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Abstract

Calibration of spatially distributed models is a big issue given their over-

parameterization. Three usual regionalization method can be distinguished

which are transposition, prescription and constraint. This paper proposes a

strategy where the three methods are combined to provide several spatial pat-

terns according to the model parameters. On the one hand, insensitive and

equifinal parameters are prescribed uniformly while "physical" parameters

are prescribed at the mesh scale. On the other hand, parameters linked with

a proxy runoff signature are constrained over each sub-basin and the remain-

ing parameters are transposed with a physio-climatic pattern constructed

over the calibration sub-basins.

The above tailor-made pattern regionalization is applied at the daily time

step over two large French catchments, the Loire catchment at Gien cover-

ing 35,707 km2 and the Durance catchment at Cadarache covering 11,738
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km2. It is then evaluated and compared to a single regionalization method

over dozens of validation stations, treated as ungauged during the parameter

regionalization. For that purpose, simulated and observed streamflows are

compared in light of four runoff signatures: daily runoff, daily regime, flood

and low flow. The results show that the tailor-made patterns succeed to

enhance significantly almost all the signatures. The enhancement appears

for the least well-modelled stations which tends to guarantee a minimum

performance in the ungauged context.

Keywords: parameter spatial variability, distributed hydrological

modelling, regionalization, ungauged basins

1. Introduction1

Spatially distributed hydrological models allow for (i) spatially distributed2

climatic inputs, (ii) spatially distributed model parameters, (iii) ungauged3

simulations and (iv) upstream-downstream consistency. With the increasing4

availability of spatial data and the improvements in computational power,5

this type of model represents a real potential for hydrological modelling.6

The Distributed Model Intercomparison Project (Smith et al., 2004; Reed7

et al., 2004; Smith et al., 2012, 2013) investigated the capabilities of exist-8

ing distributed hydrologic models. However, this project did not provide any9

recommandation about parameter estimation schemes. The strategy is not as10

well defined as for lumped models whose parameters usually follow from cal-11

ibration over the observed outlet streamflow. Indeed, in distributed models,12

each spatial unit comprises one set of parameters while most of these units13

are ungauged (Sivapalan et al., 2003; Hrachowitz et al., 2013). Distributed14
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models therefore suffer from overparameterization and equifinality (Beven15

and Hornberger, 1982; Beven, 2001). To overcome these difficulties, one can16

rests upon three regionalization methods: (i) transposition, (ii) prescription17

and (iii) constraint.18

Transposition consists in grouping the Nu spatial units into Nr regions,19

each of them comprising one set of Np parameters calibrated over gauged20

discharge stations. The region delineation can follows from physio-climatic21

similarity (Beldring et al., 2003; Kumar et al., 2013) or gauged network (An-22

dersen et al., 2001; Feyen et al., 2008; Khakbaz et al., 2012; De Lavenne23

et al., 2016). This method reduces the dimensionality of the optimization24

problem from Nu ×Np to Nr ×Np free parameters.25

Prescription is based on a priori or empirical relationships between catch-26

ment characteristics and model parameters (Koren et al., 2000; Twarakavi27

et al., 2009). That way, Andersen et al. (2001) and Khakbaz et al. (2012)28

tested an uncalibrated model with distributed parameters directly estimated29

from field data, literature and previous studies. However, within the frame-30

work of distributed modelling, prescription is pretty often enhanced with31

transposition to reduce the gap between the modelling and the physical ex-32

pertise (Francés et al., 2007; Smith et al., 2013). Francés et al. (2007); Pokhrel33

and Gupta (2010); Samaniego et al. (2010) and Khakbaz et al. (2012) first34

prescribed spatial parameter fields from catchment characteristics and then35

adjusted them through transposition of uniform correction coefficients (i.e.36

calibration of one region) called superparameters or global parameters cali-37

brated over the observed outlet streamflow. For instance, Pokhrel and Gupta38

(2010) defined three superparameters per model parameter: a multiplying,39
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an additive and a power coefficients involving the calibration of 3 ×Np su-40

perparameters. The two steps can also be inverted by first calibrating the41

model parameters uniformly and then modifying them with spatial fields es-42

timated from catchment characteristics without further calibration (Koren43

et al., 2004; Khakbaz et al., 2012). To a more limited extent, prescription44

can also be a tool to calibrate the model parameters to be transposed. As45

proposed by Ajami et al. (2004), each region of the catchment can be cal-46

ibrated over its observed outlet streamflow by temporarily prescribing the47

downstream parameters with catchment characteristics.48

Finally, constraint relies on proxy data, i.e. on hydrological signature49

estimated without any streamflow measure that can give a clue about the50

catchment hydrological behaviour. Constraint consists in using these proxy51

data instead of streamflow time series as a constraint in the calibration pro-52

cess. Madsen (2003) appraised a multi-objective calibration of a distributed53

model over observed outlet streamflow and groundwater levels measured at54

17 interior wells. Instead of groundwater data, Khan et al. (2011) and Sil-55

vestro et al. (2015) proposed to calibrate the distributed model parameters56

with remote-sensing data. Along with streamflow observations, Khan et al.57

(2011) used satellite-derived flood maps to calibrate a module of a distributed58

model designed for flood, while Silvestro et al. (2015) proved the usefulness59

of land-surface temperature and surface soil moisture satellite observations60

to reduce parameter equifinality.61

This paper aims to advance one step further and proposes to combine the62

three regionalization methods. The model parameters are spatialised with63

one of the three methods according to their characteristics and hydrological64
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meaning. It follows from this multi-method, four parameter spatial patterns:65

a uniform, a hydrological mesh and two intermediate patterns. The method66

is applied over two French mesoscale catchments, the Loire at Gien and the67

Durance at Cadarache, for the 1980-2012 period. Thanks to a 50/50 spatial68

split-sample test, the performance of the tailor-made patterns is assessed over69

pseudo-ungauged stations and compared with that of a unique transposition70

scheme.71

The paper is organised as follows. Section 2 presents the distributed72

rainfall-runoff model and the evaluation criteria. Section 3 introduces the73

data set. Section 4 details the parameter spatial patterns, Section 5 discusses74

the results and section 6 provides conclusions and perspectives.75

2. Modelling76

2.1. Distributed rainfall-runoff model77

The spatially distributed rainfall-runoff model used for this study is the78

conceptual MORDOR-TS model presented in Rouhier et al. (2017). The79

catchment is divided into hydrological meshes, each of them attributed to one80

set of parameters and connected to each other according to the hydrographic81

network. At each daily time step, the continuous model (i) calculates the82

water production of each mesh independently and (ii) routes all production83

to the simulation points, which can be any mesh outlet.84

The production module aims at quantifying the exchanges between dif-85

ferent components of the hydrologic cycle. Based on precipitation and air86

temperature data, six conceptual interconnected storage components evolve87

and supply the hydrographic network as described by Figure 1a. The ver-88
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(a) Production structure

(b) Routing scheme

Figure 1: Overview of the MORDOR-TS distributed model in its entire formulation: (a)

production module used for each hydrological mesh and (b) routing scheme with intra-

mesh and inter-meshes propagation.

tical spatialisation of the hydrological meshes into elevation zones, designed89

for mountainous regions, is only activated for the Durance catchment. A90

complete description of the production module can be found in Garavaglia91

et al. (2017).92

Since the production module is applied to every hydrological mesh, as93
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many runoff contributions are estimated. They are propagated to the sim-94

ulation points through the hydrographic network as described in Figure 1b.95

The routing module combines the intra-mesh and inter-mesh transfers by96

means of a formulation based on the 1D diffusive wave model, with celer-97

ity and diffusion independent of runoff (Hayami, 1951; Litrico and Georges,98

1999).99

In its entire formulation, MORDOR-TS has 22 free parameters. In this100

study, a simplified version is adopted with only 12 and 16 free parameters101

for the Loire and the Durance catchments, respectively. Details about the102

parameters are given in Appendix A.103

2.2. Calibration and validation criteria104

We expect the model to provide a reliable hydrological behaviour for105

the catchment. Therefore, it has to reproduce faithfully the various runoff106

signatures, which reflect the different dynamics of its hydrology. The ob-107

served and simulated streamflows are then compared on the basis of four108

numerical criteria. The Kling-Gupta Efficiency (KGE, Gupta et al. (2009))109

is calculated over four streamflow signatures: (i) the entire time-series (KGE110

daily runoff), which is the result of all the processes, (ii) the inter-annual111

daily regime (KGE daily regime), which reflects the interaction between wa-112

ter and energy availability as well as catchment storage, (iii) the average of113

the monthly empirical cumulative distributions weighted by monthly runoff114

(KGE flood), which focuses on floods produced by highly dynamic interac-115

tions and (iv) flow recessions during low flow period (KGE low flow), which116

result from long-term processes (Blöschl et al., 2013; Garavaglia et al., 2017).117

These four KGE criteria are used both for calibration and spatial validation.118
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For parameter calibration, the four criteria are implemented in the multi-119

objective genetic algorithm caRamel1 (Rouhier et al., 2017). Systematically,120

a first 1-year period is used for model spin-up. After 5000 runs, the algorithm121

provides a 4D Pareto frontier (Yapo et al., 1998) in which we select the set122

which minimises the Euclidian distance calculated on ranks.123

3. Data set124

3.1. Study area125

The tailor-made method is assessed over two large French catchments:126

the Loire basin at Gien (2a) and the Durance basin at Cadarache (2b). The127

Loire catchment at Gien extending over 35,707 km2 is located in the central128

part of France. Its elevation ranges from 118 to 1838 m.a.s.l. at which129

the summits of the Massif Central peak. It is a mainly pluvial catchment130

with a median elevation of 417 m.a.s.l. The Durance catchment at Cadarache131

extending over 11,738 km2 is located in the Alps in south-east part of France.132

Its elevation ranges from 247 to 4102 m.a.s.l. at which the Barre des Écrins133

peaks. With 60% of the basin above 1000 m.a.s.l., the upper part is nival134

while the lower part is nivo-pluvial. On top of that, the Durance catchment135

is subject to karstic systems. In the south-west, a karstic formation supplies136

the Fontaine de Vaucluse. Likewise, in the south-east of the catchment, very137

permeable limestone rocks supply the Siagne basin.138

To apply the distributed MORDOR-TS model, the Loire and the Durance139

catchments are discretised into 387 and 133 hydrological meshes, respectively.140

1https://cran.r-project.org/web/packages/caRamel/index.html

8



(a) Loire catchment at Gien (b) Durance catchment at Cadarache

Figure 2: The two catchments selected for the present study : (a) the Loire catchment at

Gien with its 106 stream gauges and (b) the Durance catchment at Cadarache with its 34

stream gauges and its 9 points of interest. The stream gauges belonging to the calibration

sample are indicated in red while those belonging to the validation sample are in blue.

The hydrological meshes are represented by the grey units.

They are represented by the grey units in Figure 2. These hydrological mesh141

patterns arise from a 100-m DEM with a mesh target area of 100-km2.142

3.2. Climatic inputs data143

Climate data follow from a method inspired by SPAZM (Gottardi et al.,144

2012). They are obtained by a statistical reanalysis based on ground network145

data, reliefs and weather patterns (Garavaglia et al., 2010). Over the Loire146

catchment at Gien (resp. Durance catchment at Cadarache), the precipita-147

tion and air temperature fields are built from 146 (resp. 115) rain gauges and148

more than 100 (resp. more than 70) temperature gauges. They are available149

9



for the 1948-2012 period at 1-day and 1-km2 resolution. For this study, we150

only used the data from 1 September 1980 to 31 August 2012. This recent151

32-year period was chosen in order to maximize the number of streamflow152

data and the reliability.153

3.3. Streamflow data154

Daily streamflow time series are collected from the databases of EDF155

and French national environmental agencies. They are selected according156

to observation time availability over the 1948-2012 period, drainage area,157

quality and temporal homogeneity (Bois, 1987). Within the Loire catchment,158

the 106 time series selected have an average observation period of about 22159

hydrologic years per station with a minimum of 7 and a maximum of 32160

years. The stations’ location is given in Figure 2a (red and blue points).161

Their drainage areas range from 100 to 35 707 km2 with an average of 2844162

km2. With regards to runoff, it ranges from 136 to 1057 mm/year. Among163

these 106 catchments, the inter-annual precipitation varies between 729 and164

1495 mm/year. As for the humidity index, defined as the inter-annual ratio165

between precipitation and potential evapotranspiration P
PET

(Andréassian166

and Perrin, 2012), it ranges from 1 to 2,7 with an average of 1,5.167

Within the Durance catchment, 34 time series are selected besides 9 un-168

gauged points of interest for EDF. In Figure 2b, the gauged stations’ location169

are represented by the red and blue points, while the 9 ungauged points are170

the white points. The 34 time series have an average observation period of171

about 22 hydrologic years per station with a minimum of 6 and a maximum of172

32 years. Their drainage areas range from 94 to 11 738 km2 with an average173

of 1275 km2. The inter-annual runoff and precipitation are of the same order174
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of magnitude as over the Loire. Among the 34 catchments, runoff ranges175

from 162 to 881 mm/year and precipitation from 898 to 1321 mm/year. The176

Durance catchment is more humid than the Loire with mean humidity index177

of 2, ranging from 1,2 to 3.178

As the model deals with natural hydrology, the influence of the dams179

within the two catchments was accounted for by adding their storage varia-180

tion to the discharge data.181

3.4. Spatial split-sample test182

The model parameterisation is assessed over pseudo-ungauged stations183

through a 50/50 spatial split-sample test introduced in Rouhier et al. (2017).184

Over each catchment, the streamflow data are split into two similar parts:185

a calibration and a validation station sample. The two samples are equal186

in number of stations, spatially homogeneous and as similar as possible in187

terms of temporal, climatic and physiographic characteristics. Hereafter, the188

calibration and the validation samples of the Loire catchment of 53 gauges189

each are referred to as « C53 » and « V53 ». Similarly, those of the Durance190

catchment of 17 gauges each are referred to as « C17 » and « V17 ». The191

9 ungauged stations are not included in any sample since no streamflow192

data are available. They are only used to define the sub-basin patterns.193

In Figure 2, the calibration stream gauges are represented by the red points194

and the validation stream gauges by the blue points. The calibration stations195

are the gauged stations whose streamflows are used to calibrate the model196

parameters. On the contrary, the validation stations are pseudo-ungauged197

stations : their streamflow time series are never used to calibrate or even198

estimate the model parameters but are used a posteriori to evaluate the199
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parameter regionalization.200

It should be noted that the validation scheme is not purely spatial. Given201

that the streamflow observation periods of the calibration and validation202

stations are not systematically identical, the validation scheme lies between203

spatial and spatiotemporal depending on the periods’ intersection (Patil and204

Stieglitz, 2015).205

4. Parameter spatial patterns206

4.1. From a unique transposition pattern...207

In a first time, the model parameters were all spatialised at the same res-208

olution: a spatial pattern based on the calibration sub-basins. This pattern,209

introduced in Rouhier et al. (2017), consists in defining a new sub-basin every210

time we meet a calibration station while continuing down the hydrographic211

network. Every sub-basin, whose outlet is therefore a calibration station,212

corresponds with one set of parameters, similar to the work of Feyen et al.213

(2008) and De Lavenne et al. (2016). For a given sub-basin, the parame-214

ters are calibrated on the outlet by injecting the streamflow of its upstream215

nested calibration stations. For reasons of upstream-downstream streamflow216

availability, two sub-basins of the Loire catchment are merged with the down-217

stream sub-basins. Thus, the Loire catchment is divided into 51 sub-basins218

while the Durance catchment comprises 17 sub-basins. Figure 3 presents219

these patterns. Each colour stands for one calibration sub-basin, i.e. one set220

of parameters.221
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(a) Loire catchment at Gien (b) Durance catchment at Cadarache

Figure 3: Calibration sub-basin patterns used initially to transpose the

4.2. ... to tailor-made patterns222

The objective was then to improve the spatialisation by adapting the223

spatial pattern and the regionalization method to the several parameters. To224

do so, we conducted an incremental experimental framework based on trial225

and error. This framework which does not pretend to be exhaustive, rely226

on a large feedback of the model and on an exhaustive sensitivity analysis227

of the model parameters (Michon and Castaings, 2017b,a). After dozens228

of experiments we propose four spatial patterns combined with the three229

regionalization methods, as shown in Figure 4. The details about these four230

spatial patterns are presented in the following sections.231
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Figure 4: Overview of the tailor-made method which combines three regionalization meth-

ods to provide four spatial patterns according to the characteristics of the model parame-

ters.

4.2.1. The uniform prescription pattern for insensitive and equifinal param-232

eters233

A sensitivity analysis of the MORDOR model has been conducted over234

several catchments with a uniform set of parameters (Michon and Castaings,235

2017a,b). Figure 5 shows the results obtained for the discharge station of236

Gien in our 12-parameter configuration as regards KGE daily runoff. This237

graphical representation is inspired by the FANOVA graphs of Muehlenstaedt238

et al. (2012). The radius of the red disc reprensents the value of the first-239

order sensitivity Si of the parameter (Sobol, 1993), while the radius of the240
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blue disc gives the total sensitivity ST i of the parameter (Homma and Saltelli,241

1996), i.e. first-order sensitivity plus its sensitivity in interaction with the242

other parameters. The red disc is superimposed on the blue disc since the243

first-order sensitivity is always lower than the total sensitivity. The larger244

the red disc, the greater the first-order sensitivity. The larger the differences245

between the blue and the red discs, the greater the interactions with the246

other parameters. The distribution of these interactions are represented by247

the blue lines between the parameters. The greater the thickness of the line,248

the greater the interaction TIIij between the two parameters (Liu and Owen,249

2006). Figure 5 therefore informs us that five parameters are not sensitive at250

all: the snow parameters (kf and lts), the parameter generating the delayed251

flows (evl), the diffusivity (Dif) and the celerity (Cel). This outcome is252

confirmed by the sensitivities distributions over the 106 discharge stations253

of the Loire catchment shown in Figure 6. The same outcome is obtained254

for the other three signatures : KGE daily regime, KGE flood and KGE low255

flow. Consequently, these insensitive parameters are prescribed uniformly256

at their default value, except for celerity whose low sensitivity was due to257

irrelevant bounds, corrected thereafter. This uniform prescription does not258

concern the snow parameters of the Durance catchment whose nival to nivo-259

pluvial regime requires their spatialisation, neither the parameter generating260

the delayed flows which is sensitive over this catchment.261

On top of that, the sensitivity analysis pointed out the equifinality be-262

tween the two parameters governing the groundwater reservoir draining (evn263

and lkn). One of the two is thus prescribed uniformly at its default value264

while the other is left free.265
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Figure 5: FANOVA graph of parameter sensitivity as regards the KGE daily runoff of

Gien

4.2.2. The hydrological mesh prescription pattern for "physical" parameters266

The potential evapotranspiration (PET), or atmospheric evaporative de-267

mand, is affected by vegetation and crop type, variety and development stage.268
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Figure 6: Boxplot of parameter sensitivity over the 106 streamflow stations of the Loire

catchment as regards the KGE daily runoff

Allen et al. (1998) and Allen (2003) lumped the impacts of these variables269

into a single parameter, termed the crop coefficient KC , to predict crop evap-270

otranspiration (CET) as CET = PET × KC . Duchemin et al. (2006) and271

van der Slik (2013) then highlighted the link between this crop coefficient272

and a vegetation index based on satellite observations. Since 2000, a satellite273

instrumentation named MODIS provides a Normalized Difference Vegetation274

Index (NDVI) at 16-day and 1-km2 resolution (Solano et al., 2010). Since the275

KC formulation is adopted in MORDOR-TS, we can therefore implement this276

observed NDVI as an appraisal of the crop coefficient time series. This one277

was previously defined through one parameter set as a constant controlling278

the amplitude of the potential radiation cycle. To do so, the interannual time279

series of NDVI is calculated at the mesh scale and then used to prescribe KC280

at the same scale.281
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The BRGM, a French national geological agency, proposes an index of282

development and persistence of the river networks, termed IDPR (Mard-283

hel et al., 2004). This index compares a theorical network of surface water284

drainage with the natural hydrological network. Thus, the IDPR quantifies285

the capacity of soils and underlying rocks to encourage rainfall infiltration or286

diversion to natural stream channels. Figure 7 shows the spatial variability of287

the IDPR at the mesh scale over the Loire and the Durance catchments. The288

index, which ranges from 0 to 2000, has values that are all the lower as water289

infiltration increases. In MORDOR-TS, the parameter kr, ranging from 0290

to 1, stands for the runoff coefficient. It drives precipitations towards the291

groundwater reservoir for values close to 0, and towards the river for values292

close to 1. Then, the concepts of IDPR and kr are quite similar which makes293

it possible to prescribe at the mesh scale the model parameter as kr = IDPR
2000

.294

(a) Loire catchment at Gien (b) Durance catchment at Cadarache

Figure 7
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4.2.3. The sub-basin constraint pattern for parameters linked with a proxy295

runoff signature296

Over the Loire and the Durance catchments, we estimated the interannual297

runoff and the monthly regime for each validation station with a mathemat-298

ical method. For the interannual runoff, we used the generalised Turc-Pike299

formula (Turc, 1954; Mezentsev, 1955; Budyko, 1974; Pike, 1964) :300

Q

P
= 1− 1[

1 + ( P
PET

)n
] 1

n

(1)

where Q is the interannual runoff, P the interannual precipitation, PET301

the interannual potential evapotranspiration and n the shape factor. This302

shape factor was calibrated for each catchment over the calibration sample303

and then used to estimate the interannual runoff over the validation sam-304

ple. In a second time, a multi-linear regression was established over the305

calibration sample between the residuals Qest−Qobs

Qobs
and the principal compo-306

nents of around fourty physio-climatic catchment descriptors. The values307

estimated for the Loire’s validation stations V53 after residuals correction do308

not out-perform the initial regionalization of the MORDOR-TS model (cf.309

4.1). However, those of the Durance’s validation stations V17 proved to be310

more accurate. This finding may be explained by a water balance much more311

uncertain in nival catchments whose estimation benefits from the knowledge312

of the physio-climatic descriptors. Over the Durance catchment, the interan-313

nual runoff estimations are then used as a constraint to calibrate the water314

balance correction parameter at the validation stations V17, on top of its315

calibration at the calibration stations C17 over the observed streamflows.316

This model parameter is therefore spatialised at the sub-basin scale of all the317
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stations. The nine points of interest are also integrated in this pattern. The318

resulting 43-sub-basin pattern is presented in Figure 8b.319

(a) Loire catchment at Gien (b) Durance catchment at Cadarache

Figure 8: Sub-basin patterns used to constrain the parameters linked with a proxy runoff

signature

For the monthly regime, we conducted the method proposed by Sauquet320

et al. (2008) over each of the two catchments. To do so, (i) we applied a321

Principal Component Analysis (PCA) over the physio-climatic catchment322

descriptors, (ii) we carried out a PCA over the Pardé coefficients (Pardé,323

1933), (iii) we established relationships over the calibration sample between324

these principal components and (iv) we used these relationships to estimate325

the monthly regime at the validation stations. Over the Loire catchment,326

this method better estimates the regime than the initial regionalization of the327

MORDOR-TS model. This is not the case for the Durance catchment whose328

regimes are very well constrained by its nival character. As for the Durance’s329
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interannual runoff, the Loire’s monthly regime estimated at each validation330

sample is therefore used as a constraint. The groundwater reservoir draining331

parameter (lkn) which governs the period of low flows and the capacity of the332

evaporating storage (Zmax) are calibrated over the estimated regime at the333

validation stations V53 and over the observed streamflow at the calibration334

stations C53. The resulting sub-basin pattern is presented in Figure 8a.335

4.2.4. The physio-climatic sub-basin transposition pattern for the remaining336

parameters337

The initial calibration sub-basin pattern (cf. 4.1) can be improved to338

avoid small validation basins to inherit parameters from huge calibration339

basins. To do so, the calibration sub-basin pattern is rearranged with physio-340

climatic information to become a physio-climatic calibration sub-basin pat-341

tern. The validation stations whose drainage area ratio with the downstream342

calibration station is lower than 20% no longer inherits parameters from this343

one but inherits those of the most similar calibration station in terms of344

physio-climatic descriptors. The selection of the new donor calibration sta-345

tion is carried out through an Euclidian distance calculated over the principal346

components of the physio-climatic descriptors. The new transposition pat-347

tern is presented in Figure 9. It is intended for all the remaining parameters348

about which we have no information or a priori.349

The sensitivity analysis conducted over the MORDOR model highlighted350

the benefit of a reparameterisation of the production module. Michon and351

Castaings (2017a,b) suggested to no longer calibrate independently the ca-352

pacities of the superficial (Umax) and the evaporating (Zmax) storages and353

even proposed to make them equal in order to notably increase the produc-354
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(a) Loire catchment at Gien (b) Durance catchment at Cadarache

Figure 9: Physio-climatic calibration sub-basin patterns used to transpose the remaining

parameters

tion module sensitivity. Similarly to Eckhardt et al. (2005), we therefore355

define an equality relationship between the two model parameters, allowing356

to now calibrate only one of the two according to the the physio-climatic357

calibration sub-basin pattern.358

5. Results359

The unique transposition pattern presented in section 4.1 constitutes the360

initial reference in terms of distributed parameters. It is referred to as Exp1.361

The tailor-made pattern method developed in this paper consists in the four362

parameter patterns presented in section 4.2, namely a uniform, a hydrological363

mesh, a sub-basin and a physio-climatic calibration sub-basin patterns. This364

parameter scheme is referred to as Exp2. The two experiments are compared365
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according to their performance in terms of daily runoff, daily regime, flood366

and low flow in an ungauged context. The experiments’ performance is then367

analysed with the cumulative KGE distribution functions over the validation368

sample. Figure 10 presents these results over the validation sample of the369

Loire catchment (V53) while figure 11 presents those obtained over the vali-370

dation sample of the Durance catchment (V17). The closer the distribution371

is to the vertical line equal to 1, the better the performance. To get hind-372

sight on the results, a grey area indicates the gap between a uniform set of373

parameters and a gauged modelling of all the validation stations. For more374

details, interested readers may refer to Rouhier et al. (2017).375

Over the Loire catchment, the multi-pattern method allows to signifi-376

cantly decrease the number of model parameters to be calibrated. From 12377

parameters for Exp1, only 5 parameters still require to be calibrated for Exp2.378

Despite this drastic simplification, the modelling of the four runoff signatures379

is improved. If the head of the KGE daily runoff and KGE low flow distri-380

butions is slightly degraded, this loss of performance is largely compensated381

by a significant enhancement of the 50% of the least well-modelled stations.382

Daily regime suffer from a little performance decrease in the middle of its383

distribution but, as for the two other signatures, the least well-simulated sta-384

tions are better modelled. For flood, the tailor-made pattern method is even385

more efficient: regionalizing the parameters differently improves the whole386

KGE flood distribution.387

To quantify this performance improvement brought by the multi-pattern388

regionalization compared to the single regionalization, we propose the en-389

hancement index EI defined by equation 2. The index is based on the area390
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Figure 10: Distributions of performance over the validation sample V53 of the Loire catch-

ment

under a cumulative distribution function up to the 1 vertical line. It is all391

the closer to 100% as the improvement towards the gauged modeling (right392
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Figure 11: Distributions of performance over the validation sample V17 of the Durance

catchment

border of the grey area) is important. The values of the enhancement index393

over the validation station sample are given in Table 1. Over the Loire catch-394
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ment, the multi-pattern regionalization method proves to be really efficient.395

The improvement towards the gauged modelling is patent and even reaches396

41% for low flow.397

E =
area KGE(Exp1)− area KGE(Exp2)

area KGE(Exp1)− area KGE(Gauged)
(2)

Over the Durance catchment, he number of degrees of freedom is also398

reduced. From 16 parameters for Exp1, only 11 parameters still need to be399

calibrated for Exp2. Over the runoff signatures, the first three are improved.400

The modelling of daily runoffs and daily regimes is particularly enhanced401

for the 50% of the least well-modelled stations. For flood, the 50% of the402

least well-modelled stations are also significantly improved to the detriment403

of slight performance degradation for the best modelled stations. Finally, the404

multi-pattern method is much more debatable for low flow. The degradation405

of the performance leads to deviate from the gauged modelling. Despite this406

significant loss of performance for low flow, the improvements brought by407

the tailor-made pattern method are substancial for daily runoff, daily regime408

and flood with a gain of about 20% towards the gauged modelling.409

To get hindsight on parameter spatial variability, we here give the en-410

hancement index in relation to a uniform set of parameters (left border of411

the grey area). Over the Loire catchment, the improvement of Exp2 in terms412

of daily runoff, daily regime, flood and low flow represents 28, 19, 38 and413

23% of the gap between uniform parameters and the gauged modelling, re-414

spectively. Similarly, the improvement represents 30, 10, 43 and 30% over415

the Durance catchment.416
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Loire catchment Durance catchment

Daily runoff 18 % 22 %

Daily regime 8 % 18 %

Flood 30 % 20 %

Low flow 41 % -18 %

Table 1: Summary over the validation station sample of the enhancement index in relation

to a single regionalization method for all parameters

6. Conclusion and perspectives417

This paper aimed to present an unconventional regionalization scheme418

where several spatial patterns allowed by several regionalization methods419

are adopted according to the characteristics and the hydrological meaning420

of the model parameters. Firstly, the insensitive and the equifinal param-421

eters are prescribed uniformly at their default values. Secondly, parame-422

ters linked with a physical characteristic are prescribed at the mesh scale.423

Thirdly, parameters linked with a proxy runoff signature are constrained at424

the sub-basins scale. Finally, parameters about which we have neither in-425

formation nor a priori are transposed according to a physio-climatic pattern426

constructed over the calibration sub-basins.427

This multi-pattern method is evaluated over four runoff signatures of428

pseudo-ungauged stations over the Loire and the Durance catchments. It429

not only greatly reduces the number of model parameters to be calibrated,430

but also proves to be significantly efficient for singular stations. Indeed, the431

modelling of the 50% least well-modelled stations is largely improved for all432
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the runoff signatures, except the Durance’s low flow. This outcome sug-433

gests that the tailor-made pattern method tends to guarantee a minimum434

performance in the ungauged context. Whatever the runoff signature and435

the catchment, the KGE is least of 0,4. The improvement of the tail stations436

sometimes goes along with the performance degradation of the best modelled437

stations. However, degradation remains very limited which does not ques-438

tion the strategy. If we put aside the Durance’s low flow, our multi-pattern439

strategy achieves from 8% and up to 40% of the way towards the gauged440

modelling compared to a single regionalization method.441

The loss of performance of the Durance’s low flow would deserve further442

research. Understanding the reasons for this degradation could point to a443

new avenue for improving the regionalization method. Moreover, the con-444

straint method was restricted to proxy runoff signatures while other types445

of proxy data such as snow satellite observations could give additional spa-446

tialized information. It would therefore be interesting to study wheather the447

integration of these data could bring further improvements in the distributed448

hydrological modelling.449
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Appendix A. Details about the model parameters to be estimated456

in the study457

Table A.1 details the symbol, the description and the unit of each param-458

eter.459
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