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Abstract. The Mediterranean region is one of the climate
hotspots where the climate change impacts are both pro-
nounced and documented. The HyMeX (Hydrometeoro-
logical Mediterranean eXperiment) aims to improve our
understanding of the water cycle from the meteorologi-5

cal to the climate scales. However, monitoring the water
cycle with Earth Observations (EO) is still a challenge:
EO products are multiple, and their utility is degraded
by large uncertainties and incoherences among the prod-
ucts. Over the Mediterranean region, these difficulties are10

exacerbated by the coastal/mountainous regions and the
small size of the hydrological basins. Therefore, merg-
ing/integration techniques have been developed to reduce
these issues. We introduce here an improved methodol-
ogy that closes not only the terrestrial but also the atmo-15

spheric and ocean budgets. The new scheme allows us im-
posing a spatial and temporal multi-scale budget closure
constraint. A new approach is also proposed to downscale
the results from the basin to the pixel scales (at the reso-
lution of 0.25◦). The provided Mediterranean WC budget20

is, for the first time, based mostly on observations such as
the GRACE water storage or the netflow at the Gibraltar
strait. The integrated dataset is in better agreement with
in situ measurements, and we are now able to estimate
the Bosporus strait annual mean netflow. 25

1 Introduction

The Mediterranean region is one of the main climate change
hotspots (IPCC, 2014): its sensitivity to global change is high
and its evolution remains uncertain. Its role in the evolu-
tion of the global ocean (i.e. mainly salinization and warm- 30

ing), as well as the socio-economics consequences it has
for surrounding countries, stress the need for monitoring its
water resource. Analyzing the Water Cycle (WC) and the
exchanges among its terrestrial, atmospheric and oceanic
branches are critical to estimate the availability of the wa- 35

ter in the Mediterranean region. Most previous studies use
model outputs or reanalysis (Mariotti et al., 2002; Sanchez-
Gomez et al., 2011), and in situ data network is too sparse
and irregular. A recent paper (Jordà et al., 2017) reviewed the
literature on the analysis and quantification of the Mediter- 40

ranean water budget using observation, model outputs and
reanalyses. The WC components are estimated but their un-
certainties remain high. Recommendations are made to in-
crease our use of EO data, in a coordinated way. EO allow
for the monitoring of the WC over long time-records, in par- 45

ticular in regions with low number of in situ stations. But the
use of EO data for WC monitoring remains a challenge due
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to: (1) the multiplicity of datasets for the same geophysical
parameter, (2) the EO uncertainties (systematic and random
errors), and (3) the inconsistency between datasets (for the5

same component or among the components of the WC). In
Pellet et al. (2017), EO are used to monitor the WC over the
Mediterranean region: it is shown that the WC budget is not
closed and that some integration technique should be used to
optimize them.10

Several approaches have been considered in order to op-
timize EO datasets at the global scale, for the WC analysis.
The features of some “integration” methods presented in the
following are synthesized in Table 1.

The “Princeton” approach - Pan and Wood (2006) pre-15

sented first a work in which they aimed to close the water
balance using EO products. In this work, EO datasets such
as precipitation were assimilated into a land surface model
(the Variable Infiltration Capacity, VIC) using the combi-
nation of a Kalman filter and a closure constraint (see Ta-20

ble 1). The resulting “analysis" dataset is not a pure EO
product since the VIC model is largely used. In fact, the au-
thors show that the Kalman filtering plus the closure con-
straint is equivalent to a traditional Kalman filtering, and then
to the application of an independent post-filtering that con-25

strains the closure (De Geeter et al., 1997; Simon and Tien
Li Chia, 2002; Aires, 2014). This post-filtering acts by redis-
tributing the budget residuals within each water component
based on the uncertainties of each EO source. Several pa-
pers have been published based on this approach (Troy and30

Wood, 2009; McCabe et al., 2008; Sahoo et al., 2011; Troy
et al., 2011; Pan et al., 2012). For instance, in Sheffield et al.
(2009), two different precipitation datasets were used over
the Mississippi basin. Evapotranspiration was calculated us-
ing a revised Penman-Monteith formulation and changes in35

water storage were estimated from GRACE. For comparison,
land surface model outputs, reanalyses data and in situ dis-
charge measurements were used too. The authors concluded
that a positive bias of the precipitation datasets leads to an
overestimation of the discharge component when the estima-40

tion relies on EO data. Meanwhile, the land surface model
shows a high degree of agreement with in situ data. The
analysis also highlights the importance of error characteriza-
tion in the individual WC components. Yilmaz et al. (2011)
relaxed the closure constraint during the assimilation. This is45

an important feature because tight closure constraint can re-
sult in high-frequency oscillations in the resulting combined
dataset. A large constraint is used in our approach (see Ta-
ble 1).

The NASA-NEWS project - The project aims at a better50

characterization of the WC using EO data. The first step was
to improve the coherency of the satellite retrievals; then to
gather the EO dataset, and calibrate them. Some information
about the uncertainties of the EO datasets was gathered from
the data producers, but these information cannot be straight-55

forwardly used further in the integration process since their
evaluation are not homogeneous but product-dependent. The

WC budget can be closed using the satellite datasets (Rodell
et al., 2015). However, this closure is obtained at the global
and annual scales only, and residuals are still significant at 60

regional and monthly scales. Rodell et al. (2015) use then in-
terpolation for a monthly closure. Closing the budget at the
global scale was a first step, and closure must now be ob-
tained at finer spatial and temporal scales to monitor more
precisely the distribution of the water components as the EO 65

data are designed to. In (Rodell et al., 2015), the storage
terms (e.g. ground water storage) had no significant change
when considering annual and global means. This hypothesis
was then used at the monthly scale with an optimized inter-
polation scheme to relax the storage change at the monthly 70

scale. This approach translates into a quadratic quality cri-
terion where storage and fluxes terms are minimized for an-
nual means, at the global scale (see Table 1). One interesting
feature in this approach is that both the water (Rodell et al.,
2015) and energy (L’Ecuyer et al., 2015) cycles were consid- 75

ered simultaneously in the assimilation, taking into account
the physical link between the two cycles through the latent
heat flux.

The ESA water cycle initiative - In the context of the
ESA WATCHFUL project on water budget closure, Aires 80

(2014) described several methodologies (Table 1) to inte-
grate different hydrological datasets with a budget closure
constraint. No surface or atmospheric models were used in
these integration methods, making the obtained product in-
teresting for model calibration and validation. One of the 85

proposed methods, the so-called Simple Weighting+Post Fil-
tering (SW+PF), was applied by Munier et al. (2014) over
the Mississippi basin, using satellite datasets for precipita-
tion, evapotranspiration and water storage, and gauge ob-
servations for river discharge. After applying budget closure 90

constrain at the basin scale, the integrated components were
compared to various in situ observations, showing good per-
formances of the method. One of the main limitations is the
datasets availability of the in situ river discharges. Another
concern was the downscaling of the basin closure constraint 95

to the pixel-scale. A Closure Correction Model (CCM) is a
calibration of the EO that was developed based on the in-
tegrated product as the reference (Munier et al., 2014). It
allows correcting each dataset independently to greatly re-
duce the budget residuals. This calibration was applied over 100

the basins where river discharges are available and extended
to the global scale using an index characterizing the various
surface types (Munier and Aires, 2017). This type of post-
processing step is anchored in the integration approach, but
it can be applied to long time records, at any time or spatial 105

resolution. It can even allow for the reconstruction of missing
estimate.

In this paper, we propose several improvements of this line
of research. In particular, we propose to close the WC budget
not only over land, but also over ocean and in the atmosphere. 110

Futhermore, the budget closure constraint is used simultane-
ously at different spatial (basin and sub-basin) and tempo-
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ral (monthly and annual) scales. A new spatial interpolation
scheme is proposed to downscale the basin-scale closure con-
straint to the pixel scale. This new framework is applied to5

the Mediterranean basin to provide an updated WC budget.
Section 2 presents the study domain and introduces the

datasets used in the following. The integration approaches
are described together with the other combination techniques
in Section 3. Section 4 presents the evaluation metrics for the10

integrated product: its ability to close the WC and its valida-
tion with in situ data at the sub-basin or pixel scale. Section 5
presents the WC analysis for the period 2004-2009 using our
resulting integrated dataset. Finally, Section 6 concludes the
analysis and presents some perspectives. All notations used15

in the following are summarized in Table A1 in the appendix.

2 Case study and datasets

This section presents the spatial domain and the datasets
used in this study. Table B1 in the appendix summarizes the
main characteristics of these products and more details can20

be found in (Pellet et al., 2017). All products have different
temporal extents but share a common coverage period 2004-
2009.

2.1 Mediterranean region

The study domain is represented in Fig. 01. It is the catch-25

ment basin of the whole Mediterranean Sea drainage area,
computed from each coastal pixel, including all rivers that
flows into the sea. Basins have been computed using a hy-
drographic model (Wu et al., 2011) at a spatial resolution
of 0.25◦. The resolution of the hydrographic model used to30

compute land/sea mask or catchment basin may have an im-
pact on the spatial-average estimates and then on the WC
budget residual. This area uncertainty is taken into account
into the relaxation of the closure constrain at sub-basin scale
(see Table 1). The Mediterranean Sea area (including the35

Black Sea) is 3.0 million km2, and its drainage area is more
than 5 million km2.
Sub-basins have been introduced in (Pellet et al., 2017). They
facilitate the analysis of local climate and specific hydrolog-
ical features. The Mediterranean Sea and the terrestrial sub-40

basins used in the following are defined as:

– The west Maghreb mainly based on the Atlas mountain
discharge (MA-DZ-TN);

– The Nile Basin and Libyan coast characterizing a Saha-
ran and sub-Saharan climate (LY-EG);45

– The Spanish coasts and Pyrénées (ES-Pyr);

– The French, Italian and Adriatic Sea coasts, carrying
freshwater from the Alps and the Balkans mountains
(Alp-IT-ADR);

– The eastern part of the Mediterranean Sea, Greece, 50

Turkey and Israel (GR-TR-IL);

– The whole Black Sea drainage catchment, Bulgaria,
Georgia, Romania, Russia, Turkey, Ukraine, Slovakia,
Hungary, Austria, Slovenia, Bosnia and Serbia (BLS).

In the current study, even if the closure methods (PF) is ap- 55

plied over the LY-EG sub-basin, the high uncertainty of the
Nile discharge and its particular climate (African monsoon)
as well as anthropogenic conditions (most of its water is
used for irrigation) make this sub-basin really different from
the other sub-basins (Margat, 2004; Mariotti et al., 2002). 60

therefore the closure is ensured for the Nile sub-basin but no
spatial extension will be extrapolated over the LY-EG or the
south (see Section 3).

2.2 Original EO datasets

The datasets presented in this section will be used in the 65

integration process. Most of them are satellite products
and are commonly used for studying the WC. In order
to integrate them, the datasets have been projected on a
common 0.25◦ spatial resolution grid, and re-sampled at the
monthly scale. 70

Precipitation (P ) - Four satellite-based datasets have been
selected. Two are gauge-calibrated products: the Tropical
Rainfall Measuring Mission Multi-satellite Precipitation
Analysis (TMPA, 3B42 V7) presented in Huffman et al. 75

(2007) and the Global Precipitation Climatology Project
(GPCP, v2) introduced by Adler et al. (2003). Two are
uncalibrated products: Joyce et al. (2004) have unveiled
the NOAA CPC Morphing Technique (CMORPH, v1) and
Ashouri et al. (2015) developed the Precipitation Estimation 80

from Remote Sensing Information using Artificial Neural
Network (PERSIANN, v1). In this study, we use a mix
of gauged/ungauged-calibrated precipitation datasets. This
choice is motivated by the goal of preserving the original EO
spatial pattern where limited gauge density in some areas 85

may corrupt the signal during the gauge-calibration process
(in TMPA and GPCP products).

Evapotranspiration (E) - Three satellite-based products
were chosen to describe evapotranspiration over land: the 90

Global Land Evaporation Amsterdam Model (GLEAM-
V3B, Martens et al., 2016; Miralles et al., 2011); the MODIS
Global Evapotranspiration Project (MOD16, Mu et al.,
2011); and the Numerical Terradynamic Simulation Group
product (NSTG, Zhang et al., 2010). 95

Two products were chosen for the evaporation over the sea:
the Objectively Analyzed air-sea Fluxes for Global Oceans
(OAflux, Sun et al., 2003); and The Global Energy and
Water Cycle Exchanges Project product (GEWEX-Seaflux,
Curry et al., 2004). 100



4 Pellet et al.: Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle

Water storage change (∆S) - The terrestrial and sea
water storage datasets are all derived from the GRACE
mission. The estimates of water storage implicitly include
the underground water. Four satellite datasets are based on5

the spherical decomposition of GRACE measurement: the
Jet Propulsion Laboratory (JPL, Watkins and Yuan, 2014)
product; the Centre for Space Research (CSR, Bettadpur,
2012) product, the German Research Centre for Geoscience
(GFZ, Dahle et al., 2013) product; and the land-only prod-10

uct from the Groupe de Recherche de Géodésie Spatiale
(GRGS, Biancale et al., 2005). One extra solution based on
the JPL-MASCONS decomposition of GRACE measure-
ment (Watkins et al., 2015) is also used in this work. In
order to compute the monthly change in water storage, we15

applied a centered derivative smoothing filter: [5/24 3/8 -3/8
-5/24] (Pellet et al., 2017). The filter is a slightly smoother
version of the filter [1/8 1/4 -1/4 -1/8] presented by Eicker
et al. (2016). It has been compared with several other filters
(results not shown). The chosen filter is a good compromise20

between its smoothing (that suppress information) and its
ability to de-noise the time series.

Discharge (Rl) - No satellite-based product is available for
the discharge with sufficient temporal extent and only few25

rivers are still monitored by public or private network for the
Global Runoff Data Centre (GRDC) that collects discharge
data at the global scale. The two discharge datasets used in
the following are described in Pellet et al. (2017). Ground-
water discharge is neglected and considered as an uncertainty30

source.
The CEFREM-V2 dataset of coastal annual discharge into

the Mediterranean Sea (Ludwig et al., 2009) is based on
in situ observations and some indirect estimates using the
Pike formula (Pike, 1964). In addition, the Laboratoire de35

Météorologie Dynamique developed the land surface model
Organising Carbon and Hydrology In Dynamic Ecosystems
(ORCHIDEE, Polcher et al., 1998; Ducharne et al., 2003)
is chosen here to describe the monthly dynamics of the
discharge. Two coastal discharges are available from its40

routing scheme with two different precipitation forcings:
GPCC and Climatic Research Unit (CRU) products. We
therefore projected the monthly dynamical patterns from
ORCHIDEE towards the CEFREM grid. We then scaled
the monthly values of ORCHIDEE to match the CEFREM45

annual values. For comparison purpose, CEFREM total
freshwater inflow into the Mediterranean (without the Black
Sea) is 400 Km3 yr−1; while ORCHIDEE gives a value of
380 Km3 yr−1. The scaling is then a simple way to take into
account the anthropogenic impact that is not modelled at50

the annual scale and the 0.5◦ resolution. The final product
has then the spatial resolution and the annual cumulative
value of CEFREM, but with the monthly dynamics of the
ORCHIDEE model.

55

Precipitable water change (∆W ) - We considered two
datasets for the precipitable water: the ESA Globvapor
dataset (Schneider et al., 2013) and the 6-hour reanalysis
product from the ECMWF reanalyses (ERA-I, Dee et al.,
2011). The ERA-I reanalysis has been considered here 60

because precipitable water, although model-based, is largely
constrained by satellite observations. In order to compute
changes in precipitable water, we also applied the derivative
filter: [5/24 3/8 -3/8 -5/24].

65

Moisture divergence (Div) - Due to the limited temporal
extent of the satellite-based data, we used the 6-hourly ERA-
I reanalysis product (Dee et al., 2011). Among the various
re-analyses, ERA-I was chosen here in view of previous
results demonstrating advantages in the representation of 70

long term wind variability (Stopa and Cheung, 2014) which
plays a key role in the representation of moisture divergence.
Nevertheless, Seager and Henderson (2013) have shown
the limitation of the reanalysis that do not catch moisture
divergence events shorter than at the 6-hour. This limitation 75

must be taken into account when closing the WC.

Gibraltar netflow (Gib)- The only multiannual estimate
of the Gibraltar netflow based on observations is presented
in Jordà et al. (2016). A monthly reconstruction of the net 80

transport is used with the effects of the atmospheric pressure
removed. This is done for consistency with the oceanic wa-
ter storage from GRACE. The reconstruction technique used
to generate that estimate has proven to be effective to sim-
ulate the variability but the uncertainties in the mean value 85

stay large. In (Jordà et al., 2017), an expert-based assess-
ment of the mean transport is presented. Therefore, in this
work we substituted the 2004-2016 mean value of the Jordà
et al. (2016) estimate by the estimate proposed by Jordà et al.
(2017). 90

The Mediterranean Sea is also connected to the Red Sea with
the Suez channel and to the Black Sea with the Bosporus
strait. The netflow at the Suez channel is neglected (Mariotti
et al., 2002; Harzallah et al., 2016). Since no in situ reference
is available on the Bosporus netflow, the current work gathers 95

the Mediterranean and the Black Sea into a single reservoir
for the integration process. An a posteriori estimate of the
Bosporus netflow will be given in Section 5 using the water
budget equations and the integrated estimates for the other
water components. 100

2.3 Validation datasets

The ENSEMBLES observation dataset (EOBS) - In order
to validate the precipitation, an additional dataset is used:
the EOBS dataset developed by the EU-FP6 project EN-
SEMBLES (Haylock et al., 2008). It was a regional, well 105

documented and validated in situ gridded daily dataset at
the 0.25◦ spatial resolution, covering the 1950-2007 period.
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FLUXNET - Ground-based FLUXNET data (Falge et al.,
2017) were used to validate the evapotranspiration and
precipitation over several sites in Europe1. These flux
measurements were based on a eddy covariance technique.5

All stations available in Europe for the 2004-2009 period
have been selected. In order to avoid coastal contamination,
the three seaside towers IT-Ro2, IT-Noe and ES-Amo have
been suppressed.

10

Total and thermosteric sea level databases - To validate
the sea level output from the integration technique, we use
an independent estimate of the Mediterranean water con-
tent. The water content can be estimated as total sea level
minus the thermosteric variations (i.e. changes in sea level15

due to thermal expansion/contraction) (Fenoglio-Marc et al.,
2006; Jordà and Gomis, 2006). Total sea level is obtained
from the Ssalto/Duacs altimeter data that is produced and
distributed by the Copernicus Marine and Environment Mon-
itoring Service2 . The thermosteric sea level variations are20

estimated using two ocean regional reanalyses (MEDRYS,
Hamon et al., 2016; Bahurel et al., 2012, MyOcean,) and two
global products that include the Mediterranean Sea (the Met
Office Hadley Centre EN-v4 Good et al., 2013; Ishii et al.,
2003, ISHII).25

2.4 EO uncertainty assumptions

Some studies aimed to characterize the uncertainty of satel-
lite retrieved products: estimating relative uncertainty of nu-
merous datasets by the distance to the average product (Pan
et al., 2012; Zhang et al., 2016) or using non-satellite datasets30

(Sahoo et al., 2011). Nevertheless, such characterizations are
generally product- and site-specific, and for some products
used in this work, no uncertainty characterization can be
found in the literature. For these reasons we considered the
same uncertaintythan in Aires (2014).35

Table 2 summarizes the uncertainty used in the various inte-
gration techniques. The uncertainty is associated to a weight
which is the ratio of the sum of all the uncertainties in the
WC equation and the uncertainty of the considered variable
(computed as σ2

i /
∑
iσ

2 and expressed in percentage). Note40

that uncertainties in Table 2 stand for the merged product and
not for a particular satellite dataset (see Eq. (6)). The uncer-
tainties are prescribed by the literature but they are slightly
modified from Munier et al. (2014) to handle the special case
of the Mediterranean region. Munier et al. (2014) used uncer-45

tainty values of 10 mm/month for each of the four P products
and the three E products (leading to 5 and 5.8 mm.month−1

for the merged P and E estimate), 5 mm.month−1 for each
of the three ∆S products (leading to 2.9 mm.month−1 for
the merged product) and 1 mm.month−1 for only oneR. The50

choice of these values was motivated by results of the stud-

1FLUXNET2015 datasets; https://fluxnet.fluxdata.org
2CMEMS http://www.marine.copernicus.eu

ies cited in Section 1. In order to be closer to Rodell et al.
(2015), on the one hand, we decide to reduce P uncertainty
to 4 mm.month−1. This is justified since the de-biasing was
done toward the gauge-calibrated TMPA dataset (see Pellet 55

et al. (2017) for details). On the other hand, we increased
E uncertainty up to 6 mm.month−1. The uncertainty of the
merged ∆S is estimated to be broadly the same since it is
mainly driven by the large pixel resolution of GRACE. Fi-
nally, the uncertainty of the discharge R has been increased 60

since the product is partially based on model simulations
and the groundwater discharge is not included in the anal-
ysis (see Section 2). For the atmospheric variables, we con-
sider an uncertainty proportional to the range of variability
for the precipitable water change: 1 mm.month−1. Follow- 65

ing the suggestion from Seager and Henderson (2013), the
reanalysis moisture divergence uncertainty has been set to 6
mm.month−1 due to its large range of variability and time
scale.

3 EO integration methodologies 70

3.1 Closing the water cycle budget

In this section, the notations are introduced but additional de-
tails can be found in Aires (2014). The WC can be described
by the following time-varying budget equations:
δSl
δt

= Pl−El−Rl (Terrestrial) 75

δSo
δt

= Po−Eo +R∗l −Gib (Oceanic) (1)

δW

δt
= El/o−Pl/o−Div (Atmospheric)

where l stands for land and o for ocean. If all the components
in Eq. (1) are expressed in mm.month−1 (area-normalized)
then a fourth equality is defined: R∗l = Aland

ASea
·Rl for total 80

freshwater input/output with Aland is the total drainage area
of the Mediterranean (including the Black Sea), and ASea is
the total area of both seas.
We first consider the six terrestrial water components Xt

l =
(Pl, El, Rl, ∆Sl, ∆Wl, Divl) and the six oceanic water 85

components Xt
o = (Po, Eo, ∆So, ∆Wo, Divo,Gib). We

then defineXt
lo = [Xl, Xo]

t. The closure of the water budget
can be relaxed using a centered Gaussian random variable r
and Xt ·Gtlo = r, with r ∼N (O,

∑
) where:

Glo =

[
1 −1 −1 −1 0 0 0 0 0 0 0 0

−1 1 0 0 −1 −1 0 0 0 0 0 0

0 0
Aland
ASea

0 0 0 1 −1 −1 0 0 −1

0 0 0 0 0 0 −1 1 0 −1 −1 0

]
(2)90

which is equivalent to the water budget in Eq. (1) and

Σ =

(
σ2
l 0

0 σ2
o

)
with σl =

(
2 0
0 2

)
represents the standard deviation of the

constrained terrestrial and atmospheric water budget resid-
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ual over land; and σo =

(
2 0
0 2

)
represents the standard

deviations of the constrained oceanic and atmospheric water
budget residual over sea. Σ assumes no correlation in the
imbalance of the three WC at monthly and annual scales, at5

sub-basin or entire basin scales.

Let:

Yl
t =

(P1, . . . ,Pp, E1, . . . ,Eq, R1, . . . ,Rr,
∆S1, . . . ,∆Ss, ∆W1, . . . ,∆Wv, Div1, . . . ,Divd)

(3)

be the vector of dimension nl = p+q+m+s+v+d gathering10

the multiple observations available for each water component
over land (similarly Yo of dimension no is defined over sea):

– (P1, P2, . . . , Pp), the p precipitation estimates;

– (E1, E2, . . . , Eq), the q sources of information for
evapotranspiration;15

– (R1, R2, . . . , Rm), the m discharge estimates;

– (∆S1, ∆S2, . . . , ∆Ss), the s sources of information for
the water storage change;

– (∆W1, ∆W2, . . . , ∆Wv), the v precipitable water
change estimates;20

– (Div1, Div2, . . . , Divd), the d moisture divergence.

The aim of this approach is to obtain a linear filter Kan used
to obtain an estimate Xan (“an” stands for analysis) of Xlo

based on the observations Ylo:

Xan =Kan ·Ylo with Ylo = [Yl, Yo] (4)25

where Kan is a 12× (nl +no) matrix.

3.2 Simple Weighing (SW)

A general approach to deal with EO datasets in the analysis
of the WC is to choose the best individual dataset for each
water component. This is the approach developed, for exam-30

ple, in the GEWEX project. In (Pellet et al., 2017), an Op-
timal Selection (OS) was based on the minimization of the
water budget residuals to select the best combination of in-
dividual datasets. Using the OS principle facilitates finding
datasets coherent to each other and with independent errors35

(Rodell et al., 2015). But this kind of strategy limits the use
of several source of information to reduce the uncertainties.
On the other hand, SW approach benefits from the multiplic-
ity of the observations. EO products and more generally any
estimation of a variable via observations, presents two types40

of errors. (1) Systematic errors related, for instance, to the
absolute calibration of the sensor. These can be represented
by a bias and/or a scaling factor. (2) Random errors related to
retrieval algorithm uncertainties or to missing or inaccurate
auxiliary information (e.g cloud mask) or to the sensor itself. 45

These are often characterized by a standard deviation using a
Gaussian hypothesis. From a statistical point-of-view, using
the average of several estimates reduces the random errors of
the estimation if no bias errors are present in the estimates.
The merging process such as in Eq. (4) requires un-biased 50

estimates (Aires, 2014). The difficulty is that, as for uncer-
tainties (Section 2.2.4), it is rather difficult to obtain bias es-
timates from the literature for every dataset used in this ap-
proach. A pragmatic strategy is to set the reference as the
mean state for each component. Then, all the sources of in- 55

formation for this component are bias-corrected toward this
reference (Munier and Aires, 2017). A slightly modified ver-
sion of the bias correction is to choose one reference among
the datasets and apply the bias-correction. We opted for the
modified version and de-biased the EO using the climatologi- 60

cal season of TMPA product as reference (Pellet et al., 2017).
Therefore, our SW methodology is first based on a seasonal
bias correction to reduce the systematic biases and is then
followed by a weighted average of the corrected estimates to
reduce the random errors. After the seasonal de-biasing, all 65

the precipitation products will have a similar seasonality, but
their inter-annual trend or monthly variations will still be dif-
ferent. In particular, the seasonal de-biasing will not change
the trend of the EO products.

The SW methodology uses the diversity of datasets to 70

reduce the random errors. Let us consider the p precipita-
tion observations Pi associated with Gaussian errors εi ∼
N (O, σi). σi is the standard deviation of the ith estimate.
The SW precipitation estimate PSW is given by the weighted
average: 75

PSW =
1

p− 1

p∑
i=1

∑
k 6=i(σk)2∑
k(σk)2

Pi. (5)

This equation is valid when there is no bias error in the Pis
(thanks to the preliminary bias correction) and is optimal
when the errors εi are statistically independent from each
other. This expression is valid for the other water compo- 80

nents. The variance of the PSW uncertainties is then given
by:

σPSW =
1

(p− 1)2

p∑
i=1

(∑
k 6=i(σk)2∑
k(σk)2

)2

σ2
i . (6)

This is an important information because it gives the uncer-
tainty of the estimates in Eq. (5). It shows that the PSW er- 85

rors can be significantly reduced by increasing the number p
of observations.
Following Eq. (5) the SW state vector XSW can be defined
as:

XSW =KSW ·Ylo, (7) 90

whereKSW is a 12×(nl+no) matrix in which each line rep-
resents Eq. (5) for one of the 12 water components (the first
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one for the precipitation estimate, the second for the evapo-
transpiration, etc.) and based on the (nl +no) observations.
Since no specific uncertainty specifications were available in
the literature for the Mediterranean Basin, the uncertainties
are assumed to have a same standard deviation σi in the fol-5

lowing.

3.3 Post-Filtering (PF)

In the SW approach, each water component is weighted (see
Eqs. (6-7)) based on its a priori uncertainty (Section 2) but
no closure constraint is imposed on the solution XSW . Sev-10

eral methods were considered in Aires (2014) to introduce a
WC budget closure constraint on the SW solution. However,
Monte-Carlo simulations have shown that the SW solution
associated to a so-called Post-Filtering (PF) provides results
as good as more complex techniques such as variational as-15

similation.
The PF approach has been introduced (Pan and Wood,

2006) to impose the closure constraint on a previously ob-
tained solution. Here we use XSW as the first guess on the
state vector Xlo. In Aires (2014), the PF was used and tested20

without any model, as a simple post-processing step after the
SW. Following Yilmaz et al. (2011), the current study imple-
ments the PF filter with a relaxed closure constraint charac-
terized by its uncertainty covariance

∑
:

XPF = (I −KPF ·Glo
∑−1

Gtlo) ·XSW , (8)25

where KPF = (B−1
lo +Glo

∑−1
Gtlo)

−1 and Blo is the error
covariance matrix of the first estimate on Xlo.
We can explicite XSW to obtain the linear operator Kan of
Eq. (4):

Xan =XPF = (I −KPF ·Glo
∑−1

Gtlo) ·KSW ·Ylo, (9)30

so that Kan = (I −KPF ·Glo
∑−1

Gtlo) ·KSW . The PF
step (budget closure) consists in partitioning the budget
residual among the twelve components at each time step,
independently. This technique allows obtaining a satisfac-
tory WC budget closure for each basin. The residual term35

r could be reduced in SW+PF approach by decreasing the
variance

∑
in Eq. (8). Nevertheless, an excessively tight

closure constraint is in contradiction with the large inherent
uncertainties in original observations.
Following (Munier et al., 2014) we enforced the budget40

closure by frequency range to avoid high-frequency errors
impacting the low-frequency variables such as the evapo-
transpiration (mainly driven by annual vegetation growth
(Allen et al., 1998)). We first decomposed each parameter
into a high and low-frequency components considering a45

cut-off frequency of 6 months (using a FFT decomposition).
The budget is then applied independently on low and high
frequencies. The high frequency component of E is then
not included in the high budget closure. The linearity of PF

and FFT ensures the budget closure of the re-composed final 50

product. In the following temporal multi-scaling, the annual
constraint is applied only on the low-frequency budget
closure.

Spatial multi-scaling - It is possible to impose a WC budget 55

closure simultaneously over the six sub-basins, the full basin
and over the ocean (i.e. Mediterranean and Black Sea). Let
us consider the total WC state vector:

Xt = [X
(1)
l , X

(2)
l , X

(3)
l , X

(4)
l , X

(5)
l , X

(6)
l , Xo]

t. (10)

that includes the six water components Xi
l over each sub- 60

basin i of area A(i)
l and ocean. The “closure” matrix be-

comes:

Glo =


G

(1)
l 0 · · · 0 0

0 G
(2)
l · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · G

(6)
l 0

L
(1)
lo L

(2)
lo · · · L

(6)
lo Go

 (11)

with:

G
(i)
l =

[
1 −1 −1 −1 0 0
−1 1 0 0 −1 −1

]
65

L
(i)
lo =

[
0 0

A
(i)
l

ASea
0 0 0

0 0 0 0 0 0

]
(12)

Go =

[
1 −1 −1 0 0 1
−1 1 0 −1 −1 0

]

The last row of Glo represents the overall budget closure,
including all the sub-basins and the ocean. The dimension of 70

the covariance matrices Blo and
∑

are increased following
the new size of the state vector Xlo. No cross terms in Blo
and

∑
are included, meaning that there is no dependency of

the first guess and closure errors among the sub-basins.
75

Temporal multi-scaling - It is also possible to impose a WC
budget closure simultaneously at monthly and annual scales.
With monthly closure, the annual closure should automat-
ically be obtained but due to the relaxation of the closure
constrain, the annual closure would be relaxed too. We con- 80

trol here the yearly closure constrain with an uncertainty of
1 mm. Furthermore, we impose a yearly closure assuming
no groundwater storage change at the annual scale over land
(representing an additional constraint on ∆Sl to ensure that
no bias is introduced for this variable during the PF process). 85

In this framework, monthly closures are now interdependent
in the given year and the new state vector is :

Xt
year = [XJan, · · · , XDec]t, (13)

with Xm is the total state vector X defined in Eq. (10), for
month m. The closure is applied independently for the four 90
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years of the 2004-2009 period but the twelve months of each
year are closed independently.

The closure matrix GAlo that includes closure for the
twelve months of the year and the full year is derived from
the monthly constraint of Eq. (11) and defined as:

GAlo =


Glo 0 · · · 0
0 Glo · · · 0
· · · · · · · · · · · ·
0 0 · · · Glo
Nlo Nlo · · · Nlo

 (14)5

where Nlo is the modified closure matrix Glo in which the
matrix G(i)

l is rewritten in N (i)
l by imposing ∆Sl = 0:

N
(i)
l =

[
1 −1 −1 0 0 0
−1 1 0 0 −1 −1

]
(15)

The last row of GAlo represents the annual budget closure10

considering no storage change at the annual scale over land,
including all the sub-basins and the ocean. The dimension of
the covariance matrices Blo and

∑
are increased once again

following the new size of the state vector Xyear. No cross
terms in Blo and

∑
are included, meaning that there is no15

dependency of the first guess and closure errors between the
months.

This SW+PF technique is able to deal only with time
series (average value over the considered sub-basins), not20

with maps (pixel) since the discharge is not available at this
resolution. Therefore, in order to obtain a multi-component
dataset that closes the WC budget and has spatial patterns at
the pixel level, another technique needs to be used.

3.4 INTegration (INT)25

The INT methodology allows to extrapolate the results ob-
tained with the previous SW+PF, from the sub-basin to the
pixel scales. To obtain a pixel-wise closure, Zhang et al.
(2017) assimilate satellite data into the VIC model at the
pixel scale (0.5◦) using the VIC pixel water storage and30

runoff information. Munier and Aires (2017) extrapolated at
the global scale the results of the WC closure of several large
river basins around the globe, by using surface classes that
intend to discriminate between EO error types, preserving as
much as possible the hydrological coherency.35

The INT approach proposed here uses the WC closure
over the Mediterranean sub-basins to extrapolate the clo-
sure correction to the surrounding area. The methodology
is presented in its various steps in Fig. 02 for precipitation
and evaporation, for a particular month. In this analysis, we40

consider only the Mediterranean sub-basins and their close
neighborhood, so a simple spatial interpolation of the closure
correction is assumed to be sufficient.

The SW+PF method (Fig. 02, second row) provides a WC
budget closure over the six sub-basins, for each month m= 45

1, · · · ,72 of the 2004-2009 period.
The INT method requires a scaling factor to go from the

SW to the SW+PF solution at the sub-basin scale. We de-
fine β(i)(m) = P

(i)
PF (m)/P

(i)
SW (m) (for precipitation here),

the ratio between the SW and the SW+PF solution, for each 50

sub-basin i and month m. This ratio can be used to scale the
SW dataset towards the SW+PF solution at the basin scale,
for a particular month m, in the following way:

P
(i)
INT (m) = β(i)(m) ·P (i)

SW (m)
(

= P
(i)
PF (m)

)
. (16)

For water storage change or moisture divergence, this β 55

could become negative. In this case, the bias-correction
γ(i)(m) = P

(i)
PF (m)−P (i)

SW (m) is used instead:

∆S
(i)
INT (m) = ∆S

(i)
SW (m) + γ(i)(m)

(
= ∆S

(i)
PF (m)

)
. (17)

The β scaling is defined at the sub-basin scale, but if
interpolated spatially, it could be used at the pixel scale to 60

obtain a truly spatialized solution.
Let us define a scaling map at the pixel level α such
that: for each pixel j in sub-basin i, for each month m:
α(j,m) = β(i)(m) (or γ(i)(m)). When used as it is, the
convolution of SW and α maps allows for the spatialisation 65

of the sub-basins closure (Fig. 02, third row) with :

∫∫
j∈A(i)

l

PSW (j,m)α̇(j,m) = β(i)(m) ·P (i)
SW (m) = P

(i)
INT (m) (18)

However, this product presents not only a discontinuity
across the sub-basins (where different scaling factors β are 70

defined) but also no value can be provided outside of the sub-
basins.

To solve these two issues, the α scaling maps are interpo-
lated/extrapolated:

– Interpolation - A region of 200 km on either side of 75

the frontier between two sub-basins i1 and i2 is defined,
and a smooth interpolation is performed between the
two scaling factors β(i1)(m) and β(i2)(m) based on the
distance to the frontier. This interpolation of the scal-
ing factors α between two sub-basins can introduce er- 80

rors (closure residuals can slightly increase), but it will
be shown that this effect is limited and that the bottom
equations (in parenthesis) in Eqs. (16-17) stand overall.

– Extrapolation - An extrapolation of the α maps is then
performed to have a scaling factor α outside of the sub- 85

basins domain. This extrapolation is weighted accord-
ing to the respective distances to the two closest sub-
basins.
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The INT product is the convolution between the SW dataset
with the resulting scaling map α that constrains the WC bud- 90

get closure. INT is then an optimized version of SW in which
the WC budget closure correction has been extended at the
pixel scale. The fourth row of Fig. 02 shows the resulting
INT product and its spatial coverage. The continuity issues
between the sub-basins have been solved, and the extrapola-
tion allows for a spatial coverage over the entire domain.5

The extrapolation of a closure constraint is interesting at
the technical level because for other regions, or when work-
ing at the global scale, some form of inter/extrapolation
between the monitored sub-basins is required (Munier and
Aires, 2017). The extrapolation outside of the Mediterranean10

region will also allow for the use of more in situ observa-
tions for the evaluation, this will help the testing of the gen-
eralization ability of the extrapolation scheme. The justifica-
tion of this inter/extrapolation is based on the assumption that
most of the WC imbalance is due to satellite errors (this as-15

sumption is used for the CAL methodology too). The closure
constrain is supposed to improve the satellite estimate by re-
ducing the bias and random errors. If no other information is
used (such as surface type, see (Munier and Aires, 2017)), the
EO errors can be considered spatially continuous and it then20

makes sense to extrapolate results based on this spatial conti-
nuity. We perform the main analysis over the Mediterranean
basin and test the extrapolation scheme over well monitored
locations.

The difference between the SW and INT estimates, rep-25

resented in the last row of Fig. 02, is then directly related
to the pixel-wise interpolated scaling factor α. Discontinu-
ity between the sub-basins is smoothed. The north of Europe
excluding France is mainly driven by the scaling factor on
the BLS region. That is consistent with the updated köppen30

climate classification (Kottek et al., 2006). Since the SW+PF
solution is available over the 2004-2009 period only, INT can
be obtained only over this period.

3.5 CALibration (CAL)

To obtain the INT solution, many EO datasets were com-35

bined: multiple datasets for each water component (the SW
part), and for the various WC components (the PF part).
However, if one of the datasets is missing, the INT solution
cannot be estimated and this will result in a gap in the time
record, and shorter time series of the integrated database.40

In (Munier et al., 2014), a “Closure Correction Model"
(CCM) was introduced to correct each dataset independently,
based on the results of the SW+PF integration. The CCM is
defined as a simple linear transformation with a scaling fac-
tor a and an offset b, such that Xcal = a ·Xobs+b. The CCM45

parameters a and b were calibrated by computing a linear
regression between the original observation datasets and the
SW+PF components.

A similar approach can be used, with the INT solution as
a reference instead of the SW+PF. Instead of calibrating the50

original EO datasets using basin scale data, we propose here
to calibrate the SW solution towards the INT solution at the
pixel scale. This calibration of the SW allows obtaining a
long-term dataset at the pixel scale (see Table 3) with WC
budget closure statistics closer to the INT solution. In our 55

tests (not shown), the linear regression is quite satisfactory
for the calibration, and it is not necessary to use a more
complex statistical regression tool such as a neural network.

The merging/integration techniques used in this study are 60

described in Table 3.

4 Evaluation of the integrated datasets

In this section, the obtained integrated datasets are first eval-
uated in terms of WC budget closure. Our EO datasets inte-
gration technique is based on the closure of the WC budget. 65

This is a physical constraint but in some cases (e.g. missing
important water component), this constraint could result in
a degraded estimation of the components. Therefore, avail-
able in situ data (precipitation, evapotranspiration and sea
water level) are used to validate some of the water compo- 70

nents of the integrated dataset. This evaluation is performed
at two different spatial scales: the sub-basin scale and the
pixel scale.

4.1 Water cycle budget closure

The residuals of the surface and atmospheric WC budgets for 75

the Mediterranean region are computed at the monthly scale,
over the 2004-2009 period. The Root Mean Square (RMS)
statistics of these residuals are summarized in Table 4 for
the six considered products (ERA-I, OS, SW, SW+PF, INT
and CAL). Percentage of improvement of the RMS of the 80

residuals with respect to the SW solution are also shown for
comparison purposes.

ERA-I provides the reanalyses product for all variables ex-
cept for the water storage and the discharge, to keep the com-
parison consistent. It should be noted that ERA-I does not 85

have any water conservation constrain. The optimal selection
is given by: TMPA precipitation; GLEAM evapotranspira-
tion and OAFlux evaporation; GRGS water storage change
over land and JPL water storage change over sea; GPCC-
forced ORCHIDEE-CEFREM discharge; and the derivate 90

Globvapor for atmospheric water vapour change. Only one
dataset is available for the moisture divergence (Pellet et al.,
2017). As shown in (Aires, 2014; Munier et al., 2014; Pel-
let et al., 2017), the SW merging procedure reduces the WC
budget residuals at the sub-basin scale, by reducing the ran- 95

dom errors of the EO data. The SW product outperforms the
ERA-I reanalysis and the OS product. However, the full clo-
sure is generally still not satisfactory with this technique. The
SW+PF procedure closes the water budget over all the sub-
basins, and over the surface and in the atmosphere, with a 100
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RMS of the residual of about 4 mm.month−1. The surface
budget residuals are drastically reduced: from 72% over the
GR-TR-IL sub-basin and up to 94% for the Mediterranean
Sea. This shows the necessity to use a WC budget closure
constraint that links the six water components.

The INT product provides satisfactory budget closure re-
sults (from 61% to 94%), even if they are slightly degraded
compared to the SW+PF (due to the interpolation process be-5

tween sub-basins). Since no interpolation has been applied
over the Mediterranean Sea, the statistics are equal to the
SW+PF.

The CAL product improves less the WC budget residuals
compared to INT. Nevertheless, the RMS of the residuals for10

these products are reduced over all sub-basins compared to
the SW solution.

Fig. A1 gives, in the appendix, the 2004-2009 time series
of all the water component estimates for the various method-15

ologies (SW, SW+PF, INT and CAL) over the various sub-
basins as well as the probability density function of the resid-
uals. This figure shows how the WC closure impact the time
series.

4.2 Evaluation at the sub-basin scale20

Since the WC budget closure constraint was imposed at
the sub-basin scale (see Section 3), the evaluation of the
integrated product is done at this scale too. Two metrics
are used here, the RMS of the Difference (RMSD) with in
situ measurements and the CORRelation (CORR). Only25

multiple-EO integrated datasets are compared in the two
following sections.

Terrestrial precipitation - Table 5 provides the comparison of
the EOBS gridded gauge precipitation dataset (section 2.2)30

with the SW, SW+PF, INT and CAL solutions, in terms of
temporal correlation (at the monthly and sub-basins scales),
and RMSD, for each sub-basin and for the continental scale
(land included in Fig. 01). Since the SW+PF product is
defined only on the Mediterranean drainage sub-basins, no35

statistics are shown for this approach over the continental re-
gion (last column). For the RMSD error statistics, results are
also provided as improvements compared to the SW solution.

Over all the sub-basins, the SW+PF methodology im-
proves results compared to the un-constrained SW method.40

Even if the correlation of SW with EOBS is already good,
the closure constraint improves this correlation to 0.84 (from
0.81) over the MA-DZ-TN sub-basin. This is true even over
the complex sub-basins suh as Alp-IT-ADR. SW+PF also re-
duces the RMSD with EOBS (by up to 20%). These results45

show the positive effect of the closure constraint on precip-
itation. Without explicitly constraining satellite precipitation
products towards the in situ data, SW+PF statistics are still
improved.

The INT product shows similar CORR and RMSD statis-50

tics as SW+PF over the Mediterranean sub-basins, with a
slight decrease of the CORR with EOBS over the ES-Pyr
sub-basin. Over the continental region, INT improves the
correlation compared to SW (from 0.78 to 0.80) while re-
ducing by 17% the RMSD. Therefore, the interpolation pro- 55

cess between the sub-basins (see the spatialization in Sec-
tion 3.3.4) does not degrade the solution inside the sub-
basins, while the extrapolation outside of them improves the
unconstrained SW statistics over the whole continent. This is
a true benefit since INT presents comparable performances 60

with the SW+PF in terms of closure capability and closeness
to in situ measurements, with the advantage of the spatial
variability at the pixel scale.

Finally, the CAL precipitation product shows results as
good as SW (slightly better for the whole continental region) 65

for the CORR, and smaller RMSD with EOBS. The CAL
product does not close as well the WC budget as the INT
solution, but it has the advantage of being available over a
longer time-record (1980-2012) compared to the 2004-2009
INT period. 70

sea water level change - The sea water storage (related to
the sea water level) change over the Mediterranean Sea (ex-
cluding the Black Sea) is tested using altimetry and thermal
datasets over the 2004-2009 period. First, the thermal content 75

estimates of the four datasets presented in Section 2.2 are
merged into one single estimate. The merged thermal con-
tent estimate is then subtracted from the AVISO altimetry
sea water level. The monthly change is then computed using
the same derivative filter as the one used for GRACE: [5/24 80

3/8 -3/8 -5/24].
Fig. 03 shows the altimetry estimate and the various

methodologies estimates. Since the Mediterranean Sea is
considered without the Black Sea for this evaluation, there is
no SW+PF estimate (that added the Mediterranean Sea and 85

the Black Sea). While the SW solution has a 0.52 CORR
and a 12.2 mm.month−1 RMSD with respect to the al-
timetry estimate, INT statistic are 0.58 for the CORR and
11.8 mm/month for the RMSD, and CAL 0.56 for the CORR
and 11.8 mm.month−1 for the RMSD. Here again, the INT 90

estimate outperforms the unconstrained SW methodology in
both CORR and RMSD. CAL presents also better results
than SW but the CORR with altimetry is slightly reduced
compared to INT. No inter/extrapolation has been used in
INT for the ”Mediterranean Sea plus the Black Sea” sub- 95

basin and the improvement of INT versus SW is due only
to the impact of the closure constraint. Nevertheless, the
SW+PF approach closes the WC over the Mediterranean Sea
within the Black Sea (no information about the Bosporus net-
flow) and the spatial downscaling in INT is needed to dis- 100

criminate the closure correction above the two seas. Using
the WC closure over the Mediterranean and Black Sea im-
proves the water storage change estimates.
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4.3 Evaluation at the pixel scale

The INT and CAL estimates are here evaluated at the pixel 105

scale, for precipitation and evapotranspiration. Improve-
ments of SW by INT and CAL are measured using in situ
measurements of precipitation and evapotranspiration from
the FLUXnet database, available over the Mediterranean re-
gion, for the 2004-2009 period (section 2.2).

Fig. 04 presents the scatter-plots of the RMSD between5

the SW estimate (ESW ) and INT or CAL (Ecor for ”cor-
rected”) datasets with the FLUXnet evapotranspiration data
(EFLUX ), for each station. The 1:1 line is also shown. Each
dot under the 1:1 line represents an improvement at the cor-
responding station from SW solution to INT and/or CAL.10

INT and CAL improve evapotranspiration estimates for more
than 53% of the sites. The distribution of the differences in
the encapsulated figure is slightly narrowed by the INT and
CAL compared to the SW solution. Location of the station
where the closure improves the RMSD with the flux mea-15

surement is shown in green if INT and CAL both improves
the estimate, blue when only CAL improves, and magenta
when only INT improves. Red dots represent stations where
there is a degradation in both INT and CAL. The evaluation
of EO estimate at 0.25◦ spatial resolution using tower sites20

should be taken with caution. The poor performance of satel-
lite estimate over particularly complex topography (moun-
tainous rainfall) or coastal pixels with land/sea contamina-
tion could explain the difference between the INT estimate
and the FLUXNET measurement on these particular loca-25

tions.
Fig. 05 presents the scatter-plots of the RMSD between the

SW estimate (PSW ) and INT or CAL (Pcor) datasets with
the FLUXnet precipitation data (PFLUX ), for each station.
Over most stations (82%), the INT and CAL solutions im-30

prove precipitation estimate compared to SW. Location of
improved sites are shown with the same color code as in
Fig. 04. It can be seen in Fig. 05 that red dots are located
mainly in mountainous or coastal regions. These two types
of landscape are really challenging for precipitation retrieval35

due to snow precipitation on one side or coastal sea/land con-
tamination on the other one.

5 A coherent multi-component dataset for the water
cycle monitoring

In this section, the integrated datasets are used to deliver up-40

dated estimate of the Mediterranean WC budget. The impact
of hydrological constraint (PF) as well as the INTegration
(INT) and CALibration (CAL) processes on the spatial aver-
aging of the water component estimates and the WC budget
residuals, over the several Mediterranean sub-basins, is sum-45

marized in Figure A.1 of the appendix.

5.1 Analysis of the Mediterranean WC

The mean fluxes of the Mediterranean WC and associated
variability, over the 2004-2009 period are depicted in
Fig. 06. The WC is analyzed over its natural sub-basin50

boundaries. The variability is computed as the standard
deviation of the annual values over the period. These
values have been computed over the respective terrestrial
or oceanic sub-basins; considering all the drainage area in
western Europe and BLS or in Africa within Turkish but 55

without considering the Nile river basin (for which just its
discharge is represented), Black Sea or Mediterranean Sea.
The large font correspond to the INT, the little font is for
SW. The two values for the netflow estimate at the Bosporus
strait are estimated as the deficit term of the water budget 60

equation, computed over the Mediterranean and the Black
Sea independently. Using INT estimate (i.e. closure of the
two seas at once) the two values are in better agreement to
each other than to the two SW estimates. In the following,
only the INT values are described. 65

Fig. 06 shows the uneven water contribution between the
European (314±57 km3 yr−1 for the total discharge) and the
African (21±30 km3 yr−1) drainage area to the Mediter-
ranean Sea budget. Furthermore, it shows the role of the 70

Black Sea in the global Mediterranean WC. Most of the
European freshwater flows to the BLS (398±70 km3 yr−1;
it represents more than 50% of the European discharge),
where the E-P balance allows for an equal contribution to the
Mediterranean Sea budget though the Bosporus Strait input. 75

Considering the Nile discharge, the closure optimization in-
crease the discharge value (from 19±6 to 76±30 km3 yr−1).
Recent discussions on the Nile discharge can be found in
(Jordà et al., 2017). Our new discharge estimates include the
groundwater discharge passing through the aquifers. 80

After closure optimization, the annual precipitation, evap-
otranspiration and moisture divergence over the Euro-
pean drainage area are estimated to be: 770±40, 510±10
and 77±60 km3 yr−1 respectively. Europe accumulates
most of the moisture coming from the Mediterranean Sea 85

(1,787±200 km3 yr−1) while the Black Sea poorly evacu-
ates its moisture towards land (91±60 km3 yr−1). Over land
the contribution of the African part to the global moisture di-
vergence is quite high (274±43 km3 yr−1 mainly due to the
presence of the mountain Atlas). The two netflow estimates 90

at the Bosporus strait are very close, with a difference lower
than its associated uncertainty in Fig. 06. Freshwater inputs
at the two Mediterranean Straits (Bosporus and Gibraltar)
compensate the very large evaporation loss (3,372±88 km3

yr−1) of the Mediterranean Sea. This process represents 95

more than twice the precipitation (1,499±102 km3 yr−1).
Fig. 06 represents the whole WC over the considered

region with its main features: the role of the Mediterranean
Sea as the moisture and energy reservoir for the surrounding
land; the poor contribution of the African coasts in term 100
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of water resource, and the role of the Black Sea as the
buffer process for the freshwater input. This quasi-triangular
process emphasizes the hydrological link between the
surrounding land and the two seas.

5.2 Comparison of the Mediterranean fluxes estimates
with literature

Table 6 summarizes the comparison of the various estimates
of the water fluxes in the current analysis with what can be5

found in the literature. The various annual mean estimates
are based on different time periods and comparison must
be taken with caution since some interannual variability is
likely to be due to the change in hydrologic regime. Sanchez-
Gomez et al. (2011) focused on the Mediterranean Sea heat10

and water budget using an ensemble of ERA-40-driven
high resolution Regional Climate Models (RCMs) from the
FP6-EU ENSEMBLE database. The atmospheric budget
was not considered in Sanchez-Gomez et al. (2011) and no
moisture divergence estimate was provided. For comparison15

purposes, we decided to select the RCM ensemble-mean
estimate and two particular models: the Danish HIRHAM
(Hesselbjerg Christensen and Meteorologisk Institut, 1996)
and the Canadian CRCM (Plummer et al., 2006). These two
models have been selected since their E−P estimates are20

the extremes of the RCMs ensemble. In (Sanchez-Gomez
et al., 2011), the netflow at Gibraltar was estimated as the
deficit term of the WC: Gib= E−P −R−Bos.
Mariotti et al. (2002) analyzed the WC over the Mediter-
ranean region in the context of the NAO teleconnection over25

the 1979-1993 period using two reanalyses (ERA-40 and
NCEP-NCAR) for precipitation, evaporation and moisture
divergence. They used the discharge data from the monitored
rivers through the Mediterranean Hydrological Cycle Ob-
serving System (MED-HYCOS) and GRDC. Their estimate30

includes a total Mediterranean input of 100 mm.yr−1 from
MED-HYCOS and the Bosporus input of 75 mm.yr−1

from the literature (Lacombe and Tchernia 1972). Mar-
iotti et al. (2002) estimated the netflow at Gibraltar as
the balance of the Mediterranean water deficit using the35

equation Gib=Div−R−Bos coming from the oceanic
and atmospheric budgets and the null assumptions about the
storage change. Mariotti et al. (2002) used old versions of
the reanalyses and some remarks have already been raised
on the precipitation and evapotranspiration estimates for40

these versions. Nevertheless, to our knowledge, (Mariotti
et al., 2002) was the last effort to estimate the atmopshere
WC over the Mediterranean.
Jordà et al. (2017) reviewed the state-of-the-art in the
quantification of the various water component estimates.45

Their estimates presented in Table 6 are the best consensual
values among the scientific community. They are based on
several studies and take into account the results of Mariotti
et al. (2002) and Sanchez-Gomez et al. (2011) for example.

In particular, the mean Gibraltar netflow estimate from50

(Jordà et al., 2016) has been commented and new mean is
provided in (Jordà et al., 2017).
Table 6 also shows the results from Rodell et al. (2015)
before and after their satellite data optimization based on a
variational assimilation at the annual scale. The constraint 55

of the fluxes over the Mediterranean Sea and the Black
Sea were made independently (considering no netflow at
the Bosporus strait). The Mediterranean Sea was closed
with no exchange to the Atlantic at Gibraltar (no netflow).
Rodell et al. (2015) provided no explicit discharge for the 60

Mediterranean Sea but only for the Eurasian continent.
For the four mentioned articles, only the Mediterranean
Sea without the Black Sea is considered. No estimate
from SW+PF methodology is provided in Table 6. Our
integrated dataset is the only one to use direct observations 65

for the Gibraltar netflow and to compute the Bosporus
netflow via a WC budget. For all estimates, Table 6
presents their associated variability. While the variability
of real products is computed as the standard deviation of
the annual values, the variability associated with the RCM 70

mean is the inter-model spread (i.e. proxy of the uncertainty).

Evaporation - The RCM ensemble mean for the an-
nual evaporation is 1,254 mm.yr−1 with an inter-model
spread of 164 mm.yr−1. Some RCMs evaluated higher 75

annual evaporation, as the HIRHAM model that estimated
1,377± 55 mm.yr−1. On the contrary, Mariotti et al. (2002)
found a lower evaporation with the reanalyses (1,113 and
934 mm yr−1 for NCEP and ERA). Rodell et al. (2015) esti-
mated much higher evaporation and higher annual variability 80

with an mean annual value of 1,391±157 mm.yr−1 using
only OAFlux and 1,420±109 mm.yr−1 after optimization.
Our unconstrained SW solution gives an annual value of
1,300±34 mm.yr−1 and our constrained INT product gives
1,295±33 mm.yr−1. The CAL estimate is close to the INT 85

solution.

Precipitation - The RCM ensemble mean for the annual
precipitation was 442±84 mm yr−1 which is quite close to
the NCEP reanalyses value in (Mariotti et al., 2002). Satel- 90

lite estimates in both (Rodell et al., 2015) and the current
study indicate higher precipitation: 576 and 571 mm.yr−1

in (Rodell et al., 2015) and from 573 to 577 mm.yr−1

after the closure constraint in this work. SW, INT and
CAL products present similar precipitation estimates at the 95

annual scale due to the quite low uncertainty associated
with the precipitation in the integration. Even if the spread
among the RCMs was lower than for the evaporation,
some RCMs such as CRCM did compute even larger
precipitation than what has been retrieved from satellites 100

(606±80 mm.yr−1). Sanchez-Gomez et al. (2011) had
already noted that gauges-calibrated satellite datasets such
as GPCP and TMPA tend to have higher precipitation values
than what was simulated in the RCMs. Precipitation over
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the Sea is a sensitive variable and its validation is difficult 105

due to the lack of buoys. The ERA reanalyses value in (Mar-
iotti et al., 2002) was low compared with the NCEP estimate.

Evaporation minus Precipitation - Sanchez-Gomez et al.
(2011) focused on E−P to assess the physic consistency
in the RCMs. They assumed that a model having a high
evaporation tends to have higher precipitation. The averaged
E−P budget among the RCMs was 812±180 mm.yr−1

5

and the range was between 952±80 (HIRHAM model) and
602±107 mm.yr−1 (CRCM model). The inter-model spread
was high for the E−P budget, stressing the difficulties to
provide realistic water budget evaluation. Rodell et al. (2015)
found similarE−P budget but the associated variability was10

high too due to the uncertainty in evaporation. Our E−P
estimates are respectively 726±57 and 719±60 mm.yr−1

before and after the closure constraint. These values are
lower but still in the RCM ensemble range. They are closer
to what Mariotti et al. (2002) found with NCEP reanalyses.15

Jordà et al. (2017) consider the net surface flux to be
900±200 mm yr−1 which is in good agreement with the
CRCM model estimate. Rodell et al. (2015) found similar
E−P budget but with far higher evaporation estimate
which seemed quite unrealistic. Furthermore, their closure20

constraint tends to increase the evaporation value and then
the E−P budget.

Discharge - Only the RCMs providing the runoff
have been used to compute the annual value of R25

(124±46 mm.yr−1) in (Sanchez-Gomez et al., 2011).
Mariotti et al. (2002) found comparable values for the
discharge, considering only the monitored rivers. Rodell
et al. (2015) did not include explicit discharge into the
Mediterranean Sea since the closure was done at the global30

scale (Eurasian continent) and no value was provided for
the Mediterranean freshwater input. Our discharge estimate
is increased from 144±21 in SW to 155±15 mm.yr−1 in
INT after the optimization. This increase is mainly driven
by the re-evaluation of the Nile discharge that present larger35

discharge (76 km3.yr−1) after closure. All these discharge
estimates are lower than the value prescribed in (Jordà et al.,
2017) (200±10 mm.yr−1).

Black Sea discharge - The RCM ensemble-mean value40

for the freshwater input through the Bosporus strait was
87±60 mm.yr−1 stressing the high discrepancies among
the RCMs. Rodell et al. (2015) closed independently the
Mediterranean and the Black Sea, with no exchange between
the two oceanic basins (i.e. the netflow equals to zero). In45

the current approach, the Black Sea discharge is computed
as the deficit in the water budget for the Mediterranean
Sea, by considering the netflow at Gibraltar (Gib) corrected
from (Jordà et al., 2016): Bos= E−P −R−Gib. The
SW product presents unrealistic value for the Black Sea50

discharge (2.0±615 mm.yr−1), this is mainly due to the high

uncertainty associated to the netflow at Gibraltar. On the
other hand, the closure constraint improves the Bosporus
netflow estimate which equals 129±60 mm.yr−1 with INT,
after optimization. The value is close to the deficit of the55

Black Sea water budget (computed after optimization):
132±60 mm.yr−1 (not shown in Table 6) stressing the
consistency between the two seas water budget. The value
is still higher than the estimate of 75 mm.yr−1 in (Mariotti
et al., 2002). 60

Gibraltar netflow - Rodell et al. (2015) considered no flow
at Gibraltar when closing the Mediterranean WC and then
provided no estimate for this variable. Both Sanchez-Gomez
et al. (2011) and Mariotti et al. (2002) evaluated the netflow 65

by closing the WC over the Mediterranean region but they
used different assumptions and equations. The estimate in
(Sanchez-Gomez et al., 2011) is based on the oceanic closure
while it is based on both the oceanic and atmospheric closure
in (Mariotti et al., 2002). The RCM ensemble mean was 70

540±150 mm.yr−1 in Sanchez-Gomez et al. (2011), while
Mariotti et al. (2002) found lower value with the reanalyses
(493 and 370 mm.yr−1 with NCEP and ERA). Jordà et al.
(2017) give two values for the netflow at Gibraltar: one from
direct observations but suffering from large uncertainties 75

(850±400 mm.yr−1), and the other as the deficit of the
water budget (600±200 mm.yr−1). The value in INT and
CAL estimate are impacted by the closure constraint. The
netflow estimate after optimization (428±124 mm.yr−1) is
lower than what can be found in (Jordà et al., 2017) but in 80

the range of the RCMs water budget deficit.

Moisture divergence - No moisture divergence was pro-
vided by the RCMs in (Sanchez-Gomez et al., 2011). Mar-
iotti et al. (2002) found moisture divergence to be 659 mm 85

yr−1 in NCEP and 488 mm.yr−1 in ERA. Rodell et al. (2015)
estimated the divergence to be 848±105 mm.yr−1 after op-
timization. The difference between Rodell et al. (2015) and
Mariotti et al. (2002) estimates and what is found in the cur-
rent study is mainly driven by the discrepancy between the 90

three reanalyses: Modern-Era Retrospective Analysis for Re-
Search and Applications (MERRA) used by Rodell et al.
(2015), NCEP and ERA-40 by Mariotti et al. (2002), and
ERA-I used in the current analysis. Recent works focusing
on atmospheric reanalyses comparisons have demonstrated 95

the ERA-I quality. Stopa and Cheung (2014) have stressed
the ERA-I performances in the representation of long term
wind variability, critical for the representation of moisture
divergence. Brown and Kummerow (2013) have pointed out
that satellite derived E−P (SeaFlux- GPCP) correlates well 100

with ERA-Interim atmospheric moisture divergence. Tren-
berth et al. (2011) have assessed the performance of ERA-I
reanalysis for atmospheric moisture budgets consideration.
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6 Conclusions

The main goal of this work was to build a multi-component 105

dataset describing the Mediterranean hydrology by con-
straining the WC closure. Various methodologies have been
presented and particular attention has been put on the IN-
Tegration method. This approach fullfills the previous stated
objectives: being a pixel-wise dataset but in which the WC
closure is controlled. INT is an integrated dataset that shows
several benefits compared to previous studies. The INT prod-
uct allows reducing the RMS of the WC budget residual5

down to 3.55 mm.month−1 over land and 5.27 mm.month−1

in the atmosphere. These reductions represent an improve-
ment of respectively 78% and 80% compared to the best
un-constrained satellite combination dataset. The temporal
coverage of INT is limited by the common coverage period10

2004-2009 of all the satellite estimates used in this study (see
Table B1).

The INT dataset has been evaluated at various scales. Even
if the evaluation is a difficult task and the presented work is
not exhaustive, our results show that the consideration of the15

WC closure allows to reduce differences with the available
in situ measurements. At the sub-basin scale, the overall pre-
cipitation is closer to the in situ gridded EOBS dataset after
being constrained. The sea water level estimate is also im-
proved compared to the altimetry estimate. At the pixel scale,20

the INT estimate shows a better agreement with in situ tower
measurements from the FLUXnet2015 database.

The WC has been analyzed in terms of long-term means
over the 2004-2009 period and compared with previous lit-
erature. The INT methodology has improved estimates of25

the Mediterranean water components. The INT product pro-
vides more realistic values for both the Bosporus and Gibral-
tar netflows by constraining them with the satellite observa-
tions. Note that the Bosporus estimate is mainly driven by the
Gibraltar estimate and can then be improved if the Gibraltar30

netflow evaluation would become more accurate.
This study conducted on the Mediterranean Sea is inno-

vative from previous work. The Mediterranean WC has al-
ready been well investigated by Mariotti et al. (2002) and
Sanchez-Gomez et al. (2011) relying on models and reanaly-35

ses. At global scale, Rodell et al. (2015) close independently
the Mediterranean and Black Sea using satellite observations
while Sanchez-Gomez et al. (2011) close the Mediterranean
Sea WC in estimating the Gibraltar netflow as the WC bud-
get deficit. This study aims to provide a full description of40

the WC, based on fewer hypotheses. It is the first effort to
close the WC at the surface and in the atmosphere over the
whole Mediterranean region, using satellite observations and
in situ measurement for the Gibraltar netflow.

There are still large uncertainties on the WC components45

but the INT methodology appears to be a valuable approach,
in particular to include coherency among these components.
The current work has introduced also the CAL product
which is a calibration of the satellite products that can

be used to extrapolate in time the closure constraint. The50

CAL product is less efficient to close the WC but presents
the advantage to have longer temporal coverage. Several
improvements will be considered in the future: (1) more
accurate in situ observations (e.g. Bosporus netflow estimate
or coastal discharges) should lead to improved estimates. 55

(2) New WC inputs could be considered (e.g. ground water
exchange or horizontal exchange at oceanic sub-basin scale)
to better characterize the flux and stock terms in the WC.
(3) The use of other source of EO estimates should be con-
sidered. For example, the evapotranspiration estimate based 60

on the closure of the energy cycle (Su, 2002; Chen et al.,
2013) could be tested. This dataset could be an opportunity
to (4) close simultaneously the water and the energy cycles
and should lead to a better estimate of the evapotranspiration
over land. The multiple-components dataset INT shows 65

promising aspect for forcing, calibrating or constraining
regional models with a water conservation constraint. Some
developments and evaluations are still required before the
production of a Climate Data Record (Su et al., 2018) can
be started. The two databases (INT and CAL) can however 70

be obtained under request to the corresponding author or via
the HyMeX data server (http://mistrals.sedoo.fr/HyMeX/).

[A] The Figure A1 Compare the six water components es-
timates and the pdf of the two WC budget errors. The es- 75

timates are for the 6 terrestrial sub-basins, the oceanic part
and the total land (in column) through the various method-
ologies presented in the study: SW, SW+PF, INT and CAL.
The figures shows by how much the water budget residuals
are reduced and how the water components are impacted. 80

[B] Table A1 gathers the notation used in the study.
[C] Table B1 lists the datasets used in the study.
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Figure 01. Region of interest. Sub-basins have been computed us-
ing a hydrological model (Wu et al., 2011), and rivers are from Hy-
droShed (http://www.hydrosheds.org/). See text for the definition of
the sub-basins.
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Figure 02. Steps of the spatialisation of the budget closure for the INT solution, from the SW to the INT solutions: Precipitation (left) and
evapotranspiration (right), for July 2008. Units are in mm/month.
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tion difference is statistically significant at the 70%-level based on
the T-test.
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Figure 04. Top panel: Scatterplot of the RMSD between FLUXnet
station and the SW, INT and CAL products, for evapotranspiration.
Dots under the 1:1 line (green) show improvement, and dots over
the line (red) show degradation. INT and CAL results are super-
posed for some locations, meaning that the linear approximation in
CAL is enough to mimic the INT scaling factors at these location.
The encapsulated figure shows the distribution of the differences
with the Fluxnet estimates. Bottom panel: Location of the FLUXnet
stations used for validation: green dots show an improvement for
INT and CAL compared to SW (INT+& CAL+), blue dots show
improvement only for CAL(INT-& CAL+), and magenta only for
INT (INT+& CAL-). Red dots is where no improvement is observed
(INT-& CAL-). Blue line limits the total basin area.
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Figure 05. same as Fig. 04 but for precipitation.
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Figure 06. Mean annual fluxes (km3 yr−1) of the Mediterranean WC and associated uncertainties in SW (small font) and INT (large font)
during the 2004-2009 period.
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Figure A1. Comparison of the six water components estimates and the pdf of the two WC budget error (in row). The estimates are for the 6
terrestrial sub-basins, the oceanic part and the total land (in column) through the various methodologies presented in the study: SW, SW+PF,
INT and CAL.
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Princeton NASA NEWS ESA
Integration Simple Weighting Variational Simple Weighting
method + CKF for budget closure Assimilation + PF for budget closure
References Pan and Wood (2006) Rodell et al. (2015) Aires (2014); Munier et al. (2014)

Sahoo et al. (2011); Pan et al. (2012) L’Ecuyer et al. (2015) Munier and Aires (2017)
Strategy Assimilation with VIC model Fluxes optimization Fluxes optimization
Source model +observations model+ observations observations
Budget Terrestrial WC only Terrestrial, oceanic Terrestrial, oceanic

& atmospheric WC & atmospheric WC
Spatial scale basin(1) continent pixel to basin scale
Multiplicity of yes weighted average only forE yes weighted average
datasets
Uncertainty gauges density average product prescribed (literature)
reference & average product
Spatial no yes: dependent continents yes: simultaneously at basin
multi-scaling through one ocean and sub-basins scales
Temporal no: monthly no: annually + interpolation(2) yes: monthly & annually
multi-scaling
State vector XT =[Pl El Rl ∆Sl ]t F=[P E RDiv]t Xl=[Pl El Rl ∆Sl ∆Wl Divl]t

over land
Res=[∆S ∆W]t Xo=[Po Eo ∆So Gib]t over Sea

Xlo=[Xl Xo] for both
Uncertainties BT is the error covariance ofXT SRes and SF Blo is the error covariance ofXlo

error covariance matrices
Model

GT =[1,-1,-1,-1] A: Matrix of budgets(3)

Gl=
[

1 −1 −1 −1 0 0
−1 1 0 0 −1 −1

]

Go=
[

1 −1 −1 0 0 −1
−1 1 0 −1 −1 0

]
Llo=

[
0 0

Aland
ASea

0 0 0

0 0 0 0 0 0

]

Glo=
(
Gl 0
Llo Go

)
Closure equation GT ·XT = 0 Res= A ·F Glo ·Xlo = r, r∼N (0,

∑
)

with
√∑

=2 mm/month
Type of constraint strong constraint strong constraint + relaxed constraintInterpolation

Closure solution XTc=XT +KT ·(0−GTXT ) Fc = F +Q−1JtS−1
Res(Res−AF ) Xloc = (I −KPFGlo

∑−1Gtlo) ·Xlo
with KT = BTGT · (GTBTGtT )−1 J the Jacobian ofRes w/r to F KPF = (B−1

lo +Glo
∑−1Gtlo)−1

and Q= (JtS−1
ResJ +S−1

F )−1

Table 1. The three main initiatives for budget closure constraint and their technical differences. [In the third column, bold font indicates the
new features of the methodology presented in this article]. Subscript are: l for land, o for ocean, both include the atmosphere. All notations
are summerized in Table A1. (1) Zhang et al. (2016) recently developed a WC-VIC assimilation scheme at the 0.5◦ pixel scale; (2) Rodell
et al. (2015) used a two-step integration methods with annual closure simply downscaled at the monthly scale, plus a Lagrange interpolation
for closure relaxation; (3) see Rodell et al. (2015) for details and hypothesizes.
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Zhang et al. (2017) Sahoo et al. (2011) Munier et al. (2014) Rodell et al. (2015) Our study

Area Europe Danube basin Mississippi basin Eurasia Med. region
P - - 5 mm/month 3 mm/month 4 mm/month

36% 47% 37% 24% 25%
E - - 5.8 mm/month 5 mm/month 6 mm/month

41% 32% 49% 65% 55%
R - - 1 mm/month 3 mm/month 2 mm/month

7% 3% 1.5% 11% 6%
∆S - - 2.9 mm/month - 3 mm/month

14% 18% 12.5% - 14%
Table 2. Comparison of the uncertainty specifications for terrestrial water components. The weights associated to a variable (computed as
the ratio between the particular variable uncertainty with respect to the sum of all the uncertainties σ2

i /
∑

iσ
2) are expressed in percentage.
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EO Spatial Coverage WC
merging resol. period* budget closure

OS no pixel 1993-2012 - -
SW yes pixel 1980-2012 -

SW+PF yes
basin

2004-2009 ++
scale

INT yes pixel 2004-2009 ++
CAL yes pixel 1980-2012 +

Table 3. Main characteristics of the five merging methods in this
study: EO stands for Earth Observation satellite datasets, and *
means not considering the GRACE period coverage. The last col-
umn shows the capability of the methodology to close the WC bud-
get. ’- -’ means bad closure, ’-’ means quite bad closure, ’+’ means
quite good closure and ’+ +’ means good closure.
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Climatic sub-basins LAND OCEAN
MA-DZ-TN ES-Pyr Alp-IT-ADR GR-TR-IL BLS

surf atm surf atm surf atm surf atm surf atm surf atm surf atm
ERA-I 34.3 15.3 37.8 18.1 31.2 13.7 30.6 12.0 18.0 8.0 13.6 13.8 86.7 6.2
OS 25.1 36.0 27.5 43.5 28.5 37.7 25.8 39.7 25.4 27.3 19.8 15.1 75.2 24.7
SW 18.2 31.8 17.5 40.7 21.5 38.3 17.6 35.6 25.1 26.5 16.6 16.6 74.3 15.7

SW+PF 4.46 3.04 4.38 3.99 4.42 3.07 4.46 3.21 3.64 2.82 2.78 2.28 7.18 3.13
75% 90% 74% 90% 79% 91% 74% 90% 85% 89% 83% 91% 91% 80%

INT 5.23 5.82 5.15 6.47 7.70 7.65 6.62 8.16 4.21 3.20 3.79 4.07 7.18 3.13
71% 81% 70% 84% 64% 80% 62% 77% 83% 87% 77% 84% 91% 80%

CAL 13.14 14.48 13.38 17.77 20.13 20.21 14.51 16.77 18.00 13.03 12.79 11.44 24.63 12.50
27% 54% 23% 56% 6% 47% 17% 52% 28% 50% 22% 56% 66% 17%

Table 4. RMS of the WC budget residual (in mm/month) over the sub-basin using OS,SW,SW+PF,INT and CAL solution and for the period
2004-2009. Percentage of improvement of the RMS of the residuals from SW solution to constrained methods is also shown. For comparison
purpose, result using ERA-I dataset is also depicted.
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Climatic sub-basins Continental
MA-DZ-TN ES-Pyr Alp-IT-ADR GR-TR-IL BLS

Correlation SW 0.81 0.88 0.87 0.87 0.79 0.78
SW+PF 0.84 0.90 0.88 0.87 0.81 -

INT 0.84 0.89 0.88 0.87 0.81 0.80
CAL 0.81 0.88 0.87 0.87 0.79 0.79

RMSD SW 14.01 16.69 21.78 23.04 20.56 15.68
SW+PF 13.60 14.10 22.42 21.98 16.64 -

2% 15% -3% 4% 19% -
INT 13.59 14.35 21.88 21.83 16.84 12.93

2% 14% -1% 5% 18 % 17%
CAL 14.00 14.83 22.06 21.64 17.23 13.16

0% 11% -2% 6% 16% 16%
Table 5. Comparison of the SW, SW+PF, INT and CAL precipitation solutions with the EOBS dataset, in terms of correlations, RMSD, and
percentage of improvement of the RMSD compared to the SW solution.
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References E P E-P R Bos Gib Div

Sanchez-Gomez et al. (2011) HIRHAM 1,377±55 425±57 952±80 116±30 116±30 720±100 -
1957-2002 MEAN 1,254(±164) 442(±84) 812(±180) 124(±46) 87(±60) 540(±150) -

CRCM 1,208±72 606±80 602±107 73±40 110±50 420±130 -
Mariotti et al. (2002) NCEP 1,113 433 680 100 75 494 659
1979-1993 ERA-40 934 331 603 100 75 370 488
Jordà et al. (2017) Prescribed - - 900±200 200±10 100±20 850±400 -
2005-2010 values 600±200
Rodell et al. (2015) orginal 1,391±157 576±76 815±157 - 0 0 866±131
2000-2010 optimized 1,420±109 571±73 849±109 - 0 0 848±105
Current study SW 1,300±34 573±36 726±57 144±21 2±615 575±561 620±44
2004-2009 INT 1,295±33 577±40 719±60 155±15 129±60 428±124 677±77

CAL 1,295±34 574±36 721±57 155±20 80±250 428±196 680±53

Table 6. Comparison in the literature for the Mediterranean Sea (without the Black Sea) average annual mean fluxes and their associated
variability (in mm yr−1). While the variability of real product is computed as the standard deviation of annual values, the uncertainty
associated with the Regional Climate Models mean is the inter-model spread. The period of analysis for the various studies are recalled.
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Mathematical symbols
Mt Transpose
∆M Differenciation
δM
δt Derivative
N Normal distribution
σ Standard deviation
RMS Root Mean Square
RMSD Root Mean Square of the Difference

Subscript
MT Terrestrial
Ml Over land (terrestrial plus atmospheric)
Mi
l Over the ith sub-basin (terrestrial plus atmospheric)

Mo Over ocean(oceanic plus atmospheric)
Mlo Global: land + ocean
Mc Constrained
MSW Estimate through SW merging technique
MPF Estimate through SW+PF approach
MINT Estimate through INT approach

Water components
P Precipitation
E Evapotranspiration
S Water storage
W Precipitable water
Div Vertically integrated Moisture divergence
Gib Gibraltar oceanic netflow
Bos Bosporus oceanic netflow

WC State vector and associated uncertainty matrices
XT , BT Terrestrial state vector
Xl WC state vector over land (within the atmospheric aspect)
X

(i)
l WC state vector over the ith sub-basin (terrestrial plus atmospheric)

Xo WC state vector over sea (within the atmospheric aspect)
Xlo,Blo Gobal WC state vector
XMonthlo Gobal WC state vector for a particular month
r,
∑

Tolerated WC budget residuals

Closure matrices
GT Terrestrial budget
Gl WC closure over land (within the atmospheric closure)
G

(i)
l WC closure over the ith sub-basin (terrestrial plus atmospheric)

Go WC closure over sea (within the atmospheric aspect)
Glo, Gobal WC closure
Llo, Freshwater equality between land and sea
Aland Total drainage area of the Mediterranean Sea within the Black Sea
A

(i)
l Drainage area of the ith sub-basin

ASea sea area
L

(i)
lo , Freshwater equality between the ith sub-basin and sea

GAlo Global WC closure for all the month within the year
Nlo Modified version ofGlo
N

(i)
l Modified version ofG(i)

l

constraint filter
KT Terrestrial constraint
Kmerge Merging matrix in SW methodology
KPF Global WC constraint via PF methodology
Kan Theoretical analysis filter

Table A1. Notation used in this study
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Dataset Time coverage Spatial res. (◦) Temporal res. Description Producer Reference

Precipitation
GPCP 1979-2015 2.5 daily from multiple satellites and gauges U. of Maryland Adler et al. (2003)
CMORPH 1998-2015 0.25 30 min from microwave and infrared NOAA Joyce et al. (2004)
TMPA 1998-2015 0.25 3h from multiple satellites and gauges NASA Huffman et al. (2007)
PERSIANN 2000-2013 0.25 3h from microwave and infrared CHRS Ashouri et al. (2015)
ERA-I Precipitation 1980-2015 0.25 12h reanalysis ECMWF Dee et al. (2011)
EOBS Precipitation 1950-2006 0.25 daily in situ gridded project ENSEMBLES Haylock et al. (2008)
FLUXnet precipitation 2002-2010 - monthly in situ FLUXnet Falge et al. (2017)

Evapotranspiration
GLEAM 1980-2012 0.25 daily satellite observation, U. of Amsterdam Martens et al. (2016)

gauges and reanalysis and U. of Ghent
MOD16 2000-2012 0.25 8 days satellite observation NTSG Mu et al. (2011)
NTSG 1983-2012 0.25 monthly satellite observation and reanalysis NSTG Zhang et al. (2010)
ERA-I evapotranspiration 1980-2015 0.25 12h reanalysis ECMWF Dee et al. (2011)
FLUXnet evapotranspiration 2002-2010 - monthly in situ FLUXnet Falge et al. (2017)

Evaporation
OAflux 1985-2015 1 daily from satellite and reanalysis WHOI Sun et al. (2003)
Seaflux 1998-2015 0.25 3h from satellite, reanalysis and in situ GEWEX Curry et al. (2004)
ERA-I Evaporation 1980-2015 0.25 6h reanalysis ECMWF Dee et al. (2011)

Water storage
CSR 2002-2012 0.25 monthly GRACE CSR Bettadpur (2012)
GFZ 2002-2012 0.25 monthly GRACE GFZ Dahle et al. (2013)
GRGS (land only) 2002-2012 0.25 monthly GRACE CNES Biancale et al. (2005)
JPL 2002-2012 0.25 monthly GRACE JPL Watkins and Yuan (2014)
MSC-JPL 2002-2015 0.25 monthly GRACE JPL (Watkins et al., 2015)

Precipitable water
Globalvapor 1996-2015 0.5 daily merged estimates from satellite DWD, GEWEX Schneider et al. (2013)
ERA-I Wator vapor 1979-2015 0.25 6h reanalysis ECMWF Dee et al. (2011)

Discharge
CEFREM 1980-2009 < 0.25 annual in situ Cefrem Ludwig et al. (2009)
ORCHIDEE 1980-2009 0.5 monthly model LMD Polcher et al. (1998)

Moisture flux divergence
ERA-I Moisture divergence 1979-2015 0.25 6h reanalysis ECMWF Dee et al. (2011)

Gibraltar netflow
IMEDEA- netflow 2004-2010 - monthly in situ & model IMEDEA Jordà et al. (2016)

Table B1. Overview of the various datasets used in this study. Their common coverage period, on which the WC budget is estimated, is
2004-2009.


