each of the parameter sets obtained from calibration for the dry, average or wet years to validate the model for each of the three validation years, resulting in nine validation combinations for each catchment (and each dataset as described below).
2.5 Transformation of data sets to resemble citizen science data quality

2.5.1 Errors in crowdsourced streamflow observations

Strobl et al. (in review) asked 517 participants to estimate streamflow based on the stick method at ten streams in Switzerland. Here we use the estimates for the medium sized streams Töss, Sihl and Schanzengraben in the Canton of Zurich and the Magliasina in Ticino (n=136), which had a similar streamflow range at the time of the estimations (2.6 – 28 m3/s) as the mean annual streamflow of the six streams used for this study (1.2 – 10.8 m3/s). We calculated the streamflow from the estimated width, depth and flow velocities using a factor of 0.8 to adjust the surface flow velocity to the average velocity (Harrelson et al., 1994). The resulting streamflow estimates were normalized by dividing them by the measured value. We then combined the normalized estimates of all four rivers and log transformed the relative estimates. A normal distribution with a mean of 0.12 and a standard deviation of 1.30 fits the distribution of the log-transformed relative estimates well, with a standard error of the mean of 0.11 and a standard error of the standard deviation of 0.08 (Figure 2).

To create synthetic datasets with data quality characteristics that represent observed crowdsourced streamflow estimates, we assumed that the errors in the streamflow estimates are uncorrelated (as they would likely be provided by different people). For each time step, we randomly selected a relative error value from the lognormal distribution of the relative estimates (Figure 2) and multiplied the measured streamflow with this relative error. To simulate the effect of training and to obtain time series with different data quality, two more streamflow time series were created using a standard deviation divided by two (standard deviation of 0.65) for the medium error and by four (standard deviation of 0.33) for the small error. This reduces the spread in the data (but did not change the small systematic overestimation of the streamflow), so that large outliers are still possible, but are less likely. The benchmark in terms of quality were the no error datasets for which we used the FOEN data directly.

2.5.2 Filtering of extreme outliers

Usually citizen science data undergo some form of quality control before they are analyzed. Here we used a very simple check to remove unrealistic outliers from the synthetic datasets. This check was based on the upper limit of likely streamflow values for a given catchment area. We defined an upper limit of possible streamflow values as a function of catchment area using a dataset of maximum streamflow from 1500 Swiss catchments provided by Scherrer AG, Hydrologie und Hochwasserschutz (2017). To account for the different precipitation intensities north and south of the Alps, different limits were used for the catchments on each side of the Alps. All streamflow observations, i.e., modified streamflow measurements, above the maximum observed streamflow for a particular catchment size including a 20 % buffer (Supplemental Material – Figure 1), were replaced by the value of the maximum streamflow for a catchment of that size. This affected less than 0.5 % of all data points. A similar procedure was used for low flows based on a dataset of the FOEN with the lowest recorded mean streamflows over seven days but this resulted in no replacements.
2.5.3 Temporal resolution of the observations

Data entries from citizen scientists are not as regular as data from sensors with a fixed temporal resolution. Therefore, we decided to test eight scenarios with a different temporal resolution and a different distribution of the data throughout the year to simulate different patterns in citizen contributions. These scenarios were based on our own experiences within the CrowdWater project (www.crowdwater.ch) and information from the CrowdHydrology project (Lowry and Fienen, 2013). We used the same selection of days, including the same times of the day for each of the four different error groups, years and catchments to allow comparison of the different model results.

- **Hourly**: One data point per hour (8760 ≤ n ≤ 8784, depending on the year)
- **Weekly**: One data point per week, every Saturday, randomly between 6 am and 8 pm (52 ≤ n ≤ 53)
- **Monthly**: One data point per month on the 15th of the month, randomly between 6 am and 8 pm (n=12)
- **IntenseSummer**: One data point every other day from July until September, randomly between 6 am and 8 pm (~15 observations per month, n=46).
- **WeekendSummer**: One data point each Saturday and each Sunday between May and October, randomly between 6 am and 8 pm (52 ≤ n ≤ 54)
- **WeekendSpring**: One data point each Saturday and each Sunday between March and August, randomly between 6 am and 8 pm (52 ≤ n ≤ 54)

In addition, we also tested two scenarios (Crowd52 and Crowd12) with a random interval between data points. Crowd52 had 52 data points (in order to be comparable to the Weekly, IntenseSummer, WeekendSummer and WeekendSpring time series), whereas Crowd12 had only 12 data points (comparable to the Monthly data). We assigned higher probabilities for periods when people are more likely to be outdoors (i.e., higher probabilities for summers than winters, higher probabilities for weekends than weekdays, higher probabilities outside office hours; Table 4). Times without daylight (dependent on the season) were always excluded.

2.6 Model calibration

For each of the 1728 cases (6 catchments, 3 calibration years, 4 error groups, 8 temporal resolutions) the HBV model was calibrated by optimizing the overall consistency performance P_{OA} (Finger et al., 2011) using a genetic optimization algorithm (Seibert, 2000). The overall consistency performance P_{OA} is the mean of four objective functions with an optimum value of one: i) the Nash-Sutcliffe efficiency (NSE), ii) the NSE for the logarithm of streamflow, iii) the volume error, and iv) the mean absolute relative error (MARE). To consider parameter uncertainty, the calibration was performed independently 100 times, which resulted in 100 parameter sets for each case. For each case, the preceding year was used for the warm-up period. For the Crowd52 and Crowd12 time series, we used 100 different random selections of times for which data were available, whereas for the regularly spaced time series the same times were used for each case.
2.7 Model validation and analysis of the model results

The 100 parameters from the calibration for each data set were used to run the model for the validation years (Table 2). For each case (i.e. each catchment, year, error magnitude and temporal resolution), we determined the median validation POA for the 100 parameter sets for each validation year. We analysed the validation results of all years combined and for all nine combinations of dry, mean and wet years separately.

Because the focus of this study was on the value of limited inaccurate streamflow observations for model calibration, i.e. the difference in the performance of the models calibrated with the synthetic data series compared to the performance of the models calibrated with hourly FOEN data, all model validation performances are expressed relative to the average POA of the model calibrated with the hourly FOEN data (our upper benchmark, representing the fully informed case when continuous high quality streamflow data are available). A relative POA of 1 indicates that the model performance is as good as the performance of the model calibrated with the hourly FOEN data, whereas lower POA values indicate a poorer performance.

To also assess the value of limited inaccurate streamflow data compared to a situation without any streamflow data, a lower benchmark (Seibert et al., 2018) was used. Here the lower benchmark was defined as the median performance of running the model with 1000 random parameters for every catchment and year.

The Mann Whitney U-Test was used to evaluate whether the median POA for a specific error group and temporal resolution of the data was significantly different from the median POA for the model run with random parameters. We furthermore checked for differences in model performance for models calibrated with the same data errors but a different temporal resolution using a Kruskal-Wallis test. By applying a Dunn-Bonferroni post-hoc test (Bonferroni, 1936; Dunn, 1959, 1961) we analysed which of the validation results were significantly different from each other.

Pool et al. (2017) showed that the use of monthly maximum streamflow data in model calibration leads to a better model performance than streamflow data for more average conditions. The random generation of the 100 crowdsourced-like datasets (i.e. for the Crowd52 and Crowd12 scenario) for each of the catchments and year characteristics resulted in time series with a different number of high flow estimates. We defined the threshold for high flows as the streamflow value that was exceeded 10% of the time in the hourly FOEN streamflow dataset. The Crowd52 and Crowd12 datasets were divided into a group that had more than the expected 10% high flow observations and a group that had fewer high flow observations. To determine if more high flow data improves model performance, the Mann-Whitney-U-test was used to compare the relative median POA of the two groups.

3 Results

3.1 Upper benchmark results

The model was able to reproduce measured streamflow reasonably well when the complete and unchanged hourly-FOEN datasets were used for calibration, although there were also a few exceptions. The average validation POA was 0.61 (range:
0.19 – 0.83; Table 3). The Guerbe had the lowest validation P_{OA} (0.19) because several high flow peaks were missed or underestimated by the model for the wet validation year. Similarly, the dry validation year 2009 for the Mentue resulted in a low P_{OA} (0.23) because a very distinct peak at the end of the year was missed and summer low flows were overestimated. The third lowest P_{OA} value was again from Guerbe (2013, dry validation year) but already had a P_{OA} of 0.35. Six out of the nine lowest P_{OA} values were for dry validation years. Validation for wet years for the models calibrated with data from wet years resulted in the best validation results (i.e., highest P_{OA} values; Table 3).

3.2 Effect of errors on the model validation results

Not surprisingly, increasing the errors in the streamflow data decreased the model performance (Figure 4). For the small error category, the median validation performance was better than the lower benchmark for all temporal resolutions (Figure 4 and Supplemental Material - Table 2). For the medium error category, the median validation performance of all scenarios was also better than the lower benchmark, except for the Crowd12 dataset. For the model calibrated with the dataset with large errors only the Hourly data set was significantly better than the lower benchmark (Table 5).

3.3 Effect of the measurement resolution on the model validation results

The Hourly measurement scenario resulted in the best validation performance for each error group, followed by the Weekly data, and then usually the Crowd52 data (Figure 4). Although the median model performance of the models calibrated with the Weekly datasets was always better than for the Crowd52 dataset, the difference was only statistically significant for the no error category (Figure 5). The validation performance of the models calibrated with the Weekly and Crowd52 datasets was better than for the measurement scenarios focused on spring and summer observations (WeekendSpring, WeekendSummer and IntenseSummer). The model validation performance for the WeekendSummer and IntenseSummer scenarios decreased faster with increasing error compared to the Weekly, Crowd52 or WeekendSpring datasets (Figure 5).

The median model performance for the Weekly dataset was significantly better than the other datasets for the no, small and medium error groups; the median performance of the Crowd52 dataset was only significantly different from the measurement scenarios focusing on spring or summer for the medium error case (Figure 5). The median validation P_{OA} was better for the models calibrated with the WeekendSpring observations than the model calibrated with the WeekendSummer and IntenseSummer datasets but the differences were only significant for the small, medium and large error groups. The model performance results of the observation strategies focussing on summer (IntenseSummer and WeekendSummer) were not significantly different in any of the error groups (Figure 5).

The median model performance for the regularly spaced Monthly datasets with 12 observations was similar to the median performance for the three datasets focusing on summer with 46-54 measurements (WeekendSpring, WeekendSummer and IntenseSummer), except for the case of large errors for which the monthly dataset performed worse. The irregularly spaced Crowd12 time series resulted in the worst model performance for each error group but the difference from the performance for the regularly spaced Monthly data was only significant for the dataset with large errors.
3.4 Influence of the calibration and validation year and number of high flow data points on the model performance

The influence of the validation year on the model performance was larger for than the effect of the calibration year (Figure 6). In general model performance was poorest for the dry validation years. The model performances of all datasets with fewer observations or bigger errors than the Hourly datasets without errors were not significantly better than the lower benchmark for the dry validation years, except for the Crowd52 in the no error group when calibrated with data from a wet year. However, even for the wet validation years some observation scenarios of the no error and small error group did not lead to significantly better results compared to the median validation results for the random parameters. Interestingly, the IntenseSummer data set in the no error group resulted in some very good performances when the model was calibrated for a dry and also validated in a dry year compared to its performance in the other calibration and validation year combinations. The median model performance was however not significantly better than the lower benchmark due to the two very low performances of Guerbe and Allenbach (outliers beyond figure margins in Figure 6). One of these two catchments always resulted in the worst performance for all the no error - IntenseSummer datasets for all calibration and validation year combinations. For 13 out of 18 catchment and year combinations, the Crowd52 datasets with fewer than 10 % high streamflow data points led to a better model performance than the Crowd52 dataset with more high-streamflow data points. For six of them the difference in model performance was significant. For none of the five cases where more high flow data points led to a better model performance was the difference significant. Also when the results were analysed by year character or catchment there was no improvement when more high flow values were present in the calibration dataset.

4 Discussion

4.1 Usefulness of inaccurate streamflow data for hydrological model calibration

If streamflow estimates by citizen scientists would be available at a high temporal resolution (hourly) these data are informative for hydrological model calibration despite their high uncertainties. However, such detailed observations are very unlikely to be obtained in practice. All the scenarios with error distributions that represent the estimates from citizen scientists with fewer observations were no better than the lower benchmark (using random parameters). Streamflow estimates are sometimes very different from the measured values, and individual estimates can be dis-informative (Beven, 2016; Beven and Westerberg, 2011). With reduced errors, however, and one data point per week on average or regularly spaced Monthly data, the time series with the medium errors were informative for model parameterization. Reducing the standard deviation of the error-distribution by a factor of four, led to significantly improved model performance for all the observation scenarios compared to the random parameter datasets. In reality this could be done by training of citizen scientists, improved information about feasible value ranges or examples of streamflow values for a given stream. Furthermore, filtering of extreme outliers has the potential to reduce the spread of the estimates. This could be done with existing knowledge of feasible streamflow values for a catchment
of a given area or the amount of rainfall right before the estimate is made to determine if streamflow is likely to be higher or lower than earlier estimates. More detailed research is necessary to test the effectiveness of such methods.

Le Coz et al. (2014) reported an uncertainty in stage-discharge streamflow measurements of around 5-20 %, whereas McMillan et al. (2012) in a more detailed review summarized streamflow uncertainties from stage-discharge relationships and gave a range of ±50-100 % for low flows, ±10-20 % for medium or high (in-bank) flows and ±40 % for out-of-bank flows. The errors for the most extreme outliers in the citizen estimates are considerably higher, as they can differ by a factor of up to 10’000 from the measured value in the most extreme but rare cases (Figure 2). Even with reduced standard deviations by a factor of two or four, the observations in the most extreme cases can still differ by a factor of 100 and 10. The percentage of values beyond 200 % of the measured value in the synthetic datasets with streamflow observations was 33 % for the large error group, 19 % in the medium error group and 4 % in the small error group. Only 3 % were more than 90 % below the measured value in the large error group and 0 % in both the medium and small error classes. If such observations are used for model calibration without filtering, they are seen as extreme droughts or floods, even if the actual conditions may be close to average flow. Beven and Westerberg (2011) suggest to isolate periods of dis-informative data. It is therefore beneficial to identify such extreme outliers, independent of a model, e.g. with previous knowledge of feasible maximum and minimum streamflow quantities, as performed in this study with the help of the maximum regionalized specific streamflow values for a given catchment area.

4.2 Number of streamflow estimates required for model calibration

In general, one would assume that the calibration of a model becomes better when there is more data (Perrin et al., 2007), although others have shown that the increase in model performance plateaus after a certain number of measurements (Juston et al., 2009; Pool et al., 2017; Seibert and Beven, 2009; Seibert and McDonnell, 2015). In this study, we limited the length of the calibration period to one year because in practice it may be possible to obtain a limited number of measurements during a one year period for ungaged catchments before the model results are needed for a practical application, as has been assumed in previous studies (Pool et al., 2017; Seibert and McDonnell, 2015). While a limited number of observations (12) was informative for model calibration when the data uncertainties were limited, the results of this study also suggest that the performance of the models calibrated with fewer data points decreased faster as the errors increased. This finding was most pronounced when comparing the model performance for the small and the medium error groups (Figure 4). These findings can be explained by the compensating effect of the number of observations and their accuracy because the errors for less accurate data average out when a larger number of observations are used.

4.3 Best timing of streamflow estimates for model calibration

The performance of the parameter sets depended on the observation timing and the error distribution of the data used for model calibration. The model performance was generally better if the observations were more evenly spread throughout the year. For example for the cases of no and small errors, the model performance for the Monthly dataset with 12 observations performed
better than the *IntenseSummer* and *WeekendSummer* scenarios with 46-54 observations. Similarly, the less clustered observation scenarios performed better than the more clustered scenarios (i.e. *Weekly* vs. *Crowd52*, *Monthly* vs. *Crowd12*, *Crowd52* vs. *IntenseSummer*, etc.). This suggests that more regularly distributed data over the year leads to a better model calibration. Juston et al. (2009) compared different subsamples of hydrological data for a 5.6 km² Swedish catchment and found that including inter-annual variability in the data used for calibration of the HBV model reduced the model uncertainties. More evenly distributed observations throughout the year might represent more of the within-year streamflow variability and therefore result in improved model performance. This is good news for using citizen science data for model calibration as it suggests that the timing is not as important as the number of observations because it is likely much easier to get a certain number of observations throughout the year than observations during specific periods or flow conditions.

When comparing the *WeekendSpring*, *WeekendSummer* and *IntenseSummer* datasets, it seems that it was in most cases more beneficial to include data from spring rather than summer. This tendency was more pronounced with increasing data errors. The reason for this might be that the *WeekendSpring* scenario includes more snow melt or rain-on-snow event peaks, in addition to usually higher baseflow values and therefore contains more information on the inter-annual variability in streamflow. Pool et al. (2017) found that more high flow data points resulted in an improved model performance. In our study, this could not be observed, which might be due to the fact that we did not specifically focus on the high or low flow data points, and therefore did not have datasets that contained only high flow estimates, which would be very difficult to obtain with citizen science data. Here we tested only scenarios that are realistic for citizen science projects. In contrast to Pool et al. (2017), we conclude that for catchments with seasonal variability in streamflow it is beneficial to obtain streamflow data of all magnitudes for model calibration. Data points during relatively dry periods are beneficial for validation or prediction in another year and might even be beneficial for years with the same characteristics, as was shown with the improved validation performance of the *IntenseSummer* dataset compared to the other datasets when data from dry years were used for calibration (Figure 6).

4.4 Effects of different types of years on model calibration and validation

The calibration year, i.e. the year in which the observations were made, was not decisive for the model performance. Therefore, a model calibrated with data from a dry year can still be useful for simulations in average or wet years. This also means that data in citizen science projects can be collected during any year and that this data is useful for simulating the streamflow for most years, except the driest years. However, model performance did vary significantly for the different validation years. The results during dry validation years were almost never significantly better than the lower benchmark (Figure 6). This might be due to the objective function that was used in this study. Especially the NSE was lower for dry years, because the flow variance (i.e., the denominator in the equation) is smaller when there is a larger variation in streamflow. Also, these results are based on six median model performances and therefore, outliers have a big influence on the significance of results (Figure 6). Lidén and Harlin (2000) used the HBV-96 model by Lindström et al. (1997) with changes suggested by Bergström et al. (1997) for four catchments in Europe, Africa and South America. They achieved better model results for wetter catchments and argued that during dry years evapotranspiration plays a bigger role and therefore the model performance is more sensitive to
inaccuracies in processes concerning evapotranspiration. The fact that we used a very simple method to calculate the potential evapotranspiration (McGuinness and Bordne, 1972), might also explain why the model performed less well during dry years. The model parametrisation, obtained from calibration using the IntenseSummer data set resulted in a surprisingly good performance for the validation for a more extreme dry year for four out of the six catchments. For the two poorly-performing catchments Guerbe and Allenbach, the weather stations are located outside the catchment boundaries. Especially during dry periods missed streamflow peaks due to misrepresentation of precipitation can affect model performance a lot. The fact that always one of these two catchments had the worst model performance for all the no error – IntenseSummer runs, furthermore indicates that the July-September period might not be suitable to represent characteristic runoff events for these catchments. The bad performance for these two catchments resulted in the insignificant improvements compared to the lower benchmark of the IntenseSummer – no error run with calibration and validation in the dry year. Because the wetness of a year was based on the summer streamflow, these findings suggest that data obtained during times of low flow, result in improved validation performance during dry years compared to data collected during other times (Figure 6). This suggests that if the interest is in understanding the streamflow response during very dry years, it is important to obtain data during the dry period. To verify this assumption more detailed analyses are needed.

4.5 Recommendations for citizen science projects

Our results show that streamflow estimates from citizens are not informative for hydrological model calibration, unless the errors in the estimates can be reduced through training or advance filtering of the data to reduce the errors (i.e. the number of extreme outliers). In order to make streamflow estimates useful, the standard deviation of the estimation-error-distribution needs to be reduced by a factor of two. Research of Gibson and Bergman (1954) suggests that the error in distance estimations can be reduced from 33 % to 14 % with very little training. Those findings are encouraging, although their tests covered distances larger than 365 meters (400 yards) and the widths of the medium sized rivers of Strobl et al. (in review) were less than 40 meters. In order to determine the effect of training on streamflow estimates further research has to be done because especially the depth estimates are very inaccurate (Strobl et al., in review).

The findings of this study suggest the following recommendations for citizen science projects that want to use streamflow estimates:

- Collect as much data as possible: In this study hourly data always led to the best model performance. It is therefore beneficial to collect as much data as possible. Because it is unlikely to obtain hourly data, we suggest to aim for (on average) one observation per week. Provided that the standard deviation of the streamflow estimates can be reduced by a factor of two, 52 observations (as in the Crowd52 data series) are informative for model calibration. Therefore, it is essential to invest in advertisement of a project and to find suitable locations where many people can potentially contribute, as well as to communicate to the citizen scientists that it is beneficial to submit observations regularly.

- Encourage evenly distributed observations throughout the year: To further improve the model performance, or to allow for greater errors, it is beneficial to have observations at all types of flow conditions during the year.
Observations during high streamflow conditions were in most cases not more informative than flows during other times of the year. Efforts to ask citizens to submit observations during specific flow conditions (e.g. by sending reminders to the citizen observers) do not seem very effective in light of the above findings. It is rather more beneficial to remind them to submit observations regularly.

Instead of focussing on training to reduce the errors in the streamflow estimates, an alternative approach for citizen science projects is to switch to a parameter that is easier to estimate, such as stream levels (Lowry and Fienen, 2013). Recent studies successfully used daily stream level data (Seibert and Vis, 2016) and stream level class data (van Meerveld et al. 2017) to calibrate hydrological models, and other studies demonstrated the potential value of crowdsourced stream level data for providing information on baseflow (Lowry and Fienen, 2013) to improve flood forecasts (Mazzoleni et al., 2017). However, further research is needed to determine if real crowdsourced stream level (class-) data is informative for the calibration of hydrological models.

5 Conclusions

The results of this study extend previous studies on the value of limited hydrological data for hydrological model calibration or the best timing of streamflow measurements for model calibration (Juston et al., 2009; Pool et al., 2017; Seibert and McDonnell, 2015) that did not consider observation errors. This is an important aspect, especially when considering citizen science approaches to obtain streamflow data. Our results show that inaccurate streamflow data can be useful for model calibration, as long as the errors are not too large. When the distribution of errors in the streamflow data represented the distribution of the errors in the estimates of streamflow from citizen scientists, this information was not informative for model calibration (i.e. the median performance of the models calibrated with this data was not statistically significant better than the median performance of a model with random parameter values). However, if the standard deviation of the estimates is reduced by a factor two, then the (less) inaccurate data would be informative for model calibration. The findings of studies such as the one presented here provide important guidance on the design of citizen science projects, and also other, observation approaches.

6 Author contribution

While Jan Seibert and Ilja van Meerveld had the initial idea, the concrete study was designed based on input from all authors. Simon Etter and Barbara Strobl conducted the field surveys to collect the streamflow estimates. The simulations and analyses were performed by Simon Etter. The manuscript was written by Simon Etter with valuable comments of all co-authors.

7 Data availability

The data are available from FOEN (streamflow) and MeteoSwiss (precipitation and temperature). The HBV software is available from https://www.geo.uzh.ch/en/units/h2k/Services/HBV-Model.html.
8 Acknowledgements

We thank all citizen scientists who participated in the field surveys, as well as the Swiss Federal Office for the Environment for providing the streamflow data, MeteoSwiss for providing the weather data, and Maria Staudinger, Jan Schwanbeck and Scherrer AG for the permission to use their datasets. This project was funded by the Swiss National Science Fund (project CrowdWater).

References

16

Seibert, J. and Vis, M. J. P.: How informative are stream level observations in different geographic regions?, Hydrol. Process.,

Table 1 Characteristics of the six Swiss catchments used in this study. For the location of the study catchments see Figure 1. Long-term averages are for the period 1974-2014, except for Verzasca for which the long term average is for the 1990-2014 period. Regime types are classified according to (Aschwanden and Weingartner, 1985).

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Murg</th>
<th>Guerbe</th>
<th>Allenbach</th>
<th>Riale di Calneggia</th>
<th>Mentue</th>
<th>Verzasca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauging station (FOEN station number)</td>
<td>Waengi (2126)</td>
<td>Belp Mülimatt (2159)</td>
<td>Adelboden (2232)</td>
<td>Cavergno, Pontit (2356)</td>
<td>Yvonand Maguettaz (2369)</td>
<td>La Lavertezzo, Campiòi (2605)</td>
</tr>
<tr>
<td>Area [km²]</td>
<td>79</td>
<td>117</td>
<td>29</td>
<td>24</td>
<td>105</td>
<td>186</td>
</tr>
<tr>
<td>Elevation [m asl]</td>
<td>Min</td>
<td>465</td>
<td>522</td>
<td>1297</td>
<td>885</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>1035</td>
<td>2176</td>
<td>2762</td>
<td>2921</td>
<td>927</td>
</tr>
<tr>
<td>Regime Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min - Max Pardé coefficients</td>
<td>Dry year</td>
<td>0.29 - 1.61</td>
<td>0.44 - 1.93</td>
<td>0.40 - 2.48</td>
<td>0.13 - 3.22</td>
<td>0.22 - 2.37</td>
</tr>
<tr>
<td></td>
<td>Average year</td>
<td>0.58 - 2.16</td>
<td>0.61 - 1.65</td>
<td>0.39 - 2.44</td>
<td>0.09 - 2.84</td>
<td>0.23 - 2.66</td>
</tr>
<tr>
<td></td>
<td>Wet year</td>
<td>0.34 - 1.69</td>
<td>0.42 - 2.14</td>
<td>0.32 - 2.12</td>
<td>0.10 - 3.48</td>
<td>0.35 - 2.39</td>
</tr>
<tr>
<td></td>
<td>Long-term</td>
<td>0.68 - 1.34</td>
<td>0.77 - 1.39</td>
<td>0.35 - 2.70</td>
<td>0.14 - 2.70</td>
<td>0.46 - 1.57</td>
</tr>
<tr>
<td>Annual runoff-rainfall ratio</td>
<td>Dry year</td>
<td>0.72</td>
<td>0.37</td>
<td>0.86</td>
<td>1.30¹</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Average year</td>
<td>0.55</td>
<td>0.48</td>
<td>1.731</td>
<td>1.38¹</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Wet year</td>
<td>0.56</td>
<td>0.54</td>
<td>0.78</td>
<td>0.98</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Long-term</td>
<td>0.56</td>
<td>0.57</td>
<td>0.94</td>
<td>1.06¹</td>
<td>0.38</td>
</tr>
<tr>
<td>Long-term mean annual streamflow [m³/s]</td>
<td>1.84</td>
<td>2.75</td>
<td>1.23</td>
<td>1.43</td>
<td>1.64</td>
<td>10.76</td>
</tr>
<tr>
<td>Weather stations</td>
<td>Aadorf-Taenikon, Hörlí</td>
<td>Plaffeien, Bern-Zollikofen</td>
<td>Adelboden</td>
<td>Robiei</td>
<td>Mathod, Pully</td>
<td>Acquarossa, Cimetta, Magadino, Piotta</td>
</tr>
</tbody>
</table>

¹ In Verzasca, Allenbach, and Riale die Calneggia there are some streamflow-rainfall ratios > 1 because the weather stations are located outside the catchment and precipitation is highly variable in this alpine terrain.
Table 2 Calibration years (2nd-most extreme and 2nd-closest to average years) and validation years (most extreme and closest to average years) for each catchment. Numbers in parenthesis are the ranks over the period 1974-2014 (or 1990-2014 for Verzasca).

<table>
<thead>
<tr>
<th>Character</th>
<th>Murg</th>
<th>Guerbe</th>
<th>Allenbach</th>
<th>Riale di Calneggia</th>
<th>Mentue</th>
<th>Verzasca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>2007 (3)</td>
<td>2007 (2)</td>
<td>2007 (4)</td>
<td>2009 (11)</td>
<td>2014 (7)</td>
<td>2011 (4)</td>
</tr>
<tr>
<td>Dry</td>
<td>2013 (8)</td>
<td>2011 (8)</td>
<td>2009 (11)</td>
<td>2012 (8)</td>
<td>2010 (4)</td>
<td>2013 (5)</td>
</tr>
<tr>
<td>Average</td>
<td>2008 (6)</td>
<td>2008 (17)</td>
<td>2013 (7)</td>
<td>2013 (2)</td>
<td>2006 (6)</td>
<td>2007 (7)</td>
</tr>
<tr>
<td>Validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>2009 (7)</td>
<td>2013 (5)</td>
<td>2012 (9)</td>
<td>2006 (5)</td>
<td>2009 (3)</td>
<td>2010 (4)</td>
</tr>
<tr>
<td>Average</td>
<td>2011 (4)</td>
<td>2006 (13)</td>
<td>2011 (6)</td>
<td>2011 (1)</td>
<td>2013 (2)</td>
<td>2006 (4)</td>
</tr>
</tbody>
</table>

Table 3 Median and the full range of \(P_{OA} \) scores for the upper benchmark (hourly-FOEN data). The upper benchmark values for the dry, average and wet calibration years were used as the upper benchmarks for the evaluation based on the year character (Figure 6); the values in the “overall median”-column were used as the benchmarks in the overall median performance evaluation shown in Figure 4.

<table>
<thead>
<tr>
<th>Calibration year</th>
<th>Dry</th>
<th>Average</th>
<th>Wet</th>
<th>Overall median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation wet year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper benchmark</td>
<td>0.63</td>
<td>0.65</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>(0.19 - 0.79)</td>
<td>(0.36 - 0.8)</td>
<td>(0.45 - 0.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower benchmark</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-0.02 - 0.47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validation average year | | | | |
Upper benchmark	0.59	0.61	0.53	
(0.49 - 0.64)	(0.45 - 0.78)	(0.36 - 0.77)		
Lower benchmark	0.36			
(0.03 - 0.59)				

Validation dry year | | | | |
Upper benchmark	0.51	0.59	0.53	
(0.35 - 0.71)	(0.41 - 0.83)	(0.23 - 0.74)		
Lower benchmark	0.35			
(0.09 - 0.52)				
Table 4 Weights assigned to specific seasons, days and times of the day for the random selection of data points for Crowd52 and Crowd12. The weights for each hour were multiplied and normalized. We then used them as probabilities for the individual hours. For times without daylight the probability was set to zero.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season</td>
<td></td>
</tr>
<tr>
<td>December – February</td>
<td>2</td>
</tr>
<tr>
<td>March – May / September – November)</td>
<td>6</td>
</tr>
<tr>
<td>June – August</td>
<td>10</td>
</tr>
<tr>
<td>Day</td>
<td></td>
</tr>
<tr>
<td>Saturdays – Sundays</td>
<td>3</td>
</tr>
<tr>
<td>Monday – Friday</td>
<td>1</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Times when people usually have breaks</td>
<td>3</td>
</tr>
<tr>
<td>6 am – 8:00 am, 12 am-1 pm, 5 pm-9 pm</td>
<td></td>
</tr>
<tr>
<td>Times with daylight in winter (Dec-Feb)</td>
<td>1</td>
</tr>
<tr>
<td>8 am – 4 pm</td>
<td></td>
</tr>
<tr>
<td>Times with daylight in spring/fall (Mar-May/Sept-Nov):</td>
<td>1</td>
</tr>
<tr>
<td>7 am – 7 pm</td>
<td></td>
</tr>
<tr>
<td>Times with daylight in summer (Jun-Aug)</td>
<td>1</td>
</tr>
<tr>
<td>6 am – 9 pm</td>
<td></td>
</tr>
<tr>
<td>Other times (depending on season)</td>
<td>0</td>
</tr>
</tbody>
</table>
Figures

Figure 1 Location of the six study catchments in Switzerland. Shading indicates whether the catchment is located on the north or south side of the Alps. See Table 1 for the characteristics of the study catchments.
Figure 2 Fit of the normal distribution to the frequency distribution of the log transformed relative streamflow estimates (ratio of the estimated streamflow and the measured streamflow).

\[\mu = 0.121 \]
\[\sigma = 1.299 \]
\[n = 136 \]
Figure 3 Example of different streamflow time series used for calibration with small, medium and large errors and the temporal resolutions (Weekly, Crowd52 and WeekendSpring) for the Mentue in 2010. Large error: adjusted FOEN data with errors resulting from the log-normal distribution fitted to the streamflow estimates from citizen scientists (see Figure 2). Medium error: same as large error, but the standard deviation of the log normal distribution was divided by 2. Small error: same as the large error, but the standard deviation of the log normal distribution was divided by 4. The grey line represents the measured streamflow, the dots the derived time series of streamflow observations.
Figure 4 Boxplots of the median model performance relative to the upper benchmark for all datasets. The grey rectangles around the boxes indicate non-significant differences in median model performance compared to the lower benchmark with random parameter sets. The box represents the 25th and 75th percentile, the thick horizontal line the median, the whiskers extend to 1.5 times the interquartile range below the 25th percentile and above the 75th percentile, and the dots represent the outliers. The numbers at the bottom indicate the number of outliers beyond the figure margins. \(n \) is the number of streamflow observations used for model calibration. The result of the hourly-benchmark FOEN dataset has some spread because the results of the 100 parameter sets were divided by their median performance. A relative \(P_{OA} \) of 1 indicates that the model performance is as good as the performance of the model calibrated with the hourly FOEN data (upper benchmark).
Figure 5 Results (p-values) of the Bonferroni Post-Hoc test to determine the significance of the difference in the median model performance for the data with different temporal resolutions within each data quality group (no error (a), small error (b), medium error (c), and large error (d)). Blue shades represent the p-values. White triangles indicate p-values < 0.05 and white stars indicate p-values that, when adjusted for multiple comparisons, are still < 0.05.
Figure 6: Median model validation performance for all datasets used for calibration during the different validation periods. Each horizontal line represents the median model performance for one catchment. The black bold line represents the median for the six catchments. The grey rectangles around the boxes indicate non-significant differences in median model performance for the six catchments compared to the lower benchmark with random parameters. The numbers at the bottom indicate the number of outliers beyond the figure margins. For the individual P_{OA} values of the upper benchmark (no error – Hourly dataset) in the different calibration and validation years see Table 4.