
Dear Editor, 
Thank you for your constructive comments to the discussion paper and for the opportunity to 
submit the revised paper. We have answered all the comments from reviewers in the authors’ 
responses and revised the manuscript accordingly. The revised paper is significantly improved 
as a result of addressing these comments as we now have assessed the sensitivity to our 
findings to all factors that could possibly be impacting the results. 
 
As the reviewers and the editor suggested, we have restructured the manuscript into the 
standard IMRAD format. We have merged the introduction and background sections as 
suggested and updated the text to make the introduction shorter and more succinct. After 
reading the review, we think that the description of data (including the source and methods to 
generate the data) used in the study was not clear enough. It can be noted that the gridded 
temperature and wind speed were generated for all of Norway by the Norwegian 
Meteorological Institute and we used this data in our study. In this revision, we tried to better 
describe all the data sources used within the subsection “Data” under the section “Materials 
and Methods”.  
 
The methodology and the context of the study as well as main results remain unchanged. We 
have added a separate discussion section to the paper. As the reviewers and editor mentioned, 
we agree that the justification for the approaches used in the study was limited in the discussion 
paper even though we feel we described the methodology clearly. In the revision, we have 
used the Discussion section to provide proper justification for the approaches used and to 
discuss the uncertainties and limitations in the study.  
 
Reviewer 2 pointed out that the back calculation of reflectivities from the hourly radar 
precipitation data originally based on accumulated data of 7.5 minutes would only be correct if 
the precipitation is even within the hour.  Unfortunately, the reflectivity data used to produce 
the radar precipitation rates (SRI product) used in the study are not stored in the production 
process, and therefore not available at the Norwegian Meteorological Institute (met.no) (Elo 
2018, Personal communication). However, Plan Position Indicator (PPI) of the lowest elevation 
beam from Hurum radar with the original short time resolution is available from met.no and in 
the revised paper we have repeated our computations for the comparison of the proposed 
nonparametric radar precipitation estimation with radar precipitation rates computed using 
separate equations for snow and rain.  
 
In the revised manuscript, we have used the PPI data to redistribute the hourly data (SRI) by 
assuming precipitation intensity distribution within each hour is as same for SRI as PPI. The 
redistributed precipitation rates were then converted to reflectivities and these data are used 
for the analysis as in the original manuscript. It should be noted that there is uncertainty in how 
accurately the redistributed intensity distribution of SRI represents the original distribution, 
however, this exercise at least used a possible realistic distribution. 
 
We believe that we have revised the manuscript as described in the authors’ responses to 
reviewers and in the case of using different Z-R relationship for snow and rain, the availability 
of the PPI data made it possible to improve the analysis beyond what is discussed in the 
response to the reviewer2. 
 
According to HESS requirements, this submission consists of the revised manuscript and a 
point-by-point reply to the comments to the three reviewers and a marked-up manuscript 
version showing the changes made. In case, if you need any clarifications or further details, 



please feel free to contact us. We hope that Hydrology and Earth System Science will find it 
an interesting contribution. 
 
With thanks, 
 
Sincerely, 
Kuganesan Sivasubramaniam 
Ashish Sharma 
Knut Alfredsen 
 



Response to the review of hess-2018-0351 
 
RC1: Responses to S.R. Fassnacht (Referee 1) 
The authors wish to thank the reviewer for his constructive comments and corrections to the 
discussion paper. In the following, we have responded to each of the comments from the 
reviewer and showed the page and line numbers of the revised manuscript if any changes.  
The comment from the reviewer (RC) is in italic font while the author comment (AC) and 
changes in the manuscript (CM) are in blue normal font. 
 
This is an interesting paper that should give us some improved insight into using weather radar 
to estimate rain and snow fall. This is very relevant in higher latitudes and in mountain 
environments were snow is important. To date, there has been limited work in using weather 
radar for snowfall estimation in a hydrological context. The methods presented herein could 
be used in many locations. However, the writing is unclear, and I got lost at times. I suggest 
that the authors revisit their objectives and ensure that the paper addresses these. Also, the 
Discussion is essentially missing as the work is not put into context of the few other relevant 
studies. Below I outline restructuring and a problem with the Methods/Data. 
 
Equation 4 uses air temperature and relative humidity to estimate the phase of the precipitation 
from Koistinen et al. (2004) and used by Saltikoff et al. (2015) for Finland. However, air 
temperature at the gauge is used, and this is not correct. Fassnacht et al. (1999; 2001) lapsed 
the air temperature up to the radar measurement height. There can be 5 to 10 degrees Celsius 
difference between the temperature at the height (2 m above the ground) and the radar height 
(1 km stated on page 8 line 15). At minimum this should be discussed? 
AC: As it is mentioned, we adopted the operational method from the Finnish Meteorological 
Institute as presented by Koistinen et al. (2004) and Saltikoff et al. (2015). In their phase 
equation, near surface temperature (2m above ground) is defined and we did follow their 
method as defined in the papers. We do agree with the reviewer that air temperature at radar 
measurement height can be different from gauge height and hence the estimated phase can 
be different. This has already been discussed on p17, l12-13 “Further, our phase classification 
is at gauge level, and represents near surface conditions. The phase of the precipitation can 
be different at the elevation where the radar measures the reflectivity.”  
 
Air temperature can be lapsed to the radar measurement height to estimate the phase of 
precipitation. Fassnacht et al. (1999) and Fassnacht et al. (2001) assumed the temperature 
lapse rate to be zero in their studies as winter lapse rate is often zero in mid latitude areas. For 
the Nordic region, Tveito and Førland (1999) showed that vertical lapse rate varies with season 
and location. Further, Tveito et al. (2000) found that local terrain conditions have greater 
influence in local temperature gradient during winter. Due to the occurrence of inversions, 
lapse rate can deviate substantially from the standard (-6.5° C/km) during the winter months 
and it can be as low as -1.2° C/km (Tveito et al., 2000, Tveito and Førland, 1999). The 
estimated temperature at radar measurement height and hence the probability of liquid phase 
(Plp) are therefore highly uncertain. The measurements of phase information at radar 
measurement height with the use of dual polarized radars can be a useful data source for 
further investigation. 
 
After receiving the reviewer’s comment, we investigated the sensitivity of our results to the use 
of a lapse rate. The air temperature at the radar measurement height (1 km) was computed 
using a standard moist adiabatic lapse rate (-6.5° C/km) as used in Nordic meteorological 
studies (Tveito et al., 2000).  We estimated the probability of liquid precipitation (Plp) in Eq. (4) 
by using the lapsed temperature at radar measurement height while assuming the relative 
humidity unchanged. The estimated Plp was used to classify the precipitation phase and 
repeated the work as presented in section 5.5. Our results (not included in the revised paper) 
showed that new classification did not improve RMSE compared to the use of near surface 



phase classification. We attribute this to the considerable uncertainty associated with the use 
of the lapse rate as noted by others (Al-Sakka et al., 2013, Tveito et al., 2000). Further, 
equation (Eq. (4)) is developed and tested for surface phase classification and it incorporates 
relative humidity as a variable. We assumed relative humidity at the radar measurement height 
similar to the  surface value. This is also a potential error source in the computation. 
We, therefore want to keep the Finnish Meteorological Institute’s operational method of surface 
phase estimation to classify the precipitation as the method of choice in the paper. This is both 
in operational use and developed for the Nordic area which gives us some confidence in the 
method. We discuss this issue in the revised manuscript. 
CM: p18, l11-20 
 
What about a split sample approach of calibration and evaluation for the partial weights and  
k-nn approach? Also, the partial weight for radar precipitation was shown to vary from 0.4 to 1 
(Figure 2), so why was a single average (mean) used in the k-nn prediction model. Is this 
approach not robust enough to have a different partial weight, or perhaps a gridded partial 
weight? It is stated that there is no spatial pattern in the partial weights, but an interpolated 
residual type approach could be used (e.g., Fassnacht et al., 2003 among others). 
AC: As described on p12, l15-17, a split sample test was done to verify the results obtained 
from the leave one out cross validation (LOOCV) approach and presented in the paper.  
Partial weights did not show any spatial pattern that would allow us to generate an informed 
specification of the weights that could be applied over the study region. Further, the RMSE 
estimated at gauge locations with the single average partial weight for the study area (as we 
presented in this paper) showed a strong resemblance with the RMSE estimated by using the 
partial weight estimated from the five nearest gauges. Hence, we decided to use a single 
average partial weight to present in this paper. 
As the reviewer mentioned, it is possible to use gridded partial weight or an interpolated 
residual type approach. However, we found that the gain in RMSE is not significant for the 
effort of using gridded or residual type partial weights. The added complexity of gridding the 
partial weights does not add significant information to the analysis and we therefore 
recommend using an average value in the computations for this study region. 
CM: p17, l17-19 
 
The paper does need restructuring and rewriting. At present I get lost in where I am in the 
text, regardless of the “foreshadowing” sentences that appear at the end of various sections. 
1) At the end of the Introduction, the paper should tell the reader specific objectives that were 
investigated or research questions that were answered. 
AC: As per the reviewer’s suggestions we have added specific objectives at the end of the 
introduction. 
CM: p4, l1-8 
 
2) Some of the material in the Background is repeated from the Introduction. For example, the 
three paragraphs in section 2.1 (Radar precipitation estimation in cold climates) mostly in the 
Introduction. Either reduce the Introduction or merge the Background with the Introduction to 
remove the repetition. I suggest the latter and to consider adding sections to the Introduction 
(e.g., 1.1. Weather radar use for hydrology, 1.2. Radar precipitation estimation in cold climates, 
1.3. Nonparametric Radar rainfall estimates). 
AC: The Introduction and Background sections are integrated into a shorter and more 
specific Introduction to the paper as suggested by the reviewer. 
CM: p1-p4, section 1 
 
3) There are methods presented in the Study Area and Data section. These two sections 3. 
Methods and 4. Study Area and Data need to be revisited to put all the methods together. I 
suggest a brief section first on Study Area, then a section on Data and Methods, describing 
the data first, then the methods used. 



AC: As reviewer suggested, we have added a section “Materials and Methods” where a brief 
subsection first on Study area, and then Data followed by Methodology. 
CM: From p4, l9 to p9, l15 
 
4) The Results and Discussion are combined, and the Discussion is thus limited. I recommend 
that the Results and Discussion sections should be presented separately, or that the 
Discussion be much more in depth. There are only three citations in the entire Results and 
Discussion section, while numerous useful citations are presented in the Introduction and 
Background sections. There is no Discussion that put this work into context; the Results and 
Discussion only presents how do these results compare to the findings of Fassnacht et al. 
(1999), Koistinen et al. (2004) and Saltikoff et al. (2015). 
AC: As reviewer suggested, we have added a separate Discussion section. In this section, we 
provided proper justification for the approaches used and discussed the uncertainties and 
limitations in the study. 
CM: From p16, l1 to p18, l34 
 
5) At the end of the Summary and Conclusions, it is stated that “while this study uses data for 
one weather radar in arriving at its conclusions, preliminary analysis suggests the problems 
noted here to be generic.” If there are additional “preliminary” results from some should be 
presented. This statement is important but is hanging. 
AC / CM: This was based on initial evaluation using X-band radar data, but since these data 
are not yet finally processed by the Norwegian Meteorological Institute, we decided to 
remove this statement. 
 
6) In various locations throughout the text, sentences are added that foreshadow the next or 
subsequent sections. These are not necessary and should be removed. The meshing of 
meteorological data with the radar data on a 1 x 1 km grid, including the interpolation of the 
station data is confusing. This is the four paragraphs on page 8 line 23 through page 9 line 21. 
This section needs to be rewritten, as it is unclear what is done. Perhaps a table could be 
added that describes the four datasets (T, RH, wind, and radar). From the text, I assume that 
temperature and RH data have been gridded at a 1-km resolution from the station data: T using 
the Optimal Interpolation in a Bayesian setting (Lussana et al., 2016) and RH using the nearest 
neighbor. What is the Lussana et al. (2016) method? While wind data are available, they are 
downscaled from a 10 km numerical model dataset. What numerical model dataset is used? 
This section needs to provide more details - it does not have to be much longer, the methods 
just need to be clarified. Also, the gauge precipitation (Pgauge) data are used as point 
measurements meshed with the gridded data; this would also be included in the 
aforementioned table. These data are revisited in section 4.1. 
AC: We have removed the foreshadowing sentences where appropriate.  
 
Regarding the other comments, the work presented in this paper uses 68-gauge locations and 
not grid locations. Since all gauges do not have air temperature, wind speed and relative 
humidity measurements, we used hourly gridded (1km x 1km) datasets from the Norwegian 
Meteorological Institute to generate air temperature and wind speed time series at the gauge 
locations. However, we do not have access to hourly gridded relative humidity (RH) data for 
the study area, but we do have measurements from 25 gauge locations. We used these gauge 
measurements where they were available at the location of the precipitation gauge, and for 
those gauges with missing RH we used measured RH from the closest gauge. 
 
The hourly gridded (1 km x 1 km) air temperature and wind speed datasets were generated at 
the Norwegian Meteorological Institute.  Lussana et al. (2016) spatially interpolated the past 
observed air temperature records from meteorological stations to develop the hourly gridded 
temperature dataset for Norway. They used the Optimal Interpolation method in a Bayesian 
setting (Lussana et al., 2016). Norwegian Meteorological Institute derived the hourly gridded 
(1 km x 1 km) wind speed dataset by statistical downscaling from the 10 km numerical dataset, 



“NORA10” (documented in Reistad et al. (2011)) and “AROME” 2.5 km (documented in Müller 
et al. (2017)) using a local quantile regression (Lussana 2018, personal communication, 18 
July). 
 
As reviewer suggested, the following table (Table I) is added to describe the datasets used in 
the study and we rewrite the text to make this section clearer. 
 
Table I: Different dataset used in this study and their source and spatial distribution  
 
Description Gauge 

Precipitation 
Radar 
precipitation 

Air 
Temperature 

Wind Speed Relative 
Humidity 

Spatial 
Distribution 
(Gridded / 
Gauge 
Locations) 

At gauge 
locations 

Gridded 
1kmx1km 

Gridded 
1kmx1km 

Gridded 1kmx1km At gauge 
locations 

Data 
Source 

Gauge 
measurements 

Radar 
measurements 

Gauge 
measurements 
(spatially 
interpolated) 

Downscaled from 
the numerical 
model (“NORA10" 
and AROME) 

Gauge 
measurements 

 
CM: From p5, l3 to p7, l28, section 2.2  
 
The font size is too small in most figures and the text is often grey. This makes the figures 
difficult to read. This should be addressed throughout. 
AC / CM: Font size is increased in the figures. 
 
Specific Comments: 
Page 1, line 1: I suggest saying “In colder climates ...” 
AC / CM: The sentence has been deleted in the revised manuscript. 
 
p1, l1 and l2, p2 l1, etc.: be consistent with “form of precipitation” and “state of precipitation.” 
I suggest calling it “phase of precipitation” throughout the text. 
AC / CM: Text is updated and the term “phase of precipitation” is used throughout the 
manuscript. 
 
p1, l5: “estimate” or “adjust”? 
AC / CM: The sentence has been deleted in the revised manuscript. 
 
p1, l11: usually “catch error” is called “undercatch” 
AC / CM: The term “undercatch” is used throughout the manuscript. 
 
p1, l15: do you mean gauge air “temperature” or temperature at the radar measurement 
height? 
AC: In this study, we used the air temperature at the gauge level. Text is updated to state this. 
CM: p1, l16 
 
p1 l15 and subsequently: to be more specific, use “warmer” than instead of “above” 
when referring to air temperatures. “Above” implies an altitude above the ground, which 
is typically associated with a colder air temperature. p2, l25: use “colder than” instead 
of “below,” etc. 
AC: Text is reworded. 
CM: p1, l16 



p1, l15-16: the end of the sentence “which indicates that the partial dependence of precipitation 
on air temperature is most important for colder climates alone” is unclear. Please reword. 
AC: Text is reworded. 
CM: p1, l15-17 
 
p1, l22: should “2010b” be “2010a?” Check this, as (Villarini and Krajewski, 2010a) has not 
appeared yet. 
AC: It is corrected. 
CM: p1, l22 
 
p2, l13: why “Conventionally?” Use another word so that the reader does not confuse radar 
types, such as “the original way” (i.e., conventional), Doppler, dual-polar, multiwavelength. 
AC: “Standard approach” can be a right word here. Text is reworded. 
CM: p2, l9 
 
p2, l18: since Canada is mentioned here (Crozier et al., 1991) could be add to the citation list 
on line 20 
AC: The citation (Crozier et al., 1991) is added. 
CM: p2, l18 
 
p2, l25: add an “s” to “quarter” 
AC: The sentence has been deleted in the revised manuscript. 
 
p3, l2: “different temperatures cause different shapes of crystals.” For solid precipitation, i.e., 
snow, the degree of super-saturation also affects the crystal shape. 
AC: We acknowledge that degree of supersaturation also affects the crystal shape. Text is 
updated. 
CM: p3, l4 
 
p3, l5: what is meant by “multiple snow types?” Does this imply shapes? If so, state this 
explicitly. 
AC: Snow type refers not only the shape of the snowflakes but also the particle density 
(Saltikoff et al., 2015). Text is updated. 
CM: p3, l7-8 
 
p3, l8: in many cases the correlation between probability of snow and temperature is an “‘S’ 
shaped structure,” (see Fassnacht et al., 2001 for a summary illustration), but a simpler linear 
relation has also been used (e.g., Fassnacht et al., 2013). 
AC: We agree with the reviewer that a simple linear relation has also been used but we 
mentioned the general pattern. Text is updated to include linear relation information. 
CM: p3, l11 
 
p3, l9-10: be specific with “the dielectric property of solid particles (ice) is very different from 
liquid particles (water).” “Very different” is vague. 
AC: The text is reworded. 
CM: p3, l12 
 
p3, l12: reverse the order of the Hasan et al. (2016) references. You present 2016b before 
2016a. 
AC: It is corrected. 
CM: p3, l29 
 
p3, l13: change the word “Historical” 
AC: Historical is changed with “past observed”. 
CM: p3, l31 



 
p3, l25-29: delete the sentences in the rest of the paragraph starting with “the rest of the paper 
is structured as follows.” You do not need to tell what the sections of the paper are, that reads 
like the end of a thesis. Instead, give us specific objectives to investigate or research questions 
that are answered. 
AC: As per the reviewer’s suggestion, we delete the sentence and the text is updated to list 
specific objectives of the work. Also see response above. 
CM: p4, l1-8 
 
p3, l28: The results should be presented, then there should be a separate Discussion section. 
AC: As reviewer suggested, we added a separate Discussion section. 
CM: From p16, l1 to p18, l34 
 
p4, l27: there has also been some work on phase discrimination using multiple radar 
wavelengths (e.g., Al-Sakka et al., 2013). 
AC: Thank you for pointing to a relevant work. We use and cite this paper in the revised 
manuscript. 
CM: p18, l17 and l22 
 
p4 l29 to p5 l3: This paragraph can be reduced to 1-2 sentences, as this information is generally 
known. 
AC: We update the paragraph to make it more succinct. 
CM: p3, l15-19 
 
p5, l12-13: please reconsider “nonparametric approaches ... weakness is that the method is 
sensitive to outliers.” I am not sure that this is correct. Parametric approaches tend to be 
sensitive to outliers. 
AC: Nonparametric approaches result in “local” biases as a result of outliers but the effect on 
global attributes is limited. On the other hand, parametric alternatives can be impacted globally 
due to biases in the estimated parameters. We reword the sentence in the revised manuscript. 
CM: p3, l28-29 
 
p5, l18-20: these two foreshadowing equations are not necessary. 
AC / CM: The two foreshadowing sentences have been removed in the revised manuscript. 
 
p7, l4: “classification of precipitation phase at gauge level” is good, but don’t we need the phase 
of precipitation at the radar height to select the appropriate radar Z-R equation? Although this 
is what Koistinen et al. (2004) and Saltikoff et al. (2015), it doesn’t necessarily make it correct. 
AC: We agree with the reviewer that phase of precipitation at radar measurement height can 
be different from estimated phase at gauge height. We responded above in detail. 
 
Figure 1: a) I assume that the “length of the observations” is the number of hours with 
precipitation? b) I also assume that the hypsometry curve is cumulative % of stations below 
the specified elevation. Please be specific. c) the font size is small and difficult to read. Enlarge 
and also don’t use grey. d) are the red names local cities? Are they important? If so, move 
them so they are legible. 
AC: a) Yes, it is the number of hours with precipitation b) Yes, elevation of gauge locations, c) 
Font size is increased to make them readable, d) Yes, the cities’ names are not important, and 
the figure and text are updated. 
CM: p4, Fig. 1 
 
p7, l12-13: What is the “accumulated hourly radar precipitation rate product?” Is this 
accumulated from sub-hourly to yield an hourly total, or is the hourly data added? 
AC: This is accumulated from sub-hourly to yield an hourly total. 
CM: p5, l24-25 



 
p7, l14: tell us how many gauges in the “a relatively dense network of precipitation gauges.” 
AC: We have changed the text in the revised manuscript. 
CM: p5, l27 
 
p8, l26: instead of “are” use past tense through the methods. 
AC / CM: It is corrected. 
 
p8, l34: reword the last sentence “However, we used data from all available precipitation 
gauges for this study.” Perhaps state something about the total number of gauge 
hours of data used (likely in the order of 100,000 gauge-hours). 
AC: Nearly 103000 total gauge hours were used in this study. Text is updated with total gauge 
hours. 
CM: p7, l14 
 
p9, l2: provide a source for the “gridded hourly temperature and wind speed dataset” 
AC: The source for gridded hourly temperature is observations from the Norwegian 
meteorological stations (refer p9, l7-8.) 
The source for gridded wind speed data is the “NORA10” (documented in Reistad et al. (2011)) 
and “AROME” 2.5 km (documented in Müller et al. (2017)). 
Text is updated with source for gridded wind speed data. See response to comment 6) above 
for more detail. 
CM: p6, Table 1 
 
p9, l6: delete “more details on the procedure adopted for catch correction are provided 
in the next sub-section.” 
AC/ CM: This sentence is deleted. 
 
p9, l10: change “resulted” to “resulting” 
AC: “resulted” is replaced with “resulting”. 
CM: p6, l11-12 
 
p9, l29: how little is “intensities below 0.1 mmh-1 contributes little?” 
AC: The percentage (quantity) is not mentioned in the cited work (Engeland et al., 2014). 
However, analysis of the data used in this study showed that intensities lower than 0.1 mmh-1 
and greater than 0.05 mmh-1 are nearly 10 % of the total data above 0.05 mmh-1. 
CM: p7, l8-10 
 
p10, l2-8: this is background. It could be moved to earlier in the text, as this is the methods/data 
section. Tell us what was done. This sentence could also be deleted. 
AC / CM: As reviewer suggested, we have deleted the sentence. 
 
p10, l4: the word “Nordic” is not necessary here, as it could also be relevant in southern 
environments 
AC / CM: We agree. “Nordic” has been deleted in the revised manuscript. 
 
p10, l4-5: the end of the sentence is redundant “due to large catch errors for snow.” In could 
state that it is “due to high wind conditions.” It is wind that causes undercatch, not “large catch 
errors” 
AC: Text is reworded. 
CM: p7, l15-16 
 
p10, l7: “Wolff et al., 2015" is not in the citation list 
AC: References is updated with “Wolff et al. (2015)"   
CM: p22, l35 



 
p10, l9 or previous: what type of precipitation gauge and what type of shield are used? This is 
very important information to assess the degree of undercatch and the error associated with 
the undercatch correction. 
AC: “The gauges in the study site consists of “Geonor” type and tipping bucket. Both types are 
with an Alter wind shield. This information is added to the manuscript. 
CM: p5, l27-28 
 
p10, l9-17: throughout this paragraph it is “undercatch” correction. This should be consistent, 
as there are other errors. 
AC: We agree. Text is updated. 
CM: p7, l20-28 
 
p10, l13-14: “It was found that correlation between the corrected precipitation by using 
measured wind speed data (15-gauge locations) and gridded data are over 0.97...” Does this 
mean the correlation undercatch correction using gauge wind speed versus the downscaled 
gridded wind speed? 
AC: Yes, the correlation between undercatch corrected precipitation using gauge wind speed 
versus undercatch corrected precipitation using the downscaled gridded wind speed. This was 
done to verify that gridded wind would provide a realistic correction compared to wind 
measured at the site. 
 
p10, l14: there are only 15-gauge locations with wind speed measurements. How are the other 
53 precipitation gauges corrected for undercatch? From my comment above (p10, l13-14), I 
assume that the downscaled gridded wind speed was used to correct for undercatch at all 68 
precipitation gauges. This is not clear. 
AC: The downscaled gridded wind speed was used to correct for undercatch at all 68 
precipitation gauges. To control the result of correcting with gridded wind speed, we compared 
the corrected precipitation using gridded wind speed with the 15 locations where we had wind 
speed measurements at the gauge site. 
CM: p7, l23-26 
 
p10, l19-22: delete this paragraph. We know what you are going to do Figure 2: add tick marks 
to the y-axis. 
AC: The foreshadowing paragraph is deleted. Tick marks are added to the y-axis. 
CM: p10, Fig. 2 
 
p10, l23 through p11: Are the “Partial weight of predictors” constant over time, i.e., is 
there a specific value for station that does not change? 
AC: No, we did not use a fixed value for any given station. The value varies with the data. 
 
Table 1: As this is a summary of Figure 2, this table could be converted to two horizontals 
box and whisker plots on Figure 1. The reader doesn’t really care about the specific numbers, 
just the range. 
AC: As the reviewer suggested we have plotted box and whisker plot (refer Fig. I in Appendix). 
However, we feel Table is a better representation of the information we wish to convey and we 
prefer to keep the Table 1 in the revised manuscript. 
 
p12, l1 and elsewhere: the word “prediction” implies that this is for the future. I suggest 
using “estimation” throughout. 
AC: “Prediction is replaced with “estimation”. 
CM: p10, l4 
 



Figure 3: the caption is confusing; break into two sentences. Also, are these “length of the data 
(circle size)” the same as in Figure 1? If so, then don’t display again here, unless this is relevant 
later? 
AC: The caption is reworded. 
Yes, Length of the data (circle size) is same on both Fig. 1 and Fig. 3. Fig.3 is updated. 
CM: p12, Fig.3 
 
p13, l4-7: these three sentences could be reduced to a small histogram of RMSE reductions 
that is added to figure 3. 
AC: As the reviewer suggested, we have plotted a histogram (refer Fig. II in Appendix). 
However, we prefer to keep these sentences for simplicity in the revised manuscript as well. 
 
p12 to 15: why was a single average (mean) partial weight (beta P = 0.68) used in the k-nn 
prediction model, when it was shown (Figure 2 and Table 1) that the partial weight varies from 
0.4 to 1? 
AC: We responded  above in detail. 
However, the use of station specific partial weight can be more precise when sufficient past 
observed data are available at each gauge location. 
 
p15 section 5.3: all this text except for the last sentence is background or methods and should 
be moved to an appropriate location earlier in the paper. 
AC: We think that the first paragraph of section 5.3 present information on the data that is 
relevant for the understanding of the low intensity analysis and figure 5. We would therefore 
rather keep this section as it is in the paper. 
 
p15, l15: does this “still significant” has a statistical meaning? If so, explain how. If not don’t 
use the word significant. 
AC: Yes, the results are statistically significant as the RMSE was estimated using leave one 
out cross validation (LOOCV). We clarify this in the revised manuscript. 
CM: p13, l6-8 
 
p15, section 5.4: what is the range of the “Temperature Classes?” You only discuss T 
> 10C. What about T < 10C? The point of this section is unclear. 
AC: The results for colder and warmer than 10° C has been added and the paragraph has 
been updated. 
CM: p14, l1-5, and Fig.2 in the Supplementary material 
 
Figure 6: what are the dots above the solid and mixed phase? 
AC: The dots symbolise outliers, values outside 1.5 * IQR which is represented by the 
whiskers. An explanation is added to the figure caption. 
CM: p16, Fig. 6 
 
p18, section 5.6: these statements seem to be hanging. Can you present specifics? 
AC: We did a test on uncorrected gauge precipitation data (not corrected for wind induced 
undercatch) during an early phase of the study and found that air temperature works as a 
covariate also there. For this assessment, we used the uncorrected gauge precipitation at 88 
gauge locations. More than 80 % of the precipitation gauge locations in the study area showed 
clear improvement. The intent of section 5.6 was to make this point clearly. However, in order 
to avoid lengthening the paper with more results, we decided to remove section 5.6 in the 
revised manuscript and merge the statements into other sections. 
CM: p18, l25-29 
 
p18, l5: what does “the use of temperature as an additional predictor variable is having 
consistent impact” mean? The words “consistent impact” are not clear. 



AC: We mean by “consistent impact” that the study with uncorrected gauge precipitation as 
described above resulted in similar results (resulted in partial weight for air temperature and 
improvement in RMSE with air temperature as an additional predictor) as like the study with 
corrected gauge precipitation. 
CM: p18, l25-29 
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Appendix 
 

 

Figure I. Box and whisker plot of estimated partial weight of predictor variables (Radar 
precipitation rate and air temperature) at 68 gauge locations in the study area. The summation 
of partial weights is equal to 1. 
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Figure II. The Percentage of precipitation gauge locations against percentage improvement in 
RMSE with air temperature as an additional predictor variable at those gauge locations and 
the mean RMSE improvement percentage (red dash line) for gauge locations (68 gauges) in 
the study area. 
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Response to the review of hess-2018-0351 
 
RC2: Responses to Anonymous Referee 2 
The authors wish to thank the reviewer for his constructive comments and corrections to the 
discussion paper. In the following, we have responded to each of the comments from the 
reviewer and showed the page and line numbers of the revised manuscript if any changes. 
The comment from the reviewer (RC) is in italic font while the author comment (AC) and 
changes in the manuscript (CM) are in blue normal font. 
 
General comments: 
The authors apply the non-parametric k - nearest neighbour method (k-nn) to estimate radar 
precipitation from gridded surface observations of rainfall and temperature for the Oslo region 
in Norway. They show that utilising temperature as second predictor variable reduces the root 
mean squared error significantly compared to a k-nn model without temperature and com-
pared to the original procedure using a constant Z-R relationship or separate snow/rain Z-R 
relationships. 
The application of this method for radar rainfall estimation including temperature is novel and 
of interest not only for readers living in regions with colder climates. The research is done 
systematically and quite carefully. The paper is written well and clear in structure. However, 
there are three major points and some minor things which need attention before the paper can 
be published. One main point are the lengthy introduction and background sections which 
could be shortened. A second important point concerns the method to estimate the partial 
weights. It becomes not clear, that this method is really providing optimal weights. And, third, 
there seems to be an issue with the back-calculation of Z using the inverse Z-R relationship 
on a different time resolution as for the original forward calculation. Detailed information about 
this and the minor things are given below. 
 
Detailed comments: 
1. Sections 1 and 2: Both sections together cover almost 4 pages and represent the 
introduction with the state of the art. This is quite lengthy. The introduction is very general; the 
background is more focussed on the topic at hand. I would suggest to shorten these parts 
especially the introduction significantly and may be use the background as introduction. 
AC: We have merged the Introduction and background sections as suggested and updated 
the text to make the introduction more succinct (nearly 2 pages now). 
CM: p1 to p4, section 1 
 
2. Eq. 1: As predictor R(t) is used. Why not using Z(t) as predictor? For R(t) already a (wrong) 
Z-R-relationship has been applied, introducing great uncertainty. If a linear relationship is 
required a log-log transformation of Z(t) and Rest(t) could be applied beforehand. This needs 
at least to be discussed. 
AC: In the methodology presented in the paper, reflectivity (dBZ) could in principle be used 
instead of radar precipitation rate as shown by Hasan et al. (2016) for the univariate case. As 
we do not have access to the reflectivity (Z(t)) data from the Hurum radar for this study, we 
had to use the hourly radar precipitation rate which is available from the Norwegian 
Meteorological Institute. While the reflectivity can be back-calculated by inverting the algorithm 
that was used operationally, we feel this may add additional uncertainty and would not matter 
given the regression algorithm being used is nonparametric. Further, it can be noted that one 
key purpose of this work is to see how we can improve the radar precipitation rate data 
available to us as a finished product (hourly Surface Rainfall Intensity (SRI) product) from the 
meteorological institute.  
The text is updated in the revised manuscript to clarify this.  



CM: In the Discussion, from p16, l9 to p17, l2 
 
3. Fig. 1: The units for observation length and elevation are missing. Also, the text of the legend 
is tiny and hard to read. 
AC: The units are added, and the font size of the text is increased in Fig.1. 
CM: p4, Fig. 1 
 
4. Section 5.1: It is not clear if the estimation of the partial weights using partial information 
correlation (PIC) is really beneficial or even optimal. In order to prove the merit of PIC I would 
suggest to test two additional cases a) equal weights for P and T and b) using simple linear 
partial correlations. The performance for the latter two cases measured by RMSE should be 
worse than by PIC weighing. 
AC: The partial informational correlation (PIC) provides a generic measure of statistical 
dependence of predictors of a general linear or nonlinear system. Estimation of partial weight 
using PIC shows the partial dependence of radar precipitation estimation on air temperature. 
Earlier papers have shown that the estimated PIC and weights collapse to what would be 
estimated using a linear regression model if the system is linear (Mehrotra and Sharma, 2006, 
Sharma and Mehrotra, 2014, Sharma et al., 2016). As the system here is nonlinear, our 
approach of using PIC to estimate partial weights appears more justified. 
After receiving the reviewer’s comment, we tested our approach using equal weights. We found 
that the gain in RMSE was not significant with the use of PIC based partial weight compared 
to equal weights, but the mean error was reduced when we used partial weight estimated using 
PIC. The manuscript is updated to discuss this. 
CM: p17, l10-17 
 
5. Fig. 4: This bar plot is not easy to read. I would suggest to use box-whisker plots instead. 
AC: As the reviewer suggested we have added box and whiskers plot to the revised 
manuscript. However, bar plot presents the results at each gauge location compared to a 
lumped box plot which we find interesting to report so we would like to add the bar plot to the 
supplementary information. 
CM: p13, Fig. 4 in the revised manuscript and Fig. 1 in the Supplementary material. 
 
6. Page 16, line 1: The back-calculation of Z from R using a non-linear relationship on hourly 
data gives an estimated average Z value for each hour. This estimate can be quite different 
from the observed average Z value if the rainfall distribution within the hour is not unique. In 
the forward calculation the Z-R relationship is applied on 7.5 min Z values to calculate 7.5 
minute rainfall intensities. Because of the non-linearity of the Z-R relationship a simple back 
calculation on a different time step than the one the original calculation was applied is not 
possible. For non-linear functions f is E[f(x)] < > f[E(x)]. 
AC: We do agree with the reviewer that back calculated reflectivity on a different time step 
(hour) than the original calculation is not same as the average value unless the precipitation is 
even within the hour and we fully acknowledge that this introduces uncertainties in the results.  
As mentioned above, we do not have access to reflectivity data (or precipitation rates with 
original short time resolution).  In order to compare our proposed nonparametric radar 
precipitation estimation with radar precipitation rates computed using separate equations for 
snow and rain, we decided to back calculate the reflectivity from the data available to us. 
 
We do have an update to the above statement. The hourly SRI  product is based on corrected 
reflectivities with a time resolution of 15 minutes (before June 2013) and 7.5 minutes (after 
June 2013). The VPR corrected reflectivity data used to produce the accumulated hourly radar 
precipitation (SRI product) used in the study are not stored in the production process, and 



therefore not available at met.no (Elo 2018, Personal communication). However, the Plan 
Position Indicator (PPI) of the lowest elevation beam from Hurum radar is available with the 
original short time resolution from met.no. We have therefore used the PPI data to redistribute 
the hourly data used in the study by assuming precipitation intensity distribution within each 
hour is the same in the SRI data as in the PPI dataset. The redistributed precipitation rates 
with original time resolution (15 or 7.5 minutes depending on the year) were then converted to 
reflectivities using an inverse of the Marshall and Palmer equation. 
 
The back calculated reflectivity was converted to precipitation rate using the separate snow 
and rain equation according to the computed phase. The precipitation rates were then 
accumulated to hourly time resolution and we did the comparison as in the original manuscript.  
 
Here, it should be noted that there is uncertainty in how accurately the redistributed intensity 
distribution of SRI represents the original distribution, however, this exercise at least used a 
possible realistic distribution. 
 
In the revised manuscript, we present this procedure of back calculation using PPI data and 
we discuss the limitation in the comparison. 
 
CM: p5, l7-8 in section 2.2  
From p14, l12 to p15, l11 in section 3.5 
p18, l2-15 in section 4 
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Response to the review of hess-2018-0351 
 
RC3: Responses to G. Ravazzani (Referee 3) 
The authors wish to thank the reviewer for his constructive comments and corrections to the 
discussion paper. In the following, we have responded to each of the comments from the 
reviewer and showed the page and line numbers of the revised manuscript if any changes.  
The comment from the reviewer (RC) is in italic font while the author comment (AC) and 
changes in the manuscript (CM) are in blue normal font. 
 
General comments: 
In this paper, a non-parametric method is applied to estimate radar precipitation considering 
both rainfall and temperature. The use of radar for precipitation estimation is an interesting 
topic. Many papers have been presented about this topic, but the specific problem authors 
deal in this paper is how to assess solid precipitation in cold regions. The solution they propose 
is of interest for cold climates in northern Europe, of course, but I suppose it could be extended 
to other areas where solid precipitation occurs. 
 
Specific comments: 
Authors used 68 rain gauges in this study that are clustered around urban areas. Do authors 
think that this uneven distribution may affect results? In other terms, is the location of 
raingauges relevant for the application of the proposed procedure? 
AC: The method used is independent of the gauge locations, and the computed estimates are 
ascertained for each gauge individually. 
 
P 9 L 14 “The gridded hourly wind speed datasets are derived from a statistical downscaling 
of a 10 km numerical model dataset onto a 1 km grid”. Did authors verify how the method is 
sensible to the specific realization of the statistical downscaling? 
AC: The Norwegian Meteorological Institute derived the hourly gridded (1 km x 1 km) wind 
speed dataset by statistical downscaling from the 10 km numerical dataset, “NORA10” and we 
used this in this study. We did not evaluate their method of downscaling. However, as 
described on p10, l12-14 (discussion paper), to control the result of correcting with gridded 
wind speed, we compared the corrected precipitation using gridded wind speed with the 15 
locations where we have wind speed measurements at the gauge site. 
CM: p6, l14-16 and p7, l23-26 
 
Authors apply correction to gauge precipitation to consider wind induced underestimation. 
Gauge precipitation is affected by several sources of uncertainty. Wind is of course relevant, 
but another systematic error is related to the calibration of raingauges that causes 
underestimation for high rainfall intensity and overestimation for low rainfall intensity. Further 
uncertainty arises when solid precipitation has to be measured. How did authors deal with 
these errors? Are they already managed by the meteorological institute? 
AC: Norwegian Meteorological Institute manages the calibration of raingauges and takes 
necessary measures to reduce the uncertainty that arises when solid precipitation has to be 
measured. Further, data from the raingauges are gone through routine quality control before 
being released to the public through the database. However, the meteorological institute does 
not do wind induced undercatch correction for their precipitation data. 
CM: p5, l29-32 
 
Section 5.6 is very short compared to the rest of the paper and I did not fully understand what 
is the intention of authors. I think they should better explain this part or remove it. 



AC: we did a test on uncorrected gauge precipitation data (not corrected for wind induced 
undercatch) showing that temperature works as a covariate also there. The intent of section 
5.6 was to make this point clearly. However, in order to avoid lengthening the paper with more 
results, we decided to remove section 5.6 (discussion paper) in the revised manuscript and 
merge the above statement into other sections. 
CM: p18, l25-29 
 
Technical corrections: 
P.4 L. 6 The Finnish Meteorological Institute 
AC: It is corrected. 
CM: p2, l22 
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Abstract.
:::
The

:::
use

:::
of

::::::
ground

::::::
based

:::::::::::
precipitation

::::::::::::
measurements

:::
in

::::
radar

:::::::::::
precipitation

::::::::::
estimation

::
is

::::
well

::::::
known

:::
in

:::::
radar

:::::::::
hydrology.

::::::::
However,

:::
the

::::::::
approach

:::
of

:::::
using

::::::
gauged

:::::::::::
precipitation

::::
and

::::
near

::::::
surface

:::
air

::::::::::
temperature

:::::::::::
observations

::
to
::::::::

improve

::::
radar

:::::::::::
precipitation

:::::::
estimates

::
in
::::
cold

:::::::
climates

::
is

:::::
much

:::
less

::::::::
common.

:
In cold climates,

::::::::::
precipitation

::
is

::
in the form of precipitation

(snow or rain or a mixture of snow and rain) results in uncertainty in radar precipitation estimation. Estimation often proceeds

without distinguishing the state of
::
the

::::
two

:::::::
phases.

:::
Air

::::::::::
temperature

::
is
::::::::

intrinsic
::
to

:::
the

:::::
phase

:::
of

:::
the

:::::::::::
precipitation

::::
and

:::::
could5

:::::::
therefore

:::
be

::
a

:::::::
possible

::::::::
covariate

::
in
::::

the
::::::
models

:::::
used

::
to

::::::::
ascertain

:::::
radar

:
precipitation which is known to impact the radar

reflectivity – precipitation relationship
:::::::
estimates. In the present study, we investigate the use of air temperature within a non-

parametric predictive framework to improve radar precipitation estimation for cold climates. Compared to radar reflectivity -

gauge relationships, this approach uses gauge precipitation and air temperature observations to estimate radar precipitation.

A nonparametric predictive model is constructed with radar precipitation rate and air temperature as predictor variables, and10

gauge precipitation as an observed response using a k-nearest neighbour (k-nn) regression estimator. The relative importance

of the two predictors is ascertained using an information theory-based rationale
::::::::
weighting. Four years (2011-2015) of hourly

radar precipitation rate from the Norwegian national radar network over the Oslo region, hourly gauged precipitation from 68

gauges, and gridded observational air temperature were used to formulate the predictive model and hence make our investi-

gation possible. Gauged precipitation data were corrected for wind induced catch error
:::::::::
undercatch before using them as true15

observed response. The predictive model with air temperature as an added covariate reduces root mean squared error (RMSE)

by up to 15 % compared to the model that uses radar precipitation rate as the sole predictor. More than 80 % of gauge locations

in the study area showed improvement with the new method. Further, the associated impact of air temperature became insignif-

icant at more than 85 % of gauge locations when the temperature was above
::::
near

::::::
surface

:::
air

::::::::::
temperature

::::
was

:::::::
warmer

::::
than

10◦ C, which indicates that the partial dependence of precipitation on air temperature is most important for colder climates20

alone
:::::
useful

:::
for

::::::
colder

::::::::::
temperatures.

1 Introduction

Hydrological applications require accurate precipitation estimates at the catchment scale . Use of point precipitation gauges

often proves inadequate in representing the spatio-temporal variability in the precipitation field (Beven, 2012; Kirchner, 2009).

1



Weather radars provide quantitative precipitation estimates over a large area with high spatial and temporal resolution. How-

ever, weather radars measure the precipitation rate indirectly, using the energy scattered back by hydrometeors in the volume

illuminated by a transmitted electromagnetic beam (Villarini and Krajewski, 2010a). The backscattered energy is measured as

reflectivity which is used to estimate precipitation . This measured reflectivity depends on many factors such as size, shape,

orientation (if non-spherical), state and concentration of particles in the radar illuminated volume in the atmosphere along with5

their dielectric properties (Hong and Gourley, 2015; Joss et al., 1990).
:::::::::::::::::::::
(Hong and Gourley, 2015).

:

The nature of radar precipitation measurements is subject to many sources of error. These errors occur during the

sampling or measurement of reflectivity as well as in the process of converting the reflectivity (Z) to precipitation rates (R)

(Chumchean et al., 2006). Some of the known errors in the reflectivity measurement are ground clutter, beam blocking, anoma-

lous propagation, bright band, hail, and attenuation (Berne and Krajewski, 2013; Chumchean et al., 2003). During the conver-10

sion, the use of inappropriate Z-R
:
Z
:
-
::
R
:
relationship leads to Z-R

:
Z

:
-
::
R conversion error. Due to the presence of such significant

errors (both random and systematic), radar data are still not
:::::
widely

:
used in hydrological applications as broadly and efficiently

as they could be (Berne and Krajewski, 2013; Chumchean et al., 2003). Many studies (e.g., Abdella, 2016; Villarini et al.,

2008; Ciach et al., 2007; Chumchean et al., 2006) have focused on estimating these errors in order to improve quantitative

radar precipitation estimates; however, some of the underlying physical processes are still not understood well enough to allow15

significant advances (Villarini and Krajewski, 2010b).

Conventionally
::
In

::::
the

::::::::
standard

::::::::
approach, radar measurements of reflectivity (Z) are converted into precipitation

rate (R) using the parametric Z - R relationship derived by Marshall and Palmer (1948) in the form of a power

law, Z = aRb. The variability of the power law parameters
:
(a
:::::

and
:::

b)
:

is related to a number of factors in-

cluding the drop size distribution (DSD) of hydrometeors. Drop size distribution varies in time and space as20

well as for the type and the phase of precipitation (Chumchean et al., 2008; Joss et al., 1990; Uijlenhoet, 2001). The

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chumchean et al., 2008; Joss et al., 1990; Uijlenhoet, 2001; Wilson and Brandes, 1979).

:

::
In

::::
cold

::::::::
climates,

:::::::::::
precipitation

:::::::
occurs

::
in

::::
the

:::::
form

::
of

:::::
snow

:::
or

::::
rain

:::
or

::
a

:::::::
mixture

:::
of

:::::
snow

::::
and

::::
rain.

:::::::
Several

:::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Battan, 1973; Sekhon and Srivastava, 1970; Marshall and Gunn, 1952)

:::
have

:::::::::::
investigated

:::
the

:
Z - R relationship is not

unique and hence, we depend on empirical relationships instead (Wilson and Brandes, 1979)
:::::::
regarding

::::
the

:::::::::::
precipitation25

:::::
phase

::::
and

::::::::
proposed

::::::::
different

:::::::::
parameter

::::
sets. Most radar systems

::::::::
operations

:
in cold climate countries (

::::
e.g.,

:
Canada

and Finlandetc.) use two sets of Z - R relations, one for rain and one for snow, often calibrated in situ to mea-

sure a water equivalent radar reflectivity factor (the dielectric constant for water is used) (Koistinen et al., 2004)

::::::::::::::::::::::::::::::::::::::::::::::
(Koistinen et al., 2004; Crozier et al., 1991; Smith, 1984). However, the Norwegian radars and European radar project OPERA

have used a single Z - R relationship (
:
(Marshall and Palmer (1948) relation for rain )

:::::::::::::
(Z = 200R1.6)) throughout the year. The30

use of the single reflectivity-precipitation relationship can result in phase dependent bias in radar precipitation estimation.

In cold climates, quantitative radar precipitation estimates are often formulated for warmer summer months and / or

specific storm events (Berne and Krajewski, 2013; Saltikoff et al., 2015). Norway and adjacent countries in northern Europe

experience cold temperatures below +10 degrees Celsius for nearly three quarter of the year. Continuous runoff simulation

is required for water resources management applications such as hydropower production planning, design and operation35

2



of water infrastructure, flood forecasting and ecological assessments (Hailegeorgis et al., 2016). Today, precipitation runoff

models mostly use gauge precipitation measurements for continuous simulation. A continuous timeseries of radar-based

precipitation estimates and the reduced reliance on traditional precipitation gauges are of great interest to hydrologists

given the spatio-temporal detail that is offered. Further, a single radar can measure precipitation over many small

catchments with its extended spatial coverage, which otherwise remain ungauged without any ground precipitation5

measurement (Berne and Krajewski, 2013). An example of
:::
The

:::::::
Finnish

:::::::::::::
Meteorological

:::::::
Institute

:::::::
devised

:::
two

:::::::::
equations

:::
for

:::
rain

:::::::::::::
(Z = 316R1.5)

:::
and

::::
snow

::::::::::::
(Ze = 100S2)

:::
for

:::::::::
operational

:::
use

:::::::::::::::::::
(Saltikoff et al., 2015).

::::
Here

:::
Ze:::::::::

represents
:::
the

::::::::
equivalent

:::::
radar

:::::::::
reflectivity

:::::
factor

::
of
::::::

snow.
:::
For

::::
the

:::
use

::
of
::::::

phase
:::::::::
dependent

::::::::::::::::::::
reflectivity-precipitation

:::
(Z

:
-
:::
R)

:::::::::::
relationship,

:::
the

:::::::::::
precipitation

:::::
phase

::
of

:::
the

:::::
radar

:::::
pixel

:::::
must

:::
be

:::::::::
estimated.

::::
Air

::::::::::
temperature

::::
has

::::::::::
traditionally

:::::
been

:::::
used

::
to

:::::::::
determine

:::
the

::::::
phase

::
of

:
the

usefulness of radar precipitation data for continuous simulation was presented by Fassnacht et al. (1999). If a radar based10

continuous precipitationtime series is to be generated with the objective of use in hydrological modelling in boreal regions, the

effect of varying precipitation phase on radar precipitation estimates must be considered
::::::::::::::::::
(Al-Sakka et al., 2013).

::::
The

:::::::
Finnish

::::::::::::
Meteorological

:::::::
Institute

::::
uses

::::::::::
temperature

::::
and

:::::::
humidity

:::::::::::
observations

::::
from

:::::::
synoptic

:::::::
stations

::
to

:::::::
estimate

:::
the

:::::::::::
precipitation

:::::
phase

:::
and

::::
uses

::::
that

::::::::::
information

::
to

:::::
apply

::
a
::::::::
different

::::::::
parameter

:::
set

:::
for

::::
rain

:::
or

:::::
snow

::::::::::::::::::::::::::::::::::::
(Koistinen et al., 2004; Saltikoff et al., 2015)

:
.

::::::::
However,

::::::::::::::::::
Saltikoff et al. (2000)

:::::::
reported

:::
that

::::
real

::::
time

:::::
phase

:::::::::
dependent

::::::::::
adjustment

::
of

:::
two

::::::::
different

:::::::::
parameter

:::
sets

:::::
does

:::
not15

:::::::
improve

:::
the

:::::::
snowfall

:::::::::
estimates

::::::::::
significantly.

:::
To

:::::::
account

:::
for

:::::::
varying

:::::::::::
precipitation

:::::
phase

::::::::
(multiple

:::::
snow

:::::
types

::::
and

:::::::
mixture

::
of

:::::
snow

:::
and

:::::
rain),

:::::
many

:::::::::
parameter

::::
sets

:::::
could

:::
be

::::::::
required.

:::::::::
Moreover,

:::
the

:::::::::::
precipitation

:::::
phase

:::::::
changes

::::::
rapidly

:::::
even

::::::
within

::
the

::::::
single

::::::
winter

::::::
storm

:::
and

::::::
hence,

::::::::::::
operationally,

:::::::::
switching

::::::::
between

:::::::
different

:::::::::
parameter

::::
sets

::::
can

:::
be

:
a
:::::::::::

challenging
::::
task

::::::::::::::::::::::::::::::::::::
(Koistinen et al., 2004; Saltikoff et al., 2015).

:

::::::::::::::::::::::::
Fassnacht et al. (2001, 1999)

:::::::::
demonstrate

:::
the

:::
use

::
of

::::::
surface

:::
air

::::::::::
temperature

::
to

:::::::
estimate

:::
the

::::::
fraction

:::
of

::::
snow

::::::
content

::
in

::::::
mixed20

::::::::::
precipitation

::::
and

:::
use

:
it
::
to
::::::
adjust

:::
the

::::
radar

::::::::
estimates

:::
for

::::::
mixed

:::::::::::
precipitation.

::
It

:::
was

:::::::
reported

::::
that

:::
this

::::::::::
adjustment

::::::::
improved

:::
the

::::::::::
accumulated

:::::
snow

::::::::
estimates

::
in

:::::::
Ontario,

:::::::
Canada.

:::::::
Further

:::::::::::::::::::
Fassnacht et al. (1999)

::::::
showed

:::
that

:::
the

::::::::
adjusted

::::
radar

::::
data

::::::::
provided

::::
more

:::::::
realistic

:::::::::::
precipitation

:::::::
estimates

:::
for

:::::::::::::::::
precipitation-runoff

::::::
models

::::
than

::::::::
corrected

:::::
gauge

:::::::::::
precipitation

:::
data.

Starting from its origin and throughout its entire journey, the rain drop or snow crystal is shaped by temperature. During

the formation and growth of cloud droplets, different temperatures
:::
and

:::
the

::::::
degree

::
of

:::::
super

::::::::
saturation

:
cause different shapes25

of crystals to form, and then the crystals start to fall. The falling crystals are then characterised by the temperature of the air

through which they fall. As a result, the air temperature determines the final properties and the phase of the hydrometeor that

reaches the ground surface (Fassnacht et al., 2001). Further, studies showed that there are multiple snow types and
:::
with

::::::::
different

:::::
shapes

::::
and

:::::::
densities

::::
and they vary in time, based partially on temperature (Saltikoff et al., 2015). Many studies (Auer Jr, 1974;

Kienzle, 2008; Killingtveit, 1976; Rohrer, 1989) examined the relationship between the precipitation phases (snow, rain and30

mixture of snow and rain) and temperature. The probability of occurrence of snowfall versus temperature shows
:::::::
generally

:
an

approximately ‘S’ shaped structure in
:::
and

::
in

:::::
some

::::
cases

:::::
linear

:::::::
relation

:::::::::::::::::::
(Fassnacht et al., 2013)

::
in these studies. Additionally, as

mentioned earlier, measured reflectivity depends on dielectric properties of hydrometeors. The dielectric
::::::
Further,

:::
the

::::::::
dielectric

property of solid particles (ice) is very different from
::
not

:::
the

:::::
same

:::
as liquid particles (water) and moreover, it varies with
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temperature (Joss et al., 1990). These imply that temperature is intrinsic to both the phase of precipitation and the ensuing

conversion of reflectivity into the incident ground precipitation.

Hasan et al. (2016a) presented a nonparametric approach to estimate ground rainfall using radar reflectivity as a univariate

predictor variable in a tropical setting. Historical radar reflectivity and rain were used in formulating the nonparametric model.

In the present work, we tested their method in the context of Norwegian radar precipitation estimation and found it to be5

sub-optimal especially for the colder precipitation events. Norway is a cold climate country located in the northern high

latitudes, experiencing different phases of precipitation. Norwegian radars use a single Z - R relationship throughout the year

and the phase of the precipitation is not considered. If phase dependent Z - R relationships were used, they will still require an

added algorithm to establish the dominant phase for the event. Based on the discussion in the previous paragraph, the intuition

is that air temperature observations can be used together with observed gauge precipitation to adjust radar precipitation in cold10

climates. Moreover, the nonparametric approach of Hasan et al. (2016a) can be extended to allow use of a bivariate predictor

vector with temperature as an additional predictor variable. This forms the basis for the investigation reported here.

This study set out to investigate the use of air temperature as an additional predictor in the radar precipitation estimation with

the objective of improving quantitative radar precipitation estimation for cold climates. Compared to traditional radar-gauge

adjustment, the proposed method is based on nonparametric approach using gauge precipitation and air temperature observations15

to adjust the radar precipitation. The rest of the paper is structured as follows. The following section reviews radar precipitation

estimation in cold climates as well as nonparametric methods and their use in radar precipitation estimation. The methods and

tools used to formulate the nonparametric model are presented in Section 2.3. Section 2.1 describes the study area and data

used to test the method. The results from the study are discussed in Section ??. Finally, summary and conclusions are presented

in Section 5.20

2 Background

1.1 Radar precipitation estimation in cold climates

In cold climates, precipitation occurs in the form of snow or rain or a mixture of snow and rain. As mentioned earlier,

radar operations in cold climates often use two sets of parameters to convert radar reflectivity Z, into precipitation intensity

(rain(R) or snow(S), mmh−1). Several studies (Battan, 1973; Marshall and Gunn, 1952; Sekhon and Srivastava, 1970) have25

investigated and then proposed different parameter sets (coefficients “a” and “b” in the power law equation relating reflectivity

to precipitation) for rain and snow. The parameter set proposed by Sekhon and Srivastava (1970) has been used as a standard for

snow, just as the work by Marshall and Palmer (1948) has been used widely for rain (Fassnacht et al., 2001; Saltikoff et al., 2015)

.

The Finish Meteorological Institute operationally uses their own equations for rain (Z = 316R1.5) and snow (Ze = 100S2)30

(Saltikoff et al., 2015). Here Ze represents the equivalent radar reflectivity factor of snow and it is different from Z because

the radar signal processing uses the dielectric constant of liquid (water) instead of dielectric constant of solid (ice) for snow.

Zhang et al. (2016) used the equation Ze = 75S2 for the NEXt Generation Radar network (NEXRAD) in the United States
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which offers similarities to the equation by the Finish meteorological institute for snow. However, Saltikoff et al. (2000)

reported that real time phase dependent adjustment of two different parameter sets does not improve the snowfall estimate

significantly. To account for varying precipitation phase (multiple snow types and mixture of snow and rain), many parameter

sets could be required. Moreover, the precipitation phase changes rapidly even within the single winter storm and hence,

operationally, switching between different parameter sets can be a challenging task (Koistinen et al., 2004; Saltikoff et al., 2015)5

.

For the use of phase dependent reflectivity-precipitation (Z - R) relationship, the precipitation phase of the radar pixel must

be estimated. Earlier, weather radar operations in cold climates switched between summer and winter Z - R relationships

according to calendar date. However, this is obviously uncertain. As mentioned in the introduction, air temperature can be used

to determine the phase (whether snow or rain) of the precipitation. The Finnish Meteorological Institute uses temperature and10

humidity observations from synoptic stations to estimate the precipitation phase and uses that information to apply a different

parameter set for rain or snow (Koistinen et al., 2004; Saltikoff et al., 2015). Fassnacht et al. (2001) demonstrate the use of

surface air temperature to estimate the fraction of snow content in mixed precipitation and use it to adjust the radar estimate

for mixed precipitation. It is reported that these adjustments improve the accumulated snow estimates in Ontario, Canada.

Observations from dual polarised weather radars can also be used to classify precipitation phases (Ryzhkov and Zrnic, 1998)15

. However, many radars use a single polarity and moreover, even from dual polarised radars, data on phase information

are not readily available to end users to help refine their estimation algorithms. Operational use of dual polarised radars

in hydrometeor classification has progressed significantly; however, the classification for high latitude winter storms is still

challenging (Chandrasekar et al., 2013).

1.1 Nonparametric Radar rainfall estimates20

Parametric (or regression type) and nonparametric approaches
:::::::
(nearest

:::::::::
neighbour

:::
and

::::::
kernel

::::::
density

::::::::::
estimation)

:
have been

used to build predictive models for a range of applications. When sufficient data are available, nonparametric approaches are

efficient alternatives for specifying an underlying model as compared to parametric approaches. Nearest neighbour and kernel

density estimation are amongst the most commonly used nonparametric methods. The simplicity of nonparametric approaches

have made them attractive for use in hydrology and other sciences (Mehrotra and Sharma, 2006). A key advantage of non-25

parametric approaches is that less rigid assumptions about the distribution of the observed data are needed (Silverman, 1986)

and hence no major assumptions about the process being modelled are required to construct the complete predictive system

(Sharma and Mehrotra, 2014). Due to the availability of sufficient radar precipitation rate observations, nonparametric methods

provide an attractive basis for assessing the hypotheses posed here.
::::::::::::::::::::::::::::::::::::::::::::::::
(Mehrotra and Sharma, 2006; Sharma and Mehrotra, 2014)

:
.30

Ciach et al. (2007) used
:
a nonparametric kernel regression to model radar rainfall uncertainty. They described the relation

between true rainfall and radar-rainfall as the product of a systematic distortion function along with a random component and

presented procedures to identify the two components. The distortion function could account for systematic biases which can

be mathematically defined as a conditional expectation function, while the random component accounts for random errors in
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radar rainfall estimation. Villarini et al. (2008) estimated the conditional expectation function (distortion function) using both

nonparametric (similar to Villarini et al. (2008)
:::::::::::::::
Ciach et al. (2007)) and copula-based methods and compared the difference in

performance between the two approaches using different quality metrics. It was found that performance of the nonparametric

method was comparable with the copula-regression estimate and even outperformed when Nash Sutcliffe Efficiency (NSE)

was used as a quality metric. The strength of nonparametric approaches is the ability to adapt to the data locally and the5

weakness is that the method is sensitive to outliers and to large variability of data at the smallest (sub hourly) time scales.

Hasan et al. (2016a) used
:::::
results

::
in

::::::
“local”

:::::
biases

:::
as

:
a
:::::
result

::
of

::::::
outliers

::::::::::::::::::
(Villarini et al., 2008)

:
.
:::::::::::::::::
Hasan et al. (2016a)

:::::::
presented

:
a

kernel based nonparametric method for radar rainfall estimation. In their approach , expected ground rainfall was estimated for

a given reflectivity using a kernel-based conditional probability distribution. However, none of the methods above considered an

additional covariate as air temperature as proposed in this study.
::::::::
approach

::
to

:::::::
estimate

::::::
ground

::::::
rainfall

:::::
using

:::::
radar

:::::::::
reflectivity

::
as10

:
a
::::::::
univariate

::::::::
predictor

:::::::
variable

::
in

:
a
:::::::
tropical

::::::
setting.

::::
Past

:::::::
observed

:::::
radar

:::::::::
reflectivity

:::
and

::::::
gauged

::::::
rainfall

:::::
were

::::
used

::
in

::::::::::
formulating

::
the

::::::::::::
nonparametric

::::::
model.

:

2 Methodology

This section describes the methods used to formulate a nonparametric predictive modelwith incident air temperature and radar

precipitation rate as the two predictors for radar precipitation
:
In

::::
this

:::::
study,

:::
the

:::::::::
hypothesis

::
is

::::
that

::::
near

::::::
surface

:::
air

::::::::::
temperature15

::::::::::
observations

:::
can

::::
help

:::::::
improve

:::::
radar

::::::::::
precipitation

::::::::
estimates

:
in cold climates. A description of how the incident air temperature

is incorporated as a covariate in the nonparametric radar precipitation estimation approach is presented next.

1.1 Radar precipitation estimation

The proposed radar precipitation estimation algorithm consists of two steps. The first step quantifies the partial dependence

of precipitation on radar precipitation rate and incident air temperature . The second step then uses the identified predictors20

in a non-parametric setting to estimate the precipitationresponse. Gauge precipitation is used as a ground reference or true

precipitation
::::
Here,

:::
the

::::::::::::
nonparametric

::::::::
approach

:::
of

:::::::::::::::::
Hasan et al. (2016a)

:::
can

::
be

::::::::
extended

::
to

:::::
allow

::::
use

::
of

:
a
::::::::
bivariate

::::::::
predictor

:::::
vector

::::
with

::
air

::::::::::
temperature

::
as

:::
an

::::::::
additional

::::::::
predictor

::::::
variable

::
to

:::::::::::
precipitation.

::::
This

:::::
forms

:::
the

:::::
basis

::
for

:::
the

:::::::::::
investigation

:::::::
reported

in this study.

The conditional estimation of precipitation using the two covariates can be described as follows:25

Rest(t)|
[
R(t),T (t)

]
Here, (Rest(t)) is the estimated ground precipitation from a given pair of radar rain rate (R(t)) and incident air temperature

(T (t)) values at a given geographical location in the two-dimensional space (x, y) and time, t.

The conditional estimation in Eq. (1) uses two covariates, in contrast to Hasan et al. (2016b, a) where a

nonparametric kernel regression estimator using a single covariate (R(t)) was adopted. Readers are referred to30

(Mehrotra and Sharma, 2006; Sharma and Mehrotra, 2014; Sharma et al., 2016) for further details on the nonparametric
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modelling framework used in this work. This study uses the k-nearest neighbour (k-nn) regression estimator as the

nonparametric predictive model. This model can be expressed as:

E
(
Rest(t)|

[
R(t),T (t)

])
=

K∑
k=1

gk

k

K∑
j=1

1

j

Where k denotes the number of observed pairs of radar precipitation rate and temperature considered “similar” to the current

conditioning vector [R,T ]. Similarity here is defined on the basis of a weighted Euclidean distance that is further explained5

below.E(.) denotes the expectation operator, in the absence of which the uncertainty about the expected value can be computed.

The term gk represents the observed gauge precipitation corresponding to kth neighbour of the conditioning vector. K is

a maximum number of neighbours permissible and it is an important parameter in the k-nearest neighbour method. In the

present study, K is taken as equal to the square root of the sample size as suggested by Lall and Sharma (1996).

The order of each neighbour is ascertained based on a weighted Euclidean distance metric, written as :10

ξ2i =

(
βR(R− ri)

sR

)2

+

(
βT (T − ti)

sT

)2

Here, ξi is the distance of the conditioning vector [R,T ] to the ith data point (ri, ti) in a two-dimensional space. sR::::
This

:::::
study

::
set

:::
out

::
to

:::::::::
investigate

:::
the

:::
use

::
of

:::
air

::::::::::
temperature

::
as

::
an

:::::::::
additional

:::::::
predictor

::
in
:::
the

:::::
radar

::::::::::
precipitation

:::::::::
estimation

::::
with

:::
the

::::::::
objective

::
of

::::::::
improving

::::::::::
quantitative

:::::
radar

::::::::::
precipitation

:::::::::
estimation

:::
for

::::
cold

::::::::
climates.

::::::::
Compared

::
to
:::::::::
traditional

::::::::::
radar-gauge

::::::::::
adjustment,

:::
the

:::::::
proposed

:::::::
method

::
is

:::::
based

::
on

::::::::::::
nonparametric

::::::::
approach

:::::
using

::::::
gauge

::::::::::
precipitation

:
and sT are sample standard deviations of the15

radar precipitation rate and temperature , and βR ::
air

::::::::::
temperature

::::::::::
observations

::
to

:::::
adjust

:::
the

:::::
radar

:::::::::::
precipitation.

:::
The

:::::::::::
precipitation

:::::::
estimates

::::::
using

:
a
:::::::::::::

nonparametric
:::::
model

:::::
with

::::::::::
temperature

:::
as

:
a
::::::::
covariate

::
is
:::::::::

compared
::
to

::
a
::::::
model

:::::::
without

::::::::::
temperature

:
and

βT are partial weights denoting the relative importance each conditioning variable has on the ensuing response respectively

(Sharma and Mehrotra, 2014). The sample standard deviations are used to standardise the predictor variables to make them

independent of their measurement scale, while the partial weights allow elimination of a predictor variable if not relevant to the20

prediction being made. Readers are referred to Sharma and Mehrotra (2014) for the informational theory rationale that allows

for the estimation of these partial weights, and the NPRED, R package ((Sharma et al., 2016), downloadable from http://www.

hydrology.unsw.edu.au/download/software/npred) that enables their estimation for any sample data set.

1.1 Model evaluation criteria

A number of metrics have been used in literature to evaluate and compare the performance of models25

(Hasan et al., 2016a; Villarini et al., 2008). The root mean square error (RMSE) is commonly used as a performance

measure and it provides the overall skill measure of a predictive model (Hasan et al., 2016a). We used primarily RMSE
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as a quality metric to evaluate the performance of the proposed model. Mean absolute error (MAE) and mean error

(ME) were used as additional quality metrics. Definition of RMSE, MAE and ME can be found in the literature

(e.g., Hasan et al., 2016a; Villarini et al., 2008).

1.1 Determination of phase

In order to assess the usefulness of the proposed approach, it was compared against an alternate approach where the precipitation5

phase for first ascertained, followed by the application of different Z-R relationships for snow and rain . For the classification

of precipitation phase at gauge level, we adopted the method from Finnish Meteorological Institute which is used operationally

in Finland for phase classification (Koistinen et al., 2004; Saltikoff et al., 2015):

Plp =
1

1+ e22−2.7T−0.2H

Here, Plp represents the probability of liquid precipitation , T (◦ C) the air temperature, and H (%) the relative humidity10

at a height of 2 m. If Plp < 0.2,
::
to

:::
the

:::::::
original

:::::::::::
precipitation

:::::
rates

:::::
using

:
a
::::::::

constant
::
Z

:
-
:::

R
::::::::::
relationship.

:::
In

::::::::
addition,

:
pre-

cipitation is considered as solid and if Plp > 0.8, precipitation is considered as liquid. For the case of 0.2≤ Plp ≤ 0.8,

precipitation is considered as mixed (Koistinen et al., 2004; Saltikoff et al., 2015)
::::
rates

:::::
using

:::::::
separate

::::
rain

:::::::
(Z −R)

:::
or

:::::
snow

:::::::
(Ze−S):::::::::::

relationships
:::
are

::::
back

::::::::
calculated

:::::
from

:::
the

::::::
original

:::::::::::
precipitation

::::
rates

:::
and

:::
are

::::::::
compared

::
to

:::
the

::::::::::::
nonparametric

::::::::
estimates.

::::::
Further,

:::
we

:::::::::
investigate

::
if

:::::::::::
improvements

::
in

:::::::::::
precipitation

::::::::
estimates

:::::
varies

::::
with

::::::::::
temperature

:::::
ranges

::::
and

:
if
:::
the

::::::
method

::
is

:::::::::
dependent15

::
on

:::
the

:::::::::::
precipitation

::::::::
intensities.

2 Study area
::::::::
Materials and data

:::::::
methods

2.1
:::::

Study
::::
area

The proposed nonparametric predictive model using radar precipitation rate and
::
air

:
temperature as covariates was tested on

radar data over the Oslo region in Norway. The radar data used in the current research is the accumulated
::
an

:
hourly radar20

precipitation rate product generated from the national weather radar network of Norway. The present study area is limited to

the 50 km radius of radar range from Hurum radar station as shown in Fig. 1where a relatively dense network of precipitation

gauges are available. The Hurum radar is located at 59.63◦ N latitude and 10.56◦ E longitude and it is about 30 km from Oslo,

the capital city of Norway and it is
:::
has

::::
been in operation since November 2010.

::::
Data

::
for

:::
the

::::::
period

::::
from

:::::::
January

:::::
2011

::
to

::::
May

::::
2015

::::
were

:::::
used

::
for

::::
this

:::::
study.25

2.2
::::

Data

The Norwegian Meteorological Institute (met.no) operates nine C-band Doppler weather radar installations which covers the

entire land surface of Norway. The sensitive C-band installations with smaller wavelengths (4 - 8 cm) are placed in the Nordic

to detect snowfall and clear air echoes (Koistinen et al., 2004). The wave length of the Hurum radar is 5.319 cm. The Norwegian

8



Figure 1. Precipitation gauge locations (blue circles) and length of the observations at each precipitation gauge location (size of the circles)

and radar station (purple star mark) overlaid on topography of the study area, Oslo region of Norway. Hypsometric
:::::::::
distribution (

::::::::
cumulative

::::::::
percentage

::
of

:::::
gauges

:::::
below

:::
the

::::::
specified

:
elevation) distribution of the gauges is on the top left corner.

radar network scans the atmosphere with a 7.5 minute temporal resolution.
:
;
::::::::
however,

:::
the

:::::::
temporal

:::::::::
resolution

:::
was

:::
15

:::::::
minutes

::::
until

::::
June

:::::
2013.

:
The met.no processes the raw radar volume scan from the radar stations. The data goes through extensive

quality control and data transformations before the radar products are distributed to end users (Elo, 2012). The met.no performs

a routine that removes clutter and other noise (non-meteorological echo) from the radar scan first. Then it reconstructs the

gap in the data caused by clutter. The processing algorithm segments the volumetric radar reflectivity data as convective or5

stratiform precipitation type and it computes the Vertical Profile of Reflectivity (VPR) depending on precipitation types. VPRs

of convective and stratiform precipitation types are distinctly different (Abdella, 2016; Chumchean et al., 2008). Bright band

effect and non-uniform vertical profile of reflectivity are major sources of uncertainties in radar precipitation estimation in

high latitude regions (Abdella, 2016; Joss et al., 1990; Koistinen et al., 2004; Koistinen and Pohjola, 2014). The radar data are

corrected for bright band effects that appear in the VPR.10

After the processing, the met.no generates and distributes various radar products. One of the radar precipitation rate products

available for the public to use in hydrological applications is the Surface Rainfall Intensity (SRI). The SRI product uses the

lowest Plan Position Indicator (PPI) and projects the aloft reflectivity data down to a reference height (1 km) near to the

ground. The projection method is known as VPR correction that takes the vertical variability of reflectivity and bright band

effect into account (Elo, 2012). The VPR corrected reflectivity is transformed from polar to Cartesian coordinate system with15

1 km × 1 km spatial resolution and the mosaic of nine weather radar imageries is merged to single SRI product covering the

entire Norway. Finally, the reflectivity is converted to precipitation rate by using parametric Z - R relationship (Z = 200R1.6)
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derived by Marshall and Palmer (1948) and the precipitation rate is accumulated to the temporal resolution desired (hourly

in this case).
:::
The

:::::::::::
accumulated

:::::
hourly

::::
SRI

:::::::
product

:::
was

:::::
used

::
in

:::
this

::::::
study. It can be noted that the Norwegian meteorological

institute
:::::
met.no

:
uses the single Z - R relationship (Marshall-Palmer for rain) for all seasons throughout the year.

Data for the period from January 2011 to May 2015 were used for this study . A spatial subset of accumulated hourly radar

precipitation rate with 1 km × 1 km spatial resolution
:::::
Within

:::
the

:::::
study

::::
area,

:::::
there

:::
are

::
68

:::::::::::
precipitation

::::::
gauges

::::
with

::::::::
available5

:::::
hourly

:::::::::::
precipitation

::::
data for the studyarea was downloaded from the met. no’s “thredds” server (http://thredds.

:
.
::::
The

::::::
gauges

::
in

::
the

:::::
study

::::
site

::::::
consists

:::
of

::::::
Geonor

::::::::
weighing

::::::
gauges

:::
and

:::::::
tipping

:::::
bucket

:::::::
gauges.

::::
Both

:::::
types

:::
are

::::
with

::
an

:::::
Alter

::::
wind

::::::
shield.

::::
The

met.no /). The data are in netCDF file format and
:::::::
manages

:::
the

:::::::::
calibration

::
of

::::::
gauges

::::
and

::::
takes

:::::::::
necessary

::::::::
measures

::
to

::::::
reduce

::
the

::::::::::
uncertainty

:::
that

:::::
arises

:::::
when

:::::
solid

::::::::::
precipitation

:::
has

:::
to

::
be

:::::::::
measured.

::::::
Further,

::::
data

:::::
from

::
the

:::::::
gauges

::
are

:::::
gone

:::::::
through

::::::
routine

::::::
quality

::::::
control

::::::
before

:::::
being

:::::::
released

::
to

:::
the

::::::
public.

:::::::::
However, the gridded array is in Universal Transverse Mercator (UTM)10

33 projected coordinate system. The hourly precipitation measurements from precipitation gauges are downloaded from the

met. no’s web portal for accessing meteorological data for Norway, “eKlima” (http://eklima.met.no ). Within the study area,

88 precipitation gauges are in operation with hourly observation, however only 68 gauges are available during the period from

2011 to 2015.
:::
does

:::
not

:::
do

::::
wind

:::::::
induced

:::::::::
undercatch

:::::::::
correction

:::
for

:::
the

::::::::::
precipitation

:::::
data.

The precipitation gauges’ locations (68 gauges) used in the study are shown in Fig. 1 overlaid on the topography of the study15

area. As shown in Fig. 1, precipitation gauges are not evenly distributed. The urban areas (Oslo, Drammen, Lillestrom and

Tonsberg) are densely gauged (Nearly 0.25 gauges/km2 near Oslo and approximately 0.1 gauges/km2 near other major cities)

and rest of the area is sparsely gauged with hourly observation. Further, the precipitation data from precipitation gauges come

with varying length because some gauges are
::::
have

::::
been

:
in operation since 2013 or later and some gauges have a number of

missing values during their operation. However, we used data from all available precipitation gauges for this study.20

Some of the gauging stations are equipped with hourly temperature and other meteorological measurements (including wind

speed and relative humidity). For this study, we used gridded hourly temperature and wind speed dataset with 1 km × 1 km

grid resolution. The data are available from the Norwegian meteorological institute. The gridded wind speed data is available

until May 2015. Even though, radar precipitation rates

::
In

:::::::
addition

::
to

::::::::::
precipitation

:
and air temperature dataare available from January 2011 to date, due to the unavailability of wind25

speed data for catch correction of gauge precipitation , the study period is limited to four years (January 2011 - May 2015).

More details on the procedure adopted for catch correction are provided in the next sub-section,
:::::

wind
:::::
speed

::::
and

:::::::
relative

:::::::
humidity

::::
data

:::::
were

::::
also

:::::::
required

:::
for

:::
this

::::::
study.

:::
The

:::::
wind

:::::
speed

::::
was

::::
used

:::
for

::::::::::
undercatch

::::::::
correction

:::
of

:::::::::::
precipitation

::::::
gauges

:::
and

::::::
relative

::::::::
humidity

::::
was

::::
used

::
in

:::
the

::::::::::
precipitation

:::::
phase

:::::::::::
computation.

:::::
Table

::
1

::::::::
describes

:::
the

::::::
datasets

:::::
used

::
in

:::
the

::::
study

::::
and

:::
the

:::::
source

::::
and

:::
the

:::::
spatial

::::::::::
distribution

::
of

::::
each

::::::
dataset.30

The gridded temperature dataset for Norway is spatially interpolated based on the historical air temperature observations

from Norwegian meteorological stations . The interpolation is based on Optimal Interpolationin a Bayesian setting

(Lussana et al., 2016)

:::
The

::::::
hourly

::::::
gridded

:::
(1

:::
km

:
x
:
1
::::
km)

:::
air

::::::::::
temperature

:::
and

:::::
wind

:::::
speed

::::::
datasets

:::::
were

::::::::
generated

:::
by

::::::
met.no.

::::::::::::::::::
Lussana et al. (2016)

:::::::
spatially

::::::::::
interpolated

:::
the

::::
past

::::::::
observed

:::
air

::::::::::
temperature

:::::::
records

::::
from

:::::::::::::
meteorological

:::::::
stations

::
to

:::::::
develop

:::
the

::::::
hourly

:::::::
gridded35
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Table 1.
:::::::
Different

::::::
datasets

::::
used

::
in

::
the

:::::
study

:::
and

::::
their

:::::
source

:::
and

:::::
spatial

:::::::::
distribution.

Description Gauge precipitation Radar precipitation Air temperature Wind speed Relative humidity

Spatial Distribution Gauge locations Gridded (1 km x 1 km) Gridded (1 km x 1 km) Gridded (1 km x 1 km) Gauge locations

Data Source Gauge Radar Gauge (interpolated) NORA10 and AROME Gauge

::::::::::
temperature

::::::
dataset

:::
for

:::::::
Norway

:::::
using

::::::::
Optimal

:::::::::::
Interpolation. In this three-dimensional spatial interpolation, the elevation

of each grid point is
:::
was

:
obtained from a high-resolution digital elevation model and the real elevation of stations stored

as metadata
::::
were

:
used. The resulted

:::::::
resulting

:
interpolated air temperature is on the regular grid which is 2 m above the

ground terrain elevation. For further details of the interpolation method, readers are referred to the Norwegian meteorological

institute’
::::::
met.no’s report by Lussana et al. (2016). This gridded temperature data with an hourly temporal resolution was used5

to derive temperature time series for the precipitation gauge locations.

The gridded hourly wind speed datasets are derived from a statistical downscaling of a
:::::
met.no

:::::::
derived

::
an

::::::
hourly

:::::::
gridded

::::
wind

:::::
speed

:::::::
dataset

:::
by

::::::::
statistical

:::::::::::
downscaling

:::::
from

:::
the

:
10 km numerical model datasetonto a 1 km grid (same grid as

the hourly gridded air temperature). Gridded
::
km

:::::::::
numerical

:::::::
dataset,

::::::::::
“NORA10”

::::::::::::::::::
(Reistad et al., 2011)

::::::::
combined

:::::
with

::::
data

::::
from

:::
the

:::::::::
“AROME”

:::
2.5

:::
km

:::::::::
numerical

::::::
dataset

:::::::::::::::::
(Müller et al., 2017)

:::::
using

:
a
:::::
local

:::::::
quantile

::::::::
regression

::::::::
(Lussana

:::::
2018,

::::::::
personal10

::::::::::::::
communication).

:::
The

::::::::::::
1 km × 1 km

::::
grid

::
of

:::
the

::::
wind

:::::
speed

::::
data

:
is
:::
the

:::::
same

::
as

::
for

:::::::::::
temperature.

::::
Even

:::::::
though,

::::
radar

:::::::::::
precipitation

::::
rates

:::
and

:::
air

::::::::::
temperature

:::
data

:::
are

::::::::
available

::::
from

:::::::
January

::::
2011

::
to

:::::
date,

::
the

::::::::::::
unavailability

::
of wind speed data was used to correct

wind induced under-catch of precipitation gauges.
::
for

::::::::::
undercatch

::::::::
correction

:::::
after

::::
2015

::::::
limited

:::
the

:::::
study

::::::
period

::
to

::::
four

:::::
years

:::::::
(January

::::
2011

::
-
::::
May

:::::
2015).

:

Hourly measured relative humidity data is available at 25 gauge
::
are

::::::::
available

::
at

::::::::
25-gauge locations within the study area.15

Relative humidity data together with air temperature were used to compute the phase of the precipitation at gauge level in this

study. Spatial variation of relative humidity is relatively small within 50 - 100 km distances and hence simple interpolation

techniques can be used (Beek, 1991). It can be noted that nearest gauge with relative humidity measurement is less than 50 km

for most gauges in this study . In this study,
:::
and

::::
data

::::
from

:::
the

::::::
nearest

:::::
gauge

::::
was

::::
used for gauge locations with missing relative

humidity data, relative humidity data available from nearest gauge were used.
::::::
without

::::::::
humidity

::::::::::::
measurements.

:
20

:::
The

:::::::
datasets

:::::
were

::::::::::
downloaded

::::
and

:::::::
prepared

:::
for

:::
the

::::::
study

::
as

:::::::
follows.

::
A

::::::
spatial

::::::
subset

::
of

::::::
hourly

:::::
radar

:::::::::::
precipitation

::::
rate,

::
air

::::::::::
temperature

::::
and

::::
wind

:::::
speed

::::
data

::::
with

:::::::::::::
1 km × 1 km

::::::
spatial

::::::::
resolution

:::
for

:::
the

:::::
study

::::
area

::::
was

::::::::::
downloaded

::::
from

::::::::
met.no’s

::::::::
“thredds”

:::::
server

::::::::::::::::::::
(http://thredds.met.no/).

:::
The

::::
data

:::
are

::
in

:::::::
netCDF

:::
file

::::::
format

::
in

:::::::::
UTM33N

:::::::::
projection.

:::
The

::::::
hourly

:::::::::::
precipitation

:::::::::::
measurements

:::::
from

::
68

:::::::::::
precipitation

::::::
gauges

:::
and

::::::
relative

::::::::
humidity

::::::::::::
measurements

::
of

:::
25

::::::
gauges

::::
were

::::::::::
downloaded

::::
from

::::::::
met.no’s

:::
web

:::::
portal

:::
for

::::::::
accessing

:::::::::::::
meteorological

::::
data

:::
for

:::::::
Norway,

::::::::
“eKlima”

:::::::::::::::::::
(http://eklima.met.no).25

As precipitation gauge locations and radar precipitation rate grids are in the same UTM33
:::::::
UTM33N

:
coordinate system, they

were simply overlaid and the radar pixel of 1 km2 overlapping each precipitation gauge was located. One location near Oslo

has three precipitation gauges within a 1 km × 1 km pixel. Except for that, all pixels consist of a single gauge. The pixel

value (
::::
radar precipitation rate) for each hour was extracted and continuous hourly time series of radar precipitation rates for

11



all gauges were generated.
::::::::
Similarly,

::::
time

:::::
series

::
of

:::
air

::::::::::
temperature

::::
and

::::
wind

:::::
speed

::
at

::::::
gauge

:::::::
locations

:::::
were

::::::
derived

:::::
from

:::
the

::::::
gridded

::::::::::
temperature

::::
and

::::
wind

:::::
speed

::::
data

::::::::::
respectively.

:

The precipitation intensities in the study area (high latitudes) is relatively low. An analysis of statistical properties of pre-

cipitation rates in mid Norway showed that intensities less than 1.76 mmh−1 contributes to 50 % of the total precipitation

volume while less than 6 mmh−1 contributes to 88 % (Engeland et al., 2014). Further, the same study found that precipitation5

intensities below 0.1 mmh−1 contributes little to the total precipitation and might be treated as zero precipitation.
:
In

::::::::
addition,

::
an

:::::::
analysis

::
of

:::
the

::::
data

::::
used

:::
in

:::
this

:::::
study

:::::::
showed

:::
that

:::::::::
intensities

:::::::
between

::::::::::::
0.05 mmh−1

:::
and

:::::::::::
0.1 mmh−1

:::
are

::::::
nearly

::
10

::
%

:::
of

::
the

:::::
total

:::
data

::::::
above

::::::::::::
0.05 mmh−1. Timesteps with gauge precipitation or radar precipitation rate less than 0.1 mmh−1 were

therefore removed in this study. Finally, an observed dataset of hourly gauge precipitation and corresponding radar precipita-

tion rate and air temperature for those hourly timesteps were prepared for all precipitation gauge locations. The length of the10

dataset
:::::::
(number

::
of

:::::::::::
gauge-hours)

:
at each gauge location used in this study is shown with the size of the circles in Fig. 1.

:
It
::::
can

::
be

:::::
noted

:::
that

::::::
nearly

::::::
103000

::::
total

:::::::::::
gauge-hours

::::
were

::::
used

:::
for

:::
the

:::::
study.

:

2.3 Catch correction for precipitation gauges

Accuracy of precipitation gauge measurement is essential to achieve better results from water balance calculations, hydrological

modelling and calibration of remote sensing algorithms. Solid precipitation exhibits significant under-catch in windy condi-15

tions. Consideration of catch errors
:::::::::
undercatch

:
is more important in high latitude Nordic and mountainous regions due to large

catch errors for snow.
:::
high

:::::
wind

:::::::::
conditions.

::
A Field study in Norway showed that precipitation gauges, even with wind shield,

catch 80 % of true precipitation at wind speeds of 2 m s−1, 40 % at 5 m s−1, and only 20 % at 7 m s−1 for solid precipitation at

temperatures equal or below−2◦ C (Wolff et al. , 2015).
:::::::::::::::
(Wolff et al., 2015).

:
As this study uses gauge observation as a ground

observed truth, corrected gauge observation is required for a reliable outcome from the investigation.20

We corrected gauge precipitation for wind induced under catch
:::::::::
undercatch by using the Nordic precipitation correction

model (Førland et al., 1996). The Nordic model classifies the precipitation phase using air temperature and uses different

equations for solid and liquid precipitation and
:
a average value of the two equations was

:
is
:
used for mixed precipitation.

The correction equations use wind speed and air temperature at each gauge location. As mentioned above, gridded hourly
::
To

:::::
verify

:::::::
whether

:::
the

:::::::
gridded wind speed data was used for aerodynamic correction

:::
used

:::
in

:::
this

:::::
study

::::::
would

::::::
provide

::
a
:::::::
realistic25

:::::::::
correction,

::
we

:::::::::
compared

:
it
::::
with

:::
the

::::::::
corrected

:::::::::::
precipitation

:::::
using

::::::::
measured

::::
wind

:::::
speed

::
at

::
15

::::::
gauge

:::::::
locations. It was found that

correlation between the corrected precipitation by using measured wind speed data (15-gauge locations) and gridded data are

over 0.97 for all those 15 gauge locations. Based on the catch error
:::::::::
undercatch computations in this study, the mean correction

factor of hourly precipitation (corrected precipitation/observed precipitation) is 1.61 for solid and 1.14 for liquid precipitation

while median are 1.53 and 1.11 for solid and liquid precipitation respectively. Corrected gauge precipitation was used as true30

observed

12



2.3
:::::::::::

Methodology

2.3.1 Radar precipitation estimation

:::
The

::::::::
proposed

:::::
radar

:::::::::::
precipitation

:::::::::
estimation

::::::::
algorithm

:::::::
consists

::
of

::::
two

:::::
steps.

::::
The

::::
first

:::
step

:::::::::
quantifies

:::
the

::::::
partial

::::::::::
dependence

::
of

::::::::::
precipitation

:::
on

:::::
radar

:::::::::::
precipitation

:::
rate

::::
and

:::::::
incident

:::
air

:::::::::::
temperature.

:::
The

:::::::
second

:::
step

:::::
then

::::
uses

:::
the

::::::::
identified

:::::::::
predictors

::
in

:
a
:::::::::::::
non-parametric

::::::
setting

::
to

:::::::
estimate

::::
the

::::::::::
precipitation

::::::::
response.

::::::
Gauge

:::::::::::
precipitation

::
is

::::
used

:::
as

:
a
:::::::
ground

::::::::
reference

::
or

::::
true5

precipitation in this study.

3 Results and Discussion

The performance of nonparametric radar precipitation estimation using air temperature as an additional covariate is presented

in this section. The bivariate model is compared with the bench mark of the univariate nonparametric model where radar

precipitation is used as the sole predictor. We tested the proposed method for a number of criteria and the results are presented10

below
:::
The

:::::::::
conditional

:::::::::
estimation

::
of

:::::::::::
precipitation

:::::
using

:::
the

:::
two

:::::::::
covariates

:::
can

:::
be

::::::::
described

::
as

:::::::
follows:

Rest(t)|
[
R(t),T (t)

]
::::::::::::::::

(1)

::::
Here,

:::::::::
(Rest(t))::

is
:::
the

::::::::
estimated

:::::::
ground

:::::::::::
precipitation

::::
from

::
a
:::::
given

::::
pair

::
of

:::::
radar

:::::::::::
precipitation

::::
rate

::::::
(R(t))

::::
and

:::::::
incident

:::
air

::::::::::
temperature

:::::
(T (t))

::::::
values

::
at

:
a
:::::
given

:::::::::::
geographical

:::::::
location

::
in

:::
the

::::::::::::::
two-dimensional

:::::
space

::
(x,

:::
y)

:::
and

:::::
time,

:
t.

:::
The

:::::::::::
conditional

::::::::::
estimation

:::
in

:::::
Eq.

::::
(1)

:::::
uses

:::::
two

::::::::::
covariates,

:::
in
:::::::::

contrast
:::

to
::::::::::::::::::::

Hasan et al. (2016a, b)
:::::
where

:::
a15

::::::::::::
nonparametric

::::::
kernel

::::::::::
regression

::::::::
estimator

::::::
using

:::
a

::::::
single

::::::::
covariate

::::::
(R(t))

:::::
was

::::::::
adopted.

::::::::
Readers

::::
are

::::::::
referred

:::
to

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mehrotra and Sharma, 2006; Sharma and Mehrotra, 2014; Sharma et al., 2016)

:::
for

:::::::
further

::::::
details

::::
on

::::
the

:::::::::::::
nonparametric

::::::::
modelling

::::::::::
framework

:::::
used

::
in

::::
this

::::::
work.

:::::
This

:::::
study

::::
uses

::::
the

::::::::
k-nearest

::::::::::
neighbour

::::::
(k-nn)

:::::::::
regression

::::::::
estimator

:::
as

::::
the

::::::::::::
nonparametric

::::::::
predictive

::::::
model.

::::
This

::::::
model

:::
can

::
be

:::::::::
expressed

::
as:

:

E
(
Rest(t)|

[
R(t),T (t)

])
=

K∑
k=1

gk

k

K∑
j=1

1

j
::::::::::::::::::::::::::::::

(2)20

:::::
Where

::
k
:::::::
denotes

:::
the

:::::::
number

:::
of

:::::::
observed

:::::
pairs

::
of
:::::

radar
:::::::::::

precipitation
::::
rate

::::
and

::
air

:::::::::::
temperature

:::::::::
considered

::::::::
“similar”

:::
to

:::
the

::::::
current

:::::::::::
conditioning

:::::
vector

::::::
[R,T ].

:::::::::
Similarity

::::
here

::
is
:::::::

defined
:::
on

:::
the

:::::
basis

::
of

::
a

::::::::
weighted

::::::::
Euclidean

::::::::
distance

:::
that

:::
is

::::::
further

::::::::
explained

::::::
below.

::::
E(.)

::::::
denotes

:::
the

::::::::::
expectation

::::::::
operator,

::
in

:::
the

:::::::
absence

::
of

:::::
which

:::
the

::::::::::
uncertainty

:::::
about

:::
the

::::::::
expected

::::
value

::::
can

::
be

:::::::::
computed.

::::
The

::::
term

:::
gk :::::::::

represents
:::
the

::::::::
observed

:::::
gauge

:::::::::::
precipitation

::::::::::::
corresponding

::
to

::::
kth

::::::::
neighbour

:::
of

:::
the

:::::::::::
conditioning

:::::
vector.

:::
K

:
is
::
a
::::::::
maximum

:::::::
number

::
of

:::::::::
neighbours

::::::::::
permissible

:::
and

::
it

::
is

::
an

::::::::
important

:::::::::
parameter

::
in

::
the

::::::::
k-nearest

:::::::::
neighbour

:::::::
method.25

::
In

:::
the

::::::
present

:::::
study,

::
K

::
is

:::::
taken

::
as

:::::
equal

::
to

:::
the

:::::
square

::::
root

::
of

:::
the

::::::
sample

::::
size

::
as

:::::::::
suggested

::
by

::::::::::::::::::::
Lall and Sharma (1996).

:
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:::
The

:::::
order

::
of

::::
each

:::::::::
neighbour

::
is

:::::::::
ascertained

:::::
based

:::
on

:
a
::::::::
weighted

::::::::
Euclidean

:::::::
distance

:::::::
metric,

::::::
written

::
as:

:

ξ2i =

(
βR(R− ri)

sR

)2

+

(
βT (T − ti)

sT

)2

:::::::::::::::::::::::::::::::::

(3)

::::
Here,

:::
ξi :

is
::::

the
:::::::
distance

::
of

:::
the

:::::::::::
conditioning

:::::
vector

::::::
[R,T ]

::
to

:::
the

:::
ith

::::
data

::::
point

::::::
(ri, ti):::

in
:
a
::::::::::::::
two-dimensional

::::::
space.

::
sR::::

and
:::
sT

::
are

:::::::
sample

:::::::
standard

:::::::::
deviations

::
of

::::
the

::::
radar

:::::::::::
precipitation

::::
rate

:::
and

:::::::::::
temperature,

::::
and

:::
βR :::

and
:::
βT:::

are
::::::

partial
:::::::
weights

::::::::
denoting

::
the

:::::::
relative

:::::::::
importance

::::
each

:::::::::::
conditioning

:::::::
variable

:::
has

::
on

:::
the

:::::::
ensuing

:::::::
response

::::::::::
respectively

:::::::::::::::::::::::::
(Sharma and Mehrotra, 2014).

::::
The5

::::::
sample

:::::::
standard

:::::::::
deviations

:::
are

::::
used

:::
to

:::::::::
standardise

::::
the

:::::::
predictor

::::::::
variables

:::
to

:::::
make

::::
them

:::::::::::
independent

::
of

::::
their

::::::::::::
measurement

::::
scale,

:::::
while

:::
the

::::::
partial

:::::::
weights

:::::
allow

::::::::::
elimination

::
of

:
a
::::::::
predictor

:::::::
variable

::
if

:::
not

:::::::
relevant

::
to

:::
the

::::::::
prediction

:::::
being

::::::
made.

:::::::
Readers

::
are

:::::::
referred

::
to
:::::::::::::::::::::::::

Sharma and Mehrotra (2014)
::
for

:::
the

::::::::::::
informational

:::::
theory

::::::::
rationale

:::
and

::::::
partial

:::::::::::
informational

::::::::::
correlation

:::::
(PIC)

:::
that

::::::
allows

:::
for

:::
the

::::::::
estimation

:::
of

::::
these

::::::
partial

:::::::
weights,

::::
and

:::
the

:::::::
NPRED,

::
R

:::::::
package

::::::::::::::::::
((Sharma et al., 2016)

:
,
:::::::::::
downloadable

:::::
from

::::::::::::::::::::::::::::::::::::::::::::::::::
http://www.hydrology.unsw.edu.au/download/software/npred)

:::
that

:::::::
enables

::::
their

:::::::::
estimation

::
for

::::
any

::::::
sample

::::
data

:::
set.10

2.3.2 Model evaluation criteria

:
A
::::::::

number
::::

of
:::::::

metrics
::::::

have
:::::

been
::::::

used
:::

in
:::::::::

literature
:::

to
:::::::::

evaluate
::::

and
:::::::::

compare
::::

the
::::::::::::

performance
:::

of
::::::::

models

::::::::::::::::::::::::::::::::::
(Hasan et al., 2016a; Villarini et al., 2008).

::::
The

:::::
root

:::::
mean

:::::::
square

:::::
error

::::::::
(RMSE)

::
is

::::::::::
commonly

:::::
used

::
as

::
a
::::::::::::

performance

:::::::
measure

:::
and

::
it
::::::::

provides
:::
the

:::::::
overall

::::
skill

:::::::
measure

:::
of

::
a

::::::::
predictive

::::::
model

::::::::::::::::::
(Hasan et al., 2016a).

::::
We

::::
used

::::::::
primarily

:::::::
RMSE

::
as

::
a

::::::
quality

::::::
metric

:::
to

:::::::
evaluate

::::
the

:::::::::::
performance

:::
of

:::
the

::::::::
proposed

:::::::
model.

:::::
Mean

::::::::
absolute

:::::
error

:::::::
(MAE)

::::
and

:::::
mean

:::::
error15

::::
(ME)

:::::
were

:::::
used

:::
as

:::::::::
additional

:::::::
quality

:::::::
metrics.

::::::::::
Definition

::
of

::::::::
RMSE,

:::::
MAE

::::
and

::::
ME

::::
can

:::
be

::::::
found

:::
in

:::
the

:::::::::
literature

::::::::::::::::::::::::::::::::::::::
(e.g., Hasan et al., 2016a; Villarini et al., 2008).

:

2.3.3 Determination of phase

::
In

::::
order

::
to

:::::
assess

:::
the

:::::::::
usefulness

::
of

:::
the

::::::::
proposed

::::::::
approach,

:
it
::::
was

::::::::
compared

::::::
against

::
an

::::::::
alternate

:::::::
approach

::::::
where

::
the

:::::::::::
precipitation

:::::
phase

:::
was

::::
first

::::::::::
ascertained,

:::::::
followed

:::
by

:::
the

:::::::::
application

:::
of

:::::::
different

::::
Z-R

::::::::::
relationships

:::
for

:::::
snow

:::
and

:::::
rain.

:::
For

:::
the

:::::::::::
classification20

::
of

::::::::::
precipitation

:::::
phase

::
at

:::::
gauge

:::::
level,

:::
we

:::::::
adopted

:::
the

::::::
method

::::
from

:::::::
Finnish

::::::::::::
Meteorological

:::::::
Institute

::::::
which

::
is

::::
used

:::::::::::
operationally

::
in

::::::
Finland

:::
for

:::::
phase

:::::::::::
classification

::::::::::::::::::::::::::::::::::::
(Koistinen et al., 2004; Saltikoff et al., 2015)

:
:

Plp =
1

1+ e22−2.7T−0.2H
::::::::::::::::::::

(4)

::::
Here,

::::
Plp ::::::::

represents
:::
the

::::::::::
probability

::
of

:::::
liquid

:::::::::::
precipitation,

::::::::
T (◦ C)

:::
the

::
air

:::::::::::
temperature,

:::
and

::
H
::::
(%)

:::
the

::::::
relative

::::::::
humidity

::
at
::
a

:::::
height

::
of

::
2

::
m.

::
If
:::::::::
Plp < 0.2,

:::::::::::
precipitation

::
is

:::::::::
considered

::
as

:::::
solid

:::
and

::
if

:::::::::
Plp > 0.8,

::::::::::
precipitation

::
is
:::::::::
considered

:::
as

:::::
liquid.

::::
For

:::
the25

:::
case

:::
of

::::::::::::::
0.2≤ Plp ≤ 0.8,

:::::::::::
precipitation

::
is

:::::::::
considered

::
as

::::::
mixed

::::::::::::::::::::::::::::::::::::
(Koistinen et al., 2004; Saltikoff et al., 2015).

:
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3
::::::
Results

3.1 Partial weight of predictors

For each precipitation gauge location, we estimated the partial weights associated with radar precipitation rate and incident air

temperature using the observed hourly radar precipitation rate and air temperature and the corresponding gauge precipitation

data.5
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Figure 2.
::

The
:
Percentage of precipitation gauge locations against estimated partial weight of radar precipitation rate (βR) at those gauge

locations and the mean partial weight (red dash line) for gauge locations (68 gauges) in the study area. Partial weights provide a measure of

relative importance of predictor variables on the response (refer Eq. (3)) and the summation of partial weights (βR +βT ) is equal to 1.

Figure 2 shows the histogram of partial weight of radar precipitation rate (βR) computed for
:::
the 68 precipitation gauge

locations in the study areaof 50 km radius from the Radar station as shown in Fig. 1.
:
. It is noted that the summation of partial

weights of radar precipitation rate (βR) and air temperature (βT ) is scaled to 1. Hence, the partial weight associated with air

temperature (βT ) is equal to 1−βR. Looking at Fig. 2, almost 87 % of the gauge locations resulted in non-zero partial weight

for air temperature (βT > 0). In these locations, radar precipitation estimation partially depends on air temperature. It can be10

seen that partial weight of radar precipitation rate (βR) is equal to 1 for nearly 13 % of the gauge locations and the partial

weight associated with
::
air temperature (βT ) is therefore zero. There, the bivariate problem collapsed into a univariate problem

with radar precipitation rate as a single predictor.

Table 2 shows the summary statistics of computed partial weights among the precipitation gauge locations in the study area.

It can be seen that the partial weight associated with air temperature is in the range of mean +/− 0.1 for more than 70 %15
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Table 2. Summary statistics of computed partial weights for radar precipitation rate and air temperature in the study area.

Partial Weight Mean 1st Quartile 3rd Quartile 15th Percentile 85th Percentile

Radar precipitation rate (βR) 0.68 0.60 0.73 0.57 0.79

Air temperature (βT ) 0.32 0.40 0.27 0.43 0.21

of gauge locations. The gauge locations which resulted in associated partial weight for air temperature (βT > 0) are spread

throughout the study area. However, we have not found a clear pattern of spatial variation in the estimated partial weightsat

gauge locations within the study area.

3.2 Performance of k-nn prediction model

The k-nearest neighbour regression based estimator was used to predict
::::::
estimate

:
precipitation at each gauge location. The5

observed dataset and the computed partial weights of predictors were used with the NPRED k-nn regression tool to specify

the model
:::::::
proposed

::::::
model

:::::
with

::::
radar

:::::::::::
precipitation

::::
rate

::::
and

::
air

:::::::::::
temperature

::
as

::::
two

::::::::
predictors

:::::::::
(knn-RT). For comparison, a

reference model using the k-nn regression estimator but
:::
with

:::::
radar

::::::::::
precipitation

::::
rate

::
as a single predictor variable (hourly radar

precipitation rate
:::::
knn-R) was also developed.

We calculated the k-nn regression estimate of expected response by using the leave-one-out cross-validation (LOOCV)10

procedure, whereby leaving out one observed response value (gauge precipitation) from the regression and estimating the

expected response value for that observed response. This ensures the modelled outcomes represent the results that will be

obtained using a new or independent data set. The improvement in radar precipitation estimation with the use of air temperature

as an additional covariate is measured as a percentage reduction in RMSE compared to the reference model.

All the gauge locations with an associated partial weight of air temperature (βT > 0) show an improvement in radar precip-15

itation estimation. The mean improvement in RMSE is 9 % while the median is 7.5 % and it is
:::
and

:::
the

:::::::::::
improvement

::
is

:
more

than 5 % for 80 % of the gauge locations where air temperature was identified as an additional covariate
::
βT::

is
:::::::

greater
::::
than

:::
zero. It can be noted that partial weight for each gauge location was calculated independently using the data from that specific

location and then the RMSE was estimated by LOOCV estimated using the entire data at that gauge location. However, a split

sample test was done to verify the results, where two-thirds of the data were used to estimate partial weight and one-third of20

the data were used to estimate RMSE for each gauge location. The split sample test gave similar resultsas before.

We also examined the spatial cross-validation of computed partial weights. First, a single average partial weight was cal-

culated by taking the arithmetic mean of partial weights of
:::
the

::::::
partial

::::::
weights

:::
for

:
all gauge locations which were computed

independently at each gauge location and presented in Fig. 2 and Table 2. This single average value of partial weight (0.68,

0.32) was used with the predictive models to estimate radar precipitation and the improvement in RMSE
:::
was estimated. Then,25

for each gauge location, an average partial weight was calculated by leaving that gauge out and adopting the mean partial weight

from five nearest gauges. The k-nn prediction model was again re-specified for each gauge location using the computed average
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partial weight of
:::
the 5 nearest gauges. The results of percentage improvement in RMSE

:::::::
obtained

::
by

::::
this

::::::
method

:
showed a

strong resemblance to the results with a single mean value of partial weightfor the study area. It is possible, therefore, that a

regional or nearest neighbour average value of partial weight can be used for ungauged locations. As with the partial weight,

::
the

:
improvement in RMSE at gauge locations does not clearly show any systematic

::::
show

::::
any pattern of spatial variation.

Based on above examinations,
:::
the spatial variation of station specific partial weight

::::::
weights

:
can be discarded and a single5

average value adopted. Hence, in the results that follow, we use a single average partial weight computed for the study area.

As shown in Table 2, the mean value of partial weight for
:::
the radar precipitation rate is 0.68 and air temperature is 0.32. The

::::
0.32

::
for

:::
air

:::::::::::
temperature.

:::
The

::::::::
proposed

:
k-nn regression prediction model with radar rain

::::::::::
precipitation

:
rate and air temperature

as two predictors at each gauge location was specified with this single average partial weight.

50km radar range

Hurum Radar

PW= (0.68, 0.32) 
RMSE Improvement (%)

> 15
10−15
5−10
1−5

Figure 3. Percentage
:::
The

:::::::::
percentage of improvement in RMSE at each gauge locations (colour scale) for predictive model with radar

precipitation rate and air temperature as two predictors with the singe average partial weight (βR = 0.68 and βT = 0.32) compared to radar

precipitation rate as a single predictorand length of the data (circle size), which are used in the predictive model, overlaid on the coastline of

the study area.

Figure 3 shows the percentage improvement in RMSE for the proposed model with radar precipitation and air temperature10

as two predictors with the single average partial weight of (0.68, 0.32) compared to the reference modelwith radar precipitation

rate as a single predictor. The precipitation gauges’ locations are shown by circles and their sizes are proportional to the length

of the data used in the nonparametric predictive models at each gauge location. A
:
a filled discrete colour scale is used to show

percentage improvement in RMSE. All the gauge locations show improvement in RMSE with the use of temperature as an

additional covariate comparing with
::::::::
compared

::
to

:
the reference modelof radar precipitation as a single predictor. Looking at15

17



0.8

1.0

1.2

1.4

1.6

1.8

R
M

S
E

 /(
m

m
 h

−1
)

(a)

●

●
●●

●

●
●

0.4

0.6

0.8

1.0

M
A

E
 /(

m
m

 h
−1

)

(b)

●●●●●

●●
●
●
●●
●
●

−0.8

−0.6

−0.4

−0.2

0.0

MP knn−R knn−RT
Estimation methods

M
E

 /(
m

m
 h

−1
)

(c)

Figure 4. Bar
:::
Box plot representing three quality metrics (RMSE, MAE and ME)

:::::::
estimated at gauge locations for the original data (MP)

and for the two nonparametric models (knn-R and knn-RT). Here, knn-R denotes the nonparametric model with radar precipitation rate as

a single predictor, while knn-RT denotes the nonparametric model with radar precipitation rate and air temperature as two predictors with

fixed partial weight of (0.68, 0.32).
::
The

:::::
values

::::::
outside

:::::::::
1.5 ∗ IQR

:::
are

:::::::::
represented

::
by

::
the

::::::::
whiskers.

Fig. 3,
::
the

:
majority of gauge locations have a green colour and the improvement is

:::::::
between

:
5 - 10 % on

::
at those locations.

Mean
:::
The

:::::
mean

:
value of improvement is 8.5 %while the median is 7 %. Over 80 % of the gauge locations in the study area

show more than 5 % improvement in RMSE while nearly 15 % show more than 15.0 % improvement. As discussed earlier

and as seen in Fig. 3, this study did not find any pattern of spatial variation in the results. However, this spatial plot clearly

shows that
:::
the

:::::
spatial

::::
plot

::::::
shows the improvement in RMSE with the use of temperature as an additional predictor is spread5

throughout the study area.

In addition to RMSE, we computed MAE and ME for the proposed model and the reference model with radar precipitation as

a single predictor at gauge locations. The above quality metrics were also computed for the original data of radar precipitation

rates for comparison.

Figure 4 shows the
::::::::
summary

::
of computed quality metrics for the two predictive models (knn-R and knn-RT) and the original10

data of radar precipitation rates .
:::::
(MP).

::
A

:::
bar

::::
plot

::::::::::
representing

:::::
these

:::::
three

::::::
quality

::::::
metrics

::
at
:::::
each

::::::::
individual

::::::
gauge

:::::::
location

:
is
::::::::

available
:::

in
:::
the

::::::::::::
supplementary

::::::::
material

:::::::::::::
(Supplementary

::::
Fig.

:::
1).

:
Looking at Fig. 4, the mean error of the original data

(denoted as MP) was negative for almost all gauge locations. This shows the under estimation of radar precipitation compared

to precipitation measured by
:::
the gauges. Both nonparametric predictive models reduce the mean error considerably and bring

it to near zero while they reduce the RMSE and MAE significantly for almost all gauge locations. It can be seen from the15
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Fig. 4 (a) and (b) that the predictive model with radar precipitation as a single predictor
::::::
(knn-R)

:
reduces the RMSE and MAE.

The proposed predictive model with radar precipitation and air temperature as two predictors
::::::::
(knn-RT) further reduces both

RMSE and MAE and improves the radar precipitation estimation for most of the gauge locations.

Although the main focus of this paper is to investigate the benefit of using temperature as an additional covariate in radar

precipitation estimation, the results of the nonparametric radar precipitation estimation in this study are comparable with5

the results of Hasan et al. (2016a), although in a different setting. They tested their nonparametric method of radar rainfall

estimation (radar reflectivity as a single predictor) in Sydney, Australia and they have reported 10 % improvement in RMSE

compared to the traditional parametric Z - R relationship. In our study, k-nearest neighbour nonparametric method with radar

precipitation rate as a single predictor resulted in a mean 6 % reduction in RMSE. The bivariate model with air temperature

as an additional predictor resulted in a mean 14 % reduction in RMSE compared to the original radar precipitation rate data10

derived using a parametric equation (Z = 200R1.6).

The above results demonstrate the usefulness of air temperature as an additional predictor variable in deriving radar precipitation

in cold climates. Some further investigations of when this improvement can be expected to be most are presented next.

3.3 Performance for different threshold intensities

This
:::
The

:
study used the precipitation intensities of radar precipitation and gauge precipitation equal or above 0.1 mmh−1. As15

described in Sect. 2.1
:::
2.2, precipitation intensities are relatively low in this region, consistent with intensities in cold climates.

A data analysis
::
An

:::::::
analysis

::
of

:::
the

::::
data

::::
used

:::
in

:::
this

:::::
study showed that intensities are lower than 0.5 mmh−1 for around 60 %

of the observations and only 5 % of the data have either gauge or radar precipitation rates above 2.0 mmh−1.

To investigate whether very low intensities dominate the results presented earlier, we tested our proposed model for a range

of intensities for both gauge and radar precipitation. Figure 5 shows the box plot of RMSE values estimated at gauge locations20

for threshold intensities 0.1 mmh−1, 0.5 mmh−1 and 2.0 mmh−1. Looking at Fig. 5, the improvement with the use of air

temperature as an additional covariate is still significant for more severe intensities as well
:::
seen

:::::
over

:::
the

:::::::
intensity

:::::::::
threshold.

:::
The

::::::
results

:::
are

:::::::::
statistically

:::::::::
significant

:::
as

:::
the

:::::
RMSE

::::
was

::::::::
estimated

:::::
using

:::::
leave

:::
one

:::
out

:::::
cross

::::::::
validation

:::::::::
(LOOCV)

::::
and

:::
are

:::
not

:::::::
impacted

:::
by

:::
the

:::::::::
complexity

::
of

:::
the

::::::
model

::::
used.

3.4 Variation with Temperature Classes25

For each gauge location, we also estimated partial weights for different temperature classes. Partial informational correlation

:::
The

::::::
Partial

::::::::::::
Informational

::::::::::
Correlation

:::::
(PIC)

:
and hence the partial weight was found to vary with temperature class. For

temperature above
::::::
classes.

:::
For

:::::::::::
temperatures

:::::::
warmer

:::::
than 10◦ C, more than 85 %

::::
most of the gauge locations were esti-

mated as having zero partial weight for air temperature
::::
while

:::::
those

::::::::
locations

:::::::
resulted

::
in

:::::::
non-zero

::::::
partial

::::::
weight

::::::::
(βT > 0)

:::
for

::::::::::
temperatures

::::::
colder

::::
than

::
10◦

::
C. It is therefore likely that radar precipitation estimation depends on air temperature for colder30

climates dominantly. The presence of hail may be the reason for a few precipitation gauge locations still exhibiting non-zero

partial weight for air temperature above 10 C.
::::::
mainly

::
in

:::::
colder

::::::::::::
temperatures.
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Figure 5. Box plot of RMSE (mmh−1) values estimated at gauge locations for the original data (MP) and the two nonparametric mod-

els (knn-R and knn-RT) using data with intensities of radar precipitation rate and gauge precipitation greater than or equal 0.1 mmh−1,

0.5 mmh−1 and 2.0 mmh−1. Mean value of RMSE for each model by red diamond point. Here, knn-R - nonparametric model with radar

precipitation rate as single predictor and knn-RT -nonparametric model with radar precipitation rate and air temperature as two predictors

with the partial weight of (0.68, 0.32).
::::

The
:::::
values

:::::
outside

:::::::::
1.5 ∗ IQR

:::
are

:::::::::
represented

::
by

:::
the

:::::::
whiskers.

Further, we estimated RMSE for the dataset above
::::::
datasets

::::
with

:::::::::::
temperatures

:::::
colder

::::
and

::::::
warmer

::::
than

:
10◦ C for each gauge

location using the
:::::::
proposed

:::::
model

::::
with

:::
the

:
average partial weight (0.68,

:
0.32) and estimated the improvement compared to the

reference modelwith radar precipitation rate as a single predictor. Nearly 70 % of gauge locations still showed improvement in

RMSE
::
the

::::::::
reference

::::::
model.

::::
The

:::::::
proposed

::::::
model

::::::
reduces

:::
the

::::::
RMSE

:::::::::::
significantly

::
for

:::::::::::
temperatures

::::::
colder

:::
than

:::
10◦

::
C; however,

the improvement is insignificant when the air temperature is above
:::::::::::
performance

:
is
::::::

nearly
::
as

:::::
same

::
as

:::
the

::::::::
reference

::::::
model

:::
for5

::::::::::
temperatures

:::::::
warmer

::::
than 10◦

::
C
:::::::::::::
(Supplementary

::::
Fig.

:::
2).

::::
This

:::::
shows

::::
that

:::
the

:::
use

::
of

:::
air

::::::::::
temperature

::
as

::
an

:::::::::
additional

::::::::
covariate

:
is
:::::
most

:::::
useful

:::
for

:::
the

:::::::::::
temperatures

:::::
colder

::::
than

:::
10◦ C.

3.5 Separate parametric equations for rain and snow
:::
and

::::
rain

:
as a benchmark

As we discussed in Sect. ??
:::::::
discussed

::::::
earlier, the switch between a snow and rain Z - R relation is fast becoming a standard

for weather radar operations in cold climates. We compared the proposed nonparametric radar precipitation estimation models10

:::::
model with radar precipitation estimation by using two different parametric Z - R relationships, one for snow and other for rain.

In this study, we used the radar snow equation of Finish Meteorological Institute (Ze = 100S2) while keeping the Marshall

and Palmer equation (Z = 200R1.6) for rain.
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For this investigation, we converted the original radar precipitation rates back to reflectivity using inversion
:::
The

:::::::
analysis

:::::::
reported

::
so

:::
far

::
in

:::
the

:::::
paper

::
is
::::::

based
::
on

:::
the

:::::::::::
accumulated

::::::
hourly

:::::
radar

:::::::::::
precipitation

:::
rate

:::::::
product

::::::::
available

::::
from

:::::::
met.no.

::::
The

::::::::
evaluation

:::::
using

:::::::
separate

:::::::::
parametric

::::::::
equations

:::
for

:::::
snow

:::
and

::::
rain

::
as

:
a
::::::
bench

::::
mark

:::::::
requires

:::::
radar

:::::::::
reflectivity

::::
data

::
to

:::::::::
recompute

::::
radar

:::::::::::
precipitation

:::
rate

:::::
using

:::::::
separate

:::
Z-R

:::::::::::
relationships

:::
for

::::
snow

:::
and

::::
rain.

::::
The

:::::::::
reflectivity

::::
data

::::
used

::
to

::::::
produce

:::
the

:::::::::::
accumulated

:::::
hourly

:::::
radar

:::::::::::
precipitation

::::
rate

::::
(SRI

::::::::
product)

::::
used

::
in
::::

the
:::::
study

:::
are

:::
not

::::::
stored

::
in

:::
the

::::::::::
production

:::::::
process,

:::
and

::::::::
therefore

::::
not5

:::::::
available

::
at

:::::::
met.no.

::
As

:::::::::
mentioned

::::::::::
previously,

:::
the

::::::
hourly

::::::
product

::
is
:::::
based

:::
on

::::::::
corrected

::::::::::
reflectivities

::::
with

::
a
::::
time

::::::::
resolution

:::
of

::
15

:::::::
minutes

::::::
(before

:::::
2013)

::::
and

:::
7.5

:::::::
minutes

:::::
(after

:::::
2013).

::::::
These

:::
are

::::
then

::::::::::
accumulated

:::
to

:::
the

::::
final

:::::
hourly

::::::::
product.

::::::::
However,

:::
the

::::
Plan

:::::::
Position

:::::::
Indicator

:::::
(PPI)

::
of

:::
the

::::::
lowest

::::::::
elevation

::::
beam

:::::
from

::::::
Hurum

:::::
radar

:
is
::::::::
available

::::
from

:::::::
met.no.

::
To

::::
back

::::::::
calculate

::::::::::
reflectivites

::::
with

:::::::
original

:::::
short

::::
time

:::::::::
resolution

:::::
based

:::
on

:::
the

:::::::
available

::::::
hourly

:::::
radar

:::::::::::
precipitation

::::
rate,

::
it

:::
was

::::::::
assumed

:::
that

:::
the

:::::::::::
precipitation

::::::::
intensity

:::::::::
distribution

:::
in

::::
each

::::
hour

::
is

:::
the

:::::
same

:::
for

::::
both

:::
the

::::
SRI

:::
and

:::
the

::::
PPI

:::::::
product,

::::
and10

:::
that

:::
the

::::::
hourly

::::::::::
precipitation

::::
rates

:::::
(SRI)

::::::::
therefore

:::::
could

::
be

:::::::::
distributed

::::::
within

:::
the

::::
hour

::::
using

:::
the

::::::::
intensity

:::::::::
distribution

::
of
:::
the

::::
PPI

::::
data.

::::
This

:::::::::
procedure

::::
then

::::
gives

:::
us

:
a
:::::
series

::
of

:::::::::::
precipitation

::::
rates

:::::
with

:
a
::::
time

:::::::::
resolution

::
of

:::::
either

:::
15

::
or

:::
7.5

:::::::
minutes

:::::::::
depending

::
on

:::
the

::::
year.

::::
The

::::::::
estimated

:::::::::::
precipitation

::::
rates

::::
were

::::
then

:::::::::
converted

::
to

::::::::::
reflectivities

:::::
using

::
an

::::::
inverse

:
of the Marshall and Palmer

equation (R= (Z/200)1/1.6). We estimated also

:::
We

::::::::
estimated

:
the probability of liquid precipitation (Plp) using Eq. (4) in order to classify and hence apply

:::
and

:::::::
applied15

:::
two different Z - R relationships

::
to

:::::::
compute

:::
the

:::::::::::
precipitation

:::
rate

:
according to the precipitation phase. Hourly air temperature

and relative humidity at each gauge location were used in this study for the estimation of
::
to

:::::::
estimate

:::
the

:
probability of liquid

precipitation (Plp). Data were classified as solid or liquid or mixed precipitation using the computed
:::::
hourly value of probability

of liquid precipitation (Plp). The back calculated reflectivity was converted to precipitation rates using
::
the

:
snow equation

(Ze = 100S2) for solid phase and
::
the

:
rain equation (Z = 200R1.6) for liquid phase. A weighted combination of solid and20

liquid was used for mixed precipitation by using the value of Plp as recommended by Koistinen et al. (2004); Saltikoff et al.

(2015).
:::
The

:::::::::::
precipitation

::::
rates

:::::
were

::::
then

:::::::::::
accumulated

::
to

:::::
hourly

:::::
time

:::::::::
resolution.

:::
The

:
Precipitation rates estimated by the two

equations as described above is denoted by FMIMP
::
for

:::
the

::::::
further

:::::::
analysis.

For each gauge location, RMSE was calculated for the estimated radar precipitation rates by two equations (FMIMP).

Here wind
:::::::::
undercatch corrected gauge precipitation was used as a true observed value. RMSE of FMIMP is compared with25

the RMSE of original radar precipitation rates (MP) and the two nonparametric predictive models (knn-R and
::::::::
proposed

::::::::::::
nonparametric

::::::::
predictive

::::::
model

:
(knnRT). Figure 6 shows the box plot comparison of RMSE values in mmh−1 estimated

at gauge locations for entire data and phase classes separately.

Looking at Fig. 6, the use of two equation (FMIMP) with the snow equation for solid and partially for mixed phase reduces

the RMSE for solid and mixed precipitation phase classes and hence the RMSE of entire dataset compared to the original30

precipitation rates estimated by Marshall and Palmer
:::::::
equation (MP). The application of a different equation for snow reduces

the phase dependent bias in the Norwegian radar precipitation estimation. The average reduction in RMSE at gauge locations is

6 % of RMSE value of the original
::::
radar

:
precipitation rates. However, it can be seen in Fig. 6 that the use of different equations

for snow and rain does not reduces
::::::
reduce the RMSE to the level of the nonparametric approach (knn-RT). Comparing FMMP

::::::
FMIMP

:
and knn-RT, there is a further reduction of nearly 10 % in RMSE.35
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Figure 6. Box plot of comparison of RMSE (mm h−1) estimated at gauge locations for the original precipitation rates by Marshall and

Palmer equation (MP) and precipitation rates estimated by different equation for snow and rain (FMIMP) and for the nonparametric model

(knn-RT). RMSE values shown for entire data and separately for solid, mixed and liquid phase classes. Mean value of RMSE for each model

by red diamond point. Here knn-RT - nonparametric model with radar precipitation rate and air temperature as two predictors with the partial

weight of (0.68, 0.32).
::
The

:::::
values

::::::
outside

:::::::::
1.5 ∗ IQR

:::
are

:::::::::
represented

::
by

::
the

::::::::
whiskers.

It

4
:::::::::
Discussion

::
In

:::::
colder

::::::::
climates,

:::
the

:::::
phase

::::::::
dependent

:::::::::::
uncertainties

::
in

::::
radar

:::::::::::
precipitation

:::::::::
estimation

::::
have

::::::::
hampered

:::
the

::::::::
extensive

:::
use

::
of

:::::
radar

::::::::::
precipitation

::
in

:::::::::::
hydrological

::::::::::
applications

:::::::::::::::::::::::::::::::::::::::::
(Berne and Krajewski, 2013; Saltikoff et al., 2015).

:::
To

:::::::
improve

::
the

::::::::::
quantitative

:::::
radar

::::::::::
precipitation

::::::::
estimates

:::
for

::::::::::
hydrological

:::::::::::
applications,

:::
the

:::::
study

:::::::
assessed

:::
the

::::::::
relevance

::
of

:::
air

::::::::::
temperature

::
as

::
an

:::::::::
additional

:::::
factor5

::
in

:::
the

:::::::::::
computation

::
of

:::::
radar

:::::::::::
precipitation

::
in

::::
cold

::::::::
climates.

:::
In

:::
this

::::::
paper,

:::
we

:::::
show

::::
that

:::::
using

::::
near

:::::::
surface

::
air

:::::::::::
temperature

::
as

:
a
:::::::

second
::::::::
predictor

:::::::
variable

::
in

::
a

::::::::::::
nonparametric

::::::::
k-nearest

:::::::::
neighbour

:::::
(k-nn)

:::::::
method

:::::::
reduces

:::
the

::::
root

:::::
mean

:::::::
squared

:::::
error

::::::::::
significantly

:::::::::
compared

::
to

:
a
:::::

k-nn
::::::
model

::::
with

:::::
radar

:::::::::::
precipitation

:::
rate

:::
as

:
a
::::::

single
::::::::
predictor

:::
and

:::
to

:::
the

:::::::
original

::::::
hourly

:::::
radar

::::::::::
precipitation

:::::
rates.

::::::
Despite

:::::
phase

:::::::::
dependent

:::::
bias,

:::::::::::
accumulated

:::::
radar

::::::::::
precipitation

::::
rate

::::::::
products

:::::
(e.g.,

::::::
met.no

:::
and

::::::::
OPERA)

:::::::
derived

:::::
using

::
a10

:::::
single

::::
Z-R

::::::::::
relationship

::::
have

::::
been

:::::::::
distributed

:::
to

:::
end

:::::
users

::::::::::::::::::::::::::::
(Elo, 2012; Michelson et al., 2012)

:
.
::
A

:::
key

::::::::
objective

::
of

:::
the

:::::::
current

::::
study

::
is
::
to

:::::::
improve

:::
the

::::::
hourly

:::::
radar

::::::::::
precipitation

:::::
rates

:::::::
available

::
to

:::
the

::::::
public

::
as

:
a
:::::::
finished

:::::::
product

::::
(SRI

:::::::
product)

:::::
from

::::::
met.no
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:::
that

::::::
covers

:::
the

:::::::
entirety

::
of

::::::::
Norway.

::::::::
However,

:::
the

:::::::
findings

:::::
from

:::
this

:::::
study

::::
can

:::
be

::::::
helpful

:::
not

::::
only

:::
in

:::::::
Norway

:::
but

::::
also

::
in

::
a

::::::
number

::
of

::::::
places

:::::
where

:::::::::::
accumulated

:::::
hourly

:::::::
product

:::::
using

:
a
:::::
single

::
Z

:
-
::
R

::::::::::
relationship

:
is
:::::::
applied.

::
It

:::
can

::
be

:::::
noted

::::
that

:::::::::
reflectivity

:::
data

::::::
(dBZ)

:::::
could

::
be

::::
used

::::::
instead

::
of

:::::
radar

::::::::::
precipitation

::::
rate

::
in

:::
the

:::::::::::
methodology

::::::::
presented

::
in

:::
the

:::::
paper

:
if
::::
such

::::
data

:::
are

::::::::
available

::
as

:::::
shown

:::
by

::::::::::::::::
Hasan et al. (2016a)

:
.

:
A
:::::::::::::

nonparametric
:::::::::
framework

::::
was

:::::
used

:::
for

:::
the

:::::::::::
investigation

::::::
posed

::
in

:::
the

::::::
paper.

::::::
Earlier

:::::::
studies

::::::::::::::::::::
(Hasan et al., 2016a, b)5

:::::::
reported

:::
that

::::::
given

:::
the

::::::::::
availability

::
of

:::::
large

:::::::
amount

::
of

:::::
radar

:::::
data,

::::::::::::
nonparametric

::::::::::
approaches

:::::::
produce

:::::
more

:::::::
reliable

:::::
radar

::::::
rainfall

::::::::
estimates

:::::::::
compared

::
to

::
a

:::::::::
traditional

:::::::::
parametric

::
Z

:
-
::
R
:::::::::::

relationship.
::
In

:::::
these

:::::::
studies,

:::
the

:::::::::::::
nonparametric

:::::
model

:::::
used

::
the

:::::
radar

:::::::::
reflectivity

:::
as

:
a
::::::
single

::::::::
predictor.

::::
This

::
is
:::
the

::::
first

:::::
study

::
to

::::
our

:::::::::
knowledge

::::
that

:::::::::
considered

:::
the

:::
air

::::::::::
temperature

::
as

:::
an

::::::::
additional

::::::::
covariate

::
in

:::
the

:::::
radar

:::::::::::
precipitation

:::::::::
estimation

:::
and

::::
the

::::::::
approach

:::::::
provided

::
a
:::::
clear

:::::::::::
improvement

::
in

:::
the

::::::::::
estimation.

::::::::
However,

:::
the

:::::::::::
improvement

:::
was

:::::::::
significant

:::
for

:::::::::::
temperatures

:::::
colder

::::
than

:::
10◦

::
C.

::::
This

:::::::
appears

::::::
mostly

:::
due

::
to

:::
the

::::::::
different

:::::
phase10

::
of

::::::::::
precipitation

::
in

::::::
colder

:::::::::::
temperatures

::::::::
(including

:::
the

::::::::
presence

::
of

:::::
hail).

:::::
Partial

::::::::::::
informational

::::::::::
correlation

::::::
(PIC)

::::::
based

::::::
partial

:::::::
weights

:::::
were

:::::
used

::::
first

:::
to

::::::
assess

::::
the

::::::
partial

:::::::::::
dependence

:::
of

::::
radar

::::::::::::
precipitation

:::::::::
estimation

::::
on

:::
air

:::::::::::
temperature,

:::::
and

::::
then

::::
the

::::::::
weights

:::::
were

:::::
used

:::::
with

::::
the

::::::::
k-nearest

::::::::::
neighbour

:::::
(k-nn)

:::::::
model.

::
A

::::::
simple

:::::
k-nn

::::::::
approach

:::
is

::
to
::::

use
:::

an
:::::

equal
:::::::

weight
:::
for

::::::::
predictor

:::::::::
variables

::
or

::::::::
weights

::::::::
estimated

::::::
using

:
a
::::::

simple
::::::

linear
:::::::

partial
::::::::::
correlation.

:::::::::::::::::::::::::
Mehrotra and Sharma (2006)

::::
argue

:::::
that

:::
the

:::::::::
approach

:::
of

::::::::
assuming

:::::
both

:::::::::
predictor15

:::::::
variables

::::
are

:::::::
equally

:::::::::
important

::::
can

::::::
result

:::
in

:::::::::
increased

:::::
bias

::::
and

:::::::::
predictive

:::::::::::
uncertainty.

:::::::::
Moreover,

:::::::
earlier

:::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mehrotra and Sharma, 2006; Sharma and Mehrotra, 2014; Sharma et al., 2016)

::::
have

:::::::
shown

::::
that

::::
the

:::::::::
estimated

::::
PIC

:::::
and

::::::
weights

:::::::
collapse

:::
to

::::
what

::::::
would

:::
be

::::::::
estimated

:::::
using

::
a

:::::
linear

:::::::::
regression

:::::
model

::
if
:::
the

:::::::
system

::
is

:::::
linear.

:::
As

:::
the

:::::::
system

::::
here

::
is

::::::::
nonlinear,

:::
the

:::
use

::
of

:::
the

::::
PIC

::
to

:::::::
estimate

::::::
partial

::::::
weights

::::::
seems

::
to

::
be

:::
the

::::
best

::::::::
approach.

::::
The

:::::
study

::::
used

:
a
:::::
single

:::::::
average

::::::
partial

:::::
weight

:::
for

:::
the

:::::
study

:::::
area.

:
If
:::::::
needed,

::
it

:::
can

:::
be

:::::::
possible

::
to

:::
use

:::::::
gridded

:::::
partial

::::::
weight

::::
with

:::
the

::::
k-nn

::::::
model.

:::::::::
However,

:::
we

:::::
found20

:::
that

:::
the

::::
gain

::
in

::::::
RMSE

::
is

:::
not

:::::::::
significant

::
for

:::
the

:::::
effort

::
of

::::::
added

:::::::::
complexity

::
of

::::::::
gridding

:::
the

:::::
partial

:::::::
weights.

:

::::::::
Although

::
the

:::::
main

:::::
focus

::
of

:::
this

:::::
paper

::
is

::
to

:::::::::
investigate

:::
the

::::::
benefit

::
of

:::::
using

::
air

::::::::::
temperature

:::
as

::
an

::::::::
additional

::::::::
covariate

::
in

:::::
radar

::::::::::
precipitation

:::::::::
estimation,

:::
the

::::::
results

::
of
:::

the
:::::::::::::

nonparametric
::::::
method

::
of

:::::
radar

:::::::::::
precipitation

:::::::::
estimation

:::::
found

:::
are

::::::::::
comparable

::::
with

::
the

::::::
results

:::
of

:::::::::::::::::
Hasan et al. (2016a).

:::::
They

:::::
tested

:::::
their

:::::
kernel

::::::
based

::::::::::::
nonparametric

:::::::
method

::
of

:::::
radar

::::::
rainfall

:::::::::
estimation

::::::
(radar

:::::::::
reflectivity

::
as

:
a
::::::
single

::::::::
predictor)

::
in

:::::::
Sydney,

::::::::
Australia

:::
and

:::::::
reported

::
a

::
10

::
%

::::::::::::
improvement

::
in

::::::
RMSE

::::::::
compared

::
to

:::
the

:::::::::
traditional25

:::::::::
parametric

:
Z
::
-
::
R

::::::::::
relationship.

::
In

::::
this

:::::
study,

:::
the

::::::::
k-nearest

:::::::::
neighbour

::::::::::::
nonparametric

:::::::
method

::::
with

:::::
radar

::::::::::
precipitation

::::
rate

::
as

::
a

:::::
single

::::::::
predictor

::::::
resulted

:::
in

:
a
:::::
mean

::::::::
reduction

::
in

::::::
RMSE

::
of

::
6

::
%.

::::
The

::::::::
proposed

:::::::
bivariate

:::::
k-nn

:::::
model

::::
with

:::
air

::::::::::
temperature

::
as

:::
an

::::::::
additional

::::::::
predictor

:::::::
resulted

::
in

:
a
:::::
mean

::::::::
reduction

::
in

::::::
RMSE

::
of

:::
14

::
%

::::::::
compared

::
to

:::
the

:::::::
original

::::
radar

:::::::::::
precipitation

::::
rates

:::::
data.

:::
The

::::
near

:::::::
surface

::
air

:::::::::::
temperature,

::::
also

:::::::
together

::::
with

:::::::
relative

::::::::
humidity

::
or

::::::::
wet-bulb

::::::::::
temperature,

::::
has

::::
been

::::
used

::
to
::::::::

estimate

::
the

:::::::::
dominant

:::::
phase

::
of

:::::::::::
precipitation

::
in

:::
the

:::::::
selection

:::
of

:
Z
::
-
::
R

::::::::::
relationships

::::::::::::::::::::::::::::::::::::::::::
(Koistinen et al., 2004; Saltikoff et al., 2015, 2000)30

:
.
::::::::
Fassnacht

::
et
:::

al.
::::::
(1999)

::::
and

:::::::::
Fassnacht

::
et

:::
al.

::::::
(2001)

:::::::
reported

::::
the

:::
use

:::
of

::::
near

::::::
surface

:::
air

:::::::::::
temperature

::
to

::::::
adjust

:::
the

:::::
radar

::::::::::
precipitation

:::::::::
estimation

::::
and

:::
the

::::::
benefit

::
of

:::
the

::::::::::
adjustment

::
for

:::::::::::
hydrological

:::::::::::
applications.

::::::::
However,

:::::
their

::::::::
approach

:::
was

::
to
::::

use

::
the

:::::::::::
temperature

::
to

:::::::
estimate

:::
the

:::::::::
probability

::
of

:::::
snow

:::
and

:::
use

::::
that

::::::::::
information

:::
for

:::
the

:::::::::
adjustment

::
of

:::::
radar

:::::::::::
precipitation.

:::::::
Further,

::
the

:::::::
method

:::
was

:::::::
limited

::
to

:::::
mixed

:::::::::::
precipitation

::::
only,

:::::
while

:::
the

::::
work

:::::::::
presented

:::
here

::::::
adjusts

:::::::::::
precipitation

::::
rate

::
(it

:::::
could

::
be

::::
rain

::
or

::::
snow

::
or

::
a
::::::
mixture

:::::::
thereof)

:::
by

:::::
using

:::
the

:::::::
k-nearest

:::::::::
neighbour

::::::::
approach

::::
with

::::
near

::::::
surface

:::
air

::::::::::
temperature

::
as

:
a
:::::::::
covariate.35
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:::
The

:::::::::::
performance

::
of

:::
the

::::::::
proposed

::::
k-nn

:::::::
method

::::
with

::::::::::
temperature

::
as

::
a
::::::::
covariate

:::
was

::::::::
assessed

::::::::
primarily

::::
using

::
a
::::
k-nn

::::::
model

::::::
without

::::::::::
temperature

::::
and

::::::
original

:::::
radar

:::::::::::
precipitation

::::
rates

::::::
derived

:::
by

:
a
::::::
single

:
Z
:
-
::
R
::::::::::
relationship

::
as

::::::
bench

::::::
marks.

::
As

:::::
most

::::
cold

::::::
climate

:::::
radar

::::::::
operations

::::
use

:::
two

:::::::
separate

:::::::::
equations

:::
for

::::
snow

::::
and

::::
rain,

:::
the

:::::
study

::::::::
compared

:::
the

:::::::::::::
nonparametric

::::::::
estimates

::::
with

::
the

:::::::::::
precipitation

:::::
rates

::::::::
estimated

:::
by

:::
two

:::::::::
equations.

:::::
First,

::::::::::
reflectivities

:::::
were

::::
back

:::::::::
calculated

::
in

:::::
order

::
to

:::::
apply

::::
two

:::::::::
equations.

:::
For

::::
this,

:::
we

::::
used

:::
PPI

:::::::::::
precipitation

::::
rates

:::
to

::::::::
distribute

:::
the

::::
VPR

::::::::
corrected

::::
SRI

:::::::::::
precipitation

::::
rates

::
by

:::::::::
assuming

::::
both

::::
have

:::::
same5

:::::::
intensity

::::::::::
distribution

:::::
within

:::::
each

::::
hour.

::::::
While

::::
there

::
is
::::::::::
uncertainty

::
in

::::
how

:::::::::
accurately

:::
the

::::::::::
redistributed

::::::::
intensity

:::::::::
distribution

:::
of

:::
SRI

:::::::::
represents

:::
the

::::::
original

:::::::::::
distribution,

:::
this

:::::::
exercise

::
at

::::
least

::::
used

::
a

:::::::
possible

::::::
realistic

:::::::::::
distribution.

::::::::
Secondly,

::
it should be noted

that the phase classification used in this study
::::::::
evaluation is a model-based classification even though it is used operationally.

The estimated phase can differ from actual observed phase at gauge level. Observations from disdrometers can provide a more

accurate phase information at gauge level. However, disdrometers are not available everywhere. Even if a few disdrometers10

were located within the study region, their representativeness in space and time would be limited (Saltikoff et al., 2015).

Further, our phase classification is at gauge level, and represents near surface conditions. The phase of the precipitation can be

different at the elevation where the radar measures the reflectivity. The measurement of phase information

:::
Air

:::::::::::
temperature

::::
can

::::
be

:::::::
lapsed

:::
to

::::
the

::::::
radar

::::::::::::
measurement

:::::::
height

:::
to

:::::::::
estimate

::::
the

::::::
phase

:::
of

:::::::::::::
precipitation.

::::::::::::::::::::::::
Fassnacht et al. (1999, 2001)

::::::
assumed

::::
the

:::::::::::
temperature

:::::
lapse

::::
rate

:::
to

:::
be

:::::
zero

::
in
:::::

their
:::::::

studies
:::::

since
::::::

winter
::::::

lapse
:::::
rates15

:
is
::::::

often
::::
zero

:::
in

::::
mid

:::::::
latitude

::::::
areas.

::::
For

:::
the

:::::::
Nordic

:::::::
region,

:::::::::::::::::::::::
Tveito and Førland (1999)

::::::
showed

::::
that

:::
the

:::::::
vertical

::::::
lapse

:::
rate

::::::
varies

::::
with

::::::
season

::::
and

::::::::
location.

:::::::
Further,

:::::::::::::::::::::::
Tveito and Førland (1999)

::::
found

::::
that

:::::
local

::::::
terrain

::::::::::
conditions

::::
have

:::::::
greater

:::::::
influence

:::
in

:::::
local

:::::::::::
temperature

::::::::
gradient

::::::
during

:::::::
winter.

::::
Due

:::
to

::::
the

::::::::::
occurrence

:::
of

:::::::::
inversions,

::::::
lapse

::::
rate

::::
can

:::::::
deviate

::::::::::
substantially

:::::
from

::::
the

::::::::
standard

::::::::::::::
(−6.5◦ Ckm−1)

:::::::
during

:::
the

:::::::
winter

:::::::
months

::::
and

::
it

::::
can

:::
be

:::
as

::::
low

::
as

::::::::::::::
−1.2◦ Ckm−1

:::::::::::::::::::::::::::::::::::::
(Tveito et al., 2000; Tveito and Førland, 1999)

:
.
::::
The

:::::::::
estimated

:::::::::::
temperature

::
at

:::::
radar

::::::::::::
measurement

::::::
height

::::
and

::::::
hence

::::
the20

:::::::::
probability

::
of

::::::
liquid

:::::
phase

:::::
(Plp)::::

are
::::::::
therefore

::::::
highly

::::::::
uncertain

:::::::::::::::::::::::::::::::::::
(Al-Sakka et al., 2013; Tveito et al., 2000).

::::
We,

:::::::::
therefore,

:::
use

::::
the

:::::::
Finnish

::::::::::::::
Meteorological

:::::::::
Institute’s

:::::::::::
operational

:::::::
method

:::
of

:::::
near

:::::::
surface

::::::
phase

::::::::::
estimation

:::
to

::::::::
classify

::::
the

::::::::::
precipitation

:::
as

:::
the

:::::::
method

:::
of

::::::
choice

:::
for

::::
the

:::::::::
evaluation

:::
as

:::
this

:::::::
method

:::
is

::::
both

:::
in

::::::::::
operational

:::
use

::::
and

:::::::::
developed

::::
for

::
the

:::::::
Nordic

::::
area

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Koistinen and Saltikoff, 1998; Gjertsen and Ødegaard, 2005; Saltikoff et al., 2015)

:
.
::::
The

::::::::::::
measurements

:::
of

:::::
phase

::::::::::
information

:::
at

:::::
radar

::::::::::::
measurement

::::::
height

:
with the use of dual polarized radars can be a useful data source25

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ryzhkov and Zrnic, 1998; Chandrasekar et al., 2013; Al-Sakka et al., 2013) for further investigation.

::::::::
However,

:::::
many

::::::
radars

:::
use

:
a
:::::
single

:::::::
polarity

:::
and

:::::::::
moreover,

::::
even

:::::
from

::::
dual

:::::::
polarised

::::::
radars,

::::
data

:::
on

:::::
phase

::::::::::
information

:::
are

:::
not

::::::
readily

:::::::
available

::
to

::::
end

::::
users

::
to

::::
help

:::::
refine

::::
their

:::::::::
estimation

::::::::::
algorithms.

4.1 Uncorrected gauge precipitation as an observed response

We tested the proposed method with measured gauge precipitation without wind induced catch correction. The
:::
The

:::::
study

::::
used30

::
the

::::::::::
undercatch

:::::::
corrected

:::::::
gauged

::::::::::
precipitation

::
as

::
a

::::::
ground

::::
truth.

:::
We

:::
did

::
a

:::
test

::
on

:
uncorrected gauge precipitation was used there

as an observed response in the model. For this investigation, we used six years of data from 88 precipitation gauges in the study

area. Even though the wind induced catch error is making the observations less reliable ,
::::
data

::::
(not

::::::::
corrected

::
for

:::::
wind

:::::::
induced

:::::::::
undercatch)

::::::
during

:::
an

::::
early

:::::
phase

:::
of the use of temperature as an additional predictor variable is having consistent impact as
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with the results presented earlier using corrected gauge precipitation
::::
study

::::
and

:::::
found

:::
that

:::
air

::::::::::
temperature

:::
as

:
a
::::::::
covariate

::::
lead

::
to

::::::::
improved

::::::
RMSE

::
in

:::::
radar

::::::::::
precipitation

::::::::
estimates

::::
also

::::
with

::::::::::
uncorrected

::::::::::::
precipitation.

:
It
::
is
:::::
often

::::::::::
challenging

::
to

:::
get

:::::::
reliable

::::
wind

:::::
speed

::::::::::::
measurements

:::
for

::
an

::::::::::
operational

:::
real

:::::
time

::::
radar

:::::::::::
precipitation

:::::::::
estimation,

::::
and

:::
this

::::::
finding

:::::::
implies

:::
that

:::
the

:::::::
method

:::
can

:::
also

:::
be

::::
used

::::
with

::::::::::
uncorrected

:::::
gauge

:::::::::::
precipitation

::
to

:::::
adjust

:::
the

:::::
radar

::::::::::
precipitation

:::::
rates.

The purpose of the current study was to improve the quantitative radar precipitation estimates
:::
The

::::::::
improved

:::::::::::
precipitation5

::::
rates

:::::::
obtained

:::::::
through

::::
the

::::::::::::
nonparametric

:::::::::
estimation

:::
of

:::::
radar

::::::::::
precipitation

::::
can

:::
be

:
a
::::

data
::::::

source
:

for hydrological applica-

tions. For this objective, this study assessed the relevance of temperature as an additional factor in the computation of radar

precipitation for cold regions and climates.
:::
The

::::::
spatial

:::::
detail

::
of

:::
the

::::
radar

:::::::::::
precipitation

::::
could

:::::
solve

:::::
issues

::::::
related

::
to

:::::::::::
precipitation

::::::::::::
representativity

:::
for

:::::::::::
hydrological

::::::::
modelling

::::::::::::::::::::::::::::::::::::::::::::::::::
(Smith et al., 2004; Kirchner, 2009; Hailegeorgis et al., 2016).

:::
For

:::::
many

:::::::::::
hydrological

::::::::::
applications,

:::::
short

:::::::
duration

:::::::::::
precipitation

::
is

::::::
needed

::::
and

::::::::
extending

:::
the

:::::
study

::
to

:::::::::
sub-hourly

:::::
time

::::::::
resolution

::::
and

:::::::
multiple

:::::
radar10

:::::
bands

::::
(e.g.,

::
X

:::::
band,

::
S

:::::
band)

:::::
would

:::
be

::
an

:::::::::
interesting

::::::::::
continuation

::
to
::::
this

:::::
work.

5 Conclusions

While parametric phase dependent Z-R relationships adjusted with gauged precipitation have been discussed extensively in

the literature, this is the first investigation to our knowledge that evaluates the use of
:::::
study

::::::
extends

:::::::
current

:::::
work

::::
with

:::
air

temperature as a covariate in the radar precipitation adjustmentand
:
,
::::::
further presents a procedure whereby precipitation can15

be estimated in cold climates. The proposed nonparametric bivariate model was evaluated using different quality metrics and

tested for a number of criteria.
:::::
colder

:::::::
climates.

:

The key findings from this study are the following: The use of air temperature as an additional predictor variable in a

nonparametric model improved the estimation of radar precipitation significantly. While this appears mostly due to the different

phase of precipitation in colder temperatures (including the presence of hail), the proper use of temperature as a covariate can20

assist in better quantification of precipitation when knowledge of precipitation phase is not available. Care must be taken to

use appropriate techniques to estimate precipitation when including temperature as a covariate. In the present study, use was

made of a nonparametric technique which allowed for databased relationships to be formed. When equivalent data (ground

precipitation especially) is not available, parametric equivalents will be needed instead. More work is needed to determine

the best parametric relationship that could be adopted in such a situation. An improvement of 15 % in the root mean squared25

error was noted using the simple nonparametric approach adopted when including
:::::::
obtained

:::::
using

:
a
::::::

simple
:::::::::::::

nonparametric

::::::
method

::::
with

:
air temperature as an additional covariate. More than 80 % of the locations data was available for exhibited clear

improvements in estimates.
::::::
showed

:::::::::::
improvement

:::::
when

::::::::::
temperature

:::
was

:::::
used

::
in

:::
the

::::::::::::
nonparametric

::::::
model.

::::
The

:::::::::::
improvement

:::
was

::::::::::
independent

:::
of

::::::::::
precipitation

::::::::::
intensities.

::::::::
However,

:::
the

::::::::::
temperature

:::::
effect

:::::::
became

::::::::::
insignificant

:::::
when

:::
air

::::::::::
temperature

::::
was

::::::
warmer

::::
than

:::
10◦

:::
C.30

While this study uses data for one weather radar in arriving at its conclusions, preliminary analysis suggests the problems

noted here to be generic. Given the importance of weather radars as a means of precipitation measurement, and their ability

25



to observe in remote regions in a continuous setting, the above finding has considerable implications for ongoing operations

::::
could

:::
be

::::::::
important

:::
for

:::::
using

::::
radar

:::::::::::
precipitation

::::
data

:::
for

::::::::::
hydrological

::::::::::
applications

:::::::::
especially in cold climates.

Code and data availability. Radar precipitation rate data used in the study are available in the Norwegian Meteorological Institute’s (met.no)

thredds server (http://thredds.met.no/thredds/catalog/remotesensingradaraccr/catalog.html). Precipitation observations from precipitation gauges,

other meteorological measurements (wind speed and relative humidity) and gauges’ meta information can be obtained from met.no’s web5

portal “eKlima” (http://eklima.met.no). Access to the web portal is available upon request. Gridded observational hourly air temperature data

and gridded wind speed data are available in the met.no’s thredds server (http://thredds.met.no/thredds/catalog.html). NPRED programming

tool, which is used for computation in the study, is available as R package and it can be downloadable from the following link as follows:

http://www.hydrology.unsw.edu.au/download/software/npred
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