
Editor Comments: 

Comments to the Author: 
further elaborate the need for developing the method and theoretical base for pdf, 
 

Dear Editor:  Thank you for handling the review process of this manuscript.  We appreciate your 
constructive comments and suggestions.  The purpose for proposing the new distribution is 
elaborated in the introduction section.  Particularly, the following sentence has been added in the 
introduction section: 
 

(Lines 68-70) “The objective of this paper is to unify the SCS-CN method and VIC type of 
model by proposing a new distribution function for describing the soil water storage capacity.”  
 

The following paragraph has been added in Section 5.2 to elaborate the theoretical base for the 
PDF: 

 

(Lines 323-336) “This research started with the following research question: if the SCS-CN 
method is a saturation excess runoff generation model, what is the distribution function of soil 
water storage capacity?  Wang and Tang (2014) showed that equation (37) is derived from the 
proportionality relationship of SCS-CN method, i.e., equation (38).  From the comparison of 
boundary conditions between SCS-CN method and VIC type of model discussed in Section 4, it 
is observed that equation (37) does not include initial soil water storage, and the derived one from 
distribution function will include initial soil water storage (e.g., equation (34)).  However, equation 
(37) can be viewed as the result of 𝑆𝑆0 = 0; and 𝑊𝑊 for equation (37) can be written as:  

𝑊𝑊 = ∫ [1 − 𝐹𝐹(𝑥𝑥)]𝑑𝑑𝑥𝑥𝑃𝑃
0      (39) 

From equation (37), one obtains: 

𝑊𝑊 = 𝑃𝑃+𝑆𝑆𝑏𝑏−�(𝑆𝑆𝑏𝑏+𝑃𝑃)2−2𝑎𝑎𝑃𝑃𝑆𝑆𝑏𝑏
𝑎𝑎

     (40) 
Substituting equation (40) into equation (39), one obtains: 

𝑃𝑃+𝑆𝑆𝑏𝑏−�(𝑆𝑆𝑏𝑏+𝑃𝑃)2−2𝑎𝑎𝑃𝑃𝑆𝑆𝑏𝑏
𝑎𝑎

= ∫ [1 − 𝐹𝐹(𝐶𝐶)]𝑑𝑑𝐶𝐶𝑃𝑃
0     (41) 

Equation (26) is obtained from equation (41).” 
 
 
The manuscript has been revised and the point-by-point reply to reviewers’ comments are listed 
below. 

 

  



Reviewer #1: 

Thank you for your constructive comments. 

1. Inconsistent numbers (‘one’ in line 11, but ‘1’ in line 351; similarly for other numbers 
such as ‘zero’. 
 

Thanks.  “one” has been changed to “1”; and “zero” has been changed to “0”. 
 

2. The motivation of this research is not strong, i.e., why the new distribution function is 
needed? Or what is the consequences of the mismatch of SCS-CN method and VIC type of 
model’s boundary conditions. All those questions are not addressed in the introduction 
part. This is very important, since it can justify the value of this manuscript. 
 

The following sentence is added in the introduction section:  
 

(Lines 68-70) “The objective of this paper is to unify the SCS-CN method and VIC type 
of model by proposing a new distribution function for describing the soil water storage 
capacity.”  
 

3. With the proposed distribution, when storage index approaches infinity, soil wetting ratio 
approaches a certain value (≤1) depending on the initial storage. Will this be satisfied in 
application? 
 

The following sentence is added in Section 6: 
 

(Lines 381-382) “(e.g., at the beginning of a rainfall event, runoff is generated at the 
initially saturated areas, such as wetlands [Gao et al., 2018]).” 
 

4. The assumption used in deriving the probability density distribution is that the spatial 
distribution of precipitation is assumed to be uniform. This might need further 
explanation or justification. 
 

The following sentence is added in Section 5.2: 
 

(Lines 276-278) “The rainfall in the catchment is assumed to be spatially uniform and the 
rainfall depth is denoted as 𝑃𝑃.  If the spatial distribution of rainfall is not uniform, the 
method is applied to sub-catchments where the effect of spatial variability of rainfall is 
negligible.” 

  



Reviewer #2: 

This is a very interesting paper and potentially significant contribution to the hydrology field, 
particularly semi-distributed rainfall-runoff modeling. The mathematics is quite solid. I do have 
a few minor comments/questions though. 
 
Thank you for your constructive comments. 

 
1. It is not clear how the author reached the specific probability density function (PDF) (Eqn. 

24) since it is not associated with any well-known functions. It’d be better if the author can 
clarify his reasoning process here.  

 

The following paragraph has been added in Section 5.2: 
 

(Lines 323-336)  “This research started with the following research question: if the SCS-CN 
method is a saturation excess runoff generation model, what is the distribution function of soil 
water storage capacity?  Wang and Tang (2014) showed that equation (37) is derived from the 
proportionality relationship of SCS-CN method, i.e., equation (38).  From the comparison of 
boundary conditions between SCS-CN method and VIC type of model discussed in Section 4, it 
is observed that equation (37) does not include initial soil water storage, and the derived one from 
distribution function will include initial soil water storage (e.g., equation (34)).  However, equation 
(37) can be viewed as the result of 𝑆𝑆0 = 0; and 𝑊𝑊 for equation (37) can be written as:  

𝑊𝑊 = ∫ [1 − 𝐹𝐹(𝑥𝑥)]𝑑𝑑𝑥𝑥𝑃𝑃
0      (39) 

From equation (37), one obtains: 

𝑊𝑊 = 𝑃𝑃+𝑆𝑆𝑏𝑏−�(𝑆𝑆𝑏𝑏+𝑃𝑃)2−2𝑎𝑎𝑃𝑃𝑆𝑆𝑏𝑏
𝑎𝑎

     (40) 
Substituting equation (40) into equation (39), one obtains: 

𝑃𝑃+𝑆𝑆𝑏𝑏−�(𝑆𝑆𝑏𝑏+𝑃𝑃)2−2𝑎𝑎𝑃𝑃𝑆𝑆𝑏𝑏
𝑎𝑎

= ∫ [1 − 𝐹𝐹(𝐶𝐶)]𝑑𝑑𝐶𝐶𝑃𝑃
0     (41) 

Equation (26) is obtained from equation (41).” 
 

2. The comparison made between VIC and new distribution have different ranges of C values 
(Figure 3a and 3b, and Figure 4a and 4b). The C value goes from 0-200 for the new function 
and 0-50 for VIC.  
 

Cm has been changed to 200 in Figure 3b and Figure 4b. 
 
3. Though it can be seen from Figure 4 that for the new PDF the storage capacity curve has S-

shape curve, for the same range of C value (0-50) the new distribution function seems to be 
no different from β= 1.5 and Cm=50. 

 

As shown in Figure 3a, when a<1, the peak of f(C) occurs at C=0; when a>1, the peak of f(C) 
occurs at C>0.  With the increase of a (when C>1), the peak of f(C) occurs at higher value of 
C.  The following sentence has been added in Section 5.1: 
 

(Lines 255-257)  “The S-shape of CDF (Figure 4a) is more significant with higher value of 𝑎𝑎 
(e.g., a=1.9).  For a smaller value of 𝑎𝑎, the difference between the new PDF and VIC-type of 
model becomes smaller.” 
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Abstract 7 

Following the Budyko framework, soil wetting ratio (the ratio between soil wetting and 8 

precipitation) as a function of soil storage index (the ratio between soil wetting capacity and 9 

precipitation) is derived from the SCS-CN method and the VIC type of model.  For the SCS-CN 10 

method, soil wetting ratio approaches one 1 when soil storage index approaches ∞infinity, due to 11 

the limitation of the SCS-CN method in which the initial soil moisture condition is not explicitly 12 

represented.  However, for the VIC type of model, soil wetting ratio equals soil storage index 13 

when soil storage index is lower than a certain value, due to the finite upper bound of the power 14 

distribution function of storage capacity.  In this paper, a new distribution function, supported on 15 

a semi-infinite interval 𝑥𝑥 ∈ [0,∞), is proposed for describing the spatial distribution of storage 16 

capacity.  From this new distribution function, an equation is derived for the relationship 17 

between soil wetting ratio and storage index.  In the derived equation, soil wetting ratio 18 

approaches zero 0 as storage index approaches zero0; when storage index tends to infinity, soil 19 

wetting ratio approaches a certain value (≤1) depending on the initial storage.  Moreover, the 20 

derived equation leads to the exact SCS-CN method when initial water storage is zero0.  21 

Therefore, the new distribution function for soil water storage capacity explains the SCS-CN 22 

method as a saturation excess runoff model and unifies the surface runoff modeling of SCS-CN 23 

method and VIC type of model. 24 
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1. Introduction 27 

The Soil Conservation Service Curve Number (SCS-CN) method [Mockus, 1972] has been 28 

popularly used for direct runoff estimation in engineering communities.  Even though the SCS-29 

CN method was obtained empirically [Ponce, 1996; Beven, 2011], it is often interpreted as an 30 

infiltration excess runoff model [Bras, 1990; Mishra and Singh, 1999].  Yu [1998] showed that 31 

partial area infiltration excess runoff generation on a statistical distribution of soil infiltration 32 

characteristics provided similar runoff generation equation as the SCS-CN method.  Recently, 33 

Hooshyar and Wang [2016] derived an analytical solution for Richards’ equation for ponded 34 

infiltration into a soil column bounded by a water table; and they showed that the SCS-CN 35 

method, as an infiltration excess model, is a special case of the derived general solution.  The 36 

SCS-CN method has also been interpreted as a saturation excess runoff model [Steenhuis et al., 37 

1995; Lyon et al., 2004; Easton et al., 2008].  During an interview, Mockus, who developed the 38 

proportionality relationship of the SCS-CN method, stated that “saturation overland flow was the 39 

most likely runoff mechanism to be simulated by the method” [Ponce, 1996].  Recently, Bartlett 40 

et al. [2016a] developed a probabilistic framework, which provides a statistical justification of 41 

the SCS-CN method and extends the saturation excess interpretation of the event-based runoff of 42 

the method. 43 

Since the 1970s, various saturation excess runoff models have been developed based on 44 

the concept of probability distribution of soil storage capacity [Moore, 1985].  TOPMODEL is a 45 

well-known saturation excess runoff model based on spatially distributed topography [Beven and 46 

Kirkby, 1979; Sivapalan et al., 1987].  To quantify the dynamic change of saturation area during 47 
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rainfall events, the spatial variability of soil moisture storage capacity is described by a 48 

cumulative probability distribution function in the Xinanjiang model [Zhao, 1977; Zhao et al., 49 

1992] and the Variable Infiltration Capacity (VIC) model [Wood et al., 1992; Liang et al., 1994].  50 

The distribution of storage capacity is described by a power function in these models, which 51 

have been used for catchment scale runoff prediction and large scale land surface hydrologic 52 

simulations.  Bartlett et al. [2016b] unified TOPMODEL, the VIC type of model, and the SCS-53 

CN method by an event-based probabilistic storage framework, which includes a spatial 54 

description of the runoff concept of “prethreshold” and “threshold-excess” runoff [Bartlett et al., 55 

2016a]. 56 

By applying the generalized proportionality hypothesis from the SCS-CN method to 57 

mean annual water balance, Wang and Tang [2014] derived a one-parameter Budyko equation 58 

[Budyko, 1974] for mean annual evaporation ratio (i.e., the ratio of evaporation to precipitation) 59 

as a function of climate aridity index (i.e., the ratio of potential evaporation to precipitation).  As 60 

an analogy to the Budyko framework, the SCS-CN method and the VIC type of model at the 61 

event scale can be represented by the relationship between soil wetting ratio, defined as the ratio 62 

between soil wetting and precipitation, and soil storage index which is defined as the ratio 63 

between soil wetting capacity and precipitation.   64 

In this paper, the functional forms for soil wetting ratio versus soil storage index are 65 

compared between the SCS-CN model and the VIC/Xinanjiang type of model.  Based on the 66 

comparison, a new distribution function is proposed for describing the soil water storage capacity 67 

in the VIC type of model so that tThe objective of this paper is to unify the SCS-CN method and 68 

VIC type of model are unifiedby proposing a new distribution function for describing the soil 69 

water storage capacity.  In section 2, the SCS-CN method is presented in the form of Budyko-70 
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type framework with two parameterization schemes.  In section 3, the VIC type of model is 71 

presented in the form of Budyko-type framework.  In section 4, the SCS-CN method is then 72 

compared with the VIC type of model from the perspectives of number of parameters and 73 

boundary conditions (i.e., the lower and upper bounds of soil storage index).  In section 5, the 74 

proposed new distribution function is introduced and compared with the power distribution of 75 

VIC type of model; and a modified SCS-CN method considering initial storage explicitly is 76 

derived from the new distribution function.  Conclusions are drawn in section 6. 77 

2. SCS curve number method 78 

In this section, the SCS-CN method is described in the form of surface runoff modeling and then 79 

is presented for infiltration modeling in the Budyko-type framework.  The initial storage at the 80 

beginning of a time interval (e.g., rainfall event) is denoted by 𝑆𝑆0 [mm], and the maximum value 81 

of average storage capacity over the catchment is denoted by 𝑆𝑆𝑏𝑏 [mm].  The storage capacity for 82 

soil wetting for the time interval, 𝑆𝑆𝑝𝑝 [mm], is computed by: 83 

𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑏𝑏 − 𝑆𝑆0      (1) 84 

The total rainfall during the time interval is denoted by 𝑃𝑃  [mm].  Before surface runoff is 85 

generated, a portion of rainfall is intercepted by vegetation and infiltrates into the soil.  This 86 

portion of rainfall is called initial abstraction or initial soil wetting denoted by 𝑊𝑊𝑖𝑖 [mm].  The 87 

remaining rainfall (𝑃𝑃 −𝑊𝑊𝑖𝑖 ) is partitioned into runoff and continuing soil wetting.  This 88 

competition is captured by the proportionality relationship in the SCS-CN method: 89 

𝑊𝑊−𝑊𝑊𝑖𝑖
𝑆𝑆𝑝𝑝−𝑊𝑊𝑖𝑖

= 𝑄𝑄
𝑃𝑃−𝑊𝑊𝑖𝑖

      (2) 90 

where 𝑊𝑊  [mm] is the total soil wetting; 𝑊𝑊 −𝑊𝑊𝑖𝑖  is continuing wetting and 𝑆𝑆𝑝𝑝 −𝑊𝑊𝑖𝑖  is its 91 

potential value; 𝑄𝑄 [mm] is surface runoff; and 𝑃𝑃 −𝑊𝑊𝑖𝑖 is the available water and interpreted as 92 
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the potential value of 𝑄𝑄.  Since rainfall is partitioned into total soil wetting and surface runoff, 93 

i.e., 𝑃𝑃 = 𝑊𝑊 + 𝑄𝑄, surface runoff is computed by substituting 𝑊𝑊 = 𝑃𝑃 − 𝑄𝑄 into equation (2):   94 

𝑄𝑄 = (𝑃𝑃−𝑊𝑊𝑖𝑖)2

𝑃𝑃+𝑆𝑆𝑝𝑝−2𝑊𝑊𝑖𝑖
      (3) 95 

This equation is used for computing direct runoff in the SCS-CN method.   96 

The SCS-CN method can also be represented in terms of soil wetting ratio (𝑊𝑊
𝑃𝑃

).  97 

Substituting equation (3) into 𝑊𝑊 = 𝑃𝑃 − 𝑄𝑄 and dividing 𝑃𝑃 on both sides, the soil wetting ratio 98 

equation is obtained: 99 

𝑊𝑊
𝑃𝑃

=
𝑆𝑆𝑝𝑝
𝑃𝑃 −

𝑊𝑊𝑖𝑖
2

𝑃𝑃2

1+
𝑆𝑆𝑝𝑝
𝑃𝑃 −2

𝑊𝑊𝑖𝑖
𝑃𝑃

      (4) 100 

Climate aridity index is defined as the ratio between potential evaporation and precipitation.  In 101 

climate aridity index, both available water supply and water demand are determined by climate.   102 

Φ𝑠𝑠𝑠𝑠 = 𝑆𝑆𝑝𝑝
𝑃𝑃

      (5) 103 

A similar dimensionless parameter for the ratio between the maximum soil storage capacity and 104 

mean rainfall depth of rainfall events was defined in Porporato et al. [2004].  In soil storage 105 

index, water demand is determined by soil and available water supply is determined by climate.  106 

Substituting equation (5) into equation (4), the soil wetting equation for the SCS-CN method is 107 

obtained:  108 

𝑊𝑊
𝑃𝑃

=
Φ𝑠𝑠𝑠𝑠−

𝑊𝑊𝑖𝑖
2

𝑃𝑃2

1+Φ𝑠𝑠𝑠𝑠−2
𝑊𝑊𝑖𝑖
𝑃𝑃

      (6) 109 

Two potential schemes for parameterizing the initial wetting in equation (6) are discussed in the 110 

following sections. 111 

2.1. Parameterization scheme 1: ratio between initial wetting and storage capacity 112 
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The initial wetting is usually parameterized as the ratio between initial wetting and storage 113 

capacity in the SCS-CN method.  The potential for continuing wetting is called potential 114 

maximum retention and is denoted by 𝑆𝑆𝑚𝑚 = 𝑆𝑆𝑝𝑝 −𝑊𝑊𝑖𝑖.  𝑆𝑆𝑚𝑚 is computed as a function of curve 115 

number which is dependent on land use/land cover and soil permeability.  The ratio between 𝑊𝑊𝑖𝑖 116 

and 𝑆𝑆𝑚𝑚 in the SCS curve number method is denoted by 𝜆𝜆 = 𝑊𝑊𝑖𝑖
𝑆𝑆𝑝𝑝−𝑊𝑊𝑖𝑖

, and then the ratio between 117 

initial soil wetting and storage capacity is computed by: 118 

 𝑊𝑊𝑖𝑖
𝑆𝑆𝑝𝑝

= 𝜆𝜆
1+𝜆𝜆      (7) 119 

The value of 𝜆𝜆 varies in the range of 0 ≤ 𝜆𝜆 ≤ 0.3, and a value of 0.2 is usually used [Ponce and 120 

Hawkins, 1996].  Substituting equation (7) into equation (6) leads to: 121 

𝑊𝑊
𝑃𝑃

=
1−� 𝜆𝜆

1+𝜆𝜆�
2
Φ𝑠𝑠𝑠𝑠

1− 2𝜆𝜆
1+𝜆𝜆+Φ𝑠𝑠𝑠𝑠

−1      (8) 122 

Equation (8) is plotted in Figure 1 for 𝜆𝜆 = 0.1 and 0.3.  As we can see, the range of Φ𝑠𝑠𝑠𝑠  is 123 

dependent on the parameter 𝜆𝜆.  Since 𝑊𝑊𝑖𝑖 ≤ 𝑃𝑃, Φ𝑠𝑠𝑠𝑠 is in the range of �0,1 + 1
𝜆𝜆
�.  Equation (8) 124 

satisfies the following boundary conditions: 𝑊𝑊
𝑃𝑃
→ 0 as Φ𝑠𝑠𝑠𝑠 → 0; and 𝑊𝑊

𝑃𝑃
→ 1 as Φ𝑠𝑠𝑠𝑠 →

𝜆𝜆+1
𝜆𝜆

.  When 125 

𝜆𝜆 → 0, equation (8) becomes: 126 

𝑊𝑊
𝑃𝑃

= 1
1+Φ𝑠𝑠𝑠𝑠

−1      (9) 127 

Equation (9) is the lower bound for 𝑊𝑊
𝑃𝑃

 based on this parameterization scheme.  128 

2.2. Parameterization scheme 2: ratio between initial wetting and total wetting 129 

In order to avoid the situation that the range of Φ𝑠𝑠𝑠𝑠 is dependent on the parameter 𝜆𝜆, we can 130 

use the following parameterization scheme [Chen et al., 2013; Tang and Wang, 2017]:  131 

𝜀𝜀 = 𝑊𝑊𝑖𝑖
𝑊𝑊

        (10) 132 

Substituting equation (10) into equation (6), we can obtain the following equation: 133 
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𝑊𝑊
𝑃𝑃

=
Φ𝑠𝑠𝑠𝑠−𝜀𝜀2

𝑊𝑊2

𝑃𝑃2

1+Φ𝑠𝑠𝑠𝑠−2𝜀𝜀
𝑊𝑊
𝑃𝑃

      (11) 134 

We can solve for 𝑊𝑊
𝑃𝑃

 from equation (11): 135 

𝑊𝑊
𝑃𝑃

= 1+Φ𝑠𝑠𝑠𝑠−�(1+Φ𝑠𝑠𝑠𝑠)2−4𝜀𝜀(2−𝜀𝜀)Φ𝑠𝑠𝑠𝑠
2𝜀𝜀(2−𝜀𝜀)     (12) 136 

Equation (12) has the same functional form as the derived Budyko equation for long-term 137 

evaporation ratio [Wang and Tang, 2014; Wang et al., 2015].  Equation (12) satisfies the 138 

following boundary conditions: 𝑊𝑊
𝑃𝑃
→ 0 as Φ𝑠𝑠𝑠𝑠 → 0; and 𝑊𝑊

𝑃𝑃
→ 1 as Φ𝑠𝑠𝑠𝑠 → ∞.  Based on equation 139 

(10), the range of 𝜀𝜀 is [0, 1], and 𝜀𝜀 = 1 corresponds to the upper bound (Figure 1).  Equation (12) 140 

becomes equation (9) as 𝜀𝜀 → 0, and it is the lower bound.  Figure 1 plots equation (12) for 𝜀𝜀 = 141 

0.1 and 0.3.  Due to the dependence of the range of Φ𝑠𝑠𝑠𝑠  on the parameter 𝜆𝜆  in the first 142 

parameterization scheme, the second parameterization scheme is focused on in the following 143 

sections.   144 

In the SCS-CN method, the soil wetting ratio is a function of soil storage index with a 145 

parameter for describing initial wetting.  The average wetting capacity at the catchment scale is 146 

used for computing soil storage index; but the spatial variability of wetting capacity is not 147 

represented in the SCS-CN method. 148 

3. Saturation excess runoff model 149 

The spatial variability of soil water storage capacity is explicitly represented in the saturation 150 

excess runoff models such as VIC and Xinanjiang.  In these models, the spatial variation of 151 

point-scale storage capacity (𝐶𝐶) is represented by a power function:   152 

𝐹𝐹(𝐶𝐶) = 1 − �1 − 𝐶𝐶
𝐶𝐶𝑚𝑚
�
𝛽𝛽

    (13) 153 
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where 𝐹𝐹(𝐶𝐶) is the cumulative probability, i.e., the fraction of catchment area for which the 154 

storage capacity is less than 𝐶𝐶 [mm]; and 𝐶𝐶𝑚𝑚 [mm] is the maximum value of point-scale storage 155 

capacity over the catchment.  The water storage capacity includes vegetation interception, 156 

surface retention, and soil moisture capacity; 𝛽𝛽  is the shape parameter of storage capacity 157 

distribution and is usually assumed to be a positive number.  𝛽𝛽  ranges from 0.01 to 5.0 as 158 

suggested by Wood et al. [1992].  The storage capacity distribution curve is concave down for 159 

0 < 𝛽𝛽 < 1 and concave up for 𝛽𝛽 > 1.  The average value of storage capacity over the catchment 160 

is equivalent to 𝑆𝑆𝑏𝑏  in the SCS-CN method, and it is obtained by integrating the exceedance 161 

probability of storage capacity 𝑆𝑆𝑏𝑏 = ∫ (1 − 𝐹𝐹(𝑥𝑥))𝐶𝐶𝑚𝑚
0 𝑑𝑑𝑥𝑥: 162 

𝑆𝑆𝑏𝑏 = 𝐶𝐶𝑚𝑚
𝛽𝛽+1

      (14) 163 

Similarly, for a given 𝐶𝐶, the catchment-scale storage 𝑆𝑆 [mm] can be computed [Moore, 1985]: 164 

𝑆𝑆 = 𝑆𝑆𝑏𝑏 �1 − �1 − 𝐶𝐶
𝐶𝐶𝑚𝑚
�
𝛽𝛽+1

�    (15) 165 

To derive wetting ratio as a function of soil storage index, the initial storage at the 166 

catchment scale is parameterized by the degree of saturation: 167 

𝜓𝜓 = 𝑆𝑆0
𝑆𝑆𝑏𝑏

      (16) 168 

Recalling equation (1) and the definition of soil storage index (i.e., equation (5)), we obtain:  169 

𝑆𝑆𝑏𝑏
𝑃𝑃

= Φ𝑠𝑠𝑠𝑠
1−𝜓𝜓

     (17) 170 

The value of 𝐶𝐶  corresponding to the initial storage 𝑆𝑆0  is denoted as 𝐶𝐶0 , and 𝑆𝑆0 = 𝑆𝑆𝑏𝑏 �1 −171 

�1 − 𝐶𝐶0
𝐶𝐶𝑚𝑚
�
𝛽𝛽+1

� is obtained by substituting 𝑆𝑆0  and 𝐶𝐶0  into equation (15).  When 𝑃𝑃 + 𝐶𝐶0 ≥ 𝐶𝐶𝑚𝑚 , 172 
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each point within the catchment is saturated and soil wetting reaches its maximum value, i.e., 173 

𝑊𝑊 = 𝑆𝑆𝑝𝑝.  Substituting 𝐶𝐶0 = 𝐶𝐶𝑚𝑚 − 𝐶𝐶𝑚𝑚 �1 − 𝑆𝑆0
𝑆𝑆𝑏𝑏
�

1
𝛽𝛽+1 into 𝑃𝑃 + 𝐶𝐶0 ≥ 𝐶𝐶𝑚𝑚, we obtain: 174 

Φ𝑠𝑠𝑠𝑠 ≤ 𝑏𝑏 where 𝑏𝑏 = (𝛽𝛽 + 1)−1(1 − 𝜓𝜓)
𝛽𝛽

𝛽𝛽+1    (18) 175 

Therefore, this condition is equivalent to: 176 

𝑊𝑊
𝑃𝑃

= Φ𝑠𝑠𝑠𝑠 when Φ𝑠𝑠𝑠𝑠 ≤ 𝑏𝑏     (19) 177 

 Next, we will derive 𝑊𝑊
𝑃𝑃

 for the condition of Φ𝑠𝑠𝑠𝑠 > 𝑏𝑏 .  The storage at the end of the 178 

modeling period (e.g., rainfall-runoff event) is denoted as 𝑆𝑆1, which is computed by: 179 

𝑆𝑆1 = 𝑆𝑆𝑏𝑏 �1 − �1 − 𝑃𝑃+𝐶𝐶0
𝐶𝐶𝑚𝑚

�
𝛽𝛽+1

�     (20) 180 

Since 𝑊𝑊 = 𝑆𝑆1 − 𝑆𝑆0, wetting is computed by: 181 

𝑊𝑊 = 𝑆𝑆𝑏𝑏 �1 − �1 − 𝑃𝑃+𝐶𝐶0
𝐶𝐶𝑚𝑚

�
𝛽𝛽+1

� − 𝑆𝑆0    (21) 182 

From equation (21), we obtain (see Appendix A for details): 183 

𝑊𝑊
𝑃𝑃

= Φ𝑠𝑠𝑠𝑠 �1 − �1 − 𝑏𝑏Φ𝑠𝑠𝑠𝑠
−1�

𝛽𝛽+1
� when Φ𝑠𝑠𝑠𝑠 > 𝑏𝑏   (22) 184 

The limit of equation (22) for Φ𝑠𝑠𝑠𝑠 → ∞ can be obtained (see Appendix B for details): 185 

 lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= (1 − 𝜓𝜓)
𝛽𝛽

𝛽𝛽+1     (23) 186 

Equations (19) and (22) provide 𝑊𝑊
𝑃𝑃

 as a function of Φ𝑠𝑠𝑠𝑠 with two parameters (𝜓𝜓 and 𝛽𝛽).  Figure 2 187 

plots equations (19) and (22) for 𝜓𝜓 = 0 and 0.5 when 𝛽𝛽 = 0.2 and 2.  As we can see, 𝑊𝑊
𝑃𝑃

 decreases 188 

as 𝛽𝛽 increases for given values of 𝜓𝜓 and Φ𝑠𝑠𝑠𝑠; and 𝑊𝑊
𝑃𝑃

 decreases as 𝜓𝜓 increases for given values of 189 

𝛽𝛽 and Φ𝑠𝑠𝑠𝑠, implicating that soil wetting ratio decreases with the degree of initial saturation under 190 

a given soil storage index. 191 

4. Comparison between SCS-CN model and VIC type of model 192 
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The SCS-CN model with the parameterization of ratio between initial wetting and total wetting is 193 

compared with the VIC type of saturation excess runoff model.  In sections 2 and 3, we derived 194 

𝑊𝑊
𝑃𝑃

 as a function of Φ𝑠𝑠𝑠𝑠 based on the SCS-CN method and the VIC type of model, which uses a 195 

power function to describe the spatial distribution of storage capacity.  The SCS-CN method is a 196 

function of storage capacity 𝑆𝑆𝑝𝑝; but the VIC type of model is a function of storage capacity 𝑆𝑆𝑝𝑝 197 

and the degree of initial saturation 𝑆𝑆0
𝑆𝑆𝑏𝑏

.  As a result, the function of 𝑊𝑊
𝑃𝑃

~ 𝑆𝑆𝑝𝑝
𝑃𝑃

 for the SCS-CN method 198 

has only one parameter (𝜀𝜀), but it has two parameters (𝛽𝛽 and 𝜓𝜓) for the VIC type of model. 199 

Table 1 shows the boundary conditions for the relationships between 𝑊𝑊
𝑃𝑃

 and Φ𝑠𝑠𝑠𝑠 from the 200 

SCS-CN method and the VIC type of model.  The lower boundary of the SCS-CN method with 201 

parameter 𝜀𝜀 is 𝑊𝑊
𝑃𝑃
→ 0 as Φ𝑠𝑠𝑠𝑠 → 0.  However, for the VIC type of model, 𝑊𝑊

𝑃𝑃
= Φ𝑠𝑠𝑠𝑠 when Φ𝑠𝑠𝑠𝑠 ≤ 𝑏𝑏.  202 

For the SCS-CN method, 𝑊𝑊 reaches its maximum (𝑆𝑆𝑝𝑝) when rainfall reaches infinity; while for 203 

the VIC type of model, 𝑊𝑊 reaches its maximum value (𝑆𝑆𝑝𝑝) when rainfall reaches a finite number 204 

(𝐶𝐶𝑚𝑚 − 𝐶𝐶0).  In other words, for the SCS-CN method, the entire catchment becomes saturated 205 

when rainfall reaches infinity; while for the VIC type model, the entire catchment becomes 206 

saturated when rainfall reaches a finite number. 207 

As shown in Table 1, the upper boundary of the SCS-CN method (with parameter 𝜀𝜀) is 1. 208 

However, for the VIC type of model, the upper boundary is (1 − 𝜓𝜓)
𝛽𝛽

𝛽𝛽+1 instead of 1.  This is due 209 

to the effect of initial storage in the VIC type of model.  When initial storage is 0zero (i.e., 𝜓𝜓 =210 

0), the wetting ratio 𝑊𝑊
𝑃𝑃

 for the VIC type of model has the same upper boundary condition as the 211 

SCS-CN method. 212 

5. Unification of SCS-CN method and VIC type of model 213 
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Based on the comparison between the SCS-CN method and VIC type of model, a new 214 

distribution function is proposed in this section for describing the spatial distribution of soil 215 

water storage capacity, which unifies the SCS-CN method and VIC type of model.  As discussed 216 

in section 4, the upper boundary condition of the SCS-CN model (i.e., 𝑊𝑊
𝑃𝑃
→ 1 as Φ𝑠𝑠𝑠𝑠 → ∞) does 217 

not depend on the initial storage.  This upper boundary condition needs to be modified by 218 

including the effect of initial storage so that the limit of 𝑊𝑊
𝑃𝑃

 as Φ𝑠𝑠𝑠𝑠 → ∞ is dependent on the 219 

degree of initial saturation like the VIC type of model.  However, the lower boundary condition 220 

of the VIC model needs to be modified so that the lower boundary condition follows that 𝑊𝑊
𝑃𝑃
→ 0 221 

as Φ𝑠𝑠𝑠𝑠 → 0 like the SCS-CN method.  Through these modifications, the SCS-CN method and the 222 

VIC type of saturation excess runoff model can be unified from the functional perspective of soil 223 

wetting ratio.   224 

Based on the comparison one may have the following questions: 1) Can the SCS-CN 225 

method be derived from the VIC type of model by setting initial storage to zero0?  2) If yes, what 226 

is the distribution function for soil water storage capacity?  Once we answer these questions, a 227 

modified SCS-CN method considering initial storage explicitly can be derived as a saturation 228 

excess runoff model based on a distribution function of water storage capacity, and it unifies the 229 

SCS-CN method and VIC type of model.  In this section, a new distribution function is proposed 230 

for describing the spatial variability of soil water storage capacity, from which the SCS-CN 231 

method is derived as a VIC type of model. 232 

5.1. A new distribution function 233 

The probability density function (PDF) of the new distribution for describing the spatial 234 

distribution of water storage capacity is represented by: 235 
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𝑓𝑓(𝐶𝐶) = (2−𝑎𝑎)𝜇𝜇2

[(𝐶𝐶+𝜇𝜇)2−2𝑎𝑎𝜇𝜇𝐶𝐶]3/2    (24) 236 

where 𝐶𝐶 is point-scale water storage capacity and supported on a positive semi-infinite interval 237 

(𝐶𝐶 ≥ 0) ; 𝑎𝑎  is the shape parameter and its range is 0 < 𝑎𝑎 < 2 ; and 𝜇𝜇  is the mean of the 238 

distribution (i.e., the scale parameter).  Figure 3a plots the PDFs for five sets of shape and scale 239 

parameters.  When 𝑎𝑎 ≤ 1, the PDF monotonically decreases with the increase of 𝐶𝐶, i.e., the peak 240 

of PDF occurs at 𝐶𝐶 = 0; while when 𝑎𝑎 > 1, the peak of PDF occurs at 𝐶𝐶 > 0 and the location of 241 

the peak depends on the values of 𝑎𝑎 and 𝜇𝜇.  For comparison, Figure 3b plots the PDF for VIC 242 

model: 243 

𝑓𝑓(𝐶𝐶) = 𝛽𝛽
𝐶𝐶𝑚𝑚
�1 − 𝐶𝐶

𝐶𝐶𝑚𝑚
�
𝛽𝛽−1

    (25) 244 

As shown by the solid black curve in Figure 3b, when 0 < 𝛽𝛽 < 1, 𝑓𝑓(𝐶𝐶) approaches infinity as 245 

𝐶𝐶 → 𝐶𝐶𝑚𝑚.  It is a uniform distribution when 𝛽𝛽 = 1.  The peak of PDF occurs at 𝐶𝐶 = 0 when 𝛽𝛽 >246 

1.  Therefore, the peak of PDF for VIC model occurs at 𝐶𝐶 = 0 or 𝐶𝐶𝑚𝑚. 247 

The cumulative distribution function (CDF) corresponding to the proposed PDF is 248 

obtained by integrating equation (24): 249 

𝐹𝐹(𝐶𝐶) = 1 − 1
𝑎𝑎

+ 𝐶𝐶+(1−𝑎𝑎)𝜇𝜇
𝑎𝑎�(𝐶𝐶+𝜇𝜇)2−2𝑎𝑎𝜇𝜇𝐶𝐶

   (26) 250 

Figure 4a plots the CDFs corresponding to the PDFs in Figure 3a.  For comparison, Figure 4b 251 

plots the CDFs corresponding to the PDFs in Figure 3b.  The storage capacity distribution curve 252 

for the proposed distribution is concave up for 𝑎𝑎 ≤ 1 and S-shape for 𝑎𝑎 > 1 (Figure 4a); while 253 

the storage capacity distribution curve for VIC model is concave up for 𝛽𝛽 > 1 and concave down 254 

for 0 < 𝛽𝛽 < 1 (Figure 4b).  The S-shape of CDF (Figure 4a) is more significant with higher 255 

value of 𝑎𝑎 (e.g., a=1.9).  For a smaller value of 𝑎𝑎, the difference between the new PDF and VIC-256 

type of model becomes smaller.  Therefore, tThe proposed distribution can fit the S-shape of 257 
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cumulative distribution for storage capacity which is observed from soil data [Huang et al., 2003], 258 

but the power distribution of VIC type of model is not able to fit the S-shape of CDF.   259 

5.2. Deriving SCS-CN method from the proposed distribution function 260 

The soil wetting and surface runoff can be computed when equation (26) is used to describe the 261 

spatial distribution of soil water storage capacity in a catchment.  The average value of storage 262 

capacity over the catchment is the mean of the distribution: 263 

𝜇𝜇 = 𝑆𝑆𝑏𝑏      (27) 264 

For a given 𝐶𝐶, the catchment-scale storage 𝑆𝑆 can be computed by 𝑆𝑆 = ∫ [1 − 𝐹𝐹(𝑥𝑥)]𝑑𝑑𝑥𝑥𝐶𝐶
0  [Moore, 265 

1985].  From equation (26), we obtain: 266 

𝑆𝑆 = 𝐶𝐶+𝑆𝑆𝑏𝑏−�(𝐶𝐶+𝑆𝑆𝑏𝑏)2−2𝑎𝑎𝑆𝑆𝑏𝑏𝐶𝐶
𝑎𝑎

     (28) 267 

For a rainfall-runoff event, the average initial storage at the catchment scale is denoted as 𝑆𝑆0 and 268 

the corresponding value of 𝐶𝐶 is denoted as 𝐶𝐶0.  Substituting 𝑆𝑆0 and 𝐶𝐶0 into equation (28), we 269 

obtain: 270 

𝑆𝑆0 = 𝐶𝐶0+𝑆𝑆𝑏𝑏−�(𝐶𝐶0+𝑆𝑆𝑏𝑏)2−2𝑎𝑎𝑆𝑆𝑏𝑏𝐶𝐶0
𝑎𝑎

     (29) 271 

Dividing 𝑆𝑆𝑏𝑏 in both-hand sides of equation (29), we obtain: 272 

𝑚𝑚 = 𝜓𝜓(2−𝑎𝑎𝜓𝜓)
2(1−𝜓𝜓)      (30) 273 

where 𝜓𝜓 = 𝑆𝑆0
𝑆𝑆𝑏𝑏

 is defined in equation (16), and 𝑚𝑚 is defined as: 274 

𝑚𝑚 = 𝐶𝐶0
𝑆𝑆𝑏𝑏

      (31) 275 

The rainfall in the catchment is assumed to be spatially uniform and the rainfall depth is 276 

denoted as 𝑃𝑃.  If the spatial distribution of rainfall is not uniform, the method is applied to sub-277 
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catchments where the effect of spatial variability of rainfall is negligible.  The average storage at 278 

the catchment scale after infiltration is computed by substituting 𝐶𝐶 = 𝐶𝐶0 + 𝑃𝑃 into equation (28): 279 

𝑆𝑆1 = 𝐶𝐶0+𝑃𝑃+𝑆𝑆𝑏𝑏−�(𝐶𝐶0+𝑃𝑃+𝑆𝑆𝑏𝑏)2−2𝑎𝑎𝑆𝑆𝑏𝑏(𝐶𝐶0+𝑃𝑃)
𝑎𝑎

    (32) 280 

The soil wetting is computed as the difference between 𝑆𝑆1 and 𝑆𝑆0: 281 

𝑊𝑊 = 𝑃𝑃+�(𝐶𝐶0+𝑆𝑆𝑏𝑏)2−2𝑎𝑎𝑆𝑆𝑏𝑏𝐶𝐶0−�(𝐶𝐶0+𝑃𝑃+𝑆𝑆𝑏𝑏)2−2𝑎𝑎𝑆𝑆𝑏𝑏(𝐶𝐶0+𝑃𝑃)
𝑎𝑎

   (33) 282 

Dividing 𝑃𝑃 on the both-hand sides of equation (33) and substituting equation (31), we obtain: 283 

𝑊𝑊
𝑃𝑃

=
1+

𝑆𝑆𝑏𝑏
𝑃𝑃
�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚−��1+(𝑚𝑚+1)

𝑆𝑆𝑏𝑏
𝑃𝑃 �

2
−2𝑎𝑎𝑚𝑚�

𝑆𝑆𝑏𝑏
𝑃𝑃 �

2
−2𝑎𝑎

𝑆𝑆𝑏𝑏
𝑃𝑃

𝑎𝑎
   (34) 284 

Substituting equation (17) into equation (34), we obtain: 285 

𝑊𝑊
𝑃𝑃

=
1+

�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚
1−𝜓𝜓 Φ𝑠𝑠𝑠𝑠−��1+

𝑚𝑚+1
1−𝜓𝜓Φ𝑠𝑠𝑠𝑠�

2
−2𝑎𝑎𝑚𝑚�Φ𝑠𝑠𝑠𝑠1−𝜓𝜓�

2
− 2𝑎𝑎
1−𝜓𝜓Φ𝑠𝑠𝑠𝑠

𝑎𝑎
  (35) 286 

 Figure 5 plots equation (35) for 𝜓𝜓 = 0, 0.4, and 0.6 when 𝑎𝑎 = 0.6 and 1.8.  As we can 287 

see, 𝑊𝑊
𝑃𝑃

 increases with 𝑎𝑎 for given values of 𝜓𝜓 and Φ𝑠𝑠𝑠𝑠; and 𝑊𝑊
𝑃𝑃

 decreases with 𝜓𝜓 for given values 288 

of 𝑎𝑎 and Φ𝑠𝑠𝑠𝑠 , which is consistent with the VIC model and implicates that soil wetting ratio 289 

decreases with the degree of initial saturation under a storage index.  As shown in Figure 5, 290 

equation (35) satisfies the lower boundary of SCS-CN method and the upper boundary of the 291 

VIC model.  Specifically, equation (35) satisfies the following boundary conditions (see 292 

Appendix C for details) shown in Table 1: 293 

lim
Φ𝑠𝑠𝑠𝑠→0

𝑊𝑊
𝑃𝑃

= 0      (36-1) 294 

lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= �(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚+𝑎𝑎−𝑚𝑚−1
𝑎𝑎�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚

    (36-2) 295 

When the effect of initial storage is negligible (i.e., 𝜓𝜓 = 0), 𝑆𝑆𝑏𝑏
𝑃𝑃

= Φ𝑠𝑠𝑠𝑠 from equation (17) 296 

and 𝑚𝑚 = 0 from equation (30).  Then, equation (35) becomes: 297 
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𝑊𝑊
𝑃𝑃

=
1+

𝑆𝑆𝑏𝑏
𝑃𝑃 −

��1+
𝑆𝑆𝑏𝑏
𝑃𝑃 �

2
−2𝑎𝑎

𝑆𝑆𝑏𝑏
𝑃𝑃

𝑎𝑎
    (37) 298 

Equation (37) is same as equation (12) with 𝑎𝑎 = 2𝜀𝜀(2 − 𝜀𝜀) .  We can obtain the following 299 

equation from equation (37) (see Appendix D for detailed derivation): 300 

𝑄𝑄
𝑃𝑃−𝜀𝜀𝑊𝑊

= 𝑊𝑊−𝜀𝜀𝑊𝑊
𝑆𝑆𝑏𝑏−𝜀𝜀𝑊𝑊

      (38) 301 

where 𝜀𝜀𝑊𝑊 is defined as initial abstraction (𝑊𝑊𝑖𝑖) in the SCS-CN method.  Since 𝑆𝑆𝑏𝑏 = 𝑆𝑆𝑝𝑝 when 302 

𝜓𝜓 = 0, equation (38) is same as equation (2), i.e., the proportionality relationship of SCS-CN 303 

method. 304 

 Equation (35) is derived from the VIC type model by using equation (26) to describe the 305 

spatial distribution of soil water storage capacity.  From this perspective, equation (35) is a 306 

saturation excess runoff model.  Since equation (35) becomes the SCS-CN method when initial 307 

storage is negligible, equation (35) is the modified SCS-CN method which considers the effect of 308 

initial storage on runoff generation explicitly.  Therefore, the new distribution function 309 

represented by equation (26) unifies the SCS-CN method and VIC type of model.   310 

Bartlett et al. [2016a] developed an event-based probabilistic storage framework 311 

including a spatial description of “prethreshold” and “threshold-excess” runoff; and the 312 

framework has been utilized for unifying TOPMODEL, VIC and SCS-CN [Bartlett et al., 2016b].  313 

The extended SCS-CN method (SCS-CNx) from the probabilistic storage framework is derived 314 

given the following assumptions: 1) the spatial distribution of rainfall is exponential; 2) the 315 

spatial distribution of soil moisture deficit is uniform; and 3) the spatial distribution of storage 316 

capacity is exponential.  When “prethreshold” runoff is zero 0 (i.e., there is only threshold-excess 317 

or saturation excess runoff), the SCS-CNx method leads to the SCS-CN method without the 318 

initial abstraction term (i.e., there is no 𝜀𝜀𝑊𝑊  term in equation (38)).  In this paper, the new 319 
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probability distribution function is used for storage capacity in the VIC model in which the 320 

spatial distribution of precipitation is assumed to be uniform.  The obtained equation for 321 

saturation excess runoff leads to the exact SCS-CN method as shown in equation (38). 322 

This research started with the following research question: if the SCS-CN method is a 323 

saturation excess runoff generation model, what is the distribution function of soil water storage 324 

capacity?  Wang and Tang (2014) showed that equation (37) is derived from the proportionality 325 

relationship of SCS-CN method, i.e., equation (38).  From the comparison of boundary 326 

conditions between SCS-CN method and VIC type of model discussed in Section 4, it is 327 

observed that equation (37) does not include initial soil water storage, and the derived one from 328 

distribution function will include initial soil water storage (e.g., equation (34)).  However, 329 

equation (37) can be viewed as the result of 𝑆𝑆0 = 0; and 𝑊𝑊 for equation (37) can be written as:  330 

𝑊𝑊 = ∫ [1 − 𝐹𝐹(𝑥𝑥)]𝑑𝑑𝑥𝑥𝑃𝑃
0      (39) 331 

From equation (37), one obtains: 332 

𝑊𝑊 = 𝑃𝑃+𝑆𝑆𝑏𝑏−�(𝑆𝑆𝑏𝑏+𝑃𝑃)2−2𝑎𝑎𝑃𝑃𝑆𝑆𝑏𝑏
𝑎𝑎

     (40) 333 

Substituting equation (40) into equation (39), one obtains: 334 

𝑃𝑃+𝑆𝑆𝑏𝑏−�(𝑆𝑆𝑏𝑏+𝑃𝑃)2−2𝑎𝑎𝑃𝑃𝑆𝑆𝑏𝑏
𝑎𝑎

= ∫ [1 − 𝐹𝐹(𝐶𝐶)]𝑑𝑑𝐶𝐶𝑃𝑃
0     (41) 335 

Equation (26) is obtained from equation (41).   336 

5.3. Surface runoff of unified SCS-CN and VIC model 337 

From the unified SCS-CN and VIC model (i.e., equation (34)), surface runoff (𝑄𝑄 ) can be 338 

computed as: 339 

 𝑄𝑄 =
(𝑎𝑎−1)𝑃𝑃−𝑆𝑆𝑏𝑏�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚+�[𝑃𝑃+(𝑚𝑚+1)𝑆𝑆𝑏𝑏]2−2𝑎𝑎𝑚𝑚𝑆𝑆𝑏𝑏2−2𝑎𝑎𝑆𝑆𝑏𝑏𝑃𝑃

𝑎𝑎
  (3942) 340 
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The parameter 𝑚𝑚  is computed by equation (30) as a function of 𝜓𝜓  and 𝑎𝑎 .  Equation (4239) 341 

represents surface runoff as a function of precipitation (𝑃𝑃), average soil water storage capacity 342 

(𝑆𝑆𝑏𝑏), shape parameter of storage capacity distribution (𝑎𝑎), and initial soil moisture (𝜓𝜓).  Figure 6 343 

plots equation (3942) under different values of 𝑃𝑃, 𝑆𝑆𝑏𝑏, 𝑎𝑎, and 𝜓𝜓.  Figure 6a shows the effects of 344 

𝑆𝑆𝑏𝑏 and 𝜓𝜓 on rainfall-runoff relationship with given shape parameter of 𝑎𝑎=1.9.  The solid lines 345 

show the rainfall-runoff relations with zero initial storage (𝜓𝜓=0); and the dashed lines show the 346 

rainfall-runoff relations with 𝜓𝜓=0.2.  Given the same amount of precipitation and storage 347 

capacity, wetter soil (𝜓𝜓=0.2) generates more surface runoff than drier soil (𝜓𝜓=0); and the 348 

difference of runoff is higher for watersheds with larger average storage capacity.  Figure 6b 349 

shows the effects of 𝑆𝑆𝑏𝑏  and 𝑎𝑎  on rainfall-runoff relationship with given initial soil moisture 350 

(𝜓𝜓=0.2).  The solid lines show the rainfall-runoff relations for 𝑎𝑎=1.9; and the dashed lines show 351 

the rainfall-runoff relations for 𝑎𝑎=1.2.  As we can see, the shape parameter affects the runoff 352 

generation significantly for watersheds with larger average storage capacity.  353 

In the SCS-CN method, surface runoff is computed as 𝑄𝑄 = (𝑃𝑃−0.2𝑆𝑆𝑏𝑏)2

𝑃𝑃+0.8𝑆𝑆𝑏𝑏
.  The effect of 354 

initial soil moisture on runoff is considered implicitly by varying the curve number for normal, 355 

dry and wet conditions depending on the antecedent moisture condition.  In the unified SCS-CN 356 

model shown in equation (3942), the effect of initial soil moisture is explicitly included through 357 

𝜓𝜓, which is the ratio between average initial water storage and average storage capacity.  In the 358 

SCS-CN method, the value of initial abstraction 𝑊𝑊𝑖𝑖 is parameterized as a function of average 359 

storage capacity, i.e., 𝑊𝑊𝑖𝑖 = 0.2𝑆𝑆𝑏𝑏. In the unified SCS-CN model shown in equation (3942), 𝑊𝑊𝑖𝑖 is 360 

dependent on the shape parameter 𝑎𝑎.  Therefore, the unified SCS-CN model extends the original 361 

SCS-CN method for including the effect of initial soil moisture explicitly and estimating the 362 

parameter for initial abstraction. 363 
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6. Conclusions 364 

In this paper, the SCS-CN method and the saturation excess runoff models based on distribution 365 

functions (e.g., VIC model) are presented in terms of soil wetting (i.e., infiltration).  Like the 366 

Budyko framework, the relationship between soil wetting ratio and soil storage index is obtained 367 

for the SCS-CN method and the VIC type of model.  It is found that the boundary conditions for 368 

the obtained functions do not fully match.  For the SCS-CN method, soil wetting ratio 369 

approaches 1 when soil storage index approaches infinity, and this is due to the limitation of the 370 

SCS-CN method, i.e. the initial soil moisture condition is not explicitly represented in the 371 

proportionality relationship.  However, for the VIC type of model, soil wetting ratio equals soil 372 

storage index when soil storage index is lower than a certain value, and this is due to the finite 373 

bound of the distribution function of storage capacity. 374 

 In this paper, a new distribution function, which is supported by 𝑥𝑥 ∈ [0,∞) instead of a 375 

finite upper bound, is proposed for describing the spatial distribution of soil water storage 376 

capacity.  From this new distribution function, an equation is derived for the relationship 377 

between soil wetting ratio and storage index, and this equation satisfies the following boundary 378 

conditions: when storage index approaches zero0, soil wetting ratio approaches zero0; when 379 

storage index approaches infinity, soil wetting ratio approaches a certain value (≤1) depending 380 

on the initial storage (e.g., at the beginning of a rainfall event, runoff is generated at the initially 381 

saturated areas, such as wetlands [Gao et al., 2018]).  Meanwhile, the model becomes the exact 382 

SCS-CN method when initial storage is negligible.  Therefore, the new distribution function for 383 

soil water storage capacity explains the SCS-CN method as a saturation excess runoff model, and 384 

unifies the SCS-CN method and the VIC type of model for surface runoff modeling. 385 
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Future potential work could test the performance of the proposed new distribution 386 

function for quantifying the spatial distribution of storage capacity by analyzing the spatially 387 

distributed soil data.  On one hand, the distribution functions of probability distributed model 388 

[Moore, 1985], VIC model, and Xinanjiang model could be replaced by the new distribution 389 

function and the model performance would be further evaluated.  On the other hand, the 390 

extended SCS-CN method (i.e., equation (35)), which includes initial storage explicitly, could be 391 

used for surface runoff modeling in SWAT model, and the model performance would be 392 

evaluated. 393 
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Appendix A 399 

The following equation is obtained by dividing 𝑃𝑃 on both sides of equation (21): 400 

𝑊𝑊
𝑃𝑃

= 𝑆𝑆𝑏𝑏−𝑆𝑆0
𝑃𝑃

− 𝑆𝑆𝑏𝑏
𝑃𝑃
�1 − 𝑃𝑃+𝐶𝐶0

𝐶𝐶𝑚𝑚
�
𝛽𝛽+1

    (A1) 401 

Substituting 𝐶𝐶0
𝐶𝐶𝑚𝑚

= 1 − �1 − 𝑆𝑆0
𝑆𝑆𝑏𝑏
�

1
𝛽𝛽+1 into equation (A1), we obtain: 402 

𝑊𝑊
𝑃𝑃

= 𝑆𝑆𝑏𝑏−𝑆𝑆0
𝑃𝑃

− 𝑆𝑆𝑏𝑏
𝑃𝑃
�1 − 𝑃𝑃

𝐶𝐶𝑚𝑚
− �1 − �1 − 𝑆𝑆0

𝑆𝑆𝑏𝑏
�

1
𝛽𝛽+1��

𝛽𝛽+1

   (A2) 403 

Substituting equation (14) into equation (A2),  404 

𝑊𝑊
𝑃𝑃

= 𝑆𝑆𝑏𝑏−𝑆𝑆0
𝑃𝑃

− ��𝑆𝑆𝑏𝑏−𝑆𝑆0
𝑃𝑃

�
1

𝛽𝛽+1 −
�
𝑆𝑆𝑏𝑏
𝑃𝑃 �

− 𝛽𝛽
𝛽𝛽+1

𝛽𝛽+1
�

𝛽𝛽+1

   (A3) 405 
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Substituting equations (5) and (17) into (A3), we obtain: 406 

𝑊𝑊
𝑃𝑃

= Φ𝑠𝑠𝑠𝑠 − �Φ𝑠𝑠𝑠𝑠

1
𝛽𝛽+1 −

�Φ𝑠𝑠𝑠𝑠1−𝜓𝜓�
− 𝛽𝛽
𝛽𝛽+1

𝛽𝛽+1
�

𝛽𝛽+1

    (A4) 407 

which leads to: 408 

𝑊𝑊
𝑃𝑃

= Φ𝑠𝑠𝑠𝑠 �1 − �1 − 𝑏𝑏Φ𝑠𝑠𝑠𝑠
−1�

𝛽𝛽+1
�     (A5) 409 

where 𝑏𝑏 is defined in equation (18). 410 

 411 

Appendix B  412 

lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= lim
Φ𝑠𝑠𝑠𝑠→∞

Φ𝑠𝑠𝑠𝑠 �1 − �1 − 𝑏𝑏Φ𝑠𝑠𝑠𝑠
−1�

𝛽𝛽+1
�   (B1) 413 

The right hand side of equation (B1) is re-written as: 414 

lim
Φ𝑠𝑠𝑠𝑠→∞

Φ𝑠𝑠𝑠𝑠 �1 − �1 − 𝑏𝑏Φ𝑠𝑠𝑠𝑠
−1�

𝛽𝛽+1
� = lim

Φ𝑠𝑠𝑠𝑠→∞

1−�1−𝑏𝑏Φ𝑠𝑠𝑠𝑠
−1�

𝛽𝛽+1

Φ𝑠𝑠𝑠𝑠
−1     (B2) 415 

Since lim
Φsc→∞

1 − �1 − bΦsc
−1�

β+1
= 0 and lim

Φsc→∞
Φsc

−1 = 0, we apply the L'Hospital's Rule, 416 

lim
Φsc→∞

�1−�1−bΦsc
−1�

β+1
�
′

�Φsc
−1�

′ = lim
Φsc→∞

b(β + 1)�1 − bΦsc
−1�

β
  (B3) 417 

Since lim
Φsc→∞

�1 − bΦsc
−1�

β
= 1, the limit for 𝑊𝑊

𝑃𝑃
 is obtained: 418 

lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= 𝑏𝑏(𝛽𝛽 + 1)    (B4) 419 

Substituting equation (18) into (B4), we obtain: 420 

lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= (1 − 𝜓𝜓)
𝛽𝛽

𝛽𝛽+1    (B5) 421 

 422 

Appendix C 423 
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lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= lim
Φ𝑠𝑠𝑠𝑠→∞

1+
�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚

1−𝜓𝜓 Φ𝑠𝑠𝑠𝑠−��1+
𝑚𝑚+1
1−𝜓𝜓Φ𝑠𝑠𝑠𝑠�

2
−2𝑎𝑎𝑚𝑚�Φ𝑠𝑠𝑠𝑠1−𝜓𝜓�

2
− 2𝑎𝑎
1−𝜓𝜓Φ𝑠𝑠𝑠𝑠

𝑎𝑎
  (C1) 424 

Multiplying 1 + �(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚
1−𝜓𝜓

Φ𝑠𝑠𝑠𝑠 + ��1 + 𝑚𝑚+1
1−𝜓𝜓

Φ𝑠𝑠𝑠𝑠�
2
− 2𝑎𝑎𝑚𝑚 �Φ𝑠𝑠𝑠𝑠

1−𝜓𝜓
�
2
− 2𝑎𝑎

1−𝜓𝜓
Φ𝑠𝑠𝑠𝑠 to the 425 

denominator and numerator of the right hand side, equation (C1) leads to: 426 

lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= 1
𝑎𝑎

lim
Φ𝑠𝑠𝑠𝑠→∞

2�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚
1−𝜓𝜓 Φ𝑠𝑠𝑠𝑠−

2(𝑚𝑚+1)
1−𝜓𝜓 Φ𝑠𝑠𝑠𝑠+

2𝑎𝑎
1−𝜓𝜓Φ𝑠𝑠𝑠𝑠

1+
�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚

1−𝜓𝜓 Φ𝑠𝑠𝑠𝑠+��1+
𝑚𝑚+1
1−𝜓𝜓Φ𝑠𝑠𝑠𝑠�

2
−2𝑎𝑎𝑚𝑚�Φ𝑠𝑠𝑠𝑠1−𝜓𝜓�

2
− 2𝑎𝑎
1−𝜓𝜓Φ𝑠𝑠𝑠𝑠

 (C2) 427 

Dividing Φ𝑠𝑠𝑠𝑠 in the denominator and numerator, we obtain: 428 

lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= 1
𝑎𝑎(1−𝜓𝜓) lim

Φ𝑠𝑠𝑠𝑠→∞

2�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚−2(𝑚𝑚+1)+2𝑎𝑎
1

Φ𝑠𝑠𝑠𝑠
+
�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚

1−𝜓𝜓 +�� 1
Φ𝑠𝑠𝑠𝑠

+𝑚𝑚+1
1−𝜓𝜓�

2
−2𝑎𝑎𝑚𝑚� 1

1−𝜓𝜓�
2
− 2𝑎𝑎

(1−𝜓𝜓)Φ𝑠𝑠𝑠𝑠

  (C3) 429 

Therefore, the limit of 𝑊𝑊
𝑃𝑃

 as Φ𝑠𝑠𝑠𝑠 → ∞ is: 430 

lim
Φ𝑠𝑠𝑠𝑠→∞

𝑊𝑊
𝑃𝑃

= �(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚+𝑎𝑎−𝑚𝑚−1
𝑎𝑎�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚

   (C4) 431 

 432 

Appendix D 433 

Substituting 𝑎𝑎 = 2𝜀𝜀(2 − 𝜀𝜀) into equation (37), one can obtain: 434 

𝑊𝑊
𝑃𝑃

=
1+

𝑆𝑆𝑏𝑏
𝑃𝑃 −

��1+
𝑆𝑆𝑏𝑏
𝑃𝑃 �

2
−4𝜀𝜀(2−𝜀𝜀)𝑆𝑆𝑏𝑏

𝑃𝑃
2𝜀𝜀(2−𝜀𝜀)     (D1) 435 

Equation (D1) is the solution of the following quadratic function: 436 

𝜀𝜀(2 − 𝜀𝜀) �𝑊𝑊
𝑃𝑃
�
2
− �1 + 𝑆𝑆𝑏𝑏

𝑃𝑃
�𝑊𝑊
𝑃𝑃

+ 𝑆𝑆𝑏𝑏
𝑃𝑃

= 0    (D2) 437 

Multiplying 𝑃𝑃2 at the both-hand sides of equation (D2), equation (D2) becomes: 438 

𝜀𝜀(2 − 𝜀𝜀)𝑊𝑊2 − (𝑃𝑃 + 𝑆𝑆𝑏𝑏)𝑊𝑊 + 𝑆𝑆𝑏𝑏𝑃𝑃 = 0    (D3) 439 

Equation (D3) can be written as the following one: 440 

𝑃𝑃−𝑊𝑊
𝑃𝑃−𝜀𝜀𝑊𝑊

= 𝑊𝑊−𝜀𝜀𝑊𝑊
𝑆𝑆𝑏𝑏−𝜀𝜀𝑊𝑊

      (D4) 441 
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Substituting 𝑄𝑄 = 𝑃𝑃 −𝑊𝑊 into equation (D4), we obtain the proportionality relationship of SCS-442 

CN method: 443 

𝑄𝑄
𝑃𝑃−𝜀𝜀𝑊𝑊

= 𝑊𝑊−𝜀𝜀𝑊𝑊
𝑆𝑆𝑏𝑏−𝜀𝜀𝑊𝑊

      (D5) 444 

 445 

 446 

 447 
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Figure captions: 517 

Figure 1: Wetting ratio �𝑊𝑊
𝑃𝑃
� versus soil storage index �𝑆𝑆𝑝𝑝

𝑃𝑃
� from the SCS-CN method based on 518 

two parameterization schemes: 𝜆𝜆 = 𝑊𝑊𝑖𝑖
𝑆𝑆𝑝𝑝−𝑊𝑊𝑖𝑖

 (scheme 1) and 𝜀𝜀 = 𝑊𝑊𝑖𝑖
𝑊𝑊  (scheme 2). 519 

Figure 2: The impact of 𝛽𝛽 and the degree of initial storage (𝜓𝜓 = 𝑆𝑆0 𝑆𝑆𝑏𝑏⁄ ) on soil wetting ratio 520 

(𝑊𝑊 𝑃𝑃⁄ ). 521 

Figure 3: The probability density functions (PDF) with different parameter values: (a) the 522 

proposed PDF represented by equation (24); and (b) the power distribution of VIC model, i.e., 523 

equation (25). 524 

Figure 4: The cumulative distribution functions (CDF) with different parameter values: (a) the 525 

proposed distribution function represented by equation (26); and (b) the power distribution of 526 

VIC model represented by equation (13). 527 

Figure 5: The effects of the degree of initial storage (𝜓𝜓=0, 0.4, and 0.6) and shape parameter 528 

(𝑎𝑎=0.6 and 1.8) on soil wetting in the modified SCS-CN method derived from the proposed 529 

distribution function for soil water storage capacity. 530 
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Table 1: The boundary conditions of the functions for relating wetting ratio �𝑊𝑊
𝑃𝑃
� to soil storage 532 

index (Φ𝑠𝑠𝑠𝑠): 1) the SCS-CN method; 2) the VIC type of model; and 3) the modified SCS-CN 533 
method based on the proposed new distribution for VIC type of model.   534 

Event Scale Model Lower Boundary Condition Upper Boundary Condition 
SCS-CN, parameterization of 

initial wetting, 𝜀𝜀 = 𝑊𝑊𝑖𝑖
𝑊𝑊

 
𝑊𝑊
𝑃𝑃
→ 0 as Φ𝑠𝑠𝑠𝑠 → 0 𝑊𝑊

𝑃𝑃
→ 1 as Φ𝑠𝑠𝑠𝑠 → ∞ 

Power function for storage 
capacity distribution (VIC 

type of model) 

𝑊𝑊
𝑃𝑃

= Φ𝑠𝑠𝑠𝑠 when Φ𝑠𝑠𝑠𝑠 ≤ 𝑎𝑎 𝑊𝑊
𝑃𝑃
→ (1 − 𝜓𝜓)

𝛽𝛽
𝛽𝛽+1 as Φ𝑠𝑠𝑠𝑠 → ∞ 

Modified SCS-CN method 
based on the proposed 
distribution for storage 

capacity 

𝑊𝑊
𝑃𝑃
→ 0 as Φ𝑠𝑠𝑠𝑠 → 0 

𝑊𝑊
𝑃𝑃
→ �(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚+𝑎𝑎−𝑚𝑚−1

𝑎𝑎�(𝑚𝑚+1)2−2𝑎𝑎𝑚𝑚
  

as Φ𝑠𝑠𝑠𝑠 → ∞ 
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 537 

Figure 1: Wetting ratio �𝑊𝑊
𝑃𝑃
� versus soil storage index �𝑆𝑆𝑝𝑝

𝑃𝑃
� from the SCS-CN method based on 538 

two parameterization schemes: 𝜆𝜆 = 𝑊𝑊𝑖𝑖
𝑆𝑆𝑝𝑝−𝑊𝑊𝑖𝑖

 (scheme 1) and 𝜀𝜀 = 𝑊𝑊𝑖𝑖
𝑊𝑊  (scheme 2). 539 
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 542 

Figure 2: The impact of 𝛽𝛽 and the degree of initial storage (𝜓𝜓 = 𝑆𝑆0 𝑆𝑆𝑏𝑏⁄ ) on soil wetting ratio 543 
(𝑊𝑊 𝑃𝑃⁄ ). 544 
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547 

548 

 549 

Figure 3: The probability density functions (PDF) with different parameter values: (a) the 550 
proposed PDF represented by equation (24); and (b) the power distribution of VIC model, i.e., 551 

equation (25). 552 
 553 
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555 

556 

 557 

Figure 4: The cumulative distribution functions (CDF) with different parameter values: (a) the 558 
proposed distribution function represented by equation (26); and (b) the power distribution of 559 

VIC model represented by equation (13). 560 
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 562 

Figure 5: The effects of the degree of initial storage (𝜓𝜓=0, 0.4, and 0.6) and shape parameter 563 
(𝑎𝑎=0.6 and 1.8) on soil wetting in the modified SCS-CN method derived from the proposed 564 

distribution function for soil water storage capacity. 565 

 566 

 567 

 568 

 569 

Figure 6: (a) The effects of average storage capacity and initial storage on rainfall-runoff relation; 570 

and (b) The effects of average storage capacity and shape parameter on rainfall-runoff relation. 571 
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