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Replies to Editor 
 
Editor Decision: Publish subject to minor revisions (further review by editor) (10 Sep 2018) by Nadav Peleg 
 
Comments to the Author:  5 

Dear Simon Etter and co-authors,  
 
Thank you for posting your responses to the two referees’ reports. The reviews are quite favorable, but they also 
raised some important comments and suggestions that I urge you to consider as they might improve the quality 
of the manuscript. Based on my own reading, I find this to be an interesting paper that fits the scope of HESS 10 

well and will be of interest to the community.  
 

We thank the editor and reviewers for the positive feedback on our manuscript. Please see the answers to the individual 

comments of the editor and reviewers below. 
 15 

In addition to the comments from the reviewers, I kindly ask you to also consider my two cents: (i) consider dis-
cussing how general are the presented results (e.g. considering different climates, terrain, hydrological model 
types and calibration techniques); 
 

We agree that it is of interest to all readers to what extent these results can be generalized. We added a section at the begin-20 

ning of the discussion in section 4.1 (page 10, lines 10-17): “In this study, we evaluated the information content of 

streamflow estimates by citizen scientists for calibration of the bucket-type hydrological model for six Swiss catch-

ments. Streamflow estimates by citizens are sometimes very different from the measured values, and the individual 

estimates can be dis-informative for model calibration (Beven, 2016; Beven and Westerberg, 2011). While the hydro-

climatic conditions, the model or the calibration approaches might be different in other studies, these results should 25 

be applicable for a wide range of cases. However, for physically-based spatially distributed models that are usually 

not calibrated automatically, the use of limited streamflow data would probably benefit from a different calibration 

approach. Furthermore, our results might not be applicable in arid catchment cases where rivers fall dry for some 

period of the year because the linear reservoirs used in the HBV model are not appropriate for such systems.” 

 30 

(ii) Fig. 3 – consider reducing the symbol size of the dots and zooming closer to the observed hydrograph, I found 
it difficult to see the match between obs. and sim. data;  
 
We thank the editor for this helpful suggestion. We changed the figure in the manuscript. Because not all dots are within the 

figure limits anymore, we also added the number of outliers and a sentence to the figure caption to explain this. 35 

 
(iii) Fig. 6 – consider focusing on one or two cases (e.g. calibration: dry and validation: dry and calibration: wet 
and validation: wet) to make the figure larger and clearer, and presenting the other cases as supplementary in-
formation. 
 40 
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We changed the figure 6 to contain only the two suggested cases and added the entire figure to the supplemental material. 

The plot in the supplementary material also shows the results for the two cases highlighted in Figure 6 to enable an easier 

comparison between all cases. 

 
I invite you to upload a revised manuscript, incorporating the proposed changes and additions, and making any 5 

other modifications where you see fit (minor revision iteration). I look forward to receiving the revised manuscript.  
 
Sincerely,  
Nadav Peleg 
 10 
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Replies to Reviewer #1 

 
Anonymous Referee #1 
Received and published: 13 July 2018 
 5 

The manuscript entitled “Value of uncertain streamflow observations for hydrological modelling” presents interest-
ing and novel research on the worth of citizen science discharge observations for the calibration of lumped hydro-
logical models. The manuscript is well structured and concise with a clear motivation. The presentation and the 
application of the methods are scientifically sound. My comments are mostly of minor character and therefore I 
hope to see this article soon published in HESS.  10 

 
We thank the reviewer for the positive comments about our manuscript and the helpful review comments, which we address 

in detail below. 

 
general comments: 15 

-The presentation of the calibration experiments is clear and complete with regard to the model performance. 
However, I was wondering how the model robustness is affected by uncertain observations which was neglected 
by the authors. From a modelling point of view parameter uncertainty and its reduction through calibration is of 
high importance. Therefore I believe that an additional figure on that matter would improve the quality of the 
study. How do the different temporal resolutions of observations as well as the three applied error scenarios af-20 

fect the parameter values and their uncertainty compared to the benchmark case? This issue should be dis-
cussed in light of model equifinality. 
 
We thank the reviewer for this helpful comment. We included a short paragraph about the effects of the errors on the timing 

and amount of data used for model calibration on the range of parameter values in the revised version of the manuscript. 25 

In Figures R1-R6, we show the boxplots with the parameter ranges for each of the six catchments. Each boxplot consists of 

300 values (3 year characters x 100 calibration runs). We summarized these results in another plot (Figure R7) that shows 

the interquartile range of the parameter distribution for each catchment for the different scenarios. The effects of the errors in 

the data and the timing of the data used for model calibration on the interquartile range of parameter values are summarized 

in Table R1. The spread in the parameter values was smallest for the upper benchmark for almost all parameters and cases, 30 

although the differences were very small for some parameters (e.g. PERC, PCALT and CWH). The trend of increasing 

spread in the parameter range with increasing errors is clearest for the MAXBAS parameter, which is the routing parameter. 

The parameter range of some other parameters (e.g. TCALT, TT and BETA) also increased with increasing error in the data 

used for calibration, but for other parameters (e.g., CFMAX, FC, and SFCF) the temporal resolution and the number of data 

points used for calibration determined the range in the optimized parameter values. However, these changes in the range of 35 

model parameters differed significantly for the different catchments (see differences in Figures R1-R6 and spread of the dots 

in Figure R7). Because these trends are not very clear, we prefer not to include any of the Figures R1-R6 but added a section 

3.5 in the results on the parameter distribution (section 3.4, page 9, lines 14-19): “For most parameters the spread in the 

optimized parameter values was smallest for the upper benchmark. The spread in the parameter values increased 
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with increasing errors in the data used for calibration, particularly for MAXBAS (the routing parameter) but also for 

some other parameters (e.g. TCALT, TT and BETA). However, for some parameters (e.g., CFMAX, FC, and SFCF) 

the range in the optimized parameter values was mainly affected by the temporal resolution of the data and the num-

ber of data points used for calibration. It should be noted though that the changes in the range of model parameters 

differed significantly for the different catchments and the trends weren't very clear.” 5 

 

Figure R1 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Verzasca catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). The box represents the 25th and 75th percentile, the thick horizontal line the median, the 

whiskers extend to 1.5 times the interquartile range below the 25thpercentile and above the 75th percentile, and the dots represent 10 
the outliers. For a description of the model parameters and units see Table R1. 

 



5 

 

 

Figure R2 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Mentue catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters and 

units see Table R1. 5 
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Figure R3 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Riale di Calneggia catchment catchment. Each subplot shows the range for one model parameter and 

consists of 300 values (3 year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the 

model parameters and units see Table R1. 5 
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Figure R4 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Allenbach catchment. Each subplot shows the range for one model parameter and consists of 300 values 

(3 year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters 

and units see Table R1. 5 
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Figure R5 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Guerbe catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters and 

units see Table R1. 5 
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Figure R6 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Murg catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters and 

units see Table R1. 5 
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Figure R7 The interquartile range of the model parameters for the six catchments for the different combinations of errors and 

temporal resolutions of the data used for model calibration. Each dot represents the interquartile range for one catchment (i.e. is 

the size of the box in Figures R1-R6). For a description of the model parameters and units see Table R1. 

  5 
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Table R1 Effect of errors and timing of the data used for model calibration on the interquartile range of the calibrated parameters 

in the HBV-light model (See also Figure R7). For a description of the different data sets (names in italic) see the main text of the 

manuscript. 

Parameter Effect of errors Effect of timing 

PERC Maximum percolation from 

upper to lower groundwater 

storage [mmd-1] 

No clear effect of errors, only Month-

ly dataset has larger range if large 

errors 

Slightly larger range for Monthly 

and Crowd12 data sets if large errors 

UZL Threshold parameter [mm] No big effect, larger range for Month-

ly with increasing errors 

Largely effect of timing 

K0 Storage (or recession) coeffi-

cients [h-1] 

Slightly larger parameter range for 

medium and large errors 

No clear effect of timing 

K1 Storage (or recession) coeffi-

cients [h-1] 

Slightly larger range for Weekend-

Spring, WeekendSummer Intens-

eSummer datasets, smaller range for 

e.g. hourly dataset with increasing 

errors 

Hourly dataset usually has the 

smallest range 

K2 Storage (or recession) coeffi-

cients [h-1] 

No effect No effect 

MAX-

BAS 

Length of triangular weighting 

function [H] 

Increasing range with increasing 

errors 

Large range for WeekendSpring 

dataset 

PCALT Change in precipitation with 

elevation [% (100 m)-1] 

Sometimes larger and sometimes 

smaller range with increasing errors 

No clear effect of timing, hourly 

dataset has the smallest range 

TCALT Change in temperature with 

elevation [°C (10 m)-1] 

Increasing range with increasing 

errors 

Some effect of timing, sometimes 

smaller range, sometimes larger 

range with less data (e.g. Weekly 

dataset) 

TT Threshold temperature for liquid 

and solid precipitation [°C] 

Increasing range with increasing 

errors 

Some effect of timing 

CFMAX Degree-day factor [mm d-1°C-1] Only for largest errors increase in 

parameter range 

Larger range for intense summer 

than for others 

SFCF Snowfall correction factor [-] No effect No effect 

CFR refreezing coefficient [-] No effect No effect, Crowd52 dataset usually 

has the smallest range 

CWH Water holding capacity of the 

snow storage [-] 

Larger range for WeekendSpring and 

Intense Summer datasets with in-

creasing errors, for other datasets no 

clear trend 

No effect 

FC Maximum soil moisture storage 

[Mm] 

IntenseSummer and Weekly datasets 

have larger range with increasing 

errors, for other datasets no clear 

trend 

No effect 

LP Soil moisture value above 

which actual evapotranspiration 

reaches potential evapotranspi-

ration [-] 

No effect No effect 

Beta Shape factor for the function 

used to calculate the distribution 

of rain and snow melt going to 

runoff and soil box 

No effect No effect 
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-In my opinion the authors should be more specific that their study addresses lumped hydrological models. For 
integrated spatially distributed models such a study surely would have different implications. Therefore I suggest 
to clearly state this throughout the manuscript; especially in title, introduction and discussion. 
 
We agree and adjusted the text in the introduction and the conclusion to more explicitly state that these results are for 5 

lumped, or as we prefer to call them, bucket-type hydrological models. 

 
specific comments: 
-In the introduction the authors provide a great overview on existing studies addressing the question how much 
data is needed to calibrate a hydrological model. I am wondering why the findings vary so drastically between 10 

days to years. Can the authors provide an explanation for this? 
 
These studies all had a different focus, used different performance metrics and different definitions of what a good model 

performance is (see Table R2). Vrugt et al. (2006) and Yapo et al. (1996) defined stable parameters as a good calibration 

criterion. Others (Juston et al. (2009); Seibert and Beven (2009); Seibert and McDonnell (2015)) used benchmark calibra-15 

tions and looked at the differences in the values of the objective functions. Pool et al. (2017) always used 12 streamflow data 

points and explored the best timing of these measurements. Juston et al. (2009) used a very long time series with possibly 

much more variation in streamflow than is observed within one year of data (as in this study) from which the subsets were 

drawn. Brath et al. (2004) used a spatially distributed model and concluded that three months was the absolute minimum. 

We added more information to the introduction to describe why the different studies resulted in different minimum data sets 20 

and highlighted better that despite their differences they all find that limited datasets are useful (page 1, line 29-page 2, line 

17): “Therefore, several studies have addressed the question: how much data are needed to calibrate a model for a 

catchment?  Yapo et al. (1996) and Vrugt et al. (2006a) using stable parameters as a criteria for satisfying model per-

formance, concluded that most of the information to calibrate a model is contained in 2-3 years of continuous stream-

flow data and that no more value is added when using more than eight years of data. Perrin et al. (2007) using the 25 

Nash-Sutcliffe efficiency criterion (NSE), showed that streamflow data for 350 randomly sampled days out of a 39 

year period were sufficient to obtain robust model parameter values for two bucket-type models, TOPMO, which is 

derived from TOPMODEL concepts (Michel et al. 2003), and GR4J (Perrin et al., 2003). Brath et al. (2004) using the 

volume-, relative peak- and time to peak error concluded that at least three months of continuous data were required 

to obtain a reliable calibration. Other studies have shown that discontinuous streamflow data can be informative for 30 

constraining model parameters (Juston et al., 2009; Pool et al., 2017; Seibert and Beven, 2009; Seibert and McDon-

nell, 2015). Juston et al. (2009) used a multi-objective calibration that included groundwater data and concluded that 

the information content of a subset of 53 days of streamflow data was the same as 1065 days of data from which the 

subset was drawn. Seibert and Beven (2009) using the NSE criterion, found that model performance reached a plat-

eau for 8-16 streamflow measurements collected throughout a one-year period. They, furthermore, showed that the 35 

use of streamflow data for one event and the corresponding recession resulted in a similar calibration performance as 

data for the six highest measured streamflow values during a two-month period.  
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These studies had different foci and used different model performance metrics but nevertheless their results are en-

couraging for the calibration of hydrological models for ungauged basins based on a limited number of high-quality 

measurements. However, the question remains: how informative are low(er)-quality data?  ” 

 

Table R2 Cited modelling studies focusing on the amount of streamflow data necessary to calibrate a hydrological model. 5 

Study / Authors Performance Metric Temporal Reso-

lution 

Model  How much data was 

needed 

Yapo et al., 1996 Daily root mean square 

estimation criterion and 

hetero-scedastic maxi-

mum likelihood error 

Daily NWSRFS_SMA model 

(Brazil, 1988) 

No more added value 

after 8 years of data. If 

wettest years are cho-

sen for calibration, 

model parameters 

were “properly identi-

fiable” 

Vrugt et al., 2006 RMSE daily Sacramento Soil Mois-

ture Accounting model 

Stable estimates for 

most of the parameters 

with 2-3 years of 

streamflow data 

Perrin et al., 2007 NSE in calibration, NSE 

and LogNSE in valida-

tion 

daily TOPMO (derived from 

TOPMODEL concepts 

(Michel et al 2003) and 

GR4J (Perrin et al 

2003) 

350 random days out 

of a 39 year period 

including dry and wet 

conditions are suffi-

cient to obtain robust 

model parameters 

Brath et al., 2004 Relative volume error, 

relative peak error, Time 

to peak error 

Hourly Spatially distributed 

model 

At least 3 months were 

required to obtain 

reliable calibration 

Juston et al., 2009 Combination of NSE and 

groundwater perfor-

mance index (multi-

objective calibration)  

daily HBV-Forsmark Information content of 

subset of 53 days was 

the same, as the entire 

1065-day period from 

which the data was 

drawn 

Pool et al., 2017 NSE and log NSE daily HBV 12 data points, differ-

ent “sampling“ strate-

gies (high flows, low 

flows, recession limbs, 

on the peak, etc) 

Seibert and Beven, 

2009 

NSE daily HBV Model performance 

plateaued after 8-16 

streamflow measure-

ments within a one 

year period 

Seibert and McDon-

nell, 2015 

the overall acceptability 

of a parameter set was 

defined by three compo-

nents: (1) the model 

10 min stream-

flow data 

 

Variant of HBV One event or 10 high 

flow measurements 

provided almost as 

much information as a 



14 

 

efficiency 

(NSE) values (Nash and 

Sutcliffe 1970) for the 

hard runoff data (calcu-

lated based on subsets of 

the total runoff series), 

(2) the acceptability of 

the model simulations 

with regard to soft data, 

and (3) the acceptability 

of the parameter values 

based on the experimen-

talist’s understanding. 

3 months of data 

 
 
-The applications of citizen science in hydrology are broad and go beyond the collection of data. For completion 
the authors could mention Koch et al. (2017) were the human perception was consulted to compare the similarity 
between simulated spatial patterns in order to evaluate spatial performance metrics. 5 

 
Thank you for providing this reference. We included a statement that citizen science also includes data analysis in the intro-

duction and refer to this paper there (page 2, lines 18-20): “Citizen science has been proven to be a valuable tool to col-

lect (Dickinson et al., 2010) or analyse (Koch and Stisen, 2017) various kinds of environmental data, including hydro-

logical data (Buytaert et al., 2014).” 10 

 
-Extreme outliers are filtered with respect to maximum possible streamflow values. One could imagine a more 
thorough filtering based on the season. An extreme outlier during low flow season can be expected to be smaller 
than during high flow. Have the authors considered such an improved filtering? 
 15 

We agree that when using real citizen science data more advanced filtering mechanisms are useful but these will have to be 

thoroughly tested first. The testing of different filtering methods is not within the scope of our study. Also, these filtering 

mechanisms need to be applicable for all places without measurements or local knowledge about flows. Low flows and high 

flows can occur in multiple seasons and differ drastically between stations (and years) because some catchments are snow 

influenced, others have glaciers, and others are only rain fed. Therefore, local knowledge or data about how low flows de-20 

pend on the season are necessary. We considered the lowest and highest ever measured values for a particular catchment size 

for the filtering because these data may be available for different regions and provide a very simple filter to take out the most 

unrealistic values. Because no extreme low flow value was replaced with the lowest ever recorded flow and only a few high 

flow estimates were replaced, we assume that the results would not have been significantly different if a slightly more ad-

vanced filtering mechanism for low flows was used. 25 

 
-I can imagine a better visualization of the data in Figure 3. Instead of nine subplots one could imagine three 
subplots, one for each temporal resolution. Then each error scenario could have a different color. In this way the 
graphs could be stretched over the entire page and the dynamics would be more visible. 
 30 
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Thank you for this suggestion for an improvement. We thought about the suggested graph but there are too many dots (or 

other symbols) that overlap, as can be seen in Figures R8-R9. This makes it hard to read the figures, even if the symbols are 

not filled. We however adapted the figure according to the editors’ comment.  

  
Figure R8 Alternative design of Figure 3 with filled symbols to represent the data used for model calibration for the different 5 
scenarios. 
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Figure R9 Alternative design of Figure 3 with different open symbols to represent the data used for model calibration for the dif-

ferent scenarios. 
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Replies to Reviewer #2 
 
Anonymous Referee #2 
Received and published: 3 August 2018 
General Comments 5 

The manuscript titled “Value of uncertain streamflow observations for hydrological modelling” is a helpful contri-
bution to the growing body of literature on citizen science applications in hydrology. The article is scientifically 
significant, is of high quality, and is well presented. The objectives of the study are clearly stated, the methods 
are applicable, the results are clear, and the discussion and conclusions return to the original questions posed. 
The overall structure of the article is sound, and the prose is for the most part acceptable. However, efforts 10 

should be made to make the language more concise by separating long sentences and properly using commas 
and semi colons to join dependent and independent clauses, respectively. 
 
We thank the reviewer for the positive comments about our manuscript and the helpful review comments, which we address 

in detail below. We have carefully read through the manuscript and shortened several of the long sentences. 15 

 
The following are a few more general comments.  
First, in the conclusion, only the first question regarding errors and not the frequency of observations is included; 
it is suggested that both questions be briefly addressed.  
 20 

We thank the reviewer for noting this inconsistency. We included the following sentence in the revised manuscript (page 14, 

line 30 – page 15, line1): “We, furthermore, demonstrated that realistic frequencies for citizen science projects (one 

observation on average per week or month) can be informative for model calibration. “ 

 
Second, the “lower benchmark” is an important part of this study, and the one sentence dedicated to it (7-13/14) 25 

doesn’t provide enough information on how it was developed.  
 
The use of upper and lower benchmarks to compare different model results follows the strategy of several recent studies (van 

Meerveld et al., 2017; Pool et al., 2017; Wang et al., 2017). Seibert et al. (2018) point out that it is important to assess what 

model performance is possible (upper benchmark) because the data used for model calibration and validation contain errors 30 

and a perfect model fit cannot be expected, and to compare the model performance to what can be expected (lower bench-

mark) because the driving (precipitation and temperature) data often dictate that models can't be too far off for humid catch-

ments, as long as the water balance is respected. The lower benchmark used in this study is, therefore, the median model 

performance for an uncalibrated model (based on 1000 random parameter sets). 

We extended the section in the revised manuscript (page 7, lines 19-25): “In humid climates, the input data (precipitation 35 

and temperature) often dictate that model simulations can't be too far off as long as the water balance is respected 

(Seibert et al., 2018). To assess the value of limited inaccurate streamflow data for model calibration compared to a 

situation without any streamflow data, a lower benchmark (Seibert et al., 2018) was used. Here, the lower benchmark 

was defined as the median performance of the model ran with 1000 random parameters sets. By running the model 

with 1000 randomly chosen parameter sets, we represent a situation where no streamflow data for calibration are 40 
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available and the model is driven only by the temperature and precipitation data. We used 1000 different parameter 

sets to cover most of the model variability due to the different parameter combinations.” 

 
References:  

van Meerveld, H J; Vis, Marc J P; Seibert, Jan (2017). Information content of stream level class data for hydrological model 5 

calibration. Hydrology and Earth System Sciences, 21(9):4895-4905. 

 

Pool, Sandra; Vis, Marc J P; Knight, Rodney R; Seibert, Jan (2017). Streamflow characteristics from modeled runoff time 

series – importance of calibration criteria selection. Hydrology and Earth System Sciences, 21(11):5443-5457. 

 10 

Seibert, Jan; Vis, Marc J P; Lewis, Elizabeth; van Meerveld, H J (2018). Upper and lower benchmarks in hydrological mod-

elling. Hydrological Processes, 32(8):1120-1125. 

 

Wang, Ling; van Meerveld, H J; Seibert, Jan (2018). Effect of observation errors on the timing of the most informative iso-

tope samples for event-based model calibration. Hydrology, 5(1):4. 15 

 
Finally, additional discussion of how training could possibly decrease errors in citizen science streamflow esti-
mates should be included (perhaps this is also included in the other paper in review). For example, should the 
focus be on improving depth, width, or velocity measurements? Are there any simple tools that could be added to 
improve the estimates? For example, could photos of the site including a person for scale (for area) and short 20 

videos (for velocity) be used to identify (and possibly filter) high error estimates?  

 

There are indeed multiple possibilities for training. These include tutorial videos, or providing a list with well-known 

streams and their ranges in width, depth, flow velocity and streamflow to indicate ball park numbers. We included a brief 

statement on potential training options. However we do not want to focus too much on potential training options because 25 

their advantages and effectiveness are not known yet (page 13, lines 27-30): “Options for training might be tutorial vide-

os, as well as providing values for the width, average depth and flow velocity of well-known streams (Strobl et al., in 

review).” 

 
Specific Comments (page # - line # - comment) 30 

2-23/24 - The “stick-method” is unfamiliar and should have a reference or some description. 
Is this the same as the “float” method, or ? 
 
We clarified this by rewriting these sentences in the following way (page 2, lines 27-30): “Estimating streamflow is obvi-

ously more challenging than reading levels from a staff gauge but citizens can apply the stick- or float method, where 35 

they measure the time it takes for a floating object (e.g. a small stick) to travel a given distance to estimate the flow 

velocity. Combined with estimates for the width and the average depth of the stream, this allows them to obtain a 

rough estimate of the streamflow.” 

 
4-7 - USBR Water Measurement Manual 2001 Ch 13.10 recommends variable surface velocity with depth  40 

 
We are unfortunately not sure what this comment refers to. We used a factor of 0.8 to correct for the decline in flow velocity 

with depth and to obtain an average velocity from the surface velocity. Text books (e.g. Harrelson, Rawlins, & Potyondy, 
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1994) recommend this correction factor. Hauet et al. (2018) and Morlot et al. (2018) showed that this correction factor is 

reasonable for most streams, except for concrete channels. Even if the exact value of the correction factor is uncertain (e.g. 

varies between 0.71 and 0.95 (Welber et al., 2016)), the impact on the estimated streamflow is small compared to the errors 

in the estimates of the velocity, width and depth. 

 5 

References:  

 

Harrelson, C.C., Rawlins, C.L. & Potyondy, J.P., 1994. Stream channel reference sites: an illustrated guide to field tech-

nique. (http://www.treesearch.fs.fed.us/pubs/20753) 

 10 

Hauet, A., Morlot, T. & Daubagnan L. (2018) Velocity profile and depth-averaged to surface velocity in natural streams: a 

review over a large sample of rivers. E3S Web of Conferences (doi: 10.1051/e3sconf/20184006015) 

 

Morlot T., Hauet, A., & L. Daubagnan, L., 2018. Computation of the coefficient relating depth-averaged velocities to surface 

velocity over a large sample of French cross-sections gauged with a current meter, Geophysical Research Abstracts, Vol. 20, 15 

EGU2018-1874. 

 

Welber, M., Le Coz, J., Laronne, J. B., Zolezzi, G., Zamler, D., Dramais, G., Hauet, A. and Salvaro, M.: Field assessment of 

noncontact stream gauging using portable surface velocity radats (SVR), Water Resour. Res., 52, 1108–1126, 

doi:10.1002/2015WR017906.Received, 2016. 20 

 

5-2 - do you have raw velocity and area data to further evaluate if the errors come more frequently from velocity 
or area estimates? Perhaps if you have the width and depth estimates this can also help to unpack uncertainty in 
areas estimates further. 
 25 

Strobl et al. (in review) show that the width can generally be estimated better than the depth and velocity. Here we would 

like to focus on the value of the resulting streamflow estimates for hydrological modelling. We, therefore, mention that the 

depth is particularly uncertain when we describe the options of training (page 13, lines 27-30). 

 
6-8 - Is the one point per hour randomly selected or ??? Is hourly data a plausible citizen science output? You 30 

later say (9-21/22) that this frequency is “very unlikely.” What was the frequency of the original data? 
 
The measurements from the Swiss Federal Office for the Environment (FOEN) have a 10 minute interval. The values we 

used to run the model are hourly averages because this is the resolution of the precipitation data, and represents the highest 

resolution that is regularly used for hydrological models in Switzerland and the HBV-model. 35 

We used the hourly data also for the simulations with error, even though it is very unlikely to get such a high contribution 

rate for citizen science projects, because this allowed us to draw conclusions about the effects of errors (i.e. for cases where 

the temporal resolution is “optimal” and only the quality is bad). We inserted the following sub-sentence in the manuscript 

(page 4, lines 5-6): “Hourly runoff time series (based on 10 minute measurements) for the six study catchments were 

obtained from the Federal Office for the Environment (FOEN; see Table 1 for the gauging station numbers).” 40 

and the following text after we describe the different scenarios (page 6, lines 21-24): 

http://www.treesearch.fs.fed.us/pubs/20753


20 

 

"Except for the hourly data, these scenarios were based on our own experiences within the CrowdWater project 

(www.crowdwater.ch) and information from the CrowdHydrology project (Lowry and Fienen, 2013). The hourly 

dataset was included to test the effect of errors when the temporal resolution of the data is optimal (i.e., by comparing 

simulations for the models calibrated with the hourly FOEN data and those calibrated with hourly data with er-

rors).” 5 

 

5-12 - it might be nice to more explicitly include a summary (e.g. bullet points) here of the four levels of error that 
you refer to later: none, low, medium, and high 
 
In the revised paper we will include the following list (page 5, lines 18-25): 10 

“To summarize, we tested the following four cases: 

 No error: The data measured by the FOEN, assumed to be (almost) error-free, the benchmark in terms of 

quality. 

 Small error: random errors according to the log-normal distribution of the snapshot campaigns with the 

standard deviation divided by 4. 15 

 Medium error: random errors according to the log-normal of the surveys with the standard deviation divided 

by 2. 

 Large error: typical errors of citizen scientists, i.e. random errors according to the log normal distribution of 

errors from the surveys.” 

 20 

7-13/14 - perhaps the range bounds on the parameters for the random selections need to be discussed further 
 
We agree that Table 1 in the supplemental material with the range of the parameters should be mentioned in the text. We 

added a sentence in chapter 2.6 (page 7, line 3): “The parameters were calibrated within their typical ranges (see Sup-

plemental Material - Table 1)” 25 

 
9-25 - rather than “reduced errors” it would be better to specific either low or medium like you do later in the sen-
tence 
 
We agree. We changed the sentence to (page 10, lines 22-23): “With medium errors, however, and one data point per 30 

week on average or regularly spaced monthly data, the data were informative for model parameterization.” 

 
9-27/28 - it would be good to consistently use either “lower benchmark” or “random parameter datasets” 
 
We agree. We changed it to “lower benchmark”. 35 

 
10-25 - it is unclear whether “fewer data points” here is referring specifically to calibrations with only 12 observa-
tions or to calibrations with even fewer than 12 observations (which wasn’t evaluated) 
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We agree that this statement is unclear. With “Fewer data points” we meant that the performance of models generally de-

creased faster with increasing errors if 12 instead of 48-52 data points were available. We therefore rewrote this sentence 

(page 11, lines 22-25): “…the results of this study also suggest that the performance of models decreases faster with 

increasing errors when fewer data points are available (i.e. there was a faster decline in model performance with 

increasing errors for models calibrated with 12 data points than for the models calibrated with 48-52 data points).” 5 

 
10-27/28 - only if the errors don’t contain systematic bias; please clarify 
 
Indeed, errors only average out when more data points are included if the errors don’t contain a systematic bias. Our errors 

include a small overestimation but apparently the effect of this small bias is small. We changed the sentence into (page 11, 10 

lines 26-28): “These findings can be explained by the compensating effect of the number of observations and their 

accuracy because the random errors for the inaccurate data average out when a large number of observations are 

used, as long as the data do not have a large bias.” 

 
11-7/8/9 - this sentence doesn’t seem to match the main point discussed earlier in the paragraph. Earlier you 15 

state that monthly performed better than IntenseSummer and WeekendSummer which had roughly 5 times more 
measurements. The you say it is “easier to get a certain number of observations…” Is it rather easier to get 
measurements spread out through the entire year than a certain number of measurements with citizen science? 
 
Thanks for pointing at these confusing statements. 20 

The statement at 11-7/8/9 points to the fact that it is likely easier to obtain a certain number of observations distributed over 

the year than at very specific times or flow conditions because people can contribute whenever they want. The goal of the 

statement that the Monthly dataset performs better than the IntenseSummer and WeekendSummer datasets is to make it clear 

that fewer data can be more useful if they are distributed over the entire year (likely because they contain more information 

on the streamflow-variability). The term “certain number” is therefore confusing and not necessary. We deleted it and re-25 

wrote the sentence (page 12, lines 7-9): “This is good news for using citizen science data for model calibration as it sug-

gests that the timing is not as important as the number of observations because it is likely much easier to get observa-

tions throughout the year than during specific periods or flow conditions.” 

 
Technical Corrections (page # - line # - comment) 30 

1-7 - “….model can be parameterized using on a limited…” need to either remove “on” or modify sentence other-
wise 
 
Thanks for this suggestion for improvement. We deleted the word “on”. 

 35 

1-16/17 - suggest using more commas to properly phrase the content (also the last sentence of the abstract 
could benefit from the same) 
 
Thanks for making us aware of this, we changed the indicated sentence accordingly (page 1, lines 17-19): “These included 

scenarios with one observation each week or month, as well as scenarios that are more realistic for crowdsourced 40 
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data that generally have an irregular distribution of data points throughout the year, or focus on a particular sea-

son.” 

 
1-29 - punctuation for the question within the sentence should be used: …question: how much data… are not 
available?” 5 

 
Thanks for this suggestion. We changed it accordingly (page1, lines 29-30): “Therefore, several studies have addressed 

the question: how much data are needed to calibrate a model for a catchment?” 

 
2-14 - same issue here where you end the sentence without a question mark. Either edit similar to above or re-10 

phrase: “but the question of how informative low quality data are remains.” 
 
Thanks for pointing out also the second case. We changed it to (page 2, lines 15-17): “These studies had different foci and 

used different model performance metrics but nevertheless their results are encouraging for the calibration of hydro-

logical models for ungauged basins based on a limited number of high-quality measurements. However, the question 15 

remains: how informative are low(er)-quality data?” 

 
3-5 - should define HBV here (first use) instead of below  
 
Thanks for pointing this out, we changed it accordingly. 20 

 
4-18/19 - sentence is incomplete  
 
Thanks for pointing this out. We changed it to (page 4, lines 26-27): “For the validation, we chose the year closest to the 

mean summer streamflow and the years with the lowest and the highest total summer streamflow (see Table 2).” 25 

 
6-17 - it seems more logical to include Crowd52 and Crowd12 in the bullet list of the six other temporal resolu-
tions presented 
 
We agree: We adapted the section in the revised manuscript. 30 

 
9-2 - correct grammar error “…was larger for than the…” 
 
Thank you for pointing this out, we corrected it. 

 35 

9-13 - which year are you referring to here: calibration or validation? 
 
Thanks for pointing at this shortcoming: We edited the sentence to clarify this (page 10, lines 3-4): “For 13 out of the 18 

catchment and year combinations, the Crowd52 datasets with fewer than 10 % high streamflow data points led to a 

better validation performance than the Crowd52 datasets with more high streamflow data points.” 40 

 
13-19 - “…this data was not statistically significant better…” needs to be revised to possible “…these data did not 
show statistically significant improvements in model performance…” 
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Thanks for this suggestion for improvement. We changed the sentence in the revised version to (page 14, lines 28-29): “… 

(i.e. the median performance of the models calibrated with these data was not significantly better than the median 

performance of the models with random parameter values).” 

 

  5 
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Reply to Interactive Comment by Anusha Pandey 
Received and published: 8 August 2018 
 

This is a very interesting paper which will add more value in citizen hydrology. My only comment is: When stating 
examples of citizen science projects that collect streamflow or stream level data (page 2 line 21), it would be 5 

helpful to include SmartPhones4Water Nepal (http://www.smartphones4water.org/category/news/) as an example 
project using references of either https://link.springer.com/article/10.1007/s00267-017-0872-x or 
https://link.springer.com/article/10.1007%2Fs10661-018-6687-2. This is especially important because literature 
about citizen science so far has been relatively focused on the west, so any example applications of citizen sci-
ence in Asia should be properly included. 10 

 

Thank you very much for making us aware of these interesting recent studies and the project SmartPhones4Water. We in-

cluded a reference in the introduction in the revised manuscript where similar citizen science projects are mentioned (page 2, 

lines 24-27): “Examples are the CrowdHydrology project (Lowry and Fienen, 2013), SmartPhones4Water in Nepal 

(Davids et al., 2018) and a project in Kenya (Weeser et al., 2018), which all ask citizens to read stream levels at staff 15 

gauges and to send these via an app or as text message to a central database.” 
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Value of uncertain streamflow observations for hydrological 

modelling 

Simon Etter1, Barbara Strobl1, Jan Seibert1,2, Ilja van Meerveld1 
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Abstract. Previous studies have shown that a hydrological modelmodels can be parameterized using on a limited number of 

streamflow measurements for otherwise ungauged basins.. Citizen science projects can collect such data for otherwise 

ungauged catchments but an important question is whether these observations are informative given that these streamflow 10 

estimates will be uncertain. We address the value of inaccurate streamflow estimates for calibration of a simple bucket-type 

runoff model for six Swiss catchments. We pretended that only a few observations were available and that these were 

affected by different levels of inaccuracy. The initiallevel of inaccuracy level was based on a log-normal error distribution 

that was fitted to streamflow estimates of 136 citizens for medium-sized streams. Two additional levels of inaccuracy, for 

which the standard deviation of the error-distribution was divided by two and four, were used as well. Based on these error 15 

distributions, random errors were added to the measured hourly streamflow data. New time series with different temporal 

resolutions were created from these synthetic streamflow time series. These included scenarios with one observation each 

week or month and, as well as scenarios that are more realistic for crowdsourced datasets withdata that generally have an 

irregular distributionsdistribution of data points throughout the year, or a focus on spring or summera particular season. The 

model was then calibrated for the six catchments using the synthetic time series for a dry, an average and a wet year. The 20 

performance of the calibrated models was evaluated based on the measured hourly streamflow time series. The results 

indicate that streamflow estimates from untrained citizens are not informative for model calibration. However, if the errors 

can be reduced, the estimates are informative and useful for model parameterization.calibration. As expected, the model 

performance increased when the number of observations used for calibration increased. The model performance was also 

better when the observations were more evenly distributed throughout the year. This study indicates that uncertain 25 

streamflow estimates can be useful for model calibration but that the estimates by citizen scientists need to be improved by 

training or more advanced data filtering before they are useful for model calibration. 

1 Introduction 

The application of hydrological models usually requires several years of precipitation, temperature and streamflow data for 

calibration, but these data are only available for a limited number of catchments. Therefore, several studies have addressed 30 



 

2 

 

 

the question: how much data are needed to calibrate a model for a catchment where continuous streamflow data are not 

available.? Yapo et al. (1996) and Vrugt et al. (2006a) using stable parameters as a criteria for satisfying model performance, 

concluded that most of the information to calibrate a model is contained in 2-3 years of continuous streamflow data and that 

no more value is added when using more than eight years of data. Perrin et al. (2007) using the Nash-Sutcliffe efficiency 

criterion (NSE), showed that streamflow data for 350 randomly sampled days out of a 39 year period were sufficient to 5 

obtain robust model parameter values for two bucket-type models, TOPMO, which is derived from TOPMODEL concepts 

(Michel et al. 2003), and GR4J (Perrin et al., 2003). Brath et al. (2004) using the volume-, relative peak- and time to peak 

error concluded that at least three months of continuous data were required to obtain a reliable calibration. Other studies have 

shown that discontinuous streamflow data can be informative for constraining model parameters (Juston et al., 2009; Pool et 

al., 2017; Seibert and Beven, 2009; Seibert and McDonnell, 2015). Juston et al. (2009) used a multi-objective calibration that 10 

included groundwater data and concluded that the information content of a subset of 53 days of streamflow data was the 

same as 1065 days of data from which the subset was drawn. Seibert and Beven (2009) using the NSE criterion, found that 

model performance reached a plateau level for 8-16 streamflow measurements collected throughout a one-year period. They, 

furthermore, showed that the use of streamflow data for one event and the corresponding recession resulted in a similar 

calibration performance as data for the six highest measured streamflow values during a two-month period.  15 

TheseThese studies had different foci and used different model performance metrics but nevertheless their results are 

encouraging for the calibration of hydrological models for ungauged basins based on a limited number of high-quality 

measurements, but. However, the question remains: how informative are low(er)-quality data are.? An alternative approach 

to high quality streamflow measurements in ungauged catchments is to use citizen science. Citizen science has been proven 

to be a valuable tool to collect (Dickinson et al., 2010) or analyse (Koch and Stisen, 2017) various kinds of environmental 20 

data, including hydrological data (Buytaert et al., 2014). Citizen science approaches use simple methods to enable a large 

number of citizens to collect data and allow local communities to contribute data to support science and waterenvironmental 

management. Citizen science approaches can be particularly useful in light of the declining stream gauging networks (Ruhi 

et al., 2018; Shiklomanov et al., 2002) and to complement the existing monitoring networks. However, citizen science 

projects that collect streamflow or stream level data in flowing waterbodieswater bodies are still rare. Two Examples are the 25 

CrowdHydrology project (Lowry and Fienen, 2013), SmartPhones4Water in Nepal (Davids et al., 2018) and a project in 

Kenya (Weeser et al., 2018), which bothall ask citizens to read stream levels at staff gauges and to send these via an app or 

as text messagesmessage to a central database. Estimating streamflow is obviously more challenging than reading levels 

from a staff gauge but citizens can apply the stick- or float method, where they measure the time it takes for a floating object 

(e.g. a small stick) to travel a given distance to estimate the flow velocity,. Combined with estimates for the width and the 30 

average depth of the stream and thus, this allows them to obtain a rough estimate of the streamflow. However, these 

streamflow estimates may be so inaccurate that they are not useful for model calibration. It is therefore necessary to not only 
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evaluate the requirements of hydrological models, not only in terms of the amount and temporal resolution of data, but also 

in terms of the achievable quality by the citizen scientists before starting a citizen science project. 

The effecteffects of rating curve uncertainty on model calibration has been quantified in recent studies (e.g. McMillan et al. 

2010; Horner et al. 2018) and the value of sparse datasets (Davids et al., 2017)but have been quantified in recent studies. 

However, the potential value of sparse datasets in combination with large uncertainties (such as those from crowdsourced 5 

streamflow estimates) has not been evaluated so far. Therefore, the aim of this study was to determine the effects of 

observation inaccuracies on the calibration of bucket-type hydrological model calibrationmodels when only a limited number 

of observations are available. The specific objectives of this paper are to determine (i) whether the streamflow estimates 

from citizen scientists are informative for model calibration or if these errors need to be reduced (e.g. through training) to 

become useful and (ii) how the timing of the streamflow observations affects the calibration of a hydrological model. The 10 

latter is important for citizen science projects, as it provides guidance on whether it is useful to encourage citizens to 

contribute streamflow observations during a specific time of the year. 

2 Methods 

To assess the potential value of crowdsourced streamflow estimates for hydrological model calibration, the HBV-model 

(Bergström, 1972) (Hydrologiska Byråns Vattenbalansavdelning) model (Bergström, 1976) was calibrated against 15 

streamflow time series for six Swiss catchments, as well as different subsets of the data that represent citizen science data in 

terms of errors and temporal resolution. Similar to the approach used in several recent studies (Ewen et al., 2008; Finger et 

al., 2015; Fitzner et al., 2013; Haberlandt and Sester, 2010; Seibert and Beven, 2009), we pretended that only a small subset 

of the data were available. for model calibration. In addition, various degrees of inaccuracy were assumed. The value of 

these data for model calibration was then evaluated by comparing the model performance for the subsetthese subsets of data 20 

to the performance of the model calibrated with the complete measured streamflow time series. 

2.1 HBV model 

The HBV (Hydrologiska Byråns Vattenbalansavdelning) model was originally developed at the Hydrologiska Byrans 

Vattenavdelning unit at the Swedish Meteorological and Hydrological Institute (SMHI) by Bergström (1976). The HBV 

model is a bucket-type model that represents snow, soil, groundwater and stream routing processes in separate routines. In 25 

this study, we used the version HBV-light (Seibert and Vis, 2012). 

2.2 Catchments 

The HBV-light model was set up for six 24-186 km2 catchments in Switzerland (Table 1 and Figure 1). The catchments were 

selected based on the following criteria: i) there is little anthropogenic influence, ii) they are gauged at a single location, iii) 

they have reliable streamflow data during high flow and low flow conditions (i.e. no complete freezing during winter and a 30 

cross section that allows accurate streamflow measurement at low flows), and iv) there are no glaciers. The six selected 
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catchments (Table 1) represent different streamflow regime types (Aschwanden and Weingartner, 1985). The snow 

dominated highest elevation catchments (Allenbach and Riale di Calneggia) have the largest seasonality in streamflow, i.e. 

the biggest differences between the long-term maximum and minimum Pardé coefficients, followed by the rain and snow 

dominated Verzasca catchment. The rain dominated catchments (Murg, Guerbe and Mentue consequently) have the lowest 

seasonal variability in streamflow (Table 1). The mean elevation of the catchments varies from 652 to 2003 m asl (Table 1). 5 

The elevation range of each individual catchment was divided in 100 m elevation bands for the simulations. 

2.3 Measured data 

Hourly runoff time series (based on 10 minute measurements) for the six study catchments were obtained from the Federal 

Office for the Environment (FOEN; see Table 1 for the gauging station numbers). The average hourly areal precipitation 

amounts were extracted for each study catchment from the gridded CombiPrecip dataset from MeteoSwiss (Sideris et al., 10 

2014). This dataset combines gauge and radar precipitation measurements at an hourly timescale and 1 km2 spatial resolution 

and is available since 2005.  

We used hourly temperature data from the automatic monitoring network of MeteoSwiss (see Table 1 for the stations) and 

applied a gradient of -6 °C per 1000 m to adjust the temperature of each weather station to the mean elevation of the 

catchment. Within the HBV model, the temperature was then adaptedadjusted for the different elevation zonesbands using a 15 

calibrated lapse rate.  

As recommended by Oudin et al. (2005), potential evapotranspiration was calculated using the temperature-based potential 

evapotranspiration model of McGuinness and Bordne, (1972) using the day of the year, the latitude and the temperature. 

This rather simplistic approach was considered sufficient because this study focused on differences in model performance 

relative to a benchmark calibration.  20 

2.4 Selection of years for model calibration and validation 

The model was calibrated for an average, a dry and a wet year to investigate the influence of wetness conditions and the 

amount of streamflow on the calibration results. The years were selected based on the total streamflow during summer (July-

September). The driest and the wettest years of the period 2006-2014 were selected based on the smallest and largest sum of 

streamflow during the summer. The average streamflow years were selected based on the proximity to the mean summer 25 

streamflow for all the years 1974-2014 (1990-2014 for Verzasca). For each catchment the years that were the 2nd-closest to 

the mean summer streamflow for all years, as well as the years with the 2nd-lowest and 2nd-highest streamflow sum were 

chosen for model calibration (see Table 2). We did this separately for each catchment because for each catchment a different 

year was dry, average or wet. For the validation, we chose the year closest to the mean summer streamflow and the years 

with the lowest and the highest total summer streamflow sums (see Table 2). We used each of the parameter sets obtained 30 

from calibration for the dry, average or wet years to validate the model for each of the three validation years, resulting in 

nine validation combinations for each catchment (and each dataset, as described below). 
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2.5 Transformation of data sets to resemble citizen science data quality 

2.5.1 Errors in crowdsourced streamflow observations 

Strobl et al. (in review) asked 517 participants to estimate streamflow based on the stick method at ten streams in 

Switzerland. Here we use the estimates for the medium sized streams Töss, Sihl and Schanzengraben in the Canton of Zurich 

and the Magliasina in Ticino (n=136), which had a similar streamflow range at the time of the estimations (2.6 – 28 m3/s) as 5 

the mean annual streamflow of the six streams used for this study (1.2 – 10.8 m3/s). We calculated the streamflow from the 

estimated width, depth and flow velocities using a factor of 0.8 to adjust the surface flow velocity to the average velocity 

(Harrelson et al., 1994). The resulting streamflow estimates were normalized by dividing them by the measured 

valuestreamflow. We then combined the normalized estimates of all four rivers and log transformed the relative estimates. A 

normal distribution with a mean of 0.12 and a standard deviation of 1.30 fits the distribution of the log-transformed relative 10 

estimates well, with a standard error of the mean of 0.11 and a standard error of the standard deviation of 0.08 (Figure 2). 

To create synthetic datasets with data quality characteristics that represent the observed crowdsourced streamflow estimates, 

we assumed that the errors in the streamflow estimates are uncorrelated (as they wouldare likely be provided by different 

people). For each time step, we randomly selected a relative error value from the lognormal distribution of the relative 

estimates (Figure 2) and multiplied the measured streamflow with this relative error. To simulate the effect of training and to 15 

obtain time series with different data quality, two moreadditional streamflow time series were created using a standard 

deviation divided by two (standard deviation of 0.65) for the medium error and by four (standard deviation of 0.33) for the 

small error.). This reduces the spread in the data (but did not change the small systematic overestimation of the streamflow), 

so that large outliers are still possible, but are less likely. The benchmark in terms of quality were the no error datasets for 

which we used the FOEN data directly.To summarize, we tested the following four cases: 20 

 No error: The data measured by the FOEN, assumed to be (almost) error-free, the benchmark in terms of quality. 

 Small error: random errors according to the log-normal distribution of the snapshot campaigns with the standard 

deviation divided by 4. 

 Medium error: random errors according to the log-normal of the surveys with the standard deviation divided by 2. 

 Large error: typical errors of citizen scientists, i.e. random errors according to the log normal distribution of errors 25 

from the surveys. 

2.5.2 Filtering of extreme outliers 

Usually citizen science data undergo some form of quality control is used before they citizen science data are analyzed. Here, 

we used a very simple check to remove unrealistic outliers from the synthetic datasets. This check was based on the upper 

limit of likely minimum and maximum streamflow values for a given catchment area. We defined an upper limit of possible 30 

streamflow values as a function of catchment area using athe dataset of maximum streamflow from 1500 Swiss catchments 

provided by Scherrer AG, Hydrologie und Hochwasserschutz (2017). To account for the different precipitation intensities 
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north and south of the Alps, different limitscurves were usedcreated for the catchments on each side of the Alps. All 

streamflow observations, i.e., modified streamflow measurements, above the maximum observed streamflow for a particular 

catchment size including a 20 % buffer (), were replaced by the value of the maximum streamflow for a catchment of that 

size. This affected less than 0.5 % of all data points. A similar procedure was used for low flows based on a dataset of the 

FOEN with the lowest recorded mean streamflows over seven days but this resulted in no replacements. 5 

2.5.3 Temporal resolution of the observations 

Data entries from citizen scientists are not as regular as data from sensors with a fixed temporal resolution. Therefore, we 

decided to test eight scenarios with a different temporal resolution and a different distribution of the data throughout the year 

to simulate different patterns in citizen contributions. These scenarios were based on our own experiences within the 

CrowdWater project () and information from the CrowdHydrology project .: 10 

 We used the same selection of days, including the same times of the day for each of the four different error groups, years 

and catchments to allow comparison of the different model results. 

 Hourly: One data point per hour (8760 ≤ n ≤ 8784, depending on the year) 

 Weekly: One data point per week, every Saturday, randomly between 6 am and 8 pm (52 ≤ n ≤ 53) 

 Monthly: One data point per month on the 15th of the month, randomly between 6 am and 8 pm (n=12) 15 

 IntenseSummer: One data point every other day from July until September, randomly between 6 am and 8 pm (~15 

observations per month, n=46). 

 WeekendSummer: one data point each Saturday and each Sunday between May and October, randomly between 

6 am and 8 pm (52 ≤ n ≤ 54)  

 WeekendSpring: one data point on each Saturday and each Sunday between March and August, randomly between 20 

6 am and 8 pm (52 ≤ n ≤ 54) 

 In addition, we also tested two scenarios (Crowd52 and Crowd12) with a random interval between data points. 

Crowd52 had 52Crowd52 had 52 random data points (in order to be comparable to the Weekly, IntenseSummer, 

WeekendSummer and WeekendSpring time series), whereas ) 

 Crowd12 had only 12 random data points (comparable to the Monthly data).  25 

Except for the hourly data, these scenarios were based on our own experiences within the CrowdWater project 

(www.crowdwater.ch) and information from the CrowdHydrology project (Lowry and Fienen, 2013). The hourly dataset was 

included to test the effect of errors when the temporal resolution of the data is optimal (i.e., by comparing simulations for the 

models calibrated with the hourly FOEN data and those calibrated with hourly data with errors). In the two scenarios Crowd 

52 and Crowd12 with random intervals between data points we assigned higher probabilities for periods when people are 30 

more likely to be outdoors (i.e., higher probabilities for summers than winters, higher probabilities for weekends than 

weekdays, higher probabilities outside office hours; Table 4). Times without daylight (dependent on the season) were always 

http://www.crowdwater.ch/
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excluded. We used the same selection of days, including the same times of the day for each of the four different error groups, 

years and catchments to allow comparison of the different model results. 

2.6 Model calibration  

For each of the 1728 cases (6 catchments, 3 calibration years, 4 error groups, 8 temporal resolutions) the HBV model was 

calibrated by optimizing the overall consistency performance POA (Finger et al., 2011) using a genetic optimization algorithm 5 

(Seibert, 2000). The overall consistency performance POA is the mean of four objective functions with an optimum value of 

one: i) the Nash-Sutcliffe efficiency (NSE),, ii) the NSE for the logarithm of streamflow, iii) the volume error, and iv) the 

mean absolute relative error (MARE). The parameters were calibrated within their typical ranges (see Supplemental Material 

- Table 1). To consider parameter uncertainty, the calibration was performed independently 100 times, which resulted in 100 

parameter sets for each case. For each case, the preceding year was used for the warm-up period. For the Crowd52 and 10 

Crowd12 time series, we used 100 different random selections of times for which data were available, whereas for the 

regularly spaced time series the same times were used for each case. 

2.7 Model validation and analysis of the model results 

The 100 parameters from the calibration for each data setcase were used to run the model for the validation years (Table 2). 

For each case (i.e. each catchment, year, error magnitude and temporal resolution), we determined the median validation POA 15 

for the 100 parameter sets for each validation year. We analysed the validation results of all years combined and for all nine 

combinations of dry, mean and wet years separately. 

Because the focus of this study was on the value of limited inaccurate streamflow observations for model calibration, i.e. the 

difference in the performance of the models calibrated with the synthetic data series compared to the performance of the 

models calibrated with hourly FOEN data, all model validation performances are expressed relative to the average POA of the 20 

model calibrated with the hourly FOEN data (our upper benchmark, representing the fully informed case when continuous 

high quality streamflow data are available). A relative POA of 1 indicates that the model performance is as good as the 

performance of the model calibrated with the hourly FOEN data, whereas lower POA values indicate a poorer performance. 

In humid climates, the input data (precipitation and temperature) often dictate that model simulations can't be too far off as 

long as the water balance is respected (Seibert et al., 2018)To also. To assess the value of limited inaccurate streamflow data 25 

for model calibration compared to a situation without any streamflow data, a lower benchmark (Seibert et al., 2018) was 

used. Here, the lower benchmark was defined as the median performance of the model ran with 1000 random parameters 

sets. By running the model with 1000 random parameters randomly chosen parameter sets, we represent a situation where no 

streamflow data for every catchmentcalibration are available and year. 

the model is driven only by the temperature and precipitation data. We used 1000 different parameter sets to cover most of 30 

the model variability due to the different parameter combinations. The Mann Whitney U-Test was used to evaluate whether 

the median POA for a specific error group and temporal resolution of the data was significantly different from the median POA 
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for the lower benchmark (i.e. the model runruns with random parameters.). We furthermore checked for differences in model 

performance for models calibrated with the same data errors but a different temporal resolutionresolutions using a Kruskal-

Wallis test. By applying a Dunn-Bonferroni post-hoc test (Bonferroni, 1936; Dunn, 1959, 1961) we analysed which of the 

validation results were significantly different from each other.  

 showed that the use of monthly maximum streamflow data in model calibration leads to a better model performance than 5 

streamflow data for more average conditions. The random generation of the 100 crowdsourced-like datasets (i.e. for the 

Crowd52 and Crowd12 scenario) for each of the catchments and year characteristics resulted in time series with a different 

number of high flow estimates. In order to find out whether the inclusion of more high flow values resulted in a better 

validation performance, we defined the threshold for high flows as the streamflow value that was exceeded 10 % of the time 

in the hourly FOEN streamflow dataset. The Crowd52 and Crowd12 datasets were then divided into a group that had more 10 

than the expected 10 % high flow observations and a group that had fewer high flow observations. To determine if more high 

flow data improves model performance, the Mann-Whitney-U-test was used to compare the relative median POA of the two 

groups.  

3 Results 

3.1 Upper benchmark results 15 

The model was able to reproduce the measured streamflow reasonably well when the complete and unchanged hourly-FOEN 

datasets were used for calibration, although there were also a few exceptions. The average validation POA was 0.61 (range: 

0.19 – 0.83; Table 3). The validation performance was poorest for the Guerbe had the lowest (validation POA (= 0.19) 

because several high flow peaks were missed or underestimated by the model for the wet validation year. Similarly, the 

validation for the Mentue for the dry validation year 2009 for the Mentue resulted in a low POA (0.23) because a very distinct 20 

peak at the end of the year was missed and summer low flows were overestimated. The third lowest POA value was again 

fromalso for the Guerbe (2013, dry validation year) but already had a POA of 0.35. Six out of the nine lowest POA values were 

for dry validation years. Validation for wet years for the models calibrated with data from wet years resulted in the best 

validation results (i.e., highest POA values; Table 3).  

3.2 Effect of errors on the model validation results 25 

Not surprisingly, increasing the errors in the streamflow data decreasedused for model calibration led to a decrease in the 

model performance (Figure 4). For the small error category, the median validation performance was better than the lower 

benchmark for all temporal resolutions (Figure 4 and Supplemental Material - Table 2). For the medium error category, the 

median validation performance of all scenarios was also better than the lower benchmark for all scenarios, except for the 

Crowd12 dataset. For the model calibrated with the dataset with large errors only the Hourly data set was significantly better 30 

than the lower benchmark (Table 5).  
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3.3 Effect of the measurementdata resolution on the model validation results 

The Hourly measurement scenario resulted in the best validation performance for each error group, followed by the Weekly 

data, and then usually the Crowd52 data (Figure 4). Although the median modelvalidation performance of the models 

calibrated with the Weekly datasets was always better than for the Crowd52 dataset for all error cases, the difference was 

only statistically significant for the no error category (Figure 5).  5 

The validation performance of the models calibrated with the Weekly and Crowd52 datasets was better than for the 

measurement scenarios focused on spring and summer observations (WeekendSpring, WeekendSummer and IntenseSummer). 

The median model performance for the Weekly dataset was significantly better than the datasets focusing on spring and 

summer for the no, small and medium error groups. The median performance of the Crowd52 dataset was only significantly 

better than all three measurement scenarios focusing on spring or summer for the small error case (Figure 5). The model 10 

validation performance for the WeekendSummer and IntenseSummer scenarios decreased faster with increasing errorerrors 

compared to the Weekly, Crowd52 or WeekendSpring datasets (Figure 5).  

The median model performance for the Weekly dataset was significantly better than the other datasets for the no, small and 

medium error groups; the median performance of the Crowd52 dataset was only significantly different from the 

measurement scenarios focusing on spring or summer for the medium error case (). The median validation POA was better for 15 

the models calibrated with the WeekendSpring observations was better than for the modelmodels calibrated with the 

WeekendSummer and IntenseSummer datasets but the differences were only significant for the small, medium and large error 

groups. The differences in the model performance results offor the observation strategies focussingfocussed on summer 

(IntenseSummer and WeekendSummer) were not significantly different insignificant for any of the error groups (Figure 5).  

The median model performance for the regularly spaced Monthly datasets with 12 observations was similar to the median 20 

performance for the three datasets focusing on summer with 46-54 measurements (WeekendSpring, WeekendSummer and 

IntenseSummer), except for the case of large errors for which the monthly dataset performed worse. The irregularly spaced 

Crowd12 time series resulted in the worst model performance for each error group but the difference from the performance 

for the regularly spaced Monthly data was only significant for the dataset with large errors. 

3.4 Effect of errors and data resolution on the parameter ranges 25 

For most parameters the spread in the optimized parameter values was smallest for the upper benchmark. The spread in the 

parameter values increased with increasing errors in the data used for calibration, particularly for MAXBAS (the routing 

parameter) but also for some other parameters (e.g. TCALT, TT and BETA). However, for some parameters (e.g., CFMAX, 

FC, and SFCF) the range in the optimized parameter values was mainly affected by the temporal resolution of the data and 

the number of data points used for calibration. It should be noted though that the changes in the range of model parameters 30 

differed significantly for the different catchments and the trends weren't very clear. 
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3.43.5 Influence of the calibration and validation year and number of high flow data points on the model 

performance 

The influence of the validation year on the model performance was larger for than the effect of the calibration year (Figure 6 

and Supplemental Material – Figure 2). In general model performance was poorest for the dry validation years. The model 

performances of all datasets with fewer observations or bigger errors than the Hourly datasets without errors were not 5 

significantly better than the lower benchmark for the dry validation years, except for the Crowd52 in the no error group 

when calibrated with data from a wet year. However, even for the wet validation years some observation scenarios of the no 

error and small error group did not lead to significantly better model validation results compared to the median validation 

resultsperformance for the random parameters. Interestingly, the IntenseSummer data set in the no error group resulted in 

somea very good performancesperformance when the model was calibrated for a dry and also validated in a dry year 10 

compared to its performance in the other calibration and validation year combinations. The median model performance was 

however not significantly better than the lower benchmark due to the two very low performances offor the Guerbe and 

Allenbach (outliers beyond figure margins in Figure 6). The validation results of one of these two catchments always 

resulted in the worst performance for all the no error - IntenseSummer datasets for all calibration and validation year 

combinations. 15 

For 13 out of the 18 catchment and year combinations, the Crowd52 datasets with fewer than 10% high streamflow data 

points led to a better modelvalidation performance than the Crowd52 datasetdatasets with more high -streamflow data points. 

For six of them the difference in model performance was significant. For none of the five cases where more high flow data 

points led to a better model performance was the difference significant. Also when the results were analysed by year 

character or catchment there was no improvement when more high flow values were presentincluded in the calibration 20 

dataset. 

4 Discussion 

4.1 Usefulness of inaccurate streamflow data for hydrological model calibration 

IfIn this study, we evaluated the information content of streamflow estimates by citizen scientists for calibration of the 

bucket-type hydrological model for six Swiss catchments. Streamflow estimates by citizens are sometimes very differ-ent 25 

from the measured values, and the individual estimates can be dis-informative for model calibration (Beven, 2016; Beven 

and Westerberg, 2011). While the hydroclimatic conditions, the model or the calibration approaches might be different in 

other studies, these results should be applicable for a wide range of cases. However, for physically-based spatially distributed 

models that are usually not calibrated automatically, the use of limited streamflow data would probably benefit from a 

different calibration approach. Furthermore, our results might not be applicable in arid catchment cases where rivers fall dry 30 

for some period of the year because the linear reservoirs used in the HBV model are not appropriate for such systems. The 
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results show that if the streamflow estimates by citizen scientists would be available at a high temporal resolution (hourly)), 

these data are informative for the calibration of a bucket-type hydrological model calibration despite their high uncertainties. 

However, such detailed observations with such a high resolution are very unlikely to be obtained in practice. All the 

scenarios with error distributions that represent the estimates from citizen scientists with fewer observations were no better 

than the lower benchmark (using random parameters). Streamflow estimates are sometimes very different from the measured 5 

values, and individual estimates can be dis-informative . With reducedmedium errors, however, and one data point per week 

on average or regularly spaced monthly data, the time series with the medium errorsdata were informative for model 

parameterization. Reducing the standard deviation of the error-distribution by a factor of four, led to significantly improved 

model performance for all the observation scenarios compared to the random parameter datasets. In reality thislower 

benchmark.  10 

A reduction in the errors of the streamflow estimates could be doneachieved by training of citizen scientists, (e.g. videos), 

improved information about feasible value ranges for stream depth, with and velocity, or examples of streamflow values for 

a given stream. Furthermore,well-known streams. Filtering of extreme outliers has the potential tocan also reduce the spread 

of the estimates. This could be done with existing knowledge of feasible streamflow values for a catchment of a given area 

or the amount of rainfall right before the estimate is made to determine if streamflow is likely to be higher or lower than 15 

earlier estimates.for the previous estimate. More detailed research is necessary to test the effectiveness of such methods.  

Le Coz et al. (2014) reported an uncertainty in stage-discharge streamflow measurements of around 5-20 %, whereas%. 

McMillan et al. (2012) in a more detailed review summarized streamflow uncertainties from stage-discharge relationships in 

a more detailed review and gave a range of ±50-100 % for low flows, ±10-20 % for medium or high (in-bank) flows and 

±40 % for out-of-bank flows. The errors for the most extreme outliers in the citizen estimates are considerably higher, as 20 

they can differ by a factor of up to 10’000 from the measured value in the most extreme but rare cases (Figure 2). Even with 

reduced standard deviations of the error distribution by a factor of two or four, the observations in the most extreme cases 

can still differ by a factor of 100 and 10. The percentage of values beyond 200 % of the measured value in the synthetic 

datasets with streamflow observations was 33 % for the large error group, 19 % in the medium error group and 4 % in the 

small error group. Only 3 % were more than 90 % below the measured value in the large error group and 0 % infor both in 25 

the medium and small error classes. If such observations are used for model calibration without filtering, they are seen as 

extreme droughts or floods, even if the actual conditions may be close to average flow. Beven and Westerberg (2011) 

suggest to isolate periods of dis-informative data. It is therefore beneficial to identify such extreme outliers, independent of a 

model, e.g. with previous knowledge of feasible maximum and minimum streamflow quantities, as performedused in this 

study, with the help of the maximum regionalized specific streamflow values for a given catchment area. 30 

4.2 Number of streamflow estimates required for model calibration 

In general, one would assume that the calibration of a model becomes better when there is more data (Perrin et al., 2007), 

although others have shown that the increase in model performance plateaus after a certain number of measurements (Juston 
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et al., 2009; Pool et al., 2017; Seibert and Beven, 2009; Seibert and McDonnell, 2015). In this study, we limited the length of 

the calibration period to one year because in practice it may be possible to obtain a limited number of measurements during a 

one year period for ungauged catchments before the model results are needed for a practicalcertain application, as has been 

assumed in previous studies (Pool et al., 2017; Seibert and McDonnell, 2015). While a limited number of observations (12) 

was informative for model calibration when the data uncertainties were limited, the results of this study also suggest that the 5 

performance of the models calibrated with fewer data points decreased faster as the errors increased.bucket-type models 

decreases faster with increasing errors when fewer data points are available (i.e. there was a faster decline in model 

performance with increasing errors for models calibrated with 12 data points than for the models calibrated with 48-52 data 

points). This finding was most pronounced when comparing the model performance for the small and the medium error 

groups (Figure 4). These findings can be explained by the compensating effect of the number of observations and their 10 

accuracy because the random errors for less accuratethe inaccurate data average out when a largerlarge number of 

observations are used, as long as the data do not have a large bias. 

4.3 Best timing of streamflow estimates for model calibration 

The performance of the parameter sets depended on the observation timing and the error distribution of the data used for 

model calibration. The model performance was generally better if the observations were more evenly spread throughout the 15 

year. For example for the cases of no and small errors, the model performance forof the model calibrated with the Monthly 

dataset with 12 observations performedwas better than for the IntenseSummer and WeekendSummer scenarios with 46-54 

observations. Similarly, the less clustered observation scenarios performed better than the more clustered scenarios (i.e. 

Weekly vs. Crowd52, Monthly vs. Crowd12, Crowd52 vs. IntenseSummer, etc.). This suggests that more regularly distributed 

data over the year leads to a better model calibration. Juston et al. (2009) compared different subsamples of hydrological 20 

data for a 5.6 km2 Swedish catchment and found that including inter-annual variability in the data used for the calibration of 

the HBV model reduced the model uncertainties. More evenly distributed observations throughout the year might represent 

more of the within-year streamflow variability and therefore result in improved model performance. This is good news for 

using citizen science data for model calibration as it suggests that the timing is not as important as the number of 

observations because it is likely much easier to get a certain number of observations throughout the year than observations 25 

during specific periods or flow conditions. 

When comparing the WeekendSpring, WeekendSummer and IntenseSummer datasets, it seems that it was in most cases more 

beneficial to include data from spring rather than summer. This tendency was more pronounced with increasing data errors. 

The reason for this might be that the WeekendSpring scenario includes more snow melt or rain-on-snow event peaks, in 

addition to usually higher baseflow values and therefore contains more information on the inter-annual variability in 30 

streamflow. 

By comparing different variations of 12 data points to calibrate the HBV model, Pool et al. (2017) found that more high flow 

data points resulted in an improved model performance. In our study, this could not be observed, which might be due to the 
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fact thata dataset that contains a combination of different maximum (monthly, yearly etc.) and other flows in model 

calibration led to the best model performance but also that the differences between the different datasets covering the range 

of flows were small. In our study we did not specifically focus on the high or low flow data points, and therefore did not 

have datasets that contained only high flow estimates, which would be very difficult to obtain with citizen science data. Here 

we tested only scenariosHowever, our findings similarly show that are realistic for citizen science projects. In contrast to, we 5 

conclude thatmodel calibration for catchments with seasonal variability in streamflow it is beneficial to obtain streamflow 

data of allfor different magnitudes for model calibration.of flow. Furthermore, we found that data points during relatively dry 

periods are beneficial for validation or prediction in another year and might even be beneficial for years with the same 

characteristics, as was shown withfor the improved validation performance of the IntenseSummer dataset compared to the 

other datasets when data from dry years were used for calibration (Figure 6). 10 

4.4 Effects of different types of years on model calibration and validation 

The calibration year, i.e. the year in which the observations were made, was not decisive for the model performance. 

Therefore, a model calibrated with data from a dry year can still be useful for simulations infor an average or wet years. This 

also means that data in citizen science projects can be collected during any year and that this data is useful for simulating the 

streamflow for most years, except the driest years. However, model performance did vary significantly for the different 15 

validation years. The results during dry validation years were almost never significantly better than the lower benchmark 

(Supplemental Material – Figure 2). This might be due to the objective function that was used in this study. Especially the 

NSE was lower for dry years, because the flow variance (i.e., the denominator in the equation) is smaller when there is a 

larger variation in streamflow. Also, these results are based on six median model performances and therefore, outliers have a 

big influence on the significance of results (Supplemental Material – Figure 2). 20 

Lidén and Harlin (2000) used the HBV-96 model by Lindström et al. (1997) with changes suggested by Bergström et al. 

(1997) for four catchments in Europe, Africa and South America. They achieved better model results for wetter catchments 

and argued that during dry years evapotranspiration plays a bigger role and therefore the model performance is more 

sensitive to inaccuracies in processes concerningthe simulation of the evapotranspiration processes. The fact that we used a 

very simple method to calculate the potential evapotranspiration (McGuinness and Bordne, 1972), might also explain why 25 

the model performed less well during dry years.  

The model parametrisation, obtained from calibration using the IntenseSummer data set resulted in a surprisingly good 

performance for the validation for a more extreme dry year for four out of the six catchments. For the two poorly-performing 

catchments for which the performance for the IntenseSummer data set was poor (Guerbe and Allenbach,), the weather 

stations are located outside the catchment boundaries. Especially during dry periods missed streamflow peaks due to 30 

misrepresentation of precipitation can affect model performance a lot. The fact that always one of these two catchments had 

the worst model performance for all the no error – IntenseSummer runs, furthermore indicates that the July-September period 

might not be suitable to represent characteristic runoff events for these catchments. The bad performance for these two 
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catchments resulted in the insignificant improvements compared to the lower benchmark offor the IntenseSummer – no error 

run with calibration and validation in the dry year resulted in the insignificant improvement in model performance compared 

to the lower benchmark. Because the wetness of a year was based on the summer streamflow, these findings suggest that 

data obtained during times of low flow, result in improved validation performance during dry years compared to data 

collected during other times (Supplemental Material – Figure 2). This suggests that if the interest is in understanding the 5 

streamflow response during very dry years, it is important to obtain data during the dry period. To verifytest this 

assumptionhypothesis more detailed analyses are needed. 

4.5 Recommendations for citizen science projects  

Our results show that streamflow estimates from citizens are not informative for hydrological model calibration, unless the 

errors in the estimates can be reduced through training or advanceadvanced filtering of the data to reduce the errors (i.e. to 10 

reduce the number of extreme outliers). In order to make streamflow estimates useful, the standard deviation of the 

estimation-error-distribution needs to be reduced by a factor of two. Research of Gibson and Bergman (1954) 

suggestssuggest that the errorerrors in distance estimationsestimates can be reduced from 33 % to 14 % with very little 

training. ThoseThese findings are encouraging, although their tests covered distances larger than 365 meters (400 yards) and 

the widths of the medium sized rivers of for which the streamflow was estimated were less than 40 meters (Strobl et al., in 15 

review). In order to determine the effect of. Options for training on streamflow estimates further research has tomight be 

done because especiallytutorial videos, as well lists with values for the width, average depth estimates are very inaccurateand 

flow velocity of well-known streams (Strobl et al., in review). In order to determine the effect of training on streamflow 

estimates further research has to be done because especially the depth estimates were inaccurate (Strobl et al., in review).  

The findings of this study suggest the following recommendations for citizen science projects that want to use streamflow 20 

estimates:  

 Collect as much data as possible: In this study hourly data always led to the best model performance. It is therefore 

beneficial to collect as much data as possible. Because it is unlikely to obtain hourly data, we suggest to aim for (on 

average) one observation per week. Provided that the standard deviation of the streamflow estimates can be reduced 

by a factor of two, 52 observations (as in the Crowd52 data series) are informative for model calibration. Therefore, 25 

it is essential to invest in advertisement of a project and to find suitable locations where many people can potentially 

contribute, as well as to communicate to the citizen scientists that it is beneficial to submit observations regularly.  

 Encourage evenly distributed observations throughout the year: To further improve the model performance, or to 

allow for greater errors, it is beneficial to have observations at all types of flow conditions during the year., rather 

than during a certain season.  30 

Observations during high streamflow conditions were in most cases not more informative than flows during other times of 

the year. Efforts to ask citizens to submit observations during specific flow conditions (e.g. by sending reminders to the 
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citizen observers) do not seem very effective in light of the above findings. It is rather more beneficial to remind them to 

submit observations regularly. 

Instead of focussing on training to reduce the errors in the streamflow estimates, an alternative approach for citizen science 

projects is to switch to a parameter that is easier to estimate, such as stream levels (Lowry and Fienen, 2013). Recent studies 

successfully used daily stream level data (Seibert and Vis, 2016) and stream level class data (van Meerveld et al. 2017) to 5 

calibrate hydrological models, and other studies demonstrated the potential value of crowdsourced stream level data for 

providing information on e.g. baseflow (Lowry and Fienen, 2013) or to improve flood forecasts (Mazzoleni et al., 2017). 

However, further research is needed to determine if real crowdsourced stream level (class-) data is informative for the 

calibration of hydrological models. 

5 Conclusions 10 

The results of this study extend previous studies on the value of limited hydrological data for hydrological model calibration 

or the best timing of streamflow measurements for model calibration (Juston et al., 2009; Pool et al., 2017; Seibert and 

McDonnell, 2015) that did not consider observation errors. This is an important aspect, especially when considering citizen 

science approaches to obtain streamflow data. Our results show that inaccurate streamflow data can be useful for model 

calibration, as long as the errors are not too large. When the distribution of errors in the streamflow data represented the 15 

distribution of the errors in the estimates of streamflow estimates from citizen scientists, this information was not 

informative for model calibration (i.e. the median performance of the models calibrated with thisthese data was not 

statistically significantsignificantly better than the median performance of a modelthe models with random parameter 

values). However, if the standard deviation of the estimates is reduced by a factor two, then the (less) inaccurate data would 

be informative for model calibration. We, furthermore, demonstrated that realistic frequencies for citizen science projects 20 

(one observation on average per week or month) can be informative for model calibration. The findings of studies such as 

the one presented here provide important guidance on the design of citizen science projects, and also other, observation 

approaches.  
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7 Data availability 

The data are available from FOEN (streamflow) and MeteoSwiss (precipitation and temperature). The HBV software is 

available from https://www.geo.uzh.ch/en/units/h2k/Services/HBV-Model.html. 
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Tables 

 

Table 1 Characteristics of the six Swiss catchments used in this study. For the location of the study catchments see Figure 1. Long-

term averages are for the period 1974-2014, except for Verzasca for which the long term average is for the 1990-2014 period. 

Regime types are classified according to (Aschwanden and Weingartner, 1985). 5 

Catchment Murg Guerbe Allenbach 
Riale di 

Calneggia 
Mentue Verzasca 

Gauging station 

(FOEN station 

number) 

Waengi 

(2126) 

Belp 

Mülimatt 

(2159) 

Adelboden 

(2232) 

Cavergno, 

Pontit 

(2356) 

Yvonand La 

Mauguettaz 

(2369) 

Lavertezzo, 

Campiòi 

(2605) 

Area [km2] 79 117 29 24 105 186 

Elevation 

[m asl] 

Min  465 522 1297 885 445 490 

Max 1035 2176 2762 2921 927 2864 

Regime Type 
Pluvial-

inférieur 

Pluvial-

superieur 
Nival-alpin 

Nival-

méridional 

Pluvial-

jurassien 

Nivo-pluvial-

méridional 

Min - Max 

Pardé 

coefficients  

Dry 

year 
0.29 - 1.61 0.44 - 1.93 0.40 - 2.48 0.13 - 3.22 0.22 - 2.37 0.16 - 2.92 

Average 

year 
0.58 - 2.16 0.61 - 1.65 0.39 - 2.44 0.09 - 2.84 0.23 - 2.66 0.23 - 3.17 

Wet 

year 
0.34 - 1.69 0.42 - 2.14 0.32 - 2.12 0.10 - 3.48 0.35 - 2.39 0.26 -2.64 

Long-

term  
0.68 - 1.34 0.77 - 1.39 0.35 - 2.70 0.14 - 2.70 0.46 - 1.57 0.23 - 2.22 

Annual 

runoff-

rainfall 

ratio  

Dry 

year 
0.72 0.37 0.86 1.301 0.41 0.98 

Average 

year 
0.55 0.48 1.731 1.381 0.52 0.66 

Wet 

year 
0.56 0.54 0.78 0.98 0.50 1.321 

Long-

term 
0.56 0.57 0.94 1.061 0.38 0.9 

Long-term mean 

annual streamflow 

[m3/s] 

1.84 2.75 1.23 1.43 1.64 10.76 

Weather stations 

Aadorf-

Taenikon, 

Hörnli 

Plaffeien, 

Bern-

Zollikofen 

Adelboden Robiei 
Mathod, 

Pully 

Acquarossa, 

Cimetta, 

Magadino, Piotta 

Table 2 Calibration years (2nd-most extreme and 2nd-closest to average years) and validation years (most extreme and closest to 

average years) for each catchment. Numbers in parenthesis are the ranks over the period 1974-2014 (or 1990-2014 for Verzasca). 

                                                           
1 In Verzasca, Allenbach,and Riale die Calneggia there are some streamflow-rainfall ratios >1 because the weather stations 

are located outside the catchment and precipitation is highly variable in this alpine terrain. 
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Year 

character 

Murg Guerbe Allenbach Riale di Calneggia Mentue Verzasca 

Calibration 

Wet 2007 (3) 2007 (2) 2007 (4) 2009 (11) 2014 (7) 2011 (4) 

Dry 2013 (8) 2011 (8) 2009 (11) 2012 (8) 2010 (4) 2013 (5) 

Average 2008 (6) 2008 (17) 2013 (7) 2013 (2) 2006 (6) 2007 [7) 

Validation 

Wet 2014 [1] 2014 [1] 2014 [1] 2008 [9] 2007 [1] 2008 [1] 

Dry 2009 (7) 2013 (5) 2012 (9) 2006 (5) 2009 (3) 2010 (4) 

Average 2011 (4) 2006 (13) 2011 (6) 2011 (1) 2013 (2) 2006 (4) 

 

Table 3 Median and the full range of POA scores for the upper benchmark (hourly-FOEN data). The upper benchmark values for 

the dry, average and wet calibration years were used as the upper benchmarks for the evaluation based on the year character 

(Figure 6 and Supplemental Material – Figure 2); the values in the “overall median”-column were used as the benchmarks in the 

overall median performance evaluation shown in Figure 4.  5 

Calibration year Dry Average Wet Overall median 

Validation wet year 

Upper benchmark 

0.61 

(0.19 - 0.83) 

 

Lower benchmark 

0.34 

(-0.02 - 0.59) 

Upper benchmark 0.63 

(0.19 - 0.79) 

0.65 

(0.36 - 0.8) 

0.66 

(0.45 - 0.8) 

Lower benchmark 0.34 

(-0.02 - 0.47) 

Validation average year 

Upper benchmark 0.59 

(0.49 - 0.64) 

0.61 

(0.45 - 0.78) 

0.53 

(0.36 - 0.77) 

Lower benchmark 0.36 

(0.03 - 0.59) 

Validation dry year 

Upper benchmark 0.51 

(0.35 - 0.71) 

0.59 

(0.41 - 0.83) 

0.53 

(0.23 - 0.74) 

Lower benchmark 0.35 

(0.09 - 0.52) 
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Table 4 Weights assigned to specific seasons, days and times of the day for the random selection of data points for Crowd52 and 

Crowd12. The weights for each hour were multiplied and normalized. We then used them as probabilities for the individual hours. 

For times without daylight the probability was set to zero. 

Variable  Weight 

Season 

December – February 2 

March – May / September – November) 6 

June – August) 10 

Day 

Saturdays – Sundays 3 

Monday – Friday 1 

Time 

Times when people usually have breaks 6 am – 8:00 am,  

12 am-1 pm, 

5 pm-9 pm 

3 

Times with daylight in winter (Dec-Feb) 8 am – 4 pm 1 

Times with daylight in spring/fall (Mar-

May/Sept-Nov):  

7 am – 7 pm 1 

Times with daylight in summer (Jun-Aug) 6 am – 9 pm 1 

Other times (depending on season) 0 

 

  5 
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Figures 

 

Figure 1 Location of the six study catchments in Switzerland. Shading indicates whether the catchment is located on the north or 

south side of the Alps. See Table 1 for the characteristics of the study catchments. 5 
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Figure 2 Fit of the normal distribution to the frequency distribution of the log transformed relative streamflow estimates (ratio of 

the estimated streamflow and the measured streamflow). 5 
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Figure 3 Example of different streamflow time series used for calibration with small, medium and large errors and the temporal 

resolutions (Weekly, Crowd52 and WeekendSpring) for the Mentue in 2010. Large error: adjusted FOEN data with errors resulting 

from the log-normal distribution fitted to the streamflow estimates from citizen scientists (see Figure 2). Medium error: same as 5 
large error, but the standard deviation of the log normal distribution was divided by 2. Small error: same as the large error, but 

the standard deviation of the log normal distribution was divided by 4. The grey line represents the measured streamflow, the dots 
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the derived time series of streamflow observations. Note that especially in the large error category some dots lie outside the figure 

margins. 
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Figure 4 Boxplots of the median model performance relative to the upper benchmark for all datasets. The grey rectangles around 

the boxes indicate non-significant differences in median model performance compared to the lower benchmark with random 

parameter sets. The box represents the 25th and 75th percentile, the thick horizontal line the median, the whiskers extend to 1.5 

times the interquartile range below the 25thpercentile and above the 75th percentile, and the dots represent the outliers. The 5 
numbers at the bottom indicates the number of outliers beyond the figure margins. n is the number of streamflow observations 

used for model calibration. The result of the hourly-benchmark FOEN dataset has some spread because the results of the 100 

parameters sets were divided by their median performance. A relative POA of 1 indicates that the model performance is as good as 

the performance of the model calibrated with the hourly FOEN data (upper benchmark).  

 10 



 

31 

 

 

 

Figure 5 Results (p-values) of the Bonferroni Post-Hoc test to determine the significance of the difference in the 

median model performance for the data with different temporal resolutions within each data quality group (no 

error (a), small error (b), medium error (c), and large error (d)). Blue shades represent the p-values. White 

triangles indicate p-values < 0.05 and white stars indicate p-values that, when adjusted for multiple comparisons, 

are still < 0.05. 
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 3 

Figure 6 Median model validation performance for allthe datasets used for calibration during the different validation 4 
periodscalibrated and validated both in a dry year and both in a wet year. Each horizontal line represents the median 5 
model performance for one catchment. The black bold line represents the median for the six catchments. The grey 6 
rectangles around the boxes indicate non-significant differences in median model performance for the six catchments 7 
compared to the lower benchmark with random parameters. The numbers at the bottom indicate the number of 8 
outliers beyond the figure margins. For the individual POA values of the upper benchmark (no error – Hourly dataset) 9 
in the different calibration and validation years see Table 3Table 4.. 10 

  11 



 

35 

 

 

Supplemental Material 12 

Model parameters 13 

Supplemental Material - Table 1 Parameter ranges used for calibration of the HBV-model 14 

Parameter Descriptiona Unit Min Max 
Rescaling Parameters of Input Data 

PCALT change in precipitation with elevation % (100m)-1 5 15 

TCALT change in temperature with elevation °C (10m)-1 0.5 1.5 

Snow and ice melt parameters 

TT threshold temperature for liquid and solid precipitation °C -3 1 

CFMAX degree-day factor mmd-1°C-1 0.06 10 

SFCF snowfall correction factor - 0.4 1.6 

CFR refreezing coefficient -  0.001  0.9 

CWH water holding capacity of the snow storage - 0.001 0.9 

Soil Parameters 

PERC maximum percolation from upper to lower groundwater storage mm d-1 0  3 

UZL threshold parameter mm 0 100 

K0 storage (or recession) coefficient 0 d-1 0.001 0.5 

K1 storage (or recession) coefficient 1 d-1 0.0001 0.2 

K2 storage (or recession) coefficient 2 d-1 2E-06 0.005 

MAXBAS length of triangular weighting function H 1 7 

FC maximum soil moisture storage Mm 50 550 

LP soil moisture value above which actual evapotranspiration reaches potential 

evapotranspiration 

- 0.3 1 

Beta shape factor for the function used to calculate the distribution of rain and snow melt 

going to runoff and soil box, respectively 

- 1 5 

aa detailed description of the model parameters is given in (Seibert and Vis, 2012). 
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 15 

Significance of median model performance compared to the lower benchmark 16 

Supplemental Material - Table 2 Significance of the differences in median model performance for each temporal 17 
resolution and an error group compared to the lower benchmark (Mann-Whitney U-test). The p-values of the 18 
Kruskal-Wallis test for the within group variability in the lowermost row shows that the median model performance 19 
of the different error groups was significantly different. 20 

 No Error Small Error Medium Error Large Error 

Hourly <0.01 <0.01 <0.01 <0.01 

Weekly <0.01 <0.01 <0.01 0.75 

Crowd52 <0.01 <0.01 <0.01 0.40 

Monthly <0.01 <0.01 <0.01 0.03* 

Crowd12 <0.01 <0.01 0.11 <0.01* 

WeekendSpring <0.01 <0.01 <0.01 0.40 

WeekendSummer <0.01 <0.01 <0.01 0.46 

IntenseSummer <0.01 0.01 0.04 0.21 

Within error group <0.01 <0.01 <0.01 <0.01 

* These datasets result in significantly worse results than random parameters. 
 21 
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 23 

Extreme outlier removal for the northern and southern side of the Alps  24 

 

Supplemental Material – Figure 1 Relation between catchment area and maximum (a, b) and minimum (c, d) 

specific streamflow for catchments on the north (a, c) and south (b, d) of the Alps. The dashed light blue line is the 

Pareto front including the 20 % buffer. The red lines are the fitted logarithmic models used to find the maximum 

and minimum possible flow for each catchment. 

Supplemental Material – Figure  Relation between catchment area and maximum (a, b) and minimum (c, d) 

specific streamflow for catchments on the north (a, c) and south (b, d) of the Alps. The dashed light blue line is the 

Pareto front including the 20 % buffer. The red lines are the fitted logarithmic models used to find the maximum 

and minimum possible flow for each catchment. 
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 25 

Supplemental Material – Figure 2 Median model validation performance for all datasets used for calibration during the different validation periods. Each horizontal line represents the 26 
median model performance for one catchment. The black bold line represents the median for the six catchments. The grey rectangles around the boxes indicate non-significant 27 
differences in median model performance for the six catchments compared to the lower benchmark with random parameters. The numbers at the bottom indicate the number of outliers 28 
beyond the figure margins. For the individual POA values of the upper benchmark (no error – Hourly dataset) in the different calibration and validation years see Table 3. 29 
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