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Abstract. TS1The flow duration curve (FDC) of streamflow
at a specific site has a key role in the knowledge on the distri-
bution and characteristics of streamflow at that site. The FDC
gives information on the water regime, providing information
to optimally manage the water resources of the river. In spite5

of its importance, because of the lack of streamflow gauging
stations, the FDC construction can be a not straightforward
task. In partially gauged basins, FDCs are usually built using
regionalization among the other methods. In this paper we
show that the FDC is not a characteristic of the basin only,10

but of both the basin and the weather. Different weather con-
ditions lead to different FDCs for the same catchment. The
differences can often be significant. Similarly, the FDC built
at a site for a specific period cannot be used to retrieve the
FDC at a different site for the same time window. In this15

paper, we propose a new methodology to estimate FDCs at
partially gauged basins (i.e., target sites) using precipitation
data gauged at another basin (i.e., donor site). The main idea
is that it is possible to retrieve the FDC of a target period of
time using the data gauged during a given donor time period20

for which data are available at both target and donor sites.
To test the methodology, several donor and target time pe-
riods are analyzed and results are shown for different sites
in the USA. The comparison between estimated and actually
observed FDCs shows the reasonability of the approach, es-25

pecially for intermediate percentiles.

1 Introduction

A duration curve is a function that associates with a specific
variable its exceedance frequency. Specifically, in hydrology
a flow duration curve (FDC) is a function describing the flow 30

variability at a specific site during a period of interest. It
represents the streamflow values, gauged at a site, against
their relative exceedance frequency. An empirical long-term
FDC is the complement of the empirical cumulative distribu-
tion function of streamflow values at a given time resolution 35

based on the complete streamflow record available for the
basin of interest (Castellarin et al., 2007). FDCs are built as
explained in the following:

– rank the streamflow values in descending order;

– plot the sorted values against their corresponding fre- 40

quency of exceedance.

The duration di of the ith sorted observation is its exceedance
probability Pi . If Pi is estimated using a Weibull plotting
position (Weibull, 1939), the duration di for any qi (with
i = 1; . . . ;N ) is 45

di = P (Q < qi)= Pi =
i

N + 1
, (1)

where N is the length of the streamflow series and qi is the
ith sorted streamflow value.

The FDC provides historical information on the water
regime. Several time resolutions of streamflow data can be 50

used to build the FDC: annual, monthly or daily. However,
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2 E. Ridolfi et al.: A methodology to estimate flow duration curves at partially ungauged basins

the finer the resolution is, the higher the information pro-
vided by the FDC is about the hydrological characteristics
of the river (Smakhtin, 2001). FDCs may be built either on
the basis of the whole available record period (Vogel, 1994),
on the basis of all similar months (Smakhtin et al., 1997), or5

on the basis of a specific month.
In one curve, the FDC condenses a wealth of hydrologic

information that can be easily accessed. Because of the key
role of runoff variability in both water resource management
and environmental health maintenance, the FDC is used in10

a large variety of applications as reported by Vogel (1994).
For instance, the FDC can quantify the capacity of the river
to meet intake requests as it provides information about the
reliability of the water resource for water abstraction activi-
ties (Dingman, 1981). It is at the base of hydropower plants’15

design as they are used to determine the hydropower en-
ergy potential, especially for run-of-river plants (Hänggi and
Weingartner, 2012; Blöschl et al., 2013). As the FDC is a
key signature of runoff variability, it can be used to assess
the impact of changes in a catchment. To this end, through20

the FDC, Vogel et al. (2007) introduced the indicators of the
eco-deficit and eco-surplus. Moreover, the FDC can be used
to define and investigate low flows (Smakhtin, 2001). The
knowledge of the streamflow characteristics is also relevant
for stream water quality studies, for instance, to regulate the25

proper threshold for chemical concentration and load (Bonta
and Cleland, 2003). The FDC has a further application in
model calibration. This application is based on the replica-
tion of the flow frequency distribution rather than of the sim-
ulation of the hydrograph (Yu and Yang, 2000; Westerberg30

et al., 2011). Other applications are related to irrigation plan-
ning (Chow, 1964); schedule optimal flow release from reser-
voirs (Alaouze, 1991); basin afforestation (Scott et al., 2000);
investigation of the effects on the flow regime due to basin
vegetation change (Brown et al., 2005).35

In spite of its importance, the FDC is affected by the lack
of data in ungauged and poorly gauged basins. Many au-
thors dealt with the issue of FDC prediction at ungauged or
partially gauged locations through regional regression (e.g.,
Fennessey and Vogel, 1990; Mohamoud, 2008; Rianna et al.,40

2011, 2013; Castellarin et al., 2013; Pugliese et al., 2016)
and geostatistical interpolation (e.g., Pugliese et al., 2014).
Ganora et al. (2009) developed a methodology to estimate
FDC at ungauged sites based on distance measures that can
be related to the catchment and the climatic characteris-45

tics. Spatial nonlinear interpolation methods were developed
by several scholars (e.g., Archfield and Vogel, 2010; Mo-
hamoud, 2008; Hughes and Smakhtin, 1996; Farmer et al.,
2015). Worland et al. (2019) presented a method involving
the use of the copula function. Hughes and Smakhtin (1996)50

proposed a method to extend and/or fill in daily flow time
series at a site using monthly FDCs of the target site itself.
These monthly FDCs should be recorded during a donor
period or retrieved using different methods such as (i) re-
gionalization of FDCs based on available observed records55

from several adjacent gauges (Smakhtin et al., 1997) or
(ii) conversion of FDCs calculated from monthly data into
1 d FDCs (Smakhtin, 1999). Since the main limitation of the
approach proposed by Hughes and Smakhtin (1996) is that it
is based entirely on observed flow records, later, Smakhtin 60

and Masse (2000) proposed a further development, which
uses the current precipitation index (CPI) of the donor site
to extend the daily hydrograph at the target site. The major
assumption is that both the CPIs occurring at donor sites in a
reasonably close proximity to the target site and target site’s 65

flows themselves correspond to similar percentage points on
their respective duration curves. On the other hand, the basic
assumption of the spatial interpolation algorithm proposed
by Hughes and Smakhtin (1996) is that flows occurring si-
multaneously at sites in reasonably close proximity to each 70

other correspond to similar probabilities on their respective
flow duration curves. In contrast, one important message of
our paper is that FDCs can be very different from time period
to time period, both at the site itself and at pairs of sites as a
long-term change in the weather affects the FDCs. Therefore, 75

our approach is based on the concept that proximal sites do
not share similar FDCs. This will be demonstrated in the pa-
per by applying a two-sample Kolmogorov–Smirnov test to
pairs of stations. The usual assumption that they and the re-
lated indices are characteristic for the basin is not true. There- 80

fore, the FDCs built at a given location for different periods
cannot be regarded as the same distribution. It is not possible
to determine a unique distribution and therefore a unique set
of parameters. The same results from the analysis of FDCs
built in two different basins. It is not possible to develop re- 85

lations between parameters of the basin and characteristics
of the FDC to yield synthesized FDCs in locations where
flow data are not available, as done for instance by Quimpo
et al. (1983). These issues have a key role especially when
dealing with ungauged basins. 90

The main idea underlying our work is to build the FDC at a
target site using a filter, which relates the distributions of the
discharge and the precipitation. As the weather is the main
driver of annual runoff variability, we propose a transforma-
tion driven by the weather. The paper is organized as fol- 95

lows. First, the case study is presented and basins are grouped
into energy- and water-limited ones. Then, the Kolmogorov–
Smirnov test is carried out on pairs of FDCs to assess whether
these curves can be regarded as the same distribution. Sec-
ond, the methodology is presented together with the under- 100

lying assumptions. Then, the approach is applied to a set
of basins located in the case study area. Finally, results are
shown and discussed.

2 Case study area

The methodology was applied to several basins located in 105

three different states on the Gulf coast of the USA: Florida,
Louisiana and Texas (Fig. 1). These basins were selected be-
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Table 1. US case study area: streamflow gauges and corresponding basin characteristics.

Station name Drainage Mean Mean Mean Mean Available
area elevation slope discharge annual record
km2 m – mm precipitation –

mm

Peace River at Arcadia, FL 3540.53 32.3 0.3 257.4 1296.2 1948–2001
Ochlockonee River near Havana, FL 2952.6 75.6 1.8 322.6 1366.7 1948–2001
Choctawhatchee River at Caryville, FL 9062.41 92.2 3.2 540.8 1464.7 1948–1994
Bogue Chitto River near Bush, LA 3141.67 101.6 1.8 579.2 1637.1 1948–1999
Tangipahoa River at Robert, LA 1673.14 76.9 1.6 635.2 1682 1948—1999
Comite River near Comite, LA 735.56 59.6 1.1 595.9 1644.2 1948–1999
Amite River near Denham Springs, LA 3315.2 75.6 1.3 584.1 1647.9 1948–1999
Calcasieu River near Oberlin, LA 1950.27 62.2 1.1 502.9 1558.9 1948–1986
Llano River near Junction, TX 4807.04 670.9 3.4 34.8 645.8 1948–1988
Blanco River at Wimberley, TX 919.45 417.3 5.2 140.6 896.7 1948–2001

Figure 1. Streamflow gauges (red circles) used to test the methodology in the corresponding US basins.

cause they are characterized by a mild climate and, therefore,
no snow events have been recorded, allowing us to neglect
the snow melting effect. Daily streamflow discharge and pre-
cipitation values are available for each basin for different
time windows (Table 1).5

Daily streamflow discharge data were originally provided
by the United States Geological Survey (USGS) gauges,
while mean areal precipitation and climatic potential evap-
oration were supplied by the National Climate Data Cen-
ter (NCDC) at daily resolution. The data set is a subset10

of the Model Parameter Estimation Experiment (MOPEX)
database, used for hydrological model comparison studies
(Duan et al., 2006) and for simultaneous calibration of hy-
drological models (Bárdossy et al., 2016).

2.1 Energy- and water-limited basins15

Annual runoff variability is driven by the relative availability
of water (i.e., precipitation) and energy (i.e., evaporation po-
tential). Therefore, the weather is the most important driver
of annual variability (Blöschl et al., 2013). Much of the an-

nual runoff variability can be explained by observing the dif- 20

ferent availability of water and energy. For instance, if more
water arrives at the basin than energy can remove through
evaporation, the annual runoff will be high. Moreover, in this
case the relationship between runoff and precipitation will
be more linear than when more energy is available to evapo- 25

rate the water. On the other hand, in an arid region, the arid-
ity of the climate determines a high inter-annual runoff vari-
ability because of the nonlinear relationship between runoff
and precipitation. Therefore, differences in water and en-
ergy availability cause differences in annual runoff variabil- 30

ity. However, additional factors such as differences in season-
ality and precipitation must be considered (Jothityangkoonad
and Sivapalan, 2009). The relative availability of water and
energy can be described through the Budyko curve (Budyko,
1974). The curve plots the ratio between mean annual ac- 35

tual evaporation and mean annual precipitation as a function
of the ratio between mean annual potential evaporation and
mean annual precipitation. Therefore, it defines a similarity
index (i.e., the aridity index) to express the availability of wa-
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4 E. Ridolfi et al.: A methodology to estimate flow duration curves at partially ungauged basins

ter and energy and thus bolsters the classification of hydro-
logical sceneries into various degrees of aridity. The Budyko
curve represents the effects of water and energy availability
on annual runoff variability. Moreover, it provides an indica-
tion of the synchrony of evaporation and precipitation. For5

instance, where precipitation and evaporation are in phase,
runoff production declines since the basin allows for infil-
tration and stores water and vice versa. Many regions range
from in phase to out of phase because of the strong sea-
sonality of climate forcing. However, the climatic timing10

can influence runoff variability as presented by Montanari
et al. (2006). They show that the difference in annual runoff
between 2 years with equivalent annual precipitation was of
100 % in a monsoonal area of northern Australia because dur-
ing the wet year the precipitation occurred during the wet15

season, i.e., when the potential evaporation was smaller. In
this framework, it is important to understand the behavior of
the basins under analysis. To this end, we analyzed the mean
annual runoff coefficient, the annual precipitation and the an-
nual evapotranspiration against the annual mean temperature.20

This analysis is essential to understand the causal processes
leading to the long-term mean and variability of runoff as
also described in McMahon et al. (2013). The mean annual
runoff coefficient is defined as

µR =
Qyr

Pyr
, (2)25

where Qyr is the annual discharge volume and Pyr is the an-
nual precipitation volume.

Results show that basins have two different behaviors: pre-
cipitation, evapotranspiration and runoff have either a posi-
tive or a negative correlation with the air temperature. In the30

former case the evapotranspiration is limited by the avail-
able water, which happens in water-limited basins; in the lat-
ter the evapotranspiration is limited by the available energy,
which happens in energy-limited basins. For instance, mea-
surements at Peace River (LA) suggest that the basin is bal-35

anced between energy and water limitation by the correlation
criterion (Fig. 2 upper panel), while Ochlockonee River (FL),
Amite River near Denham Springs (LA) and Bogue Chitto
River (LA) are energy-limited. Results for Amite River are
consistent with what was found by Carrillo et al. (2011).40

Since it is not possible to infer discharge values of a water-
limited basin from the data set of an energy-limited one, anal-
yses have been carried out on climatically homogeneous sets
of basins.

2.2 Preliminary analysis45

The FDC can be interpreted as a distribution function of
discharge over a given time period. To determine whether
samples are drawn from the same distribution, here the two-
sample Kolomogorov–Smirnov test (KS; Massey, 1951) is
carried out on each pair of samples. The KS statistic on two50

samples is a non-parametric test for the null hypothesis that

the two independent samples are drawn from the same con-
tinuous distribution. The decision to reject the null hypothe-
sis is based on comparing the p value with the significance
level set equal to 5 %. Moreover, the test allows us to estimate 55

the distance between couples of FDC:

D∗ = (|F1(x)−F2(x)|) , (3)

where F1(x) is the proportion of x1 values less than or equal
to x and F2(x) is the proportion of x2 values less than or
equal to x. F1 and F2 are two FDCs. The KS statistic is ap- 60

plied to daily streamflow data sampled in several periods of
record (e.g., 1 year, 10 years, 15 years). The long memory
is relatively low, and we consider full years; thus, annual cy-
cles do not have an influence on our results. The test is car-
ried out both on pairs of samples gauged at the same loca- 65

tion in two different years (or in two different decades) and
on pairs sampled at two different sites. Since the streamflow
data present autocorrelation, the autocorrelation affects the
KS test. Weiss (1978) proposed a methodology to account
for modifying the KS test for autocorrelated data. Later, 70

Xu (2014) suggested a method that can be applied to a two-
sample test. The information contained in the data is (usu-
ally) less than an i.i.d.CE1 sample with the same size. In other
words, the number of equivalent independent observations is
less than the sample size. In the following, we explain how 75

we accounted for the equivalent sample size. It is easier to
implement and, more importantly, it can be easily general-
ized to a two-sample test. We can assume that the autocorre-
lation effect attenuates after 3 d. For instance, let us take as
an example a 1-year FDC. If the sample was 3 times smaller 80

and for instance the length would equal 122 (i.e., 365 divided
by 3), the null hypothesis would have been rejected anyway,
leading to the same conclusion (i.e., the two samples cannot
be regarded as the same distribution). This is due to the fact
that, according to the two-sample KS test, the length of the 85

equivalent sample that could pass the test should be 22.
The application of the KS test to our samples is pivotal

to the development of the methodology. Test results show
that streamflow data gauged in different periods (e.g., years
or decades) at a specific location do not have the same dis- 90

tribution. The consequence is that it is not possible to use
the parameters and the distribution derived from a FDC built
for a specific time window to build the FDC of another time
window. The same results comparing streamflow data were
gauged in a specific year or decade at two different sites. 95

Since the two data sets cannot be regarded as the same dis-
tribution, it is not possible to derive the FDC at one loca-
tion using the parameters of the FDC sampled at another
location. Therefore, it is necessary to develop a methodol-
ogy that accounts for the weather, as it is the main driver of 100

FDC variability as shown in the following. Figure 3 shows
the magnitude of the difference between FDCs built at the
same location using streamflow data gauged during different
time windows.
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E. Ridolfi et al.: A methodology to estimate flow duration curves at partially ungauged basins 5

Figure 2. Annual precipitation against mean annual temperature (left panels), annual evapotranspiration against mean annual temperature
(middle panels) and annual runoff coefficient against mean annual temperature (right panels) for four different basins: Peace River (FL),
Ochlockonee River (FL), Amite River near Denham Springs (LA), and Bogue Chitto River (LA). In each plot, the Pearson correlation
coefficient ρ is reported in the box.

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–18, 2020



6 E. Ridolfi et al.: A methodology to estimate flow duration curves at partially ungauged basins

Figure 3. FDCs built for Tangipahoa River (FL) for four different
hydrological years. Every hydrological year starts in October and
ends the following September.

3 Methodology

The aim of this paper is to find the distribution ofQk(t) for a
time period (T1, T2), that is, a FDC. We assume that discharge
is related to precipitation in the form

Qk(t)= hk (Pk(t − τ),τ = 0, . . ., n, . . ., βk) , (4)5

where k is a generic site, hk is the transformation, usually
approximated by a hydrological model, Pk is the precipi-
tation and βk is the specific parameter of the hydrological
model. The core of this work is to retrieve the discharge val-
ues without hydrological modelingCE2 as modeling often in-10

troduces additional errors and may be biased for long sub-
periods. Thus, the main idea is to get rid of a complicated
nonlinear process and to find a filter which relates the distri-
butions.

The main hypothesis underlying this work is that daily15

flow duration curves at a partially ungauged location can be
found with knowledge of the precipitation record at a donor
site. The most important descriptor of the weather character-
istic is the rainfall; however, we cannot use the distribution
of Pk to assess the FDC directly as it will fail due to the20

lacking temporal structure and the many zeros. We can then
use a transformation of Pk , the Antecedent Precipitation In-
dex (API):

API(t)= ak (Pk(t − τ),τ = 0, . . ., n) . (5)

Both transformations reported in Eqs. (4) and (5) can be re-25

garded as filters acting on Pk . These filters do not necessarily
produce highly correlated series, but may produce series with
similar distributions. The API is used to investigate precipita-
tion data in a similar way to discharge data as it combines in
a streamflow-like way the history of the precipitation. It rep-30

resents the memory of a basin as it is related to the amount

of water released by the soil to the river considering a given
time window. Specifically, the API allows us to take into ac-
count the antecedent conditions and the duration of the rain-
fall events and gives an estimate of the portion of rainfall 35

contributing to storm runoff (Linsley et al., 1949). It is a se-
quence of linear combinations of rainfall events in the period
preceding a specific storm (Kohler and Linsley, 1951). For a
resolution of 1 d and a time window of 30 d, the API at the
ith day is given by 40

APIi =
29∑
j=0

αjPi−j , (6)

where α is a constant and ranges from 0 to 1 and Pi is the
daily precipitation that occurred on the ith day (Kohler and
Linsley, 1951). When α tends to zero, API keeps tracks of
the precipitation that occurred on the few previous days, and 45

it represents the short memory of the basin. When α tends
to 1, the API represents the long memory of the basin as it
includes the effect of precipitation that occurred many days
before. To capture the latter behavior, in this study α is cho-
sen equal to 0.85. This is in agreement with a previous study 50

by Sugimoto (2014 TS2 ), who investigated a case study area
whereby a preliminary analysis was performed (i.e., Neckar
basin); nevertheless, this value was found to be suitable also
for the US basins. Here the API is calculated from areal pre-
cipitation instead of point precipitation. 55

Formally the basic hypotheses of this paper are the follow-
ing.

– Flow duration curves are not invariant properties of
basins, but are the product of basin, weather and human
interactions. In this investigation we do not consider the 60

human interactions.

– Precipitation is the most important influencing factor in
discharge.

– Basins delay the reaction on precipitation; therefore, the
API is a better indicator of the influence of precipitation 65

on discharge.

– We assume that discharge and API are changing in a
similar way for longer time periods.

Let FA,Ti (q) be the distribution of daily discharges at basin A
and time period Ti (flow duration curve for the selected 70

time period) and GA,Ti (a) be the distribution of daily API
at basin A and time period Ti .

The transformation from Ti to Tj provides an esti-
mated F ∗A,Tj (q):

F ∗A,Tj (q)=GA,Tj

(
G−1

A,Ti

(
FA,Ti (q)

))
. (7) 75

This is a quantile–quantile transformation.

FA,Tj (q)= FA,Tj

(
F−1

A,Ti

(
FA,Ti (q)

))
(8)
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E. Ridolfi et al.: A methodology to estimate flow duration curves at partially ungauged basins 7

Figure 4. The transformation functions of the 1951–1960 FDC
(solid) and API (dashed) to the target periods 1971–1980 (blue) and
1981–1990 (orange) for Amite. For the sake of comparison, the di-
agonal is dotted in orange.

The basic question can be written in the form of the following
equation:

GA,Tj

(
G−1

A,Ti (p)
)
≈ FA,Tj

(
F−1

A,Ti (p)
)
. (9)

That can be summarized in the following question: do the
percentiles of the API change in the same way as those of5

the discharge? Note that if the relationship between API and
discharge is a good one, then the two sides are nearly equal.
Even a weak relationship can do a good job if the errors are
independent and the sign of the change is correct. Figures 4
and 5 show the difference between the real change in per-10

centiles and that obtained by using the API for different time
periods according to Eq. (9). Note that the assumption that
the FDC is time-invariant would imply that the lines for the
discharge are on the diagonal.

The correlation between API and discharge is around 0.6,15

but the transformations are quite similar and the API-based
transformation delivers good FDCs.

If the API is changing continuously in space, then one can
use the change in the FDC of a different location B for the
estimation:20

F ∗∗A,Tj (q)= FB,Tj

(
F−1

B,Ti

(
FA,Ti (q)

))
. (10)

In the following, the methodology is reported step by step;
then, the performance criteria used to estimate the goodness
of the methodology are presented.

3.1 Procedure step by step25

Let us consider two basins, A and B. We want to determine
the flow duration curve at basin B from data available at A.
Therefore, A is the donor basin, while B is the target basin.

Figure 5. The transformation functions of the 1951–1960 FDC
(solid) and API (dashed) to the target periods 1971–1980 (blue) and
1981–1990 (orange) for Bogue. For the sake of comparison, the di-
agonal is dotted in orange.

Let us suppose that in a given number of years, discharge is
available at both sites A and B, named donor years, while 30

for another number of years, i.e., the target years, data are
available for A only.

1. Donor year selection. Select a number of years for
which precipitation and discharge values are available
at daily resolution for basins A and B, respectively. 35

These will be named donor years (e.g., with durations
of 1 year, 10, 15, or 20 years).

2. Generation of an empirical distribution of API values.
Empirical distributions of API values are calculated for
site A for donor and target years: sort API values and 40

assign to each sorted value the corresponding rank and
estimate the corresponding frequency of exceedance us-
ing the Weibull plotting position.

3. Generation of empirical distribution of streamflow val-
ues. Empirical distributions of streamflow values are 45

calculated for site B for donor years only.

4. Data transfer from donor site.

i. Select the ith frequency pi , with i = 1, . . . ,Nt,
where Nt is the length of the target sample, and the
corresponding API value is recorded at the donor 50

site during the target years (Fig. 6a).

ii. Search for this API value among those recorded at
the donor site during the donor years and estimate
the corresponding frequency (Fig. 6b).

iii. This frequency is then used to retrieve the corre- 55

sponding streamflow value recorded at site B dur-
ing the donor years (Fig. 6c).

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–18, 2020



8 E. Ridolfi et al.: A methodology to estimate flow duration curves at partially ungauged basins

Figure 6. Illustration of FDC generation using the interpolation with the API of the donor site as a proxy.

iv. This streamflow value is the missing value at site B
corresponding to the ith frequency pi (Fig. 6d).

Steps from 1 to 4 are repeated for every frequency and then
for different target periods and target basins. The FDC is ex-
pressed in millimeters; thus, the area of the basin is not an5

issue using data of another basin.
An example of the procedure is reported step by step in

Appendix A.

3.2 Performance criteria

To determine the performance of the procedure proposed in10

this paper, different criteria are selected: the Nash–Sutcliffe
efficiency index (NSE; Nash and Sutcliffe, 1970), the BIAS
and the mean absolute error (MAE).

The Nash–Sutcliffe efficiency between the interpolated
and observed flow values is the most widespread perfor-15

mance criterion:

NSE= 1−

N∑
i=1

(
Qobs,i −Qintrpl,i

)2
N∑
i=1

(
Qobs,i −Q

)2 , (11)

whereQobs is the observed discharge value at the target basin
during the target period; Q is the mean value of the ob-
served discharge during the target period in the target basin;20

Qintrpl is the interpolated discharge value.
The BIAS represents the mean difference between ob-

served and interpolated values (Castellarin et al., 2001; Ri-
dolfi et al., 2016):

BIAS=
1
N

N∑
i=1

(
Qintrpl,i −Qobs,i

Qobs,i

)
. (12)25

This metric comprises the mean of the error made relative to
the observed record. It is a signed and unbounded metric. It

indicates as a ratio the level of overall agreement between the
observed and interpolated values.

The mean absolute error is defined as 30

MAE=

N∑
i=1

∣∣Qobs,i −Qintrpl,i
∣∣

N
. (13)

Discharge values are in millimeters and so is the MAE. It
measures the overall agreement between observed and inter-
polated values. It is a non-negative metric without upper or
lower bounds. A perfect model would result in a MAE equal 35

to zero. This estimation metric does not provide any infor-
mation about under- or over-estimation, but it determines all
deviations from the observed values regardless of the sign.
All metrics are evaluated here for a specific set of percentiles;
thus,N is the number of discharge values related to a specific 40

percentile. In binning by percentiles, all percentages were
rounded down to the nearest whole number.

4 Results

The procedure explained above was tested on several target
basins varying both donor and target periods. 45

Results show a good agreement between observed and
interpolated FDCs. For instance, the FDCs interpolated us-
ing 20 and 10 years as donor and target periods, respec-
tively, have a good performance, as shown for Tangipa-
hoa and Bogue basins (Fig. 7). The method performance is 50

higher for intermediate durations, while it can be lower for
the low flows, e.g., as at Bogue for target years 1988–1998
(Fig. 7, lower panels) and for the high flows. The good per-
formance of the approach is also noticeable when the target
period is 15 years (Fig. 8). In each panel, the two-sample 55

Kolmogorov–Smirnov test distance between observed and
interpolated values, D∗, is reported. D∗ is characterized by
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Figure 7. Interpolated FDC at Tangipahoa River (FL) and Bogue River (LA), in the upper and lower panels, respectively. The donor basin
is Blanco River (TX). The donor years are a 20-year time window from October 1948 to September 1968 and from October 1968 to
September 1988. Target years are the decades shown above each panel. Blue and red dots are the observed and interpolated FDC at the target
basin during the target period, respectively; the black dots are the observed FDC at the donor basin during the target period. In each box the
KS distance between observed and interpolated values, D∗, is reported. The p value of D∗ is always around zero, but for Tangipahoa target
years 1948–1958.

small values showing a good performance of the method.
Since usually the FDC of a donor site is used to retrieve the
FDC of a target site for the same period, the FDC of the donor
basin recorded during the target period is also plotted. It is
noteworthy to observe that the difference between these two5

FDCs can be substantial. This implies that the FDCs can be
substantially different at different sites in the same period of
time.

Interpolated and observed FDCs almost perfectly match
when obtained using long donor and target periods (Figs. 710

and 8). On the other hand, when the target period is short, the
performance decreases, as also shown by the KS distance,
D∗, reported in each single panel of Fig. 9 where the target
period equals 1 year. As a matter of fact, the donor period be-
ing constant, the KS distance is much higher when the target15

period is 1 year (Fig. 9) and the p value ofD∗ is always zero
but for hydrologic years 1972–1973 and 1976–1977. Nev-
ertheless, the interpolated and observed FDCs have a high
agreement in shape, as for instance at Tangipahoa River for
all but one (i.e., 1969–1970) target year. In these cases, the20

difference between the two curves could be due to the dif-
ferent temperature values characterizing the donor and target

basins. This affects the evapotranspiration in the two basins
and, therefore, the streamflow values.

Results suggest that the API gives effectively a good esti- 25

mation of the memory of the basin and can be used to repre-
sent the precipitation similarly to the discharge.

To estimate the goodness of the methodology, the NSE,
BIAS and MAE are evaluated for the 1st, 3rd, 5th, 10th, 20th,
30th, 50th, 75th, 90th and 99th percentiles. 30

When a decade is used as both target and donor period,
the performance measures show a good agreement between
observed and interpolated values (Fig. 10). The NSE index
shows accurate estimation; i.e., it is characterized by val-
ues close to 1, especially of intermediate percentiles. The 35

BIAS provides information regarding the overall agreement
between interpolated and observed values. Its magnitude is
likely higher for high flows, while it attenuates for interme-
diate percentiles. The MAE also shows a low performance
for high streamflow values. This is due to the fact that the 40

procedure is more able to reproduce the average streamflow
values than extreme events such as high and low flows. How-
ever, low flows are more likely well estimated rather than
high flows.

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–18, 2020
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Figure 8. Interpolated FDC at Tangipahoa River (FL), Bogue River (LA) and Choctawhatchee River (FL), in the upper, middle and lower
panels, respectively. The donor basin is Blanco River (TX). The donor and target years are periods of 15 years. The blue and red dots are
observed and interpolated FDC, respectively, at the target basin during the target period; the black dots are the observed FDC at the donor
basin during the target period. In each box the KS distance, D∗, is reported. The p value of D∗ is always around zero.

When both target and donor periods equal 15 years, the
agreement between interpolated and observed flow values is
high (Fig. 11). The NSE shows values of efficiency around 1;
thus, there is a good match between interpolated and ob-
served values, even though there are a few exceptions. The5

errors are very low in value, as shown by the MAE, which
also reveals a poor performance for high flows, while the
performance improves for intermediate and low flows. The
high flows are more likely estimated with a higher error than
intermediate and low flows, as also shown by the BIAS.10

5 Discussion

As resulted from the KS test applied to pairs of FDCs ob-
tained from recorded data at the same site in different peri-
ods, FDCs cannot be considered an invariant characteristic of
a basin. The fact that FDCs are not invariant suggests that the 15

weather is a driver of annual runoff variability. Indeed, the
reason should be found in the weather conditions, as others
(e.g., the basin area, the land use) did not change. To better
investigate these findings, we performed the KS test on pairs
of observed and interpolated FDCs for two purposes. The 20

first is to know whether pairs of interpolated and observed
FDCs at the same site have the same continuous distribution;
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Figure 9. Interpolated FDC at Tangipahoa River (FL). The donor basin is Blanco River (TX). The donor years are a 20-year time window
from October 1948 to September 1968. Target years are each hydrological year from October 1968 to September 1983. The blue and red dots
are observed and interpolated FDC, respectively, at the target basin during the target period; the black dots are the observed FDC at the donor
basin during the target period. In each box the KS distance, D∗, is reported. The p value of D∗ is always around zero but for hydrologic
years 1972–1973 and 1976–1977.

the second is to know which is the distance between these
pairs. The test performed on pairs of interpolated and ob-
served FDCs revealed that the null hypothesis could not be
rejected for nearly half of the cases. For instance, for Tangi-
pahoa River the test was not rejected in 48 % of the cases5

(Fig. 12b). On the contrary, the test rejected the null hypoth-
esis that FDCs built at the same location in different peri-
ods had the same distribution. In 73 % of the cases, the dis-
tance between pairs of interpolated and observed FDCs of the
same period is smaller than the distance between FDCs built10

at the same site from data recorded during different periods
(Fig. 12b and a, respectively). These results suggest that the
methodology proposed here has a good performance, and it
is actually an interesting alternative to other methodologies,

which assume that FDCs of different periods have the same 15

distribution.
As the weather conditions strongly influence the FDC es-

timation, we analyzed the streamflow percentiles to assess
the between-year variability. To this end, the moving aver-
age (MA) of the 30th, 70th, 90th and 95th percentiles of 20

streamflow is estimated. The MA values are estimated using
three different fixed time windows (i.e., 10, 15 and 20 years;
Fig. 13).

It is interesting to observe that the MA values are char-
acterized by a strong variability throughout the time. The 25

fluctuation of the flow percentiles suggests that the per-
centiles cannot be considered an invariant characteristic of
the basin. Therefore, it is not possible to estimate the flow
quantiles using regression methods that do not consider the

www.hydrol-earth-syst-sci.net/24/1/2020/ Hydrol. Earth Syst. Sci., 24, 1–18, 2020



12 E. Ridolfi et al.: A methodology to estimate flow duration curves at partially ungauged basins

Figure 10. Performance measures NSE, BIAS and MAE evaluated for specific percentiles (on the y axis) and for specific target decades on
the x axis. The donor decade is 1948–1958 and the donor basin is Blanco (TX). Each target basin is indicated in the corresponding box.
Negative values of the NSE as well as outliers of BIAS and MAE are reported in the corresponding box.

weather characteristics. These methods, first, regionalize em-
pirical runoff percentiles using multiple regression models.
Then, regional evaluations of flow percentiles are interpo-
lated across the percentiles (e.g., Franchini and Suppo, 1996;
Smakhtin, 2001). If flow percentiles are estimated separately5

from weather characteristics, it may result in a misrepresen-
tation of the percentiles themselves. Therefore, we suggest
adding a weather factor to account for the influence of the
weather in the percentile estimates.

6 Conclusions10

The paper presents a new, simple and model-free methodol-
ogy to estimate the streamflow behavior at partially gauged
basins, given the precipitation gauged at another basin. We
show that two FDCs built for the same basin with data
corresponding to two different time windows cannot be re-15

garded as the same continuous distribution. This means that
the FDCs cannot be considered an invariant characteristic
of a basin. As other conditions did not substantially change
across time, such as the land use, the reason should be the
weather. The influence of the weather is evident analyzing20

the between-year variability of flow percentiles. Indeed, the
moving average of the 30th, 70th, 90th and 95th flow per-
centiles shows a strong variability throughout the time. This
behavior has a strong consequence as it means that it is not
possible to retrieve the streamflow percentiles without con-25

sidering the weather. Indeed, there exist several methodolo-

gies (i.e., regression models) that estimate flow quantiles
separately from weather characteristics. FDCs and their se-
lected properties cannot be considered basin characteristics
and should be used with caution for regionalization purposes. 30

The FDC at a specific site is not a property of the corre-
sponding basin, but rather of both the basin and the weather.
Therefore, it is not possible to infer an FDC using parameters
retrieved from the distribution of another FDC without con-
sidering the weather. The weather is indeed one of the main 35

drivers of annual variability. The annual runoff variability de-
pends on the different availability of energy and water in the
basin. If more water than energy is available, the relation-
ship between runoff and precipitation is almost linear, while
if more energy is available, then the evaporation makes this 40

relationship nonlinear. Therefore, the runoff may vary largely
depending on which element is prevalent. For this issue, we
applied the methodology to basins with the same character-
istics, i.e., energy-limited ones.

Because of the dependence on the climate, discharge data 45

are here retrieved using the precipitation data series. Since
precipitation data series are characterized by a high num-
ber of zeros, here we used the API as it represents in a
streamflow-like way the precipitation of the basin. It repre-
sents the memory of a basin providing the amount of precip- 50

itation released by the soil throughout the time.
The FDC at a target site is determined for a specific time

window (i.e., target period) using the API available for a so-
called donor period at another basin (i.e., donor site). Inter-
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Figure 11. Performance measures NSE, BIAS and MAE evaluated for specific percentiles (on the y axis) and for specific 15 target years
(i.e., 1963–1978 and 1978–1993 on the x axis). The donor decade is 1948–1963 and the donor basin is Blanco (TX). Each target basin is
indicated in the corresponding box. Negative values of the NSE are reported in the corresponding box.

Figure 12. Kolmogorov–Smirnov distance between couples of streamflow values observed (a) and between couples of streamflow values
observed and interpolated (b) at Tangipahoa River (FL) from October 1948 to September 1987.
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Figure 13. Moving average (MA) of the 30th, 70th, 90th and 95th percentiles of daily streamflow values gauged at Tangipahoa. Three
different fixed time windows are used to estimate the MA: 10, 15 and 20 years. On the x axis the first year of each interval is plotted (Y ∗).

polated FDCs are compared with FDCs that were actually
observed. Results show that the methodology is able to cor-
rectly determine the missing streamflow data. The discharge
values of the intermediate percentiles are better described
than those of the extremes. Nevertheless, the error values be-5

tween observed and interpolated FDCs are small. The differ-
ence between the interpolated and observed FDCs can be due
to the different temperature values characterizing the donor
and target basins. Indeed, a high difference in temperature
can cause a different evapotranspiration, which in turn can10

influence the discharge.

To test the methodology and to assess its performance de-
pending on the extension of the period with missing data,
several target periods are analyzed, such as 1 year, 10 years
and 15 years. The method performs better when the target 15

period is longer; thus, the lowest and best performances cor-
respond to target periods of 1 year and 15 years, respectively.

The method is tested on basins with a mild climate; how-
ever, it can be applied also to basins characterized by the
presence of snow, converting the snow into the correspond- 20

ing liquid amount.
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Table A1. API values sorted in descending order and the corre-
sponding percentiles estimated for the target year (i.e., 1968–1969)
at the donor basin (i.e., Blanco River, TX). TS4

Rank P (API<APIi ) APIBlanco,tar
% mm

odd;ehline 1 0.27 76.78
2 0.55 73.39
. . . . . . . . .
30 8.20 39.65
31 8.47 39.35
32 8.74 38.71
33 9.02 38.31
34 9.29 38.18
35 9.56 38.10
36 9.84 37.97
37 10.11 37.72
38 10.38 36.99
. . . . . . . . .
365 99.73 0.61

Table A2. API values corresponding to specific percentiles esti-
mated for the donor years (i.e., 1948–1963) at the donor basin (i.e.,
Blanco River, TX). TS5

Rank P (API<APIj ) APIBlanco,ref
% mm

1 0.02 266.17
. . . . . . . . .
410 7.49 37.81
411 7.51 37.78
412 7.52 37.74
413 7.54 37.61
414 7.56 37.61
415 7.58 37.55
. . . . . . . . .
5475 99.98 0.01

Appendix A: TS3

In this Appendix we want to provide an easy example to bet-
ter understand the method that we applied to US basins. This
method is based on the use of the API of a donor site to
retrieve the FDC at a poorly gauged site. We recall that a5

“donor period” is a period of time for which streamflow val-
ues are available at the target basin, while a “target period”
is a period of time during which streamflow values are not
available at the target basin. The rainfall is available at the
donor site for both periods.10

Let us suppose that we want to know the discharge value
at basin B (i.e., Bogue River, LA) corresponding to the
10.11th percentile (i.e., 10.11%) for the year ranging from
October 1968 to September 1969. Let us suppose that the
donor period has a length of 15 years. Every hydrological15

Table A3. Streamflow values corresponding to specific percentiles
gauged during the donor years (i.e., 1948–1963) at the target basin
(i.e., Bogue River, LA). TS6

Rank P (Q< qj ) qBogue,ref
% mm

1 0.02 38.81
. . . . . . . . .
410 7.49 3.28
411 7.51 3.28
412 7.52 3.21
413 7.54 3.21
414 7.56 3.20
415 7.58 3.19
. . . . . . . . .
5475 99.98 0.31

Table A4. Streamflow value corresponding to the 10.11th percentile
estimated for the target year (i.e., 1968–1969) at the target basin
(i.e., Bogue River, LA).

P (Q< qi ) qBogue,tar
% mm

10.11 3.21

year ranges from October to September of the following year.
We present the method step by step in the following.

1. Select the mean daily areal precipitation that occurred
at the donor basin (i.e., Blanco River) during the target
period and estimate the API as in Eq. (6) assuming α 20

equal to 0.85.

2. Sort in descending order the API values evaluated for
the target period at the donor basin (i.e., Blanco River,
TX).

3. Assign to each sorted value the corresponding rank i, 25

with i = 1, . . . ,Nt, where Nt is the length of the target
API series and thus equals 365, and then estimate the
exceedance probability P (API<APIi) of each value
using a Weibull plotting position i/(Nt+1) (Table A1).

4. In the sorted API series, identify the value with fre- 30

quency equal to 10.11 %. This value equals 37.72 mm
(bold line in Table A1).

5. Estimate the API from the mean daily precipitation that
occurred during the donor period at the donor basin (i.e.,
Blanco River, TX) and sort in descending order the API 35

values, estimate the rank and the associated exceedance
probability P (API<APIj ) of each value as j/(Nr+1),
where Nr equals 5475.

6. Find the exceedance probability P (API<APIj ) as-
sociated with the value 37.72 mm in the sorted API 40
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sample. From Table A2 it is possible to observe that
there is no such API value. Therefore, look for the two
most similar values: one should be bigger and the other
smaller than the searched value. Then, take their empir-
ical frequency values (i.e., 7.52 % and 7.54 %; in bold,5

Table A2).

7. Sort in descending order the streamflow values gauged
during the donor period at the target basin (i.e.,
Bogue River, LA) and estimate the rank and the associ-
ated exceedance probability P (Q< qj ) of each value10

as j/(Nr+ 1).

8. Find the two streamflow values which have an empirical
frequency equal to 7.52 % and 7.54 %. These values are
in bold (Table A3).

9. Estimate the mean value of these two streamflow val- 15

ues. The resulting value is the streamflow value with
empirical frequency equal to 10.11 % evaluated for the
target basin and the target period that we were looking
for (Table A4).
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