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The manuscript entitled “Value of uncertain streamflow observations for hydrological modelling” presents 
interesting and novel research on the worth of citizen science discharge observations for the calibration of 
lumped hydrological models. The manuscript is well structured and concise with a clear motivation. The 
presentation and the application of the methods are scientifically sound. My comments are mostly of minor 
character and therefore I hope to see this article soon published in HESS.  10 

 
We thank the reviewer for the positive comments about our manuscript and the helpful review comments, which we address 

in detail below. 

 
general comments: 15 

-The presentation of the calibration experiments is clear and complete with regard to the model performance. 
However, I was wondering how the model robustness is affected by uncertain observations which was neglected 
by the authors. From a modelling point of view parameter uncertainty and its reduction through calibration is of 
high importance. Therefore I believe that an additional figure on that matter would improve the quality of the 
study. How do the different temporal resolutions of observations as well as the three applied error scenarios 20 

affect the parameter values and their uncertainty compared to the benchmark case? This issue should be 
discussed in light of model equifinality. 
 
We thank the reviewer for this helpful comment. We will include a discussion about the effects of errors in the data and the 

effect of the timing and amount of data used for model calibration on the range of parameter values in the revised version of 25 

the manuscript. 

In Figures R1-R6, we show the boxplots with the parameter ranges for each of the six catchments. Each boxplot consists of 

300 values (3 year characters x 100 calibration runs). We summarized these results in another plot (Figure R7) which shows 

the interquartile range of the parameter distribution for each catchment for the different scenarios. The effects of the errors in 

the data and the timing of the data used for model calibration on the interquartile range of parameter values are summarized 30 

in Table R1. The spread in the parameter values was smallest for the upper benchmark for almost all parameters and cases, 

although the differences were very small for some parameters (e.g. PERC, PCALT and CWH). The trend of increasing 

spread in the parameter range with increasing errors is clearest for the MAXBAS parameter, which is the routing parameter. 

The parameter range of some other parameters (e.g. TCALT, TT and  BETA) also increased with increasing error in the data 

used for calibration for some catchments, but for other parameters (e.g., CFMAX, FC, and SFCF) the temporal resolution 35 

and the number of data points used for calibration determined the range in parameter values.  However, these change in the 

range of model parameters differed significantly for the different catchments (see differences in Figures R1-R6 and spread of 

the dots in Figure R7). 



 

Figure R1 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Verzasca catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). The box represents the 25th and 75th percentile, the thick horizontal line the median, the 

whiskers extend to 1.5 times the interquartile range below the 25thpercentile and above the 75th percentile, and the dots represent 5 
the outliers. For a description of the model parameters see Table R1Error! Reference source not found.. 

 



 

Figure R2 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Mentue catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters see 

Table R1. 5 

 



 

Figure R3 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Riale di Calneggia catchment catchment. Each subplot shows the range for one model parameter and 

consists of 300 values (3 year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the 

model parameters see Table R1. 5 

 



 

Figure R4 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Allenbach catchment. Each subplot shows the range for one model parameter and consists of 300 values 

(3 year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters 

see Table R1. 5 



 

Figure R5 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Guerbe catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters see 

Table R1. 5 

 



 

Figure R6 Boxplots of the model parameters for different combinations of errors and temporal resolutions of the data used for 

model calibration for the Murg catchment. Each subplot shows the range for one model parameter and consists of 300 values (3 

year characters x 100 calibrations). For a description of the box plots see Figure 1. For a description of the model parameters see 

Table R1. 5 

 



 

Figure R7 The interquartile range of the model parameters for the six catchments for the different combinations of errors and 

temporal resolutions of the data used for model calibration. Each dot represents the interquartile range for one catchment (i.e. is 

the size of the box in Figures R1-R6). For a description of the model parameters see Table R1. 
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Table R1 Effect of errors and timing of the data used for model calibration on the interquartile ranges of the calibrated 

parameters in HBV-light model parameters. See also Figure R7. For a description of the different data sets (names in italic) see the 

main text. 

Parameter Effect of errors Effect of timing 

PERC Maximum percolation from 

upper to lower groundwater 

storage [mmd-1] 

No clear effect of errors, only 

Monthly dataset has larger range if 

large errors 

Slightly larger range for Monthly 

and Crowd12 data sets if large errors 

UZL Threshold parameter [mm] No big effect, larger range for 

Monthly with increasing errors 

Largely effect of timing 

K0 Storage (or recession) 

coefficients [h-1] 

Slightly larger parameter range for 

medium and large errors 

No clear effect of timing 

K1 Storage (or recession) 

coefficients [h-1] 

Slightly larger range for 

WeekendSpring, WeekendSummer 

IntenseSummer datasets, smaller 

range for e.g. hourly dataset with 

increasing errors 

Hourly dataset usually has the 

smallest range 

K2 Storage (or recession) 

coefficients [h-1] 

No effect No effect 

MAXB

AS 

Length of triangular weighting 

function [H] 

Increasing range with increasing 

errors 

Large range for WeekendSpring 

dataset 

PCALT Change in precipitation with 

elevation [% (100 m)-1] 

Sometimes larger and sometimes 

smaller range with increasing errors 

No clear effect of timing, hourly 

dataset has the smallest range 

TCALT Change in temperature with 

elevation [°C (10 m)-1] 

Increasing range with increasing 

errors 

Some effect of timing, sometimes 

smaller range, sometimes larger  

range with less data (e.g. Weekly 

dataset) 

TT Threshold temperature for liquid 

and solid precipitation [°C] 

Increasing range with increasing 

errors 

Some effect of timing 

CFMAX Degree-day factor [mm d-1°C-1] Only for largest errors increase in 

parameter range 

Larger range for intense summer 

than for others 

SFCF Snowfall correction factor [-] No effect No effect 

CFR refreezing coefficient [-] No effect No effect, Crowd52 dataset usually 

has the smallest range 

CWH Water holding capacity of the 

snow storage [-] 

Larger range for WeekendSpring and 

Intense Summer datasets with 

increasing errors, for other datasets 

no clear trend 

No effect 

FC Maximum soil moisture storage 

[Mm] 

IntenseSummer and Weekly datasets 

have larger range with increasing 

errors, for other datasets no clear 

trend 

No effect 

LP Soil moisture value above 

which actual evapotranspiration 

reaches potential 

evapotranspiration [-] 

No effect No effect 

Beta Shape factor for the function 

used to calculate the distribution 

of rain and snow melt going to 

runoff and soil box 

No effect No effect 



-In my opinion the authors should be more specific that their study addresses lumped hydrological models. For 
integrated spatially distributed models such a study surely would have different implications. Therefore I suggest 
to clearly state this throughout the manuscript; especially in title, introduction and discussion. 
 
Thank you very much for pointing this out. We agree and will adjust the text to more explicitly state that these results are for 5 

lumped hydrological models. 

 
specific comments: 
-In the introduction the authors provide a great overview on existing studies addressing the question how much 
data is needed to calibrate a hydrological model. I am wondering why the findings vary so drastically between 10 

days to years. Can the authors provide an explanation for this? 
 
These studies all had a different focus, used different performance metrics and different definitions of what a good model 

performance is (see Table R2). Vrugt et al. (2006) and Yapo et al. (1996) defined stable parameters as a good calibration 

criterion. Others (Juston et al. (2009); Seibert and Beven (2009); Seibert and McDonnell (2015)) used benchmark 15 

calibrations and looked at the differences in the values of the objective functions. Pool et al. (2017) always used 12 

streamflow values and explored the best timing of these measurements. Juston et al. (2009) used a very long time series with 

possibly much more variation in streamflow than is observed within one year of data (as in this study) from which the 

subsets were drawn. Brath et al. (2004) used a spatially distributed model and concluded that 3 months were the absolute 

minimum. 20 

We will add more information to the introduction to describe why the different studies resulted in different minimum data 

sets and highlight even better that despite their differences they all find that limited datasets are useful. 

 

Table R2 Cited modelling studies focusing on the amount of streamflow data necessary to calibrate a hydrological model. 

Study / Authors Performance Metric Temporal 

Resolution 

Model  How much data was 

needed 

Yapo et al., 1996 Daily root mean square 

estimation criterion and 

hetero-scedastic 

maximum likelihood 

error 

Daily NWSRFS_SMA model 

(Brazil, 1988) 

No more added value 

after 8 years of data. If 

wettest years are 

chosen for calibration, 

model parameters 

were “properly 

identifiable” 

Vrugt et al., 2006 RMSE daily Sacramento Soil 

Moisture Accounting 

model 

Stable estimates for 

most of the parameters 

with 2-3 years of 

streamflow data 

Perrin et al., 2007 NSE in calibration, NSE 

and LogNSE in 

validation 

daily TOPMO (derived from 

TOPMODEL concepts 

(Michel et al 2003) and 

GR4J (Perrin et al 

2003) 

350 random days out 

of a 39 year period 

including dry and wet 

conditions are 

sufficient to obtain 

robust model 



parameters 

Brath et al., 2004 Relative volume error, 

relative peak error, Time 

to peak error 

Hourly Spatially distributed 

model 

At least 3 months were 

required to obtain 

reliable calibration 

Juston et al., 2009 Combination of NSE and 

groundwater 

performance index 

(multi-objective 

calibration)  

daily HBV-Forsmark Information content of 

subset of 53 days was 

the same, as the entire 

1065-day period from 

which the data was 

drawn 

Pool et al., 2017 NSE and log NSE daily HBV 12 data points, 

different “sampling“ 

strategies (high flows, 

low flows, recession 

limbs, on the peak, 

etc) 

Seibert and Beven, 

2009 

NSE daily HBV Model performance 

plateaued after 8-16 

streamflow 

measurements within a 

one year period 

Seibert and 

McDonnell, 2015 

the overall acceptability 

of a parameter set was 

defined by three 

components: (1) the 

model efficiency 

(NSE) values (Nash and 

Sutcliffe 1970) for the 

hard runoff data 

(calculated based on 

subsets of the total 

runoff series), (2) the 

acceptability of the 

model simulations with 

regard to soft data, and 

(3) the acceptability of 

the parameter values 

based on the 

experimentalist’s 

understanding. 

10 min 

streamflow data 

 

Variant of HBV One event or 10 high 

flow measurements 

provided almost as 

much information as a 

3 months of data 

 
 
-The applications of citizen science in hydrology are broad and go beyond the collection of data. For completion 
the authors could mention Koch et al. (2017) were the human perception was consulted to compare the similarity 
between simulated spatial patterns in order to evaluate spatial performance metrics. 5 

 
Thank you for providing this reference. We will include a sentence that states that citizen science includes more than data 

collection in the introduction and reference this paper there. 

 



-Extreme outliers are filtered with respect to maximum possible streamflow values. One could imagine a more 
thorough filtering based on the season. An extreme outlier during low flow season can be expected to be smaller 
than during high flow. Have the authors considered such an improved filtering? 
 
We agree that when using real citizen science data more advanced filtering mechanisms are useful but these will have to be 5 

thoroughly tested first. The testing of different filtering methods is not within the scope of our study. Also, these filtering 

mechanisms need to be applicable for all places without measurements or local knowledge about flows. Low flows and high 

flows can occur in multiple seasons and differ drastically between stations (and years), since some catchments are snow 

influenced, others have glaciers, and others are only rain fed. Therefore, local knowledge or data about how low flows 

depend on the season are necessary. We considered the lowest and highest ever measured values for a particular catchment 10 

size for the filtering because these data may be available for different regions and provide a very simple filter to take out the 

most unrealistic values. Because no extreme low flow value was replaced with the lowest ever recorded flow and only a few 

high flow estimates were replaced, we assume that the results would not have been significantly different if a slightly more 

advanced filtering mechanism for low flows was used. 

 15 

-I can imagine a better visualization of the data in Figure 3. Instead of nine subplots one could imagine three 
subplots, one for each temporal resolution. Then each error scenario could have a different color. In this way the 
graphs could be stretched over the entire page and the dynamics would be more visible. 
 
Thank you for this suggestion for an improvement. We thought about designing the graph as suggested but there are too 20 

many dots (or other symbols) that overlap as can be seen in Figures R8-R9. This makes it hard to read the figures, even if the 

symbols are not filled. We therefore prefer to use the nine subplots that we used in the submitted version of the manuscript. 

We are, however, open for other suggestions on how to improve the figure. 



  
Figure R8 Alternative design of Figure 3 with filled symbols to represent the data used for model calibration for the different 

scenarios. 

 



 
Figure R9 Alternative design of Figure 3 with different open symbols to represent the data used for model calibration for the 

different scenarios. 

 


