
The authors have presented a methodology to construct FDCs for missing portions of the 

hydrologic record at ungaged sites. The topic is very interesting and relevant. The authors have 

deeply considered all comments from the reviewers. To me, there is still a significant amount of 

work that needs to be completed before this manuscript can be published. There is nothing 

factually incorrect about the method, but I believe that it over-complicates itself and misses a few 

major elements. In particular, the derivation I have provided shows how this method is almost 

identical to previous publications. The revision should seek to explore the novelty of what is 

presented here. 

 

We acknowledge Dr. Farmer for the time he dedicated to our manuscript and we are thankful for 

his suggestions and comments that helped us to improve our paper. The main changes made in the 

manuscript based on Referee’s comments: 

 

1. We formulated the methodology and the underlying assumptions in a clearer manner in the 

Methodology section. 

2. The German case study was removed to focus on the U.S.A. one. 

 

In the following, we are reporting a detailed point-by-point reply to Dr. Farmer’s comments. 

Authors reply to Reviewer’s comments are in red Italic. 

 

As you can tell from the length of my review, I found this manuscript particularly engaging. 

(Sorry!) The main contribution of this work, in my opinion, is the hypothesis that the API can be 

used to produce the temporal sequence of non-exceedance probabilities of streamflow at a partially 

gaged site. In a related way, the authors hypothesize the existence of a unique, functional 

relationship between API and Q. This argues that the FDC is a function of weather, not just a 

function of the basin. These three points are phenomenally interesting to me, but the manuscript 

seems to get bogged down in the overly complex methodology rather than these hypotheses, which, 

when demonstrated, could be used to develop simplified methods. I would focus my revision on 

the novelty. I see the novelty as: (1) The FDC is a function of weather and location, not just 

location. (2) There exists a unique, one-to-one function relating API and streamflow. (3) For a 

given period, the temporal sequence of non-exceedance probabilities of streamflow is identical to 

the temporal sequence of non-exceedance probabilities of API. [NOTE: This is (I) on page 10.] (4) 

The temporal sequence of non-exceedance probabilities of API is identical at all sites in a region. 

[Note: This is (III) on page 10.] [NOTE FURTHER: Novelties 3 and 4 combine for an interesting 

result: QPPQ, described below.] 

 

My main concerns are included below and pertain to the presentation and analysis of the methods. 

While these is nothing factually incorrect, the underpinnings and the implications of the method 

need to be explored and analyzed more fully. 

 

To discuss the method, I’ll begin by rephrasing the assumptions on page 10 in probabilistic terms, 

as they are central to this method:  

 

I. P(Q_{XY} < Q_{i,XY}) = P(API_{XY} < API_{i,XY}), where X and Y designate the basin 

and time period, respectively. X and Y can therefore take a value of either D (donor) or T (target). 

The i indicates an arbitrary day of the record at the designated location and in the designated 

period. 

 

II. P(API_{DY} < API_{i,DY}) = P(Q_{TY} < Q_{i,TY}) where all variables have been 

previously defined. 

 



III. P(API_{DY} < API_{i,DY}) = P(API_{TY} < API_{i,TY}) where all variables have been 

defined previously. 

 P(APIDY < APIi,DY) = P(APITY < APIi, TY). 

As an aside: It should be noted that (II) is an implication of (I) and (III). That is, if (I) and (III) are 

true, then II must be true. To be explicit: P(Q_{TT} < Q_{i,TT}) = P(API_{TT} < API_{i,TT}) by 

(I), and P(API_{TT} < API_{i,TT}) = P(API_{DT} < API_{i,DT}) by (III), so P(Q_{TT} < 

Q_{i,TT}) = P(API_{DT} < API_{i,DT}). This last equality is (III). 

 

The method proposed by the authors relies on (I) and (III) and the assumption that there exists a 

one-to-one function H_X at each site that maps API to Q. 

The method proposed by the authors is as follows: (The method is accurate, though I’m repeating it 

to put us in the same language.) 

Given, P(Q_{TT} < X) = 10.11%, find X. 

By (I), P(Q_{TT} < X) = P(API_{TT} < Y). 

By (III), P(API_{TT} < Y) = P(API_{DT} < Z). 

So we know that 10.11% = P(Q_{TT} < X) = P(API_{TT} < Y) = P(API_{DT} < Z), and Y and Z 

are knowable by observation. The method presented here ignores Y and focuses on Z. 

From the appendix example, Z = 37.72 mm. 

Because H_D(…) is a unique, one-to-one function that ingests API and transforms it to Q we can 

say that we are curious to know what Q is produced by the API Z at the donor site. 

The method answers this question by looking at the donor basin in the donor period. That is, by 

(III), P(API_{DD} < Z) = P(API_{TD} < Y). (Note, because H_D(…) and H_T(…) are one-to-

one, unique, time-invariant functions there exists a constant mapping from Y to Z based on (III).) 

By (I) we can then say further that P(API_{TD} < Y) = P(Q_{TD} < X). Now, because we are in 

the donor period, X is knowable by observation given that we know P(API_{DD} < Z). 

From the appendix example, P(API_{DD} < 37.72mm) = [7.52%, 7.54%]. 

The value X is therefore knowable by observation such that, P(Q_{TD} < X) = [7.52%, 7.54%]. 

Because H_D(…) and H_T(…) are one-to-one, unique, time-invariant functions, Y-->X regardless 

of time period. So X is the value we were seeking. By observation, the value of X is 3.21mm. 

There is nothing factually inaccurate about this method, but it does over-complicate the problem at 

a partially gaged site. If the target site (T) is partially gauged, then the assumptions provided above 

make the use of a donor unnecessary. This would proceed as: 

Given, P(Q_{TT} < X) = 10.11%, find X. 

By (I), P(Q_{TT} < X) = P(API_{TT} < Y). 

Because all APIs at the target site in the target period, we can observe the value of Y. 

We can then go to the donor period at the target basin with a known Y. 

Because we assumed there existed a one-to-one, unique, time-invariant function H_T(…), and all 

the APIs and Qs of the donor period at the target basin are known, we can interpolate the value Y 

along H_T(…) as observed in the donor period to determine X. So there is no need for the donor 

basin when the target is partially (and sufficiently) gaged. 

The need for a donor basin will be essential when you move to a completely ungaged basin. 

However, with the ungaged basin, it is impossible to apply this method. This method relies on the 

donor period for an approximation of the FDC, though embodied through the function H_T(…), 

the proposed transferability of API across sites, and the proposed equality of probabilities for API 

and Q.  

The reason that this method won’t work at the fully ungaged site is because it relies on the donor 

period at the target site to estimate the FDC at the target site and uses the assumed H_T(…) to 

translate that across time periods (from donor to target). 

To apply this method at the ungaged site, we will need an alternative method to approximate 

H_T(…). Arriving at this conclusion, it is obvious that this method, when applied to ungaged 

basins, is no different than the method presented by Smakhtin and his team in the mid to late 



1990s. I will show this now, abbreviating their method as QPPQ: 

Let’s begin as we did before: 

Given, P(Q_{TT} < X) = 10.11%, find X. 

By (I), P(Q_{TT} < X) = P(API_{TT} < Y). 

By (III), P(API_{TT} < Y) = P(API_{DT} < Z). 

Whereas earlier we stopped here, we can use (I) again to say that P(API_{DT} < Z) = P(Q_{DT} < 

W). 

We can then summarize this into a new implication of (I) and (III), namely P(Q_{TT} < X) = 

P(Q_{DT} < W). 

More generally, P(Q_{DY} < Q_{i,DY}) = P(Q_{TY} < Q_{i,TY}). 

Now, if we had a first-order approximation of the relationship between Q and P at the target site, 

we could estimate X as a day in a simulated hydrograph. 

The method presented by the present authors, uses API and H_T(…) in the donor site to make this 

approximation. Smakhtin et al., and following work, use something like a regional-regression FDC. 

The QPPQ school uses this first-order FDC to produce a sequence of daily flows based on the 

probabilistic implication described here (P(Q_{DY} < Q_{i,DY}) = P(Q_{TY} < Q_{i,TY})). The 

QPPQ stops here. 

You could move further to take the simulated hydrograph and compute a new FDC. 

Because of inaccuracies used to produce the first-order FDC at the target site, inaccuracies 

stemming from estimation error, for example, and the evolving sequence of probabilities in the 

target period (for example, it could be overly weighted toward high flows). There is no guarantee 

that the first-order FDC used in QPPQ will be the same as the FDC that would be built from the 

resulting simulated hydrograph. 

Moving to this second-order FDC would produce a time-dependent FDC at the ungauged site, 

much in the spirit of the methods presented by these authors. 

These two processes, that of simplifying the method presented for partially ungaged sites and the 

extension of the QPPQ method, show that the work presented by these authors misses the novelty 

of their own method. I believe that the work of these authors has merit and the potential to advance 

the field. With further consideration of the implications and theoretical underpinnings of the 

proposed methodology, this manuscript could prove impactful. I will follow now with a few less-

major concerns I have with the manuscript. 

At the opening, it was necessary for me to rephrase the assumptions outlined on page 10. This is 

because those assumptions are not clear, and the tests provided to demonstrate their veracity test 

something different. In (I) it is assumed that the CDFs “correlate”, and the test shows a temporal 

correlation between nonexceedance probabilities. While this isn’t incorrect, it is ambiguous. For 

example, one could equally compute the correlation of API and Q quantiles to say that the CDFs 

correlate, but that would be very different than what the authors are seeking to assume or prove. 

Similarly, (III) states that the CDFs of API are identical across sites, but the proof shows only that 

the exceedance probabilities correlate in time. Identical CDFs would have the same probabilities 

associated with the same values of the proxy. These assumptions need to be less ambiguous. 

As notes above, these assumptions are also redundant. Really, only (I) and (III) are needed, as (II) 

is a natural extension. Another natural extension, as shown above, is P(Q_{DY} < Q_{i,DY}) = 

P(Q_{TY} < Q_{i,TY}). This last one raises a point of confusion in the manuscript. 

 

We thank the reviewer for his interest in our paper. We have substantially modified the 

Methodology section to provide a clearer explanation of the approach and of the underlying 

assumptions. In the following, between quotes, we report the description that is also in the 

manuscript. 

 

“Formally the basic hypotheses of this paper are: 



 Flow duration curves are not invariant properties of basins but are the product of basin, 

weather and human interactions. In this investigation we do not consider the human 

interactions. 

 Precipitation is the most important influencing factor on discharge. 

 Basins delay the reaction on precipitation therefore the API is a better indicator for the 

influence of precipitation on discharge. 

 We assume that discharge and API are changing in a similar way for longer time periods. 

Let FA,Ti(q) be the distribution of daily discharges at basin A and time period Ti (flow duration curve 

for the selected time period) and GA,Ti(a) be the distribution of daily API at basin A and time period 

Ti. 

The transformation from Ti to Tj provides an estimated F∗
A,Tj(q): 

𝐹𝐴,𝑇𝑗
∗ (𝑞) = 𝐺𝐴,𝑇𝑗(𝐺𝐴,𝑇𝑖

−1 (𝐹𝐴,𝑇𝑖(𝑞)))         (7) 

This is a quantile/quantile transformation.  

𝐹𝐴,𝑇𝑗(𝑞) = 𝐹𝐴,𝑇𝑗(𝐹𝐴,𝑇𝑖
−1 (𝐹𝐴,𝑇𝑖(𝑞)))         (8) 

The basic question can be written in the form of the following equation 

𝐺𝐴,𝑇𝑗(𝐺𝐴,𝑇𝑖
−1 (𝑝)) ≈ 𝐹𝐴,𝑇𝑗(𝐹𝐴,𝑇𝑖

−1 (𝑝))         (9) 

That can be summarized in the following question: do the percentiles of the API change in the same 

way as those of the discharge? Note that if the relationship between API and discharge is a good one 

then the two sides are nearly equal. Even a weak relationship can do a good job if the errors are 

independent and the sign of the change is correct. Figures 4 and 5 show the difference between the 

real change in percentiles and that obtained by using the API for different time periods according 

Eq.9. Note that the assumption that the FDC is time invariant would imply that the lines for the 

discharge are on the diagonal. 

The correlation between API and discharge is around 0.6, but the transformations are quite similar 

and the API based transformation delivers good FDCs. 



 

Figure 4. The transformation functions of the 1951-1960 FDC (solid) and API (dashed) to the target 

period 1971-1980 (blue) and 1981-1990 (orange) for Amite. For the sake of comparison, the diagonal 

is dotted in orange. 

 

Figure 5. The transformation functions of the 1951-1960 FDC (solid) and API (dashed) to the target 

period 1971-1980 (blue) and 1981-1990 (orange) for Bogue. For the sake of comparison, the diagonal 

is dotted in orange. 

If API is changing continuously in space then one can use the change of the FDC of a different 

location B for the estimation: 

𝐹𝐴,𝑇𝑗
∗∗ (𝑞) = 𝐹𝐵,𝑇𝑗(𝐹𝐵,𝑇𝑖

−1 (𝐹𝐴,𝑇𝑖(𝑞)))        (10)” 

---------------------------------------------------------------------------- 

 

On page 13, line 34, it is stated that “the FDC of a donor site cannot be transferred to another site”. 

First, it is unclear what is mean by “the FDC”: Do you mean the FDC in its entirety, including 

probabilities and quantiles, or the correlation as “proven” for (I), (II) and (III). In any case, the 



extension that P(Q_{DY} < Q_{i,DY}) = P(Q_{TY} < Q_{i,TY}) contradicts this statement. 

Furthermore, the authors then use this extension to transfer the FDC of a donor to a target in the 

German catchments. This confusion should be clarified. (In point of fact, I recommend removing 

the German catchments altogether.) 

We acknowledge the reviewer for his comment. We deleted the sentence as it was leading to 

confusion. We also removed the German case study for the sake of simplicity as suggested. 

 

A minor aside, the authors have no clearly defined that a partially gaged basin is. Is it any site with 

at least one value of streamflow? Is there some threshold for sufficiency? The method, whether as 

presented by the author or simplified here, requires a substantial donor period at the target 

catchment, but it might be important to define some length of record that would be required. 

A site is defined partially gauged when a limited amount of flow data is available. As we want to 

assess the performance of the method depending on the extension of the period with missing data, 

we have chosen time windows with different length as target periods and we have shown the 

performance of the method depending on this length. The minimum tested length is one-year long 

as it was used to retrieve the annual FDC. We clarified it in the Conclusion section. 

 

Stepping away from the methodology for a moment, I still struggled with the structure of the 

manuscript. Here, I have two recommendations. First, I suggest removing the section on energy 

and water limited catchments (2.3). We know that there are different limiters, and we know this is 

important, but I don’t think this section adds to the manuscript. This is evidenced by the fact that 

the information in this section is never mentioned again in the manuscript: Not to explain the 

results or adapt the methodology. In a similar vein, I suggest removing the presentation and 

analysis of the German catchments. The results for the German catchments, starting on page 18, 

provide little value. The methodology is substantially different (confusingly using a streamflow 

proxy, as described above). The authors provide little discussion as to what new information is 

presented by these catchments. Obviously, with some additional discussion, both sections could 

prove useful, but it may be simpler just to remove them from the manuscript. 

We thank the reviewer for the comments, we deleted the sections related to the German catchments 

to keep the focus on the US catchments. On the other hand, we decided to keep the section on 

energy and water limited catchments as it involves a discussion on the role of the weather on 

annual runoff variability which is the leading message of the paper. We have added a discussion 

about energy and water limited catchments in the Conclusions section. 

 

While this revision did a great job of supporting its assumptions, I feel that a basic one was left out. 

The assumption that these exists the function H_T(…) (page 9, line 7). As shown above, this is the 

crux of the methodology. I think it would be worthwhile to show that the interpolation of values 

implies that this relationship (between Q and API) is site dependent and time independent through 

a cross-validation exercise. 

Finally, before considering minor comments, I was quite surprised that the authors did not address 

the large literature on the appropriateness of donor catchment selection. Instead, the examples 

presented here use the same donor for all gages and treat all gages as donors. Could it be that the 

method is sensitive to donor selection? In truth, the partially gaged method is probably not 

sensitive to donor selection, as demonstrated by the simplification where a donor is not needed, but 

the ungaged approach (QPPQ) is certainly dependent on donor selection. 

We thank the reviewer for the comment, the most important part is that both API and discharge 

change into the same direction, and the errors of the relationship are more or less independent so 

that they cancel out over time. The assumptions are now formulated in a clearer manner in the 

equations. 

 



 

MINOR COMMENTS: 

Page 1, line 10: It seems odd to say that FDCs are “set up”. They are a product of the record, they 

aren’t established. Maybe something like, “The FDC of streamflow at a specific site provides 

knowledge on the distribution and characteristics of streamflow at that site.” 

We rephrased as suggested. 

 

Page 1, line 12: “In spite of its importance,…” 

We rephrased as suggested. 

 

Page 1, line 14: What do you mean by partially gaged? The ability to build an FDC depends on this 

definition. Certainly, a site that has a record from 1980-2000 and 2002-2018 is partially gauged, 

but it still has more than enough information to build an FDC. I see your point that it is weather 

dependent, but it still leaves the definition of partially gaged ambiguous. 

The idea of this paper is that it is possible to retrieve the FDC of a basin using the precipitation; 

the unknown FDC could be annual or could be built with a longer data set. A site is defined 

partially gauged here if there is a lack of records in a given amount of time, this time could be a 

year or more. In the paper we show how the method performs choosing time windows with 

different length as target periods. Please, see also comment above regarding “partially gauged 

site” definition. 

 

Page 1, line 14: “…among the other streamgages.” 

We were referring to other methods, it is clearer now. 

 

Page 2, line 3: I'm not sure that FDCs provide information on the severity because they don't talk 

about duration (length) of drought. So two sites could have a similar frequency of low flows, but 

one might see all low-flows consecutively (long drought), while the other might see intermittent 

lows (episodic drought). One could argue that drought is more severe in the former case. 

We removed the sentence. 

 

Page 2, line 12: “…to meet intake requests…” 

Page 2, line 15, “As the FDC…” 

 We rephrased as suggested. 

 

Page 2, line 27: “In spite of its importance, the FDC…” 

 We rephrased as suggested. 

 

Page 3, line 27, “In the following…” 

 We removed the sentence. 

 

Page 3, line 28, “…divided into water…” 

We removed the sentence. 

 

Page 3, line 28: Are you making a meaningful distinction between basins and catchments? If so, 

explain. If not, please use consistent terminology throughout. 

We checked the consistency and we are using basin now. 

 

Page 3, line 40: Check citation style. 

Page 3, line 40: Revise to “The soil type can strongly affect the impact of climate on the water 

balance.” 

Page 3, line 41: I think the terms are karst and non-karst and should be throughout. 



Page 4, line 2: “…karst regions makes it difficult to transfer information from ..." 

Page 4, line 13: Please provide citation for degree-day approach. 

As we removed the German case study, we removed these sentences. 

 

Page 4, line 15: Keep in mind for formatting: This is an odd page break for a header. 

It is a mistaken format indeed. 

 

Page 5, line 21: “…the catchment allows for infiltration and stores…” 

Page 5, line 21: “…runoff production declines since…” 

Page 5, line 23: “However, the climatic timing…” 

Page 5, line 24: “They show that the difference…” 

We rephrased as suggested. 

 

Page 8, line 30: I think maybe an extra sentence or two of explanation is needed here. Why would 

you expect two different time periods at the same site to be independent (as assumed by the KS 

test)? I see the point about auto-correlation, but I find it hard to imagine that the distribution of Fall 

2012 streamflow and Fall 2013 stream flows are wholly independent at the same site. I think I 

follow your logic, and I would love to see it spelled out more fully. It may be tied to ambiguous 

definition of partial gaging. 

 

The KS test is designed to compare two distribution functions. The question is not whether the 

sample corresponding to different time periods are independent but whether they correspond to a 

different distribution. Anyhow the long memory is relatively low, and we consider full years thus 

annual cycles do not have an influence on our results. We clarified it in the text. 

 

Page 8, line 38: “…Figure 4 shows the magnitude of the difference between…” 

Page 9, line 10: “…hydrological modelling as modelling often introduces additional errors…” 

Page 9, line 11: “…errors and may be…” 

We rephrased as suggested. 

 

Page 9, line 15: Ask, defined above, denotes location, what location is being addressed here? 

 We rephrased to introduce the location. 

 

Page 10, line 10: This paragraph cites discussion about why the alpha should decay with time. 

Does it not decay here? It’s fixed at 0.85?  

 

We have deleted the sentence that was leading to confusion. In this paragraph we describe that 

alpha may assume values ranging from 0 to 1, depending on the type of API’s memory one wants 

to capture. Once that the value of alpha is chosen, this is constant throughout the time. Here it is 

set equal to 0.85.  

 

Page 10, line 17: See discussion above. Here you need to clarify that you are talking about the 

correlation between p(Q<Qi) and P(API < APIi) for the day i. This is different than the correlation 

of Qi and APIi of rank i. 

Page 10, line 27: Are these Pearson correlations? Please specify? 

We consistently revised the methodology section. 

 

Page 13, line 5: Here you are using "," to denote a decimal point and "." to denote figures to the 

right of the decimal. This is not the style of the journal. I suggest, "X.yz, where y and z are the 

digits to the right to the decimal" Perhaps still better: In binning by percentiles, all percentages 



 

were rounded down to the nearest whole number. 

We rephrased as suggested. 

 

Page 13, line 9: Shouldn't there be an absolute value for this statement to be true? Bias is defined 

here as an average. If, for example, we looked at three days producing these values of the thing in 

parenthesis: -3, 0, 3. In this case, the BIAS would be 0, but this is certainly not a perfect fit. 

We have rephrased the description of BIAS.  

 

Page 13, line 13: “…and so is the MAE. It …” 

 We rephrased as suggested. 

 

Page 13, line 29: I think it would be better to show the p-value of D*. Looking at Figure 8 (page 

14, line 12), the D may be bigger, but it may not be as significant because of changing sample size. 

 

There was a typo regarding the D* values that are now correct. The p-value is always zero but for 

a few cases that are reported in the captions and in the text.  

 

Page 17, line 13: I find it very confusing that the color scale changes from figure to figure (e.g. 9 

and 10). The change makes it hard to compare across figures. 

 

We have corrected the scale so that it is easier to compare now, we also carefully checked the 

figures since there was an issue regarding the colors of Figure 10 (now Figure 11). Now it is fixed. 

 

Page 18, line 6: Here the proxy is donor streamflow. I discuss this above, but this strikes me as odd 

when page 13, line 34 seems to say you should not do this. (As you know, I think it might be best 

to just remove this section.) 

We removed it as suggested. 

 

Page 19, line 2: The correlation between the donor and the target is problematic and cannot be 

known a priori (line 12). This needs to be contextualized in an ungaged example that is not 

discussed here. The ambiguity here makes the conclusion on line 39 of page 40 rather tenuous. 

  

We removed the German case study as suggested and so this paragraph, besides the methodology 

is now presented in a clearer manner. 

 

Page 23, line 18: The probability statement should be in terms of API, right? 

Yes, it is. Thank you, it was a typo. 
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Abstract. The Flow Duration Curve (FDC) set up of streamflow at a specific site has a key role to 10 

the knowledge ofon the distribution and characteristics of streamflow characteristic at that site. The 11 

FDC gives information on the water regime providing information to optimally manage the water 12 

resources of the river. SpiteIn spite of its importance, because of the lack of streamflow gauging 13 

stations, the FDC construction can be a not straightforward task. In partially gauged 14 

catchmentsbasins, FDCs are usually built using regionalization methods among the others methods. 15 

In this paper we show that the FDC is not a characteristic of the basin only, but of both the basin and 16 

the weather. Different weather conditions lead to different FDC for the same catchment. The 17 

differences can often be significant. Similarly, the FDC built at a site for a specific period cannot be 18 

used to retrieve the FDC at a different site for the same time window. In this paper, we propose a new 19 

methodology to estimate FDCs at partially gauged basins (i.e., target sites) using discharge and 20 

precipitation data gauged at another catchmentbasin (i.e., donor catchmentsite). The main idea is that 21 

it is possible to retrieve the FDC of a target period of time using the data gauged during a given donor 22 

time period for which data are available at both target and donor sites. To test the methodology, 23 

several donor and target time periods are analyzed and results are shown for two different case study 24 

areassites in the USA. The comparison between estimated and actually observed FDCs show the 25 

reasonability of the approach especially for intermediate percentiles.  26 

1 Introduction 27 

A duration curve is a function that associates to a specific variable its exceedance frequency. 28 

Specifically, in hydrology a Flow Duration Curve (FDC) is a function describing the flow variability 29 

at a specific site during a period of interest. It represents the streamflow values, gauged at a site, 30 

against their relative exceedance frequency. An empirical long-term FDC is the complement of the 31 

empirical cumulative distribution function of streamflow values at a given time resolution based on 32 

the complete streamflow record available for the basin of interest (Castellarin et al., 2007). FDCs are 33 

built as explained in the followings:  34 

– rank the streamflow values in descending order;  35 

– plot the sorted values against their corresponding frequency of exceedance. 36 
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The duration di of the i-th sorted observation is its exceedance probability Pi. If Pi is estimated using 1 

a Weibull plotting position (Weibull, 1939), the duration di for any qi (with i = 1;…;N) is 2 

𝑑𝑖 = 𝑃(𝑄 < 𝑞𝑖) = 𝑃𝑖 =
𝑖

𝑁+1
,          (1) 3 

where N is the length of the streamflow series and qi is the i-th sorted streamflow value.  4 

The FDC provides historical information on the water regime: on the severity of the droughts and on 5 

the magnitude of high flows. Several time resolutions of streamflow data can be used to build the 6 

FDC: annual, monthly or daily. However, the finer is the resolution, the higher is the information 7 

provided by the FDC about the hydrological characteristics of the river (Smakhtin, 2001). FDCs may 8 

be built either on the basis of the whole available record period (Vogel, 1994); or on the basis of all 9 

similar months (Smakhtin et al., 1997); or on the basis of a specific month.  10 

In one curve, the FDC condenses a wealth of hydrologic information that can be easily accessed. 11 

Because of the key role of runoff variability to both water resources management and environmental 12 

health maintenance, FDC is used in a large variety of applications as reported by Vogel (1994). For 13 

instance, FDC can quantify the capacity of the river to meet intake requests as it provides information 14 

about the reliability of the water resource for water abstraction activities (Dingman, 1981). It is at the 15 

base of hydropower plants design as they are used to determine the hydropower energy potential, 16 

especially for run-of-river plants (Hänggi and Weingartner, 2012; Blöschl et al., 2013). As the FDC 17 

is a key signature of runoff variability, it can be used to assess the impact of changes in a catchment. 18 

To this end, through the FDC, Vogel et al. (2007) introduced the indicators of the eco-deficit and eco-19 

surplus. Moreover, the FDC can be used to define and investigate low flows (Smakhtin, 2001). The 20 

knowledge of the streamflow characteristics is also relevant for stream water quality studies, for 21 

instance, to regulate the proper threshold for chemical concentration and load (Bonta and Cleland, 22 

2003). FDC has a further application in model calibration. This application is based on the replication 23 

of the flow frequency distribution rather than of the simulation of the hydrograph (Yu and Yang, 24 

2000; Westerberg et al., 2011). Other applications are related to irrigation planning (Chow, 1964); 25 

schedule optimal flow release from reservoirs (Alaouze, 1991); basins afforestation (Scott et al., 26 

2000); investigation of the effects on flows regime due to catchmentsbasins vegetation change 27 

(Brown et al., 2005).  28 

SpiteIn spite of FDCits importance, the FDC is affected by the lack of data in ungauged and poorly 29 

gauged basins. Many authors dealt with the issue of FDC prediction at ungauged or partially gauged 30 

locations through regional regression (e.g., Fennessey and Vogel, 1990; Mohamoud, 2008; Rianna et 31 

al., 2011, 2013; Castellarin et al., 2013; Pugliese et al., 2016) and geostatistical interpolation (e.g., 32 

Pugliese et al., 2014). Ganora et al. (2009) developed a methodology to estimate FDC at ungauged 33 

sites based on distance measures that can be related to the catchment and the climatic characteristics. 34 

Spatial non-linear interpolation methods were developed by several scholars (e.g., Archfield and 35 

Vogel, 2010; Mohamoud, 2008; Hughes and Smakhtin, 1996; Farmer et al., 2015). Worland et al. 36 

(2019) presented a method involving the use of the copula function. Hughes and Smakhtin (1996) 37 

proposed a method to extend and/or filling in daily flow time series at a site using monthly FDCs of 38 

the target site itself. These monthly FDCs should be recorded during a donor period or retrieved using 39 

different methods such as (i) regionalization of FDCs based on available observed records from 40 

several adjacent gauges (Smakhtin et al., 1997) or (ii) conversion of FDCs calculated from monthly 41 
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data into 1-day FDCs (Smakhtin, 1999). Since the main limitation of the approach proposed by 1 

Hughes and Smakhtin (1996) is that it is based entirely on observed flow records, later, Smakhtin and 2 

Masse (2000) proposed a further development, which uses the current precipitation index (CPI) of 3 

the donor site to extend the daily hydrograph at the target site. The major assumption is that both the 4 

CPIs occurring at donor sites in a reasonably close proximity to the target site and target site's flows 5 

themselves correspond to similar percentage points on their respective duration curves. On the other 6 

hand, the basic assumption of the spatial interpolation algorithm proposed by Hughes and Smakhtin 7 

(1996) is that flows occurring simultaneously at sites in reasonably close proximity to each other 8 

correspond to similar probabilities on their respective flow duration curves. On the contrary, one 9 

important message of our paper is that FDCs can be very different from time period to time period 10 

both at the site itself and at pairs of sites as a long term change in the weather effects the FDCs. 11 

Therefore, our approach is based on the concept that proximal sites do not share similar FDCs. This 12 

will be demonstrated in the paper applying a two-sample Kolmogorov-Smirnov test to pairs of 13 

stations. The usual assumption that they and the related indices are characteristic for the 14 

catchmentbasin is not true. Therefore, the FDCs built at a given location for different periods cannot 15 

be regarded as the same distribution. It is not possible to determine a unique distribution and therefore 16 

a unique set of parameters. The same results from the analysis of FDCs built in two different 17 

catchmentsbasins. It is not possible to develop relations between parameters of the basin and 18 

characteristics of the FDC to yield synthesized FDCs in locations where flow data are not available, 19 

as done for instance by Quimpo et al. (1983). These issues have a key role especially when dealing 20 

with ungauged basins.  21 

The main idea underlying our work is to build the FDC at a target site using a filter, which relates the 22 

distributions of the discharge and the precipitation. As the weather is the main driver of annual runoff 23 

variability, we propose a transformation driven by the weather. The paper is organized as follows. 24 

First, the case studyies are is presented and catchmentsbasins are grouped into energy- and water-25 

limited ones. Then, the Kolmogorov-Smirnov test is carried out on pairs of FDCs to assess whether 26 

these curves can be regarded as the same distribution. Second, the methodology is presented 27 

andtogether with the underlying assumptions. Then, the approach is applied to a set of 28 

catchmentsbasins located in Germany and in U.Sthe case study area. Finally, results are shown and 29 

discussed. 30 

2 Case study area  31 

The methodology was applied to several catchments located in two different areas. Ten basins are 32 

located in the upper Neckar River basin (Germany), while ten basins are located on the Gulf coast of 33 

the USA. In the followings, the two case study areas are presented. Since the procedure is based on 34 

the climatological characteristics of basins, catchments will be divided in water and energy limited 35 

ones.  36 

2.1 Upper Neckar catchments (Germany)  37 

This study uses data from ten sub-catchments belonging to the Upper Neckar River basin, south-west 38 

Germany. The Neckar is a tributary of the Rhine, it springs at an altitude of 706 m a.s.l. and it is 367 39 

km long, Figure 1. The Upper Neckar catchment lies in between the Black Forest and Schwäbische 40 

Alb in the Baden-Württemberg region. The basin has an area of 4000 km2, its elevation ranges from 41 



4 

 

about 240 m a.s.l. to around 1010 m a.s.l., with a mean elevation of 548 m a.s.l. (Singh et al., 2012). 1 

The sub-catchments are characterized by a drainage area ranging from around 120 km2 to about 4000 2 

km2. The region is characterized by warm summers and mild winters (Samaniego, 2003). In the Upper 3 

Neckar catchments, the main geological formations originated in the Triassic and Jurassic periods. 4 

The main formations are composed of altered keuper, claystone-jura, claystone-keuper, limestone-5 

jura, loess, sandstone and shelly limestone (Muschelkalk), Samaniego (2003). The effect of soil type 6 

can strongly modify the impact of climate on the water balance. For instance, karstic and non-karstic 7 

catchments are characterized by very different water balances, since an underground karstic 8 

catchment is very different from its overground catchment. The presence of karstic regions makes 9 

difficult the transfer of information from precipitation to discharge data in the same basin and from a 10 

karstic basin to a not karstic one. Approximately 35% of the basin has karstic formations (Samaniego 11 

et al., 2010). 12 

 13 

Figure 1. Streamflow gauges (red circles) used to test the methodology in the corresponding 14 

catchments located on the Upper Neckar River, Germany. 15 

The mean daily discharge, precipitation, and evapotranspiration, the minimum and maximum daily 16 

temperature are available for each sub-catchment for the period 1961-1990. Basins characteristics are 17 

presented in Table 1; for more details on this study area, please refer to Samaniego (2003) and 18 

Bárdossy et al. (2005). Snow effects are considered by a simple snow accumulation and snowmelt 19 

model using a degree day approach. This allows to convert snow to a daily liquid. 20 

Table 1. Study area: upper Neckar catchments in south-west Germany 21 

Catchment 
Area 

Drainage 

area 
Elevation Slope 

Annual 

discharge 

Annual 

precipitation 

km2 km2 m degree mm mm 

Rottweil 456 456 555–1010 0–34.2 352.7 976 

Obendorf 235 691 460–1004 0–44.2 360.5 953 

Horb 427 1118 383–841 0–48.9 417.5 1158 
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Rangendingen, 

Starzel 118 118 421–954 0–36.9 347.4 905 

Wannweil, Echaz 135 135 309–862 0–45.9 654.1 877 

Riederich, Erms 170 170 317–865 0–49.4 556.5 956 

Oberensingen, Aich 175 175 278–601 0–27.1 234.3 762 

Suessen, Fils 340 340 360–860 0–49.3 547.2 1003 

Plochingen, Fils 352 692 252–785 0–39.7 446.6 936 

Plochingen, Neckar 473 3962 241–871 0–45.8 397.2 863 

The methodology was applied to several catchments located in two different areas. Ten basins are 1 

located in the upper Neckar River basin (Germany), while ten basins are located on the Gulf coast of 2 

the USA. In the followings, the two case study areas are presented. Since the procedure is based on 3 

the climatological characteristics of basins, catchments will be divided in water and energy limited 4 

ones.  5 

2.1 Upper Neckar catchments (Germany)  6 

This study uses data from ten sub-catchments belonging to the Upper Neckar River basin, south-west 7 

Germany. The Neckar is a tributary of the Rhine, it springs at an altitude of 706 m a.s.l. and it is 367 8 

km long, Figure 1. The Upper Neckar catchment lies in between the Black Forest and Schwäbische 9 

Alb in the Baden-Württemberg region. The basin has an area of 4000 km2, its elevation ranges from 10 

about 240 m a.s.l. to around 1010 m a.s.l., with a mean elevation of 548 m a.s.l. (Singh et al., 2012). 11 

The sub-catchments are characterized by a drainage area ranging from around 120 km2 to about 4000 12 

km2. The region is characterized by warm summers and mild winters (Samaniego, 2003). In the Upper 13 

Neckar catchments, the main geological formations originated in the Triassic and Jurassic periods. 14 

The main formations are composed of altered keuper, claystone-jura, claystone-keuper, limestone-15 

jura, loess, sandstone and shelly limestone (Muschelkalk), Samaniego (2003). The effect of soil type 16 

can strongly modify the impact of climate on the water balance. For instance, karstic and non-karstic 17 

catchments are characterized by very different water balances, since an underground karstic 18 

catchment is very different from its overground catchment. The presence of karstic regions makes 19 

difficult the transfer of information from precipitation to discharge data in the same basin and from a 20 

karstic basin to a not karstic one. Approximately 35% of the basin has karstic formations (Samaniego 21 

et al., 2010). 22 
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 1 

Figure 1. Streamflow gauges (red circles) used to test the methodology in the corresponding 2 

catchments located on the Upper Neckar River, Germany. 3 

The mean daily discharge, precipitation, and evapotranspiration, the minimum and maximum daily 4 

temperature are available for each sub-catchment for the period 1961-1990. Basins characteristics are 5 

presented in Table 1; for more details on this study area, please refer to Samaniego (2003) and 6 

Bárdossy et al. (2005). Snow effects are considered by a simple snow accumulation and snowmelt 7 

model using a degree day approach. This allows to convert snow to a daily liquid. 8 

Table 1. Study area: upper Neckar catchments in south-west Germany 9 

2.2 USA catchments 10 

The catchments on the Gulf coast of the USA are located in three different States on the Gulf coast 11 

of the USA: Florida, Louisiana and Texas, Figure 21. These basins were selected because they are 12 

characterized by a mild climate and therefore, no snow events have been recorded, allowing us to 13 

neglect the snow melting effect. Daily streamflow discharge and precipitation values are available for 14 

each catchmentbasin for different time windows, Table 21. 15 

 16 

Figure 21. Streamflow gauges (red circles) used to test the methodology in the corresponding USA 17 

catchmentsbasins. 18 
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Daily streamflow discharge data were originally provided by the United States Geological Survey 1 

(USGS) gauges, while mean areal precipitation and climatic potential evaporation were supplied by 2 

the National Climate Data Center (NCDC) at daily resolution. The data set is a subset of the Model 3 

Parameter Estimation Experiment (MOPEX) database, used for hydrological model comparison 4 

studies (Duan et al., 2006) and for simultaneous calibration of hydrological models (Bárdossy et al., 5 

2016). 6 

Table 21. US case study area: streamflow gauges and corresponding catchmentsbasins characteristics 7 

Station name 

Drainage 

Area 

Mean 

elevation 

Mean 

slope 

Mean 

discharge 

Mean annual 

precipitation 

Available 

record 

km2 m - mm mm - 

Peace River At 

Arcadia, FL 
3540.53 32.3 0.3 257.4 1296.2 1948-2001 

Ochlockonee River 

Nr Havana, FL 
2952.6 75.6 1.8 322.6 1366.7 1948-2001 

Choctawhatchee 

River at Caryville, FL 
9062.41 92.2 3.2 540.8 1464.7 1948-1994 

Bogue Chitto River 

near Bush, LA 
3141.67 101.6 1.8 579.2 1637.1 1948-1999 

Tangipahoa River at 

Robert, LA 
1673.14 76.9 1.6 635.2 1682 1948-1999 

Comite River near 

Comite, LA 
735.56 59.6 1.1 595.9 1644.2 1948-1999 

Amite River near 

Denham Springs, LA 
3315.2 75.6 1.3 584.1 1647.9 1948-1999 

Calcasieu River near 

Oberlin, LA 
1950.27 62.2 1.1 502.9 1558.9 1948-1986 

Llano Rv near 

Junction, TX 
4807.04 670.9 3.4 34.8 645.8 1948-1988 

Blanco Rv at 

Wimberley, TX 
919.45 417.3 5.2 140.6 896.7 1948-2001 

 8 

2.3 1 Energy and water limited catchmentsbasins 9 

Annual runoff variability is driven by the relative availability of water (i.e., precipitation) and energy 10 

(i.e., evaporation potential). Therefore, the weather is the most important driver of annual variability 11 

(Blöschl et al., 2013). Much of the annual runoff variability can be explained observing the different 12 

availability of water and energy. For instance, if more water arrives to the catchmentbasin than energy 13 

can remove through evaporation, the annual runoff will be high. Moreover, in this case the 14 

relationship between runoff and precipitation will be more linear than when more energy is available 15 

to evaporate the water. On the other hand, in an arid region, the aridity of the climate determines a 16 

high inter-annual runoff variability because of the non-linear relationship between runoff and 17 

precipitation. Therefore, differences in water and energy availability cause differences in annual 18 

runoff variability. However, additional factors such as differences in seasonality and precipitation 19 
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must be considered (Jothityangkoonad and Sivapalan, 2009). The relative availability of water and 1 

energy can be described through the Budyko curve (Budyko, 1974). The curve plots the ratio between 2 

mean annual actual evaporation and mean annual precipitation as a function of the ratio between 3 

mean annual potential evaporation and mean annual precipitation (i.e., the aridity index). Therefore, 4 

it defines a similarity index (i.e., the aridity index) to express the availability of water and energy, 5 

and thus bolsters the classification of hydrological sceneries into various degree of aridity. The 6 

Budyko curve represents the effects of water and energy availability on annual runoff variability. 7 

Moreover, it provides indication about the synchrony of evaporation and precipitation. For instance, 8 

where precipitation and evaporation are in phase, runoff production reducesdeclines since the 9 

catchment infiltratesbasin allows for infiltration and stores water and vice versa. Many regions range 10 

from in phase to out of phase because of the strong seasonality of climate forcing. However, also the 11 

climatic timing can influence runoff variability as presented by Montanari et al. (2006). They 12 

shownshow that the difference in annual runoff between two years with equivalent annual 13 

precipitation was of 100% in a monsoonal area of Northern Australia because during the wet year the 14 

precipitation occurred during the wet season, i.e., when the potential evaporation was smaller. In this 15 

framework, it is important to understand the behavior of the catchmentsbasins under analysis. To this 16 

end, we analyzed the mean annual runoff coefficient, the annual precipitation and the annual 17 

evapotranspiration against the annual mean temperature. This analysis is essential to understand the 18 

causal processes leading to the long-term mean and variability of runoff as also described in 19 

McMahon et al. (2013). The mean annual runoff coefficient is defined as: 20 

𝜇𝑅 =
𝑄𝑦𝑟̅̅ ̅̅ ̅

𝑃𝑦𝑟̅̅ ̅̅ ̅
,            (2)  21 

where 𝑄𝑦𝑟
̅̅ ̅̅ ̅ is the annual discharge volume and 𝑃𝑦𝑟

̅̅ ̅̅  is the annual precipitation volume.  22 

Results show that catchmentsbasins have two different behaviors: precipitation, evapotranspiration 23 

and runoff have either a positive or a negative correlation with the air temperature. In the former case 24 

the evapotranspiration is limited by the available water, which happens in water-limited 25 

catchmentsbasins; in the latter the evapotranspiration is limited by the available energy which 26 

happens in energy-limited catchmentsbasins. For instance, measurements at Peace River (LA) 27 

suggest that the catchmentbasin is balanced between energy and water limitation by the correlation 28 

criterion, Figure 32 upper panel. While Ochlockonee River (FL), Amite River near Denham Springs 29 

(LA) and Bogue Chitto River (LA) are energy-limited. Results for Amite River are consistent with 30 

what found by Carrillo et al. (2011). Since it is not possible to infer discharge values of a water-31 

limited catchmentbasin from the data set of an energy-limited one, analysis have been carried out on 32 

climatically homogeneous sets of basins. 33 
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 1 

Figure 2. Annual precipitation against mean annual temperature (left panels), annual 2 

evapotranspiration against mean annual temperature (middle panels) and annual runoff coefficient 3 

against mean annual temperature (right panels) for four different basins: Peace River (FL), 4 

Ochlockonee River (FL), Amite River near Denham Springs (LA), Bogue Chitto River (LA). In each 5 

plot, the Pearson correlation coefficient ρ is reported in box. 6 

2.4 2 Preliminary analysis  7 

The FDC can be interpreted as a distribution function of discharge over a given time period. To 8 

determine if samples are drawn from the same distribution, here the two-sample Kolomogorov-9 

Smirnov test (KS; Massey, 1951) is carried out on each pair of samples. The KS statistic on two 10 

samples is a non-parametric test for the null hypothesis that the two independent samples are drawn 11 

from the same continuous distribution. The decision to reject the null hypothesis is based on 12 
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comparing the p-value with the significance level set equal to 5%. Moreover, the test allows us to 1 

estimate the distance between couples of FDC: 2 

D* = max
𝑥

(|𝐹1(𝑥) − 𝐹2(𝑥)|),          (3) 3 

where F1(x) is the proportion of x1 values less than or equal to x and F2(x) is the proportion of x2 4 

values less than or equal to x. F1 and F2 are two FDCs. The KS statistic is applied on daily streamflow 5 

data sampled in several periods of record (e.g. 1 year, 10 years, 15 years). The long memory is 6 

relatively low, and we consider full years thus annual cycles do not have an influence on our results. 7 

The test is carried out both on pairs of samples gauged at the same location in two different years (or 8 

in two different decades) and on pairs sampled at two different sites. Since the streamflow data 9 

presents autocorrelation, the autocorrelation effects the KS test. Weiss (1978) proposed a 10 

methodology to account for modifying the KS test for autocorrelated data. Later, Xu (2014) suggested 11 

a method that can be applied to two samples test. The information contained in the data is (usually) 12 

less than an i.i.d. sample with the same size. In other words, the number of equivalent independent 13 

observations is fewer than the sample size. In the following, we explain how we took into 14 

accountaccounted for the equivalent sample size. It is easier to implement and more importantly, it 15 

can be easily generalized to two samples test. We can assume that the autocorrelation effect attenuates 16 

after three days. For instance, let take as an example a 1 -year FDC. If the sample was three times 17 

smaller and for instance the length would equal 122 (i.e., 365 divided by 3), the null hypothesis would 18 

have been rejected anyway, leading to the same conclusion (i.e., the two samples cannot be regarded 19 

as the same distribution). This is due to the fact that, according to the two samples KS test, the length 20 

of the equivalent sample that could pass the test should be 22.  21 

The application of the KS test to our samples is pivotal to the development of the methodology. Test 22 

results show that streamflow data gauged in different periods (e.g. years or decades) at a specific 23 

location do not have the same distribution. The consequence is that it is not possible to use the 24 

parameters and the distribution derived from a FDC built for a specific time window to build the FDC 25 

of another time window. The same results comparing streamflow data gauged in a specific year or 26 

decade at two different sites. Since the two data sets cannot be regarded as the same distribution, it is 27 

not possible to derive the FDC at one location using the parameters of athe FDC sampled at another 28 

location. Therefore, it is necessary to develop a methodology that accounts for the weather, as it is 29 

the main driver of FDCs variability as shown in the following. Figure 43 shows how different can 30 

bethe magnitude of the difference between FDCs built at the same location using streamflow data 31 

gauged during different time windows.  32 
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 1 

Figure 43. FDCs built for Tangipahoa River (FL) for four different hydrological years. Every 2 

hydrological year starts in October and ends the following September. 3 

3 Methodology  4 

The aim of this paper is to find the distribution Qk(t) for a time period (T1,T2), that is a FDC. We 5 

assume that discharge is related to precipitation in the form: 6 

Q
k
(𝑡) = ℎ𝑘(𝑃𝑘(𝑡 − 𝜏), 𝜏 = 0, . . . , 𝑛, . . . , 𝛽𝑘),       (4) 7 

where k stands for the locationis a generic site, hk is the transformation, usually approximated by a 8 

hydrological model, Pk is the precipitation and k is the specific parameter of the hydrological model. 9 

The core of this work is to retrieve the discharge values without hydrological modelling as modelling 10 

is often introducingintroduces additional errors and it may be biased for long subperiods. Thus, the 11 

main idea is to get rid of a complicated non-linear processesprocess and to find a filter which relates 12 

the distributions.  13 

The main hypothesis underlying this work is that daily flow duration curves at a partially ungauged 14 

location can be found with knowledge of the precipitation record at a donor site. The most important 15 

descriptor of the weather characteristic is the rainfall,; however, we cannot use the distribution of Pk 16 

to assess the FDC directly as it will fail due to the lacking temporal structure and the many zeros. We 17 

can then use a transformation of Pk, the Antecedent Precipitation Index (API): 18 

API(𝑡) = 𝑎𝑘(𝑃𝑘(𝑡 − 𝜏), 𝜏 = 0, . . . , 𝑛).        (5) 19 

Both transformations reported in Eq. 4 and 5 can be regarded as filters acting on Pk. These filters do 20 

not necessarily produce highly correlated series, but may produce series with similar distributions.  21 

The API is used to investigate precipitation data in a similar way to discharge data as it combines in 22 

a streamflow-like way the history of the precipitation. It represents the memory of a basin as it is 23 

related to the amount of water released by the soil to the river considering a given time window. 24 

Specifically, the API allows us to take into account the antecedent conditions, the duration of the 25 

rainfall events and gives an estimate of the portion of rainfall contributing to storm runoff (Linsley et 26 

al., 1949). It is a sequence of linear combination of rainfall events in the period preceding a specific 27 
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storm (Kohler and Linsley, 1951). For a resolution of one day and a time window of 30 days, the API 1 

at the i-th day is given by: 2 

APIi = ∑ 𝛼𝑗𝑃𝑖−𝑗 ,
29

𝑗=0
          (6) 3 

where α is a constant and ranges from 0 to 1 and Pi is the daily precipitation occurred at the i-th day. 4 

Since a day-to-day value of the API is required, there is a considerable advantage in assuming α 5 

decreasing with the time as shown by  (Kohler and Linsley,  (1951). When α tends to zero, API keeps 6 

tracks of the precipitation occurred in the few previous days and it represents the short memory of 7 

the basin. When α tends to 1, the API represents the long memory of the basin as it includes the effect 8 

of precipitation occurred many days before. To capture thisthe latter behavior, in this study α is chosen 9 

equal to 0.85,. T this is in agreement with a previous study by Sugimoto (2014) who investigated a 10 

case study area whereby a preliminary analysis was performed (i.e. Neckar who investigated one of 11 

the twoa case study areasarea whereby a preliminary analysis was performed  (i.e. Neckar 12 

catchmentbasin); nevertheless, this value was found to be suitable also for the US catchmentsbasins. 13 

Here the API is calculated from areal precipitation instead of point precipitation. 14 

Formally the The basic hypotheses of this paper are: 15 

 Flow duration curves are not invariant properties of basins but are the product of basin, 16 

weather and human interactions. In this investigation we do not consider the human 17 

interactions. 18 

 Precipitation is the most important influencing factor on discharge. 19 

 Basins delay the reaction on precipitation therefore the API is a better indicator for the 20 

influence of precipitation on discharge. 21 

 We assume that discharge and API are changing the in a similar way for longer time periods. 22 

Let FA,Ti(q) be the distribution of daily discharges at basin A and time period Ti (flow duration curve 23 

for the selected time period) and GA,Ti(a) be the distribution of daily API at basin A and time period 24 

Ti. 25 

The transformation from Ti to Tj provides an estimated F∗
A,Tj(q): 26 

𝐹𝐴,𝑇𝑗

∗ (𝑞) = 𝐺𝐴,𝑇𝑗
(𝐺𝐴,𝑇𝑖

−1 (𝐹𝐴,𝑇𝑖
(𝑞)))         (7) 27 

This is a quantile/quantile transformation.  28 

𝐹𝐴,𝑇𝑗
(𝑞) = 𝐹𝐴,𝑇𝑗

(𝐹𝐴,𝑇𝑖

−1 (𝐹𝐴,𝑇𝑖
(𝑞)))         (8) 29 

The basic question can be written in the form of the following equation 30 

𝐺𝐴,𝑇𝑗
(𝐺𝐴,𝑇𝑖

−1 (𝑝)) ≈ 𝐹𝐴,𝑇𝑗
(𝐹𝐴,𝑇𝑖

−1 (𝑝))         (9) 31 

That can be summarized in the following question: do the percentiles of the API change in the same 32 

way as those of the discharge? Note that if the relationship between API and discharge is a good one 33 

then the two sides are nearly equal. Even a weak relationship can do a good job if the errors are 34 
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independent and the sign of the change is correct. That can be summarized in the following question: 1 

do the percentiles of the API change in the same way as those of the discharge? Note that if the 2 

relationship between API and discharge is a good one to one relationship then the two sides are nearly 3 

equal. Even a weak relationship can do a good job if the errors are independent and the signal of the 4 

change is correct. 5 

Figures 4 and 5 show the difference between the real change in percentiles and that obtained by using 6 

the API for different time periods according Eq.9. Note that the assumption that the FDC is time 7 

invariant would imply that the lines for the discharge are on the diagonal. 8 

The correlation between API and discharge is around 0.6, but the transformations are quite similar 9 

and the API based transformation delivers good FDCs. 10 

 11 

Figure 4. The transformation functions of the 1951-1960 FDC (solid) and API (dashed) to the target 12 

period 1971-1980 (blue) and 1981-1990 (orange) for Amite. For the sake of comparison, the diagonal 13 

is dotted in orange. 14 

 15 
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Figure 5. The transformation functions of the 1951-1960 FDC (solid) and API (dashed) to the target 1 

period 1971-1980 (blue) and 1981-1990 (orange) for Bogue. For the sake of comparison, the diagonal 2 

is dotted in orange. 3 

If API is changing continuously in space then one can use the change of the FDC of a different 4 

location B for the estimation: 5 

Is the API changing continuously in space? We assume that it is. If API is changing continuously in 6 

space then 7 

𝐹𝐴,𝑇𝑗

∗∗ (𝑞) = 𝐹𝐵,𝑇𝑗
(𝐹𝐵,𝑇𝑖

−1 (𝐹𝐴,𝑇𝑖
(𝑞)))         (10) 8 

which means that FDC changes can be estimated from FDC changes of other basins (e.g., B in Eq.10).  9 

In the following, the methodology is reported step by step together with the underlying assumptions. 10 

Then, then, the performance criteria used to estimate the goodness of the methodology are presented. 11 

3.2 1 How to determine the FDC at a partially gauged basinProcedure step-by-step 12 

The assumptions underlying this work are the followings: 13 

I. The cumulative distributions of streamflow and the proxy correlate at a single site over the 14 

same period.  15 

II. The exceedance probability of the proxy on a specific day at the donor site is equivalent to 16 

the exceedance probability of streamflow on that same day at the target site.  17 

III. The cumulative distribution function of the proxy is identical across sites for both the index 18 

site and the target site in the same period.  19 

Where the proxy variable is the variable used to retrieve the FDC at the target site. As the API was 20 

used as proxy for the U.S. case area, the first assumption is that the temporal sequence of API 21 

exceedance probabilities is highly correlated with the temporal sequence of streamflow exceedance 22 

probabilities at a single site over the same period, Table 3.  23 

Table 3. Correlation between temporal sequence of API exceedance probabilities and the temporal 24 

sequence of streamflow exceedance probabilities estimated for different sites and different periods. 25 

 Correlation 

Period\Site Blanco Tangipahoa Choctawthachee 

1948-1968 0.978 0.996 1 

1968-1988 0.995 0.997 1 

1948-1963 0.998 0.993 0.998 

1948-1958 0.970 0.995 0.998 

The second assumption verifies if, for the donor period, the temporal sequence of API exceedance 26 

probabilities at the donor site is highly correlated with the temporal sequence of streamflow 27 

exceedance probabilities at the target site. This assumption applies for all donor periods; Table 4 28 

shows correlation values for some donor periods.  29 
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Table 4. Correlation between temporal sequence of API exceedance probabilities at the donor site 1 

(i.e., Blanco River, USA) and the temporal sequence of streamflow exceedance probabilities at three 2 

target sites for four different donor periods.  3 

 Correlation 

Sites\Donor period 1948-1968 1968-1988 1948-1963 1948-1958 

Tangipahoa 0.996 0.997 0.994 0.997 

Choctwhatchee 1 1 0.999 0.999 

Bogue 0.990 0.992 0.995 1 

The third assumption is that cumulative distribution function of API is identical across sites for both 4 

the index site and the target site in the same period. This assumption was verified performing a 5 

Kolmogorov-Smirnov test on API at different sites for different periods. For instance, the Weibull 6 

distribution is accepted for the API at Tangipahoa, Choctawhatchee and Bogue (USA) for the periods 7 

shown in Table 5. However, the distribution parameters may differ from site to site and from time 8 

period to time period. The correlation between temporal sequence of API exceedance probabilities at 9 

the donor site and at each target site is found to be high, thus the assumption was further verified, 10 

Table 5. 11 

Table 5. Correlation between temporal sequence of API exceedance probabilities at the donor site 12 

(Blanco, USA) and three other sites is reported for four different periods.  13 

 Correlation 

Sites\Donor period 1948-1968 1968-1988 1948-1963 1948-1958 

Tangipahoa 0.98 0.99 0.97 0.99 

Choctwhatchee 0.98 0.98 0.98 0.98 

Bogue 0.99 0.99 0.98 0.99 

 14 

In the following, the procedure is explained step by step using the API as a proxy. However, similarly, 15 

it is possible to use the streamflow values recorded at the donor site.  16 

Let consider two catchmentsbasins, A and B. We want to determine the Flow Duration Curve at 17 

catchmentbasin B from data available at A. Therefore, A is the donor catchmentbasin, while B is the 18 

target catchmentbasin. Let suppose that in a given number of years, discharge is available at both 19 

sites A and B, named donor years, while for another number of years, i.e. the target years, data are 20 

available for A only.  21 

1. Donor years selection. Select a number of years for which precipitation and discharge values 22 

are available at daily resolution for catchmentbasin A and B, respectively. These will be 23 

named donor years (e.g. with duration of 1 year, 10, 15, 20 years).  24 

2. Generation of empirical distribution of API values. Empirical distributions of API values are 25 

calculated for site A for donor and target years: sort API values and assign to each sorted 26 

value the corresponding rank and estimate the corresponding frequency of exceedance using 27 

the Weibull plotting position.  28 

3. Generation of empirical distribution of streamflow values. Empirical distributions of 29 

streamflow values are calculated for site B for donor years only. 30 

4. Data transfer from donor site.  31 
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i. Select the i-th frequency pi, with i=1,…,Nt where Nt is the length of the target sample, 1 

and the corresponding API value recorded at the donor site during the target years, 2 

Figure 5a6a.  3 

ii. Search for this API value among those recorded at the donor site during the donor 4 

years and estimate the corresponding frequency, Figure 5b6b. 5 

iii. This frequency is then used to retrieve the corresponding streamflow value recorded 6 

at site B during the donor years, Figure 5c6c.  7 

iv. This streamflow value is the missing value at site B corresponding to the i-th frequency 8 

pi, Figure 5d6d. 9 

 10 

Figure 56. Illustration of FDC generation using the interpolation with the API of the donor site as a 11 

proxy. 12 

Steps from 1 to 4 are repeated for every frequency and then for different target periods and for 13 

different target catchmentsbasins. The FDC is expressed in millimeter, thus the area of the 14 

catchmentbasin is not an issue using data of another catchmentbasin. 15 

An example of the procedure is reported step by step in Appendix A.  16 

3.3 2 Performance criteria 17 

To determine the performance of the procedure proposed in this paper, different criteria are selected: 18 

the Nash-Sutcliff efficiency index (NSE; Nash and Sutcliff, 1970), the BIAS and the Mean Absolute 19 

Error (MAE).  20 

The Nash-Sutcliffe efficiency between the interpolated and the observed flow value is the most 21 

widespread performance criterion: 22 

NSE = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑖𝑛𝑡𝑟𝑝𝑙,𝑖)

2𝑁

𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−�̅�)
2𝑁

𝑖=1

,         (7) 23 

where Qobs is the observed discharge value at the target catchmentbasin during the target period; Q̅ is 24 

the mean value of the observed discharge during the target period in the target catchmentbasin; Qintrpl 25 

is the interpolated discharge value. The NSE is evaluated here for a specific set of percentiles, thus, 26 

N is the number of discharge values related to a specific percentile. The X percentile is defined as the 27 

set containing all “X,…” numbers where the dots stand for the decimal points. For instance, the 28 
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1.09%, 1.36%, 1.63%, 1.91% belong with the 1rst percentileIn binning by percentiles, all percentages 1 

were rounded down to the nearest whole number. 2 

The BIAS represents the mean difference between observed and interpolated values: (Castellarin et 3 

al., 2001; Ridolfi et al., 2016): 4 

BIAS =
1

𝑁
∑ (

𝑄𝑖𝑛𝑡𝑟𝑝𝑙,𝑖−𝑄𝑜𝑏𝑠,𝑖

𝑄𝑜𝑏𝑠,𝑖
)

𝑁

𝑖=1
.         (8) 5 

IfThis metric comprises the BIAS equals zero theremean of the error made relative to the observed 6 

record. It is a perfect fitsigned and unbounded metric. It indicates as a ratio the level of overall 7 

agreement between the observed and interpolated values. If the BIAS is negative, observed values 8 

are underestimated, while if the BIAS is positive, they are overestimated. 9 

The mean absolute error is defined as: 10 

MAE =
∑ |𝑄𝑜𝑏𝑠,𝑖−𝑄𝑖𝑛𝑡𝑟𝑝𝑙,𝑖|

𝑁

𝑖=1

𝑁
.          (9) 11 

Discharge values are in mm and so is the MAE is. It measures the overall agreement between observed 12 

and interpolated values. It is a non-negative metric without upper or lower bounds. A perfect model 13 

would result in a MAE equals to zero. This estimation metric does not provide any information about 14 

under- or over-estimation, but it determines all deviations from the observed values regardless of the 15 

sign. All metrics are evaluated here for a specific set of percentiles, thus, N is the number of discharge 16 

values related to a specific percentile. In binning by percentiles, all percentages were rounded down 17 

to the nearest whole number. 18 

4. Results 19 

The procedure explained above was tested on several target catchmentsbasins varying both donor and 20 

target periods. For the U.S. catchments, using a donor period of 20 years, we considered 10 years and 21 

1 year as target periods. For donor periods equal to 15 and 10 years, we considered as target periods 22 

15 and 10 years, respectively.  23 

Results show a good agreement between observed and interpolated FDCs. For instance, the FDCs 24 

interpolated using 20 and 10 years as donor and target periods, respectively, have a good performance, 25 

as shown for Tangipahoa and Bogue catchmentsbasins, Figure 67. The method performance is higher 26 

for intermediate durations, while it can be lower for the low flows, e.g. as at Bogue for target years 27 

1988-1998 (Figure 67 lower panels) and for the high flows. The good performance of the approach 28 

is also noticeable when the target period is 15 years, Figure 78. On each panel, the two-sample 29 

Kolmogorov-Smirnov test distance between observed and interpolated valuevalues, D*, is reported. 30 

D* is characterized by small values showing a good performance of the method. Since usually the 31 

FDC of a donor site is used to retrieve the FDC of a target site for the same period, the FDC of the 32 

donor catchmentbasin recorded during the target period wasis also plotted. It is noteworthy to observe 33 

that the difference between these two FDCs can be substantial. This implies that the FDCs can be 34 

substantially different at different sites in the same period of time, in turn it entails that the FDC of a 35 

donor site cannot be transferred to another site.  36 
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 1 

 2 

Figure 67. Interpolated FDC at Tangipahoa River (FL) and Bogue River (LA), upper and lower 3 

panels, respectively. The donor catchmentbasin is Blanco River (TX). The donor years are a 20 years 4 

time window from October 1948 to September 1968 and from October 1968 to September 1988. 5 

Target years are the decades shown above each panel. Blue dots and red dots are the observed and 6 

interpolated FDC at the target catchmentbasin during the target period, respectively; the black dots 7 

are the observed FDC at the donor catchmentbasin during the target period. In each box the KS 8 

distance between observed and interpolated values, D*, is reported. The p-value of D* is always 9 

around zero but for Tangipahoa target years 1948-1958. 10 

Interpolated and observed FDCs almost perfectly match when obtained using long donor and target 11 

periods, Figures 67 and 78. On the other hand, when the target period is short, the performance 12 

decreases as also shown by the KS distance, D*, reported on each single panel of Figure 89 where 13 

the target period equals one year. As a matter of fact, the donor period being constant, the KS distance 14 

is much higher when the target period is 1 year (Figure 8).9) and the p-value of D* is always zero but 15 

for hydrologic years 1972-1973 and 1976-1977. Nevertheless, the interpolated and observed FDCs 16 

have a high agreement in shape, as for instance at Tangipahoa River for all but one (i.e., 1969-1970) 17 

target years. In these cases, the difference between the two curves could be due to the different 18 

temperature values characterizing the donor and the target basins. This effectsaffects the 19 

evapotranspiration in the two basins and therefore, the streamflow values. 20 

Results suggest that the API gives effectively a good estimation of the memory of the basin and can 21 

be used to represent the precipitation similarly to the discharge. 22 

 23 
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 1 

Figure 78. Interpolated FDC at Tangipahoa River (FL), Bogue River (LA) and Choctawhatchee River 2 

(FL), upper, middle and lower panels, respectively. The donor catchmentbasin is Blanco River (TX). 3 

The donor and target years are periods of 15 years. The blue and red dots are observed and 4 

interpolated FDC, respectively, at the target catchmentbasin during the, target period; the dots are 5 

FDC at the target catchment and the black dots are the observed FDC at the donor catchmentbasin 6 

during the target period. In each box the KS distance, D*, is reported. The p-value of D* is always 7 

around zero. 8 

 9 
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 1 

Figure 89. Interpolated FDC at Tangipahoa River (FL). The donor catchmentbasin is Blanco River 2 

(TX). The donor years are a 20 years time window from October 1948 to September 1968. Target 3 

years are each hydrological year from October 1968 to September 1983. The blue and red dots are 4 

observed and interpolated FDC, respectively, at the target catchmentbasin during the, target period; 5 

the dots are FDC at the target catchment and the black dots are the observed FDC at the donor 6 

catchmentbasin during the target period. In each box the KS distance, D*, is reported. The p-value of 7 

D* is always around zero but for hydrologic years 1972-1973 and 1976-1977. . 8 

 9 

To estimate the goodness of the methodology, the NSE, BIAS and MAE are evaluated for the 1st, 10 

3rd, 5th, 10th, 20th, 30th, 50th, 75th, 90th and 99th percentiles. 11 

For U.S. catchments, wWhen a decade is used as both target and donor period, the performance 12 

measures show a good agreement between observed and interpolated values, Figures 910. The NSE 13 

index shows accurate estimation, i.e. it is characterized by values close to 1, especially of intermediate 14 

percentiles. The BIAS provides information regarding the over- and underestimation of theoverall 15 

agreement between interpolated and observed values. Its magnitude is likely higher for high flows, 16 

while it attenuates for intermediate percentiles. Also theThe MAE as well shows a low performance 17 

for high streamflow values. This is due to the fact that the procedure is more able to reproduce the 18 

average streamflow values than extreme events such as high and low flows. However, low flows are 19 

more likely well estimated rather than high flows.  20 



21 

 

 1 

Figure 910. Performance measures NSE, BIAS and MAE evaluated for specific percentiles (on the 2 

y-axis) and for specific target decades on the x-axis. The donor decade is 1948-1958, the donor 3 

catchmentbasin is Blanco (TX). Each target catchmentbasin is indicated above in the corresponding 4 

box. Negative values of the NSE as well as outliers of BIAS and MAE are reported on in the 5 

corresponding box. 6 

When both target and donor periods equal 15 years, the agreement between interpolated and observed 7 

flow values is high, Figure 1011. The NSE shows values of efficiency around 1, thus there is a good 8 

match between interpolated and observed values, even though there are few exceptions. The errors 9 

are very low in value, as shown by the MAE, which also reveals a poor performance for high flows, 10 

while the performance improves for intermediate and low flows. The high flows are more likely 11 

overestimatedestimated with a higher error, while than intermediate and low flows are more likely 12 

underestimated as also shown by the BIAS.  13 

 14 

Figure 1011. Performance measures NSE, BIAS and MAE evaluated for specific percentiles (on the 15 

y-axis) and for a specific 15 target years (i.e., 1963-1978 and 1978-1993 on the x-axis). The donor 16 
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decade is 1948-1963, the donor catchmentbasin is Blanco (TX). Each target catchmentbasin is 1 

indicated above in the corresponding box. Negative values of the NSE are reported in the 2 

corresponding box. 3 

 4 

For the German catchments, three different pairs of donor and target years are considered. Test 1 is 5 

built using a target time periods of 20 years and a donor period of 10 years. Test 2 is built considering 6 

as both donor and target time periods 15 years, while for Test 3, the target time period equals 10 years 7 

and the donor one equals 20 years. 8 

We recall that for the German case study the proxy variable is not the API but rather the discharge 9 

recorded during the donor period at the donor site. For the German case study, errors are reported for 10 

Plochingen Fils, Horb and Oberensingen Aich (henceforth named Aich) as target catchments, using 11 

as donor catchment Plochingen Neckar.  12 

As for the U.S. catchments, the estimation metrics show a lower performance for extreme flows. For 13 

intermediate percentiles, the NSE shows values closer to 1 and the BIAS is generally close to zero. 14 

However, it is worth noticing that the overall agreement between observed and interpolated values is 15 

high as demonstrated by a low value of the MAE, Figure 11.  16 

  17 

Figure 11. Performance measures NSE, BIAS and Mean Absolute Error (MAE) evaluated for 18 

specific percentiles (on the y-axis) and for three specific set of target and donor years (i.e., Test 1, 2 19 

and 3). For Test 1 the target period is from 1961 to 1980 and the donor period is from 1981 to 1990. 20 

For Test 2 the target period is from 1961 to 1975 and the donor period is from 1976 to 1990. For Test 21 
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3 the target period is from 1961 to 1970 and the donor period is from 1971 to 1990. The donor 1 

catchment is Plochingen Neckar, while the target catchments are indicated on each corresponding 2 

box. 3 

To better understand the relationship between a target and a donor catchment, the coefficient of 4 

correlation has been computed. Coefficient values are reported for all Test cases. Values are estimated 5 

between the donor catchment Plochingen Neckar and the three target catchments, Figure 12.  6 

 7 

Figure 12. Correlation coefficient evaluated for each Test case at each percentile between Plochingen 8 

Neckar and each other catchment indicated on the boxes.  9 

It is interesting to observe that the correlation coefficient shows the same trend of the NSE, as it 10 

shows a higher correlation where the NSE is closer to one, while generally they both decrease in 11 

correspondence of the same percentiles. The correlation coefficient shows how the proxy variable, in 12 

this case the discharge gauged at the donor site, co-moves with the target variable. As expected, where 13 

the correlation is high, there is a better estimation of the flow values. Therefore, this means that it is 14 

possible to know a priori whether a site is more suitable to be a donor site or not. If the correlation is 15 

low, also the performance of the method is expected to be low.5. Discussion 16 

As resulted from the KS test applied to pairs of FDCs obtained from recorded data at the same site in 17 

different periods, FDCs cannot be considered an invariant characteristic of a basin. The fact that FDCs 18 

are not invariant suggests that the weather is a driver of annual runoff variability. Indeed, the reason 19 

should be found in the weather conditions as others (e.g. the catchmentbasin area, the land use) did 20 

not change. To better investigate these findings, we performed the KS test on pairs of observed and 21 

interpolated FDCs for two purposes. The first is to know if pairs of interpolated and observed FDCs 22 

at the same site have the same continuous distribution, the second is to know which is the distance 23 

between these pairs. The test performed on pairs of interpolated and observed FDCs revealed that the 24 

null hypothesis could not be rejected for nearly the half of the cases. For instance, for Tangipahoa 25 

River the test was not rejected in 48% of the cases, Figure 1312 right panel. On the contrary, the test 26 

rejected the null hypothesis that FDCs built at the same location in different periods had the same 27 

distribution. In the 73% of the cases, the distance between pairs of interpolated and observed FDCs 28 

of the same period is smaller than the distance between FDCs built at the same site from data recorded 29 

during different periods, Figure 1312 right and left panel, respectively. These results suggest that the 30 

methodology proposed here has a good performance and it is actually an interesting alternative to 31 

other methodologies, which assume that FDC of different periods of timeperiods have the same 32 

distribution. 33 
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 1 

Figure 1312. Kolmogorov-Smirnov distance between couples of streamflow values observed (left 2 

panel) and between couples of streamflow values observed and interpolated (right panel) at 3 

Tangipahoa River (FL) from October 1948 to September 1987. 4 

As the weather conditions strongly influence the FDCs estimation, we analyzed the streamflow 5 

percentiles to assess the between-year variability. To this end, the moving average (MA) of 30th, 6 

70th, 90th and 95th percentiles of streamflow is estimated. The MA values are estimated using three 7 

different fixed time windows (i.e., 10, 15 and 20 years), Figure 1413.  8 

 9 

Figure 1413. Moving average (MA) of the 30th, 70th, 90th and 95th percentiles of daily streamflow 10 

values gauged at Tangipahoa. Three different fixed time windows are used to estimate the MA: 10, 11 

15 and 20 years. On the x-axis the first year of each interval is plotted (Y*). 12 

It is interesting to observe that the MA values are characterized by a strong variability throughout the 13 

time. The fluctuation of the flow percentiles suggests that the percentiles cannot be considered an 14 

invariant characteristic of the basin. Therefore, it is not possible to estimate the flow quantiles using 15 

regression methods that do not take into accountconsider the weather characteristics. These methods, 16 

first, regionalize empirical runoff percentiles using multiple regression models. Then, regional 17 

evaluation of flow percentiles are interpolated across the percentiles (e.g., Franchini and Suppo, 1996; 18 

Smakhtin, 2001). If flow percentiles are estimated separately from weather characteristics, it may 19 

resultsresult in a misrepresentation of the percentiles themselves. Therefore, we suggest to add a 20 

weather factor to take into account for the influence of the weather in the percentiles estimates. 21 
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6 Conclusions 1 

The paper presents a new, simple and model free methodology to estimate the streamflow behavior 2 

at partially gauged catchmentsbasins, given the discharge and the precipitation gauged at another 3 

catchmentbasin. We show that two FDCs built for the same catchmentbasin with data corresponding 4 

to two different time windows, cannot be regarded as the same continuous distribution. This means 5 

that the FDCs cannot be considered an invariant characteristic of a basin. As other conditions did not 6 

substantially change across time, such as the land use, the reason should be the weather. The influence 7 

of the weather is evident analyzing the between-year variability of flow percentiles. Indeed, the 8 

moving average of the 30th, 70th, 90th and 95th flow percentiles shows a strong variability 9 

throughout the time. This behavior has a strong consequence as it means that it is not possible to 10 

retrieve the streamflow percentiles without taking into accountconsidering the weather. Indeed, there 11 

exists several methodologies (i.e., regression models) that estimate flow quantiles separately from 12 

weather characteristics. FDCs and their selected properties cannot be considered as catchmentbasin 13 

characteristics and should be used with caution for regionalization purposes. The FDC at a specific 14 

site is not a property of the corresponding basin, but the FDC is a propertyrather of both the basin and 15 

the weather. Therefore, it is not possible to infer aan FDC using parameters retrieved from the 16 

distribution of another FDC without considering the weather. The weather is indeed one of the main 17 

drivers of annual variability. The annual runoff variability depends on the different availability of 18 

energy and water in the basin. If more water than energy is available, the relationship between runoff 19 

and precipitation is almost linear, while if more energy is available, than the evaporation makes this 20 

relationship non-linear. Therefore, the runoff may vary largely depending on which element is 21 

prevalent. For this issue, we applied the methodology on basins with the same characteristics, i.e. 22 

energy limited ones. 23 

Because of the dependence on the climate, discharge data are here retrieved using the precipitation 24 

data series. Since precipitation data series are characterized by a high number of zeros, here we used 25 

the Antecedent Precipitation Index (API). The API is used as it represents in a streamflow-like way 26 

the precipitation of the basin. It represents the memory of a basin providing the amount of 27 

precipitation released by the soil throughout the time.  28 

The FDC at a target site is determined for a specific time window (i.e., target period) using API and 29 

discharge available for a so-called donor period at another catchmentbasin (i.e., donor site).  30 

To test the methodology, several donor and target periods are analyzed, such as 1 year, 10, 15 and 20 31 

years and two case study areas are investigated, one located in USA and the other one in Germany. 32 

Interpolated FDCs are compared with FDCs that were actually observed. From thetheir comparison 33 

of observed and interpolated FDCs, it rResults show that the methodology is able to correctly 34 

determine the missing streamflow data. The discharge values of the intermediate percentiles are better 35 

described than those of the extremes. Nevertheless, the error values between observed and 36 

interpolated FDCs are small. The difference between the interpolated and observed FDCs can be due 37 

to the different temperature values characterizing the donor and target catchmentsbasins. Indeed, a 38 

high difference in temperature can cause a different evapotranspiration, which in turn can influence 39 

the discharge. To better analyze the relationship between donor and target catchments, the coefficient 40 

of correlation is computed between discharge data gauged at the two sites of interest during the donor 41 

period. As the performance criteria highlighted, the data series are more related at the intermediate 42 



26 

 

percentiles and less at the extremes. The correlation coefficient estimated for the donor period can 1 

help to determine in advance whether the discharge data of a donor and a target catchments are 2 

strongly correlated during that period of time. The FDCs interpolated at the target site will be more 3 

accurate if the correlation coefficient shows a strong correlation. 4 

To test the methodology and to assess its performance depending on the extension of the period with 5 

missing data, several target periods are analyzed, such as 1 year, 10 and 15 years. Results show that 6 

tThe method performs better when the target period is longer, thus the lowest and the best 7 

performance correspond to target periods of one year and 15 years, respectively.  8 

The method is tested on basins with a mild climate, however it is possible tcan be o useapplied it also 9 

into basins characterized by the presence of snow, converting the snow into the corresponding liquid 10 

amount. 11 

  12 
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Appendix A 1 

In this Appendix we want to provide an easy example to better understand the method that we applied 2 

for to U.S. catchmentsbasins. This method is based on the use of the API of a donor site to retrieve 3 

the FDC at a poorly gauged site. We recall that a “donor period” is a period of time for which 4 

streamflow values are available at both donor and target catchmentsbasin, while a “target period” is 5 

a period of time during which streamflow values are not available at the target catchmentbasin. As 6 

tThe rainfall is available at both the donor sites for both periods, also API values are. 7 

Let suppose that we want to know the discharge value at catchmentbasin B (i.e., Bogue Rv, LA) 8 

corresponding to the 10.11th percentile (i.e., 10.11%) for the year ranging from October 1968 to 9 

September 1969. Let suppose that the donor period has a length of 15 years. Every hydrological year 10 

ranges from October to September of the following year. We present the method step by step in the 11 

following. 12 

1. Select the mean daily precipitation occurred at the donor catchmentbasin (i.e., Blanco Rv) during 13 

the target period and estimate the API as in Eq.6 assuming α equal to 0.85; 14 

2. sort in descending order the API values evaluated for the target period at the donor catchmentbasin 15 

(i.e., Blanco Rv, TX); 16 

3. assign to each sorted value the corresponding rank i, with i = 1,..., Nt where Nt is the length of the 17 

target API series and thus equals 365, and then estimate the exceedance probability P(Q < qiAPI < 18 

APIi) of each value using a Weibull plotting position i/(Nt + 1), Table A1; 19 

4. in the sorted API series, identify the value with frequency equal to 10.11%. This value equals 37.72 20 

mm (bold line in Table A1); 21 

5. estimate the API from the mean daily precipitation occurred during the donor period at the donor 22 

catchmentbasin (i.e., Blanco Rv, TX) and sort in descending order the API values, estimate the rank 23 

and the associated exceedance probability P(Q API < qAPIj) of each value as j/=(Nr + 1) where Nr 24 

equals 5475; 25 

6. find the exceedance probability P(API < APIj)P(Q < qj) associated to the value 37.72 mm in the 26 

sorted API sample. From Table A2 it is possible to observe that there is not such an API value. 27 

Therefore, look for the two most similar values: one should be bigger and the other smaller than the 28 

searched value. Then, take their empirical frequency values (i.e., 7.52 % and 7.54%; in bold, Table 29 

A2); 30 

7. sort in descending order the streamflow values gauged during the donor period at the target 31 

catchmentbasin (i.e., Bogue Rv, LA), estimate the rank and the associated exceedance probability 32 

P(Q < qj) of each value as j/=(Nr + 1); 33 

8. find the two streamflow values which have an empirical frequency equal to 7.52 % and 7.54%. 34 

These values are in bold, Table A3; 35 



28 

 

9. estimate the mean value of these two streamflow values. The resulting value is the streamflow 1 

value with empirical frequency equal to 10.11% evaluated for the target catchmentbasin and the target 2 

period that we were looking for, Table A4.  3 



29 

 

Table A1. API values sorted in descending order and the corresponding percentiles estimated for the 1 

target year (i.e., 1968-1969) at the donor catchmentbasin (i.e., Blanco RV, TX).  2 

Rank 
P(API<APIi) APIBlanco, tar 

% mm 

1 0.27 76.78 

2 0.55 73.39 

… … … 

30 8.20 39.65 

31 8.47 39.35 

32 8.74 38.71 

33 9.02 38.31 

34 9.29 38.18 

35 9.56 38.10 

36 9.84 37.97 

37 10.11 37.72 

38 10.38 36.99 

… … … 

365 99.73 0.61 

 3 

  4 



30 

 

Table A2. API values corresponding to specific percentiles estimated for the donor years (i.e., 1 

1948-1963) at the donor catchmentbasin (i.e., Blanco RV, TX). 2 

Rank 
P(API<APIj) APIBlanco, ref 

% mm 

1 0.02 266.17 

… … … 

410 7.49 37.81 

411 7.51 37.78 

412 7.52 37.74 

413 7.54 37.61 

414 7.56 37.61 

415 7.58 37.55 

… … … 

5475 99.98 0.01 
 3 

  4 
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Table A3. Streamflow values corresponding to specific percentiles gauged during the donor years 1 

(i.e., 1948-1963) at the target catchmentbasin (i.e., Bogue RV, LA). 2 

Rank 
P(Q<qj) qBogue,ref 

% mm 

1 0.02 38.81 

… … … 

410 7.49 3.28 

411 7.51 3.28 

412 7.52 3.21 

413 7.54 3.21 

414 7.56 3.20 

415 7.58 3.19 

… … … 

5475 99.98 0.31 

 3 

  4 
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Table A4. Streamflow value corresponding to the 10.11th percentile estimated for the target year 1 

(i.e., 1968-1969) at the target catchmentbasin (i.e., Bogue RV, LA). 2 

P(Q<qi) qBogue,tar 

% mm 

10.11 3.21 

 3 

  4 
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