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Abstract. During the last decades, the endorheic Lake Urmia basin in northwestern Iran has suffered from decreased 

precipitation, groundwater levels and a very strong reduction in the volume and more recently also in the extent of Lake Urmia. 

Human water use has exacerbated the desiccating impact of climatic variations. This study quantifies the contribution of human 

water use to the reduction of inflow into Lake Urmia, to the loss of lake water volume and to the loss of groundwater and total 

water storage in the entire Lake Urmia basin during 2003-2013. To this end, the WaterGAP Global Hydrology Model (WGHM) 15 

was manually calibrated specifically for the basin against multiple in-situ and spaceborne data, and the best-performing 

calibration variant was run with or without taking into account water use. Observation data encompass remote-sensing based 

time series of annual irrigated area in the basin from MODIS, monthly total water storage anomaly (TWSA) from GRACE 

satellites and monthly lake volume. In-situ observations include time series of annual inflow into the lake and basin averages 

of groundwater level variations based on 284 wells. In addition, local estimates of sectoral water withdrawals in 2009 and 20 

return flow fractions were utilized. Four calibration variants were set up in which the number of considered observation types 

was increased in a stepwise fashion. The best fit to each and all observations is achieved if the maximum amount of 

observations is used for calibration. Calibration against GRACE TWSA improves simulated inflow into Lake Urmia but still 

overestimates it by 90%; it results in an overestimation of lake volume loss, underestimation of groundwater loss and a shifted 

seasonality of groundwater storage. Lake and groundwater dynamics can only be simulated well if calibration against 25 

groundwater levels leads to adjusting the fractions of human water use from groundwater and surface water. According to our 

study, human water use was the reason for 50% of the total basin water loss of about 10 km3 during 2003-2013, for 40% of 

the Lake Urmia water loss of about 8 km3 and for up to 90% of the groundwater loss. Lake inflow was 40% less than it would 

have been without human water use. We found that even without human water use, Lake Urmia would not have recovered 

from the significant loss of lake water volume caused by the drought year 2008. These findings may serve to support water 30 

management in the basin and more specifically Lake Urmia restoration plans.  
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1 Introduction 

Iran is a country with arid and semi-arid climate where population growth and the government’s aim of food self-sufficiency 

has led to increasing irrigated crop production and exploitation of surface water and groundwater resources. Furthermore, 

climate change has resulted, in the majority of Iran’s regions, not only in increased temperatures but also decreased 

precipitation (Tabari and Talaee, 2011a, b) and thus decreased renewable water resources. In the last decades, numerous 5 

wetlands and lakes in Iran have dried up, and groundwater levels have strongly declined in most areas (Madani et al., 2016). 

The drastic decline of groundwater levels is a hidden disaster since there is little societal awareness of it in Iran. 

The most serious disaster has occurred in the Lake Urmia basin, an interior basin in the northwest of Iran located in 

the three provinces West Azarbaijan, East Azarbaijan, and Kurdistan that covers an area of 52,000 km2 (Fig. 1). At the 

downstream of the basin, 17 permanent rivers and 12 seasonal rivers discharge into the largest natural water body in Iran, Lake 10 

Urmia. Over the past two decades, climate variations and human activities have decreased inflow into the lake. Lake water 

volume is now approximately 30·109 m3 below its historical maximum (ULRP, 2015a). Precipitation in the basin shows a 

decreasing trend over the period 1951-2013, with particular low values after 1995, which together with increasing temperatures 

and thus evaporation is very likely to have contributed to the decrease in lake volume (Alizadeh-Choobari et al., 2016). Human 

activities include increasing surface and groundwater abstractions as well as numerous man-made reservoirs (Fig. 6 in 15 

Hassanzadeh et al., 2011).  

 
Figure 1: Location of Lake Urmia basin. 

Lake Urmia is one of the largest hypersaline lakes in the world, which due to its ecological and natural features is a 

National Park, a Ramsar Site and a UNESCO Biosphere Reserve (Eimanifar and Mohebbi, 2007). It is a terminal lake that 20 

loses water only by evaporation (Hassanzadeh et al., 2011). Abbaspour and Nazaridoust (2007) estimated that inflows of at 

least 3·109 m3/yr are needed to compensate for lake evaporation. Inflow from groundwater to the lake was estimated to be less 

than 3% of total inflow from precipitation, rivers and groundwater (Hasemi, 2011). In the 1970s and 80s, the water table of 
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Lake Urmia was approximately at 1,276 m above sea level, and then increased to more than 1,278 m in 1995 due to a few wet 

years (Shadkam et al., 2016). From then on, in particular due to the severe drought in 1999-2001 but exacerbated by human 

water use, the water table dropped to 1,274 m in 2003 (Shadkam et al., 2016). From 2003 to 2014, lake extent was 

approximately halved, and water level declined by another 3 m, while seasonal variability of lake water extent increased 

(Tourian et al., 2015) (Fig. 2). After 2015, extent and storage have somewhat recovered (Fig. 3), due to both the relatively high 5 

precipitation in 2015 and 2016, increased releases from reservoirs and management activities for decreasing water consumption 

ULRP (2015b). 

 
Figure 2: Time series of surface water extent and water table elevation of Lake Urmia (data from Tourian et al., 2015). 

Studies on various aspects of the Lake Urmia disaster abound. With decreasing lake water volume, salt concentration 10 

has increased, endangering the aquatic biota feeing birds; exposed salt layers may lead to salt storms (Pengra, 2012).  

Precipitation reduction, temperature increase, agricultural development including construction of man-made dams and building 

a causeway across the lake have been identified as the main reasons for the degradation of Lake Urmia (Abbaspour and 

Nazaridoust, 2007; Zeinoddini et al., 2009; Delju et al., 2012; Jalili et al., 2012; Sima and Tajrishy, 2013; Fathian et al., 2014; 

Farajzadeh et al., 2014; Banihabib et al., 2015; AghaKouchak et al., 2015; Azarnivand et al., 2015; Alizadeh-Choobari et al., 15 

2016; Ghale et al., 2018). Using Gravity Recovery And Climate Experiment (GRACE) satellite observations, altimetry data 

for Lake Urmia and outputs of the Global Land Data Assimilation System (GLDAS), Forootan et al. (2014) estimated the trend 

of groundwater storage changes in the Lake Urmia basin as -11.2 mm/yr between the years of 2005 to 2011, the largest decrease 

of the six investigated Iranian basins. Zarghami (2011) examined four routes to transfer the water from Aras basin in the north 

of Lake Urmia basin to provide an alternative for the water supply for the agricultural and drinking demands in the north of 20 

the basin. Ahmadzadeh et al. (2016) examined the effect of irrigation system changes in the basin from surface systems to 

pressurized systems using the Soil and Water Assessment Tool (SWAT) model; eventually, they found that changes in 

irrigation system increase water productivity but have no effect on the lake inflow and would reduce groundwater levels by 

20%.  
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Figure 3: Lake Urmia during the time period 2002-2016 (Google Earth Timelapse, last accessed: 28 Apr. 2018). 

Two modelling studies for Lake Urmia basin focused on quantifying the contributions of various factors on lake water 

volume (Hassanzadeh et al., 2011) or lake inflow (Shadkam et al., 2016). Using a lumped system dynamics modelling approach 

and observed time series of lake water volume for model calibration, Hassanzadeh et al. (2011), determined that about 65% of 5 

lake level decline between 1997 and 2006 was due to reduced river inflow, while four major man-made reservoirs contributed 

25% and diminished precipitation on the lake surface 10%. Shadkam et al. (2016) evaluated the impact of climate, irrigation 

with surface water and reservoirs on inflow into the lake for the period 1960-2010 using a modified version of the macro-scale 

gridded hydrological model Variable Infiltration Capacity (VIC) model, which was calibrated against time series of river 

discharge at six observation station at the downstream end of six sub-basins draining into Lake Urmia. While the model was 10 
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driven by global gridded WFDEI climate data set with a spatial resolution of 0.5°, basin-specific information on 41 reservoirs 

and on the temporal development of irrigated areas were taken into account. The study found that reservoirs had a very small 

impact on annual inflows and that climate variations accounted for 60% of lake inflow decrease of 48% over the 50-year 

period. In the model, all irrigation requirements need to be fulfilled by available surface water. Therefore, reduced availability 

of surface water during the 2000s due to low precipitation and high temperature resulted in unfulfilled irrigated water demand 5 

and a cap on the effect of human water use in the model while in reality, groundwater abstractions occurred and even increased 

(Delju et al., 2012; Hesami and Amini, 2016). In addition, the modelling study of Shadkam et al. (2016) did not take into 

account the impact of domestic and industrial water use in the basin which can be expected to have increased during the last 

decades, given a population increase from 4.8 to 5.9 million from 2002 to 2010 (http://ulrp.sharif.ir/en/page/about-urmia-lake-

basin, last accessed: 28 Apr. 2018). 10 

Thus, for quantifying the impacts of human water use and climate variations in the basin, a more holistic approach is 

required that takes into account all types of water use and distinguishes groundwater use from surface water use. In case of 

deep groundwater wells, groundwater can be pumped even in times of drought and thus low surface water availability. 

Groundwater abstractions may lead to a decline of groundwater storage and a decrease of groundwater discharge to surface 

water bodies, with negative impacts on freshwater ecosystems (Döll et al., 2014). With a spatial resolution of 0.5°×0.5°, the 15 

global water resources and use model WaterGAP (Water Global Assessment and Prognosis) simulates water abstractions and 

consumptive water use (so-called net abstractions, i.e. the amount of water that evapotranspirates during use and does not flow 

to surface water bodies and groundwater afterwards) in five sectors (irrigation, livestock, domestic, manufacturing and cooling 

of thermal power plants); then net abstractions from either groundwater (NAg) or surface water bodies (NAs) are computed 

(Müller Schmied et al., 2014; Döll et al., 2012). Time series of NAg and NAs in each grid cells are then input to the WaterGAP 20 

Global Hydrology Model WGHM that simulates their effect on water flows and storages. WaterGAP includes a multitude of 

global data sets including information on irrigated areas, the fraction of irrigated areas that is equipped to be irrigated with 

groundwater (Siebert et al., 2010) and artificial drainage affecting return flows to surface water (Döll et al., 2012). While 

WaterGAP provides information that is often not available at local to regional scales, a satisfactory simulation of individual 

basins with WaterGAP does require some adjustments based on regional information. In its standard version, WGHM is 25 

calibrated against observed mean annual river discharge at 1319 stations worldwide by adjusting 1-3 model parameters related 

to runoff generation and streamflow (Müller Schmied et al., 2014), but for reasons of data availability not for a station in Lake 

Urmia basin. A previous WaterGAP version was calibrated, for 22 large basins, against streamflow and total water storage 

anomalies (Werth and Güntner, 2010) 

For this study on the differential impacts of climate and human water use on Lake Urmia basin, WGHM was for the 30 

first time calibrated for a specific basin by using multiple types of independent data. Multi-observation calibration included 

the adjustment of temporally constant model parameters as well as the adjustment of human water use input data including 

annually varying correction factors for NAg and NAs. An important objective of this study was to understand the value of 

different observations or other regionally available data for understanding dynamics of water flows and storages in a basin. 
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Therefore, WGHM was calibrated sequentially by considering, in each calibration variant, an additional data type. In the first 

variant, only remote sensing data were used (variant RS). In-situ river discharge observations were added in variant RS_Q. In 

the third variant RS, discharge and groundwater level data were used (variant RS_Q_GW), and finally RS, discharge, 

groundwater levels, and regional data of basin-wide total withdrawals plus estimated return flow fractions (RS_Q_GW_NA 

variant). Model validation was done by comparison of simulated lake water volume anomalies against observed anomalies. 5 

Model variant RS_Q_GW_NA was then applied to simulate the water flows and storages in Lake Urmia basin that would have 

occurred under naturalized conditions, i.e. without any human water use and man-made reservoirs. By comparing output of 

the naturalized run with the output of the model run with water use and reservoirs, we quantified the differential impacts of 

human water use (and reservoirs) and climate on inflow into Lake Urmia and lake water volume as well as on groundwater 

and total water storage in Lake Urmia basin during the period 2003-2013. In section 2, we describe the utilized data and the 10 

simulation setup. The results of the four calibration variants are shown and discussed in section 3. Section 4 presents the impact 

of human water use on the basin’s water resources. Finally, conclusions are drawn.  

2 Methods and data 

We analyzed the 11-year period from the beginning of 2003 until the end of 2013, as both GRACE data and global climate 

data to drive WaterGAP where available for this period. In the following sections, WaterGAP, WaterGAP input data and 15 

observational data used for calibration as well as the calibration variants are described.  

2.1 WaterGAP 

WaterGAP is a global hydrological model for assessing water resources under the influence of humans (Döll et al., 2003; 

Müller Schmied et al., 2014). It computes water abstractions and consumptive water use (i.e. NA) and for five sectors and 

consequently NAg and NAs by estimating return flows (Döll et al., 2012). Negative values of NAg occur where return flow to 20 

groundwater from irrigation with surface water is so high that water is added to groundwater storage by human water use. NA 

is the sum of NAg and NAs and equal to consumptive water use. In WGHM, NAg and NAs are then subtracted from either 

the groundwater or surface water bodies (lakes, reservoirs or rivers) (Müller Schmied et al., 2014). WGHM simulates daily 

water storage as well as fluxes like evapotranspiration, groundwater recharge (Döll and Fiedler, 2008), runoff and river 

discharge for all continents except Antarctica. Water is transported between grid cells according to the DDM30 drainage 25 

direction map (Döll et al., 2003). Water storage compartments encompass snow, canopy, soil, groundwater, rivers, lakes, 

wetlands, and man-made reservoirs (Eicker et al., 2014). Representation of Lake Urmia basin by 22 0.5° grid cells agrees well 

with the actual basin shape and the drainage pattern within the basin. 
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2.2 Data 

2.2.1 Remote sensing data 

Irrigated area in Lake Urmia basin. Based on MODIS images, Kamali and Youneszadeh Jalili (2015) estimated annual time 

series of irrigated areas in Lake Urmia basin from 2001 to 2012. Considering that water management in the basin aims at 

preventing any increase of irrigated areas, it is assumed that irrigated area in 2013 remained at the 2012 value (Fig. 4).  5 

 
Figure 4: Irrigated area in Lake Urmia basin assumed in WaterGAP and derived from MODIS (data from Kamali and Youneszadeh 

Jalili, 2015). 

GRACE total water storage anomalies. GRACE satellite data allow derivation of monthly time series of total water storage 

anomalies (TWSA) over all continents. In our study CSR GRACE RL05 mascon solutions (Save et al., 2016; 10 

http://www2.csr.utexas.edu/grace/RL05_mascons.html, last accessed: 17 Jul. 2018) were used. While it is recommended 

GRACE data products only for areas with at least 100,000 km2 (Watkins et al., 2015; Landerer and Swenson, 2012), studies 

by Tourian et al. (2015) and Lorenz et al. (2014) showed that signal strength or the so-called gravimetric resolution is 

determining the applicability of GRACE data. In fact, Lake Urmia basin has experienced an 8·109 m3 change in the water 

volume in the last decade, which allows the use of GRACE for monitoring the changes in water storage in the basin (Tourian 15 

et al., 2015). This fact is supported by the very small gain factor of 1.0083 for the Lake Urmia basin based on Community 

Land Model 4 (CLM4) for spherical harmonic solutions (Landerer and Swenson, 2012), which is the factor with which signal 

attenuation due to leakage could be balanced. We can assume errors of the applied GRACE monthly time series of TWSA are 

small compared to the uncertainty of TWSA as computed by WGHM, such that model calibration against GRACE TWSA is 

meaningful. 20 
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2.2.2 Inflow into Lake Urmia  

We used total annual observed inflow into the lake during 2003-2013 which was computed by the Urmia Lake Restoration 

Program )ULRP( based on 19 hydrometric stations around the lake (data available in http://ulrp.sharif.ir/ (In Persian), last 

accessed: 12 Nov. 2017). Monthly observations were not available. It was compared to the sum of simulated river discharge 

of all WGHM grid cells flowing into the grid cell representing Lake Urmia. 5 

2.2.3 Groundwater levels 

For evaluating the groundwater status in Lake Urmia basin, we used groundwater head data of 284 wells during 2003-2013 

(Fig. 5). To obtain a monthly time series of average groundwater level in the basin, first the average of all groundwater level 

in each 5° grid cell was calculated and then the average values of all grid cells (see Strassberg et al., 2009).  

 10 

Figure 5: Location of groundwater wells in Lake Urmia basin. 

2.2.4 Water withdrawals and consumptive uses 

There are no water withdrawals time series data in Lake Urmia basin. However, water withdrawals in the Lake Urmia basin 

for 2009 was reported to be 4,825·106 m3 (ULRP, 2015c) of which 89% is used for irrigation (Table 1). 57% of the withdrawn 

water is taken from surface water, the rest from groundwater. According to the report of Mahab Ghodss Consulting Engineering 15 

(2013), 16% of the water withdrawn for irrigation returns to groundwater and only 2% to surface water bodies, while the 

respective values for industrial and domestic water withdrawals are 50% and 10%. In this study, observed consumptive 

irrigation use was computed by subtracting total return flow from total water withdrawals for irrigation. Thus, it was set to 
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82% of water withdrawals for irrigation, while observed consumptive use in the domestic/industry sector was set to 40% of 

sectoral water withdrawals. The sum of consumptive water use in all sectors is the so-called total net abstraction (NA) from 

either surface water bodies or groundwater. 

Table 1: Water withdrawals in Lake Urmia basin in 2009 [106 m3] (data from URLP, 2015c). 

Source 
 Sector  

Total 
 Agricultural Domestic Industry  

Surface water   2424 276 33  2733 

Groundwater   1867 190 35  2092 

Total   4291 466 68  4825 

2.2.5 Climate 5 

The 0.5° gridded EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-corrected for ISIMIP (EWEMBI) dataset 

(Lange, 2016) was used as forcing data set. EWEMBI includes daily climate data for 1979 to 2013. For EWEMBI, ERA-

Interim Reanalysis Data were bias-corrected with monthly observation data on temperature, precipitation and the number of 

wet days as well as daily radiation data. We compared, for the period 2003-2013, basin-average monthly precipitation and 

temperature values of EWEMBI dataset with those derived as the mean over monthly values observed at 143 rain gauges and 10 

six temperature gauging stations. Correlation coefficient (CC) and Nash-Sutcliffe efficiency (NSE) were 0.985 and 0.946, 

respectively, for precipitation, and 0.996 and 0.983, respectively, for temperature. 

2.2.6 Lake volume 

Based on remote sensing data for lake extent and water table elevation as well as on in-situ bathymetry data, a time series of 

monthly water volume in Lake Urmia for the period 2003-2013 was generated by Tourian et al. (2015) (their Fig. 9). It was 15 

used for validation of the model variants.  

2.3 Calibration variants 

Calibration was done by trial-and-error. It included the modification time series of irrigated area, of NAg and NAs, with 

different multipliers for individual years, as well as the modification of a maximum of seven temporally constant model 

parameters or, in case of spatially heterogeneous parameters, multipliers. Modifications were done homogeneously for the 20 

whole basin. Months with assumed irrigation in Lake Urmia basin according to WaterGAP correspond to the actual irrigation 

months (Apr. and Oct.) in the basin according to Saemian et al. (2015), Thus, no correction of the seasonality of was needed 

in the calibration process. Fig. 6 shows a schematic of the calibration process for the four calibration variants. Please note that 

the identified parameter combinations are not the only ones that would lead to a good fit to observations.  
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Figure 6: Flowchart for the four calibration variants. T the black line is common in all variants, the mustard, blue, green and red 

lines represent calibration based on RS data (RS variant), RS data and inflow data (RS_Q variant), RS, inflow and groundwater 

level data (RS_Q_GW variant), and RS, inflow, groundwater level and net abstraction data (RS_Q_GW_NA variant), respectively. 

2.3.1 RS variant: Calibration using remote sensing data   5 

Irrigated area in Lake Urmia basin used in the standard version of WaterGAP is larger than the MODIS-based irrigated area 

until 2010, and smaller afterwards (Fig. 4). The largest differences, in 2004 and 2011, exceed 20%, or 1,000 km2, and the 

strongly increasing trend is not represented in WaterGAP. The constant value of irrigated area in WaterGAP is due to the fact 

that the Food and Agricultural Organization of the UN does not provide more recent estimates of irrigated area in Iran (see 

http://www.fao.org/nr/water/aquastat, last accessed: 13 Feb. 2018). To utilize the MODIS-based time series, consumptive 10 

irrigation water use in the whole basin of WaterGAP in year i was first adjusted by multiplying it by a correction factor CF1(i), 

with: 

𝐶𝐹1(𝑖) =
𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖)

 (1) 

where 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑀𝑂𝐷𝐼𝑆(𝑖) is irrigated area from MODIS in year i and 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑊𝐺 (𝑖) is irrigated area from WaterGAP database. The 

modified consumptive irrigation use was then added to the consumptive use of WaterGAP for the other sectors to obtain an 

updated basin-wide NA for each year. Then, modified monthly NAg and NAs in year i were calculated by multiplying, for 15 

each grid cell, the standard WaterGAP NAg and NAs values with the ratio of modified over standard basin-wide NA in year 
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i. Then, WGHM was run with the modified NAg and NAs time series, and a small number of WGHM parameters was varied 

until achieving a good fit to monthly time series of basin-average GRACE TWSA (Fig. 6, yellow lines).  

2.3.2 RS_Q variant: Calibration using remote sensing data and inflow into the lake  

Model parameters of WGHM driven by modified NAs and NAg from the RS variant were adjusted to achieve an optimal fit 

to both GRACE TWSA and the time series of annual total inflows to Lake Urmia (Fig. 6, blue lines).  5 

2.2.3 RS_Q_GW variant: Calibration using remote sensing data, inflow into the lake, and groundwater level  

Since WGHM does not compute groundwater level but only groundwater storage, and there is no good information of basin-

wide specific yield that would allow a translation of observed groundwater level variations into storage variations, model 

calibration in this variant aimed at optimizing the fit between the monthly time series of normalized basin-average observed 

groundwater levels (calculated by subtracting the mean and dividing by the standard deviation) to the monthly time series of 10 

normalized WGHM groundwater storage. To achieve a good fit to groundwater levels, and at the same time to GRACE TWSA 

and observed inflow into the lake, NAg and NAs as adjusted in variant RS had to be further modified. Keeping total NA(i) 

constant, correction factors 𝛼(𝑖) and 𝛽(𝑖) were  determined , with: 

𝑁𝐴(𝑖) = 𝛼(𝑖) × 𝑁𝐴𝑠(𝑖) + 𝛽(𝑖) × 𝑁𝐴𝑔(𝑖) (2) 

and new optimal values of temporally constant model parameters were identified (Fig. 6, green lines).  

2.3.4 RS_Q_GW_NA variant: Calibration using remote sensing data, inflow into the lake, groundwater level, and net 15 

abstractions  

In the most involved calibration variant, statistical data on water withdrawals in 2009 (Table 1) was used together with 

information on return flow to compute a consumptive irrigation water use 𝐶𝑢𝑖𝑟𝑟𝑖
𝑂𝑏𝑠 in the basin of 3,520·106 m3. To estimate 

irrigation use in all other years, with different climatic conditions, the per area consumptive irrigation water use from 

WaterGAP was used to compute, for each year, a climatic correction factor CF2(i) as 20 

𝐶𝐹2(𝑖) = (
𝐶𝑢𝑖𝑟𝑟𝑖

𝑊𝐺 (𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖)

−
𝐶𝑢𝑖𝑟𝑟𝑖

𝑊𝐺 (2009)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (2009)

) (3) 

where 𝐶𝐹2(𝑖) is represents the difference in the per area consumptive irrigation use in year i and the year 2009, 𝐶𝑢𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖) is 

consumptive irrigation use in year i obtained in standard WaterGAP. Finally, Eq. 4 was used for estimating water consumption 

time series over Urmia basin: 

𝐶𝑢𝑖𝑟𝑟𝑖(𝑖) = (
𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑀𝑂𝐷𝐼𝑆(2009)

) × 𝐶𝑢𝑖𝑟𝑟𝑖
𝑂𝑏𝑠(2009) + 𝐶𝐹2(𝑖) × 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖) (4) 

where 𝐶𝑢𝑖𝑟𝑟𝑖(𝑖) is consumptive irrigation water use in year i. Unlike in the RS_Q_GW variant, consumptive use of the other 

sectors was added based on withdrawal data in Table 1 and a return flow fraction of 60%, resulting in total NA. Then, new 25 
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values for correction factors 𝛼(𝑖) and 𝛽(𝑖) (Eq. 2) were identified by trial-and-error, and model parameters were modified to 

obtain an optimal fit to the data also used in the RS_Q_GW variant (Fig. 6, red lines).  

2.4 Performance indicators 

Performance of the calibration variants of WGHM was evaluated using CC, NSE, and root mean square error (RMSE), with 

(5) 𝐶𝐶 =
𝐶𝑜𝑣 (𝑂𝑏𝑠. 𝑆𝑖𝑚)

𝜎𝑜𝑏𝑠 × 𝜎𝑆𝑖𝑚
 

(6) 𝑁𝑆𝐸 = 1 −  
∑ (𝑆𝑖𝑚(𝑡) − 𝑂𝑏𝑠(𝑡))2𝑇

𝑡=1

∑ (𝑂𝑏𝑠(𝑡) − 𝑂𝑏𝑠̅̅ ̅̅ ̅)2𝑇
𝑡=1  

(7) 
𝑅𝑀𝑆𝐸 = √

1

𝑇
∑(𝑂𝑏𝑠(𝑡) − 𝑆𝑖𝑚(𝑡))

2
𝑇

𝑡=1

 

where Cov is covariance function, Obs is observed value, Sim is simulated value, t refers to time counter and T is the period 5 

length. Optimum values of CC and NSE are 1, and of RMSE 0.  

3 Multi-observation calibration: results and discussion 

3.1 Results 

In variants RS and RS_Q, annual time series of irrigated area in Lake Urmia basin derived from MODIS (Fig. 4), which were 

applied in all four calibration variants, lead to a more strongly increasing trend of NA (consumptive water use) and NAs as 10 

compared to the standard WaterGAP version (Fig. 7). Due to the dominant irrigation with surface water assumed in WaterGAP, 

return flows from irrigation are larger than groundwater withdrawals, and there is a net recharge of groundwater by irrigation, 

i.e. a negative NAg. Therefore, a more strongly increasing irrigation with surface water in variants RS and RS_Q leads to 

return flows to groundwater that increase more strongly over time, i.e. NAg becomes increasingly negative with time (Fig. 7).  

Average NA in 2003-2010 decreased from 4,185·106 m3/yr in the standard version to 3,815·106 m3/yr; and increased from 15 

4,233·106 m3/yr to 4,781·106 m3/yr in 2011-2013. Increased net recharge of groundwater by return flows, however, was found 

to be incompatible with decreasing observed groundwater levels (Fig. 8c). Positive NAg values were found to be necessary to 

simulate the observed lowering of groundwater levels from 2003 to 2013 Therefore, in variant RS_Q_GW, NAg and NAs 

were adjusted according to Eq. 2 by applying 𝛼  and 𝛽 time series presented in Table 2. With these adjustment factors, average 

NAg changed from -2,294·106 m3/yr in variants RS and RS_Q to 1,147·106 m3/yr in variant RS_Q_GW (Fig. 7b). Keeping 20 

annual NA constant, NAs decreased accordingly from 6,373·106 m3/yr to 2,931·106 m3/yr. Total NA slightly decreased in 

variant RS_Q_GW_NA as compared to the other calibrations variants.  
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Figure 7: Time series of net abstractions from surface water (a) and groundwater (b), as well as total net abstractions (i.e. 5 
consumptive use) (c) in Lake Urmia basin in the standard version of WaterGAP as well as the various calibration variants. 

Table 2: Correction factors for modifying NAs and NAg (see Eq. 2). 

Variant  RS_Q_GW  RS_Q_GW_NA 

Year  𝛼 𝛽  𝛼 𝛽 

2003  0.47 -0.48  0.39 -0.41 

2004  0.46 -0.49  0.37 -0.39 

2005  0.46 -0.50  0.39 -0.46 

2006  0.46 -0.50  0.38 -0.43 

2007  0.46 -0.50  0.42 -0.43 

2008  0.45 -0.52  0.29 -0.63 

2009  0.46 -0.49  0.38 -0.57 

2010  0.47 -0.48  0.43 -0.41 

2011  0.47 -0.47  0.56 -0.49 

2012  0.46 -0.51  0.49 -0.52 

2013  0.45 -0.52  0.47 -0.54 

  

 

 

 

 

 

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

2003 2005 2007 2009 2011 2013

N
et

 a
b

st
ra

c
ti
o

n
 f

ro
m

 s
u
rf

ac
ew

at
er

 [
1
0

6
m

3
]

Time [years]

(a)

-3,000

-2,000

-1,000

0

1,000

2,000

2003 2005 2007 2009 2011 2013

N
et

 a
b

st
ra

c
ti
o

n
 f

ro
m

 g
ro

u
n
d

w
at

er
 [

1
0

6
m

3
]

Time [years]

(b)

3,000

3,500

4,000

4,500

5,000

2003 2005 2007 2009 2011 2013

T
o

ta
l 
n
et

 a
b

st
ra

c
ti
o

n
 [

1
0

6
m

3
]

Time [years]

(c)

2500
3000
3500
4000
4500
5000

2003 2005 2007 2009 2011 2013

C
o

n
su

m
p

ti
v
e 

w
at

er
 u

se
 [

1
0

6
m

3
]

Standard RS and RS_Q

RS_Q_GW RS_Q_GW_NA

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-318
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 25 July 2018
c© Author(s) 2018. CC BY 4.0 License.



14 

 

 
Figure 8: Time series of monthly TWSA of GRACE and WGHM (a), annual inflow into the lake Q from observations and WGHM 

(b) normalized observed groundwater level and normalized groundwater storage from WGHM (c), groundwater storage change 

GWSC from month to month from observations and WGHM (d) and the monthly lake volume anomaly (e), for standard WaterGAP 

and the four calibration variants. 5 
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Model runs driven by the different NAg and NAs of the four variants lead to the best fit to the variant-specific 

observational datasets if seven model parameter were re-set to the values listed in Table 3. Please note that the listed parameter 

sets are not the only possible ones but those requiring the least number of parameters to be changed. In all four calibration 

variants, the minimum daily precipitation values for which groundwater recharge can occur in semi-arid regions (Döll and 

Fiedler, 2008) was slightly decreased (increasing groundwater recharge) and the maximum canopy storage was increased 5 

(increasing canopy evaporation). The more observational data types were considered in the calibration process, the higher was 

the number of parameters that needed to be adjusted whereas the required changes in the parameter decreased.  

According to GRACE observations, total water storage in Lake Urmia basin declined by 9.9·109 m3 from its annual 

average in 2003 to its annual average in 2013, while the standard WGHM version computes a much smaller loss. According 

to the data of Tourian et al. (2015), about 80 % of the total water loss in the basin was due to the loss of lake water. A stronger 10 

increase of human water abstractions over time (Fig. 7a), doubling of rooting depth and thus soil water capacity and a higher 

maximum canopy storage everywhere in the basin as well as an increase of maximum active lake depth of Lake Urmia from 

5 m to 9 m in in variant RS result in a good fit of WGHM TWSA to GRACE TWSA (Fig. 8a). With the larger soil and canopy 

water storage capacities, runoff and thus inflow into Lake Urmia decrease as compared to standard WGHM (Fig. 8b). More 

water could be stored in canopy, soil and the lake at the beginning of the period such that storages could react to the decline 15 

of inflows and decrease after 2007. Still, simulated inflows into Lake Urmia computed in variant RS are still much higher than 

the observed values (Fig. 8b). Seasonality of groundwater levels is totally misrepresented (Figs. 8c, d). 

Table 3: WGHM parameter values adjusted by calibration in the different model variants. 

Variant Rooting 

depth 

multiplier 

Maximum 

active lake 

depth 

Runoff 

coefficient 

multiplier 

Multiplier for the 

fraction of total 

runoff  that becomes 
groundwater 

recharge 

Maximum amount 

of groundwater 

recharge per day 
multiplier 

Minimum amount of 

daily precipitation 

necessary in arid/semi-
arid areas to get 

groundwater recharge 

[mm] 

Maximum 

canopy 

storage 
[mm] 

Standard 1 5 1 1 1 12.5 0.3 

RS 2 9 1 1 1 10 1 

RS_Q 2.8 10 0.9 1 1 10 1 

RS_Q_GW 3 9 0.8 0.5 4 10 1 

RS_Q_GW_NA 3 8 0.8 0.5 5 10 1 

 

The required reduction of computed lake inflow (Q) can be achieved (Fig. 8b) by further increasing soil water storage 20 

capacity in variant RS_Q, together with small adjustment of the runoff coefficient and active lake depth (Table 3), while the 

fit to GRACE TWSA remains good (Fig. 8a). However, seasonality of groundwater table fluctuations is still not simulated 

properly. This could only be achieved by adjusting the sources of total net abstractions. Only if net abstractions from 

groundwater are multiplied by approximately -0.5 (Table 2), in variant RS_Q_GW, does the seasonality of computed 

groundwater storage variations fit to observations (Fig. 8c). NAg in the standard, RS and RS_Q variants is negative, which  25 
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means that there is artificial groundwater recharge due to irrigation by surface water during the summer irrigation months, 

leading to an increase in groundwater level and storage. Groundwater level observations, however, show a decrease during 

this period, indicating that irrigation causes a net abstraction from groundwater. Multiplication of standard WGHM NAg by a 

negative value leads to a net abstraction of water from the groundwater body, and results in a seasonality of groundwater 

storage that fits well to the seasonality of the mean groundwater table in the basin. In addition to the NAg and NAs adjustment, 5 

two groundwater recharge-related parameters had to be re-set in variant RS_Q_GW (Table 3). The fit to observed TWSA and 

lake inflow remains good (Figs. 8a, b). Use of local information on water withdrawals and return flows in variant 

RS_Q_GW_NA barely changed the optimal parameter values (Table 3) and the fit to all observational data (Fig. 8).  

From the results of the RS_Q_GW_NA variant, which was the most comprehensive calibration variant, we estimated 

average specific yield of the aquifers in the Lake Urmia Basin, i.e. the change in groundwater storage per unit change of the 10 

elevation of the groundwater table. We first divided the standard deviation of the simulated groundwater storage time series 

by the basin area to obtain groundwater storage variability in terms of equivalent water height and then divided this value by 

the standard deviation of the observed groundwater levels. This resulted in a specific yield estimate of 0.02, which is equal to 

the average value derived from pumping tests at 10 locations south of the lake (Hamzekhani and Aghaie, 2015). Estimated 

specific yield allows to estimate an “observed” groundwater water storage anomaly, and thus an observed decline of 15 

groundwater storage between the year 2003 and 2013 of 1.8·109 m3, accounting for 18% of the observed total water storage 

loss in the basin. We compared time series of simulated groundwater storage changes from month to month (GWSC) to those 

derived from observations of groundwater level changes. Since groundwater level observations were done only once per month 

and at different days, three-month moving averages were compared (Fig. 8d). Observations and model variants RS_Q_GW 

and RS_Q_GW_NAg agree that the strongest monthly increase in groundwater storage occurs in early spring, and the largest 20 

decrease in early autumn.  

The performance indicators NSE, CC, and RMSE with respect to monthly TWSA (Fig. 8a), annual Q (inflow to Lake 

Urmia, Fig. 8b) and monthly GWSC (Fig. 8d) are presented in Table 4 for the standard version and four calibrated variants. 

Regarding the fit to TWSA observations, NSE increased from 0.48 in the standard version to 0.84 in the RS variant for which 

TWSA was the only observation considered, and increased slightly to 0.88 when groundwater observations were taken into 25 

account in variants RS_Q_GW and RS_Q_GW_NA variants. This performance improvement is also reflected by CC and 

RMSE. Performance with respect to observed inflow to the lake only improves marginally by calibration against TWSA, in 

variant RS. Only calibration against inflow observations strongly improves model performance, with NSE jumping from 

negative values for the standard and RS variants to values around 0.9. Integration of groundwater observations in again lead 

to a small performance improvement (see also RMSE). The good performance shown by CC for all model variants indicates 30 

that all model variants identify correctly high and low flow years. In the case of GWSC, all performance indicators show that 

consideration of remote sensing and streamflow observations only do not lead to an acceptable simulation of groundwater 

storage. Only the two variants for which groundwater observations were taken into account lead to satisfactory performance. 

With a maximum NSE of 0.59, the fit to GWSC remains lower than the one to TWSA and lake inflow, which may also be due 
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to the uncertainty in estimating the basin-wide average monthly groundwater storage behavior from well observations. The 

most data-demanding variant RS_Q_GW_NA achieves the best fit to all three observational time series. The fit, however, is 

only slightly better than the fit of variant RS_Q_GW, and a much more variable time series of NAg and NAs correction 

coefficients (Table 2) is necessary as compared to variant RS_Q_GW (Table 2). 

For validation, we compared the lake volume simulated by WGHM with the observed lake volume of Tourian et al. 5 

(2015) (Fig.8e and Table 4). All calibrated variants improve simulation of the lake volume as compared to the standard 

WGHM. While the standard model underestimates the decline in both lake water and TWSA, all calibrated variants simulate 

the TWSA trend correctly, but both variant RS and RS_Q overestimate the decline of lake water storage, thus compensating 

for not decreasing sufficiently groundwater storage (Fig. 8d) due to assuming a net groundwater recharge due to surface water 

irrigation. Only variants RS_Q_GW and RS_Q_GW_NA simulate not only the groundwater dynamics but also the decline of 10 

lake water volume correctly. NSE for the monthly lake volume anomaly is 0.68 for the standard WGHM and improves to 0.77 

for RS, where GRACE TWSA could be simulated well by approximately doubling both soil and lake water storage capacity 

(Table 3). Including groundwater level data further improved the fit to observed lake volume, leading to a very high NSE of 

0.94 or 0.95 (Table 4). We conclude that calibration of WGHM against diverse observations (that do not include lake volume 

observations) leads to improved simulation of lake volume dynamics. 15 

Table 4: Performance of standard and calibrated WGHM variants with respects to observations of TWSA, inflow to lake, GWSC 

and lake volume anomaly.  

Phase  Variables  Criteria Standard RS RS_Q RS_Q_GW RS_Q_GW_NA 

  Monthly TWSA  CC 0.84 0.93 0.92 0.94 0.94 

C
al

ib
ra

ti
o
n
 

   NSE 0.48 0.84 0.83 0.88 0.88 

   RMSE [mm] 77 42 44 38 37 

 Annual Q  CC 0.94 0.96 0.95 0.97 0.97 

   NSE -8.51 -2.33 0.88 0.91 0.93 

   RMSE [106 m3/year] 4121 2438 458 390 358 

 Monthly GWSC  CC -0.14 0.05 -0.31 0.80 0.82 

   NSE -0.72 -0.39 -1.05 0.55 0.59 

    RMSE [106 m3/month] 271 244 296 109 103 

V
al

id
at

io
n
  

Monthly lake 

volume anomaly 

 CC 0.82 0.97 0.99 0.98 0.97 

  NSE 0.68 0.77 0.81 0.94 0.95 

 
 RMSE [106 m3] 1922 1837 1611 757 739 
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3.2 What we learn from the calibration? 

The output of hydrological models at all scales is uncertain, as these models suffer from uncertain model inputs (e.g., climate 

variables or soil properties), parameter values and model structure (Döll et al., 2016). To decrease uncertainty, model 

calibration against independent data (e.g. observations) is done by adjusting, for example, model parameters. While 5 

observations of river discharge are ideally suited for validating hydrological models because the point observation integrates 

over processes in the whole upstream basin of the gauging station, the well-known problem of equifinality (Beven and Freer, 

2001) asks for additional types of observations to be added (Döll et al., 2016). Without additional data, more than one parameter 

combination can lead to a good fit to e.g. observed river discharge, but while e.g. total groundwater storage dynamics would 

be simulated very differently by model variants with the parameter sets that simulate river discharge time series equally well.  10 

Global hydrological models suffer from a particularly high uncertainty, in particular as model input is uncertain. For 

example, climate input data are based on low-density climate observations and information on water use is often very scarce 

and outdated. It is generally not possible to obtain, for modelling at the global scale, the same detailed data for a specific region 

than in case of modelling just this region. Still, a global hydrological model includes all data for simulating water flows and 

storages in specific regions on interest everywhere on the globe, and model calibration against multiple (regional) observations 15 

is a means for improving performance of the global model regionally. In this way, an efficient simulation of regional water 

flows and storages can be achieved, possibly as an alternative to a costlier setup of a regional model. More importantly, the 

regional-scale multi-observation calibration done in this study can serve to inform efforts for global-scale but region-specific 

multi-observation calibration of global hydrological models that would allow to strongly improve performance of global 

hydrological models at the scale that they are made for (Döll et al., 2016). 20 

Remote sensing data are the most accessible data for calibration of global hydrological models, including TWSA 

from GRACE. Therefore, the model variant RS only used globally available RS data, MODIS and GRACE data products. 

Please note, however, that MODIS data can only be used to determine the temporally variable extent of irrigated areas in dry 

regions of the globe such that the important adjustment of temporal dynamics of statistics-based irrigated areas is not possible 

everywhere. GRACE TWSA quantify the mean anomalies and changes of water storage aggregated over all land water storage 25 

compartments such as snow, soil, groundwater, lakes, wetlands and rivers. Considering GRACE TWSA improved the 

simulation of the important water storage compartment Lake Urmia. However, the unsatisfactory simulation of inflow into 

Lake Urmia and of groundwater dynamics clearly shows that a good fit to observed TWSA does not guarantee a good 

simulation of river flows or storages. Still, calibration against TWSA did, even if only very slightly, improve model 

performance also with respect to lake inflow and groundwater dynamics.  30 

By adding discharge data, the model was able to simulate TWSA and Q accurately without changing the inputs of the 

model and only based on modifying the parameters, mainly increasing the rooting depth further (Table 3). Interestingly, the 

significant increase of the rooting depth multiplier from 2.0 to 2.8 strongly increased evapotranspiration but barely affected 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-318
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 25 July 2018
c© Author(s) 2018. CC BY 4.0 License.



19 

 

TWSA (Figs. 7a, b). In the case of the Lake Urmia basin, no trade-off between the fit to TWSA and river discharge exists as 

the performance indicators with respect to TWSA for variant RS_Q are even slightly higher than for variant RS (Table 4).  

Groundwater level data were found to be necessary to identify that different from what is estimated by the standard 

version of WaterGAP, there is more irrigation with groundwater and less with surface water such that a net abstraction of 

groundwater and not artificial groundwater recharge occurs due to irrigation. Information on groundwater level dynamics with 5 

a suitable spatial density is not readily available for most regions of the globe. To simulate groundwater dynamics properly, 

was not enough to adjust parameters of the hydrological model (in particular two groundwater recharge related model 

parameters, Table 3), but it was absolutely necessary to alter the fractions of net water abstractions that come from groundwater 

and surface water bodies. Only then, groundwater storage decline by net groundwater abstraction was simulated, and lake 

water storage decline could be correctly simulated instead of being overestimated when only TWSA and lake inflow data are 10 

used for calibration. As in the case of adding lake inflow as calibration data type, no trade-off between the fits to the different 

data types occurred.  

Consideration of regional estimates of human water withdrawals in a specific year as well as regional estimates of 

return flow fractions in variant RS_Q_GW_NA does not improve the fit to observations significantly and only leads to slight 

parameter adjustments. This indicates a reasonable simulation of per hectare water consumption for irrigation by the 15 

WaterGAP model. To summarize, consideration of more and more observations and other independent data results with 

improved fits to three type of observations, TWSA, lake inflow and groundwater dynamics, while at the same time more and 

more parameters need to be adjusted (Tables 3 and 4). No trade-offs between the fits to the three observational data types 

occurred in the case of the Lake Urmia basin. 

While introduction of annually varying corrections for NAg and NAs (Eq. 2, Table 2) for variants RS_Q_GW and 20 

RS_Q_GW_NA leads to an optimal fit to multiple observation types, it may be preferable to have instead of 11 free parameters 

just 1, i.e. a temporally constant 𝛽.With a temporally constant 𝛽 of -0.5 in variant RS_Q_GW, the fit to TWSA and inflow to 

the lake does not change at all, and groundwater storage is only slightly increased in the dry year 2008 and 2009. Thus, given 

the uncertainty of observed groundwater storage variations, a temporally constant NAg correction factor is sufficient for 

achieving a good fit to all observations. 25 

To assess the potential of using observed lake volume time series as calibration target and not only for validation, we 

also calibrated WGHM against RS observations and lake volume (RS_LV variant) and against RS, lake inflow and lake volume 

(RS_Q_LV variant). In the RS_LV variant, simulation of TWSA and GWSC did no change appreciably but not only simulated 

lake volume anomaly but also simulated inflow into the lake greatly improved as compared to the RS variant. NSE for monthly 

lake volume anomaly and annual lake inflow reaches 0.95 and 0.44, respectively. Inflow into the lake is much less 30 

overestimated than in variant RS. To achieve these fits, the variant RS parameters where adjusted by increasing the rooting 

depth multiplier to 2.5 and setting the potential evaporation multiplier to 2. Adding lake volume observations on top of lake 

inflow observations in RS_Q_LV variant leads to an improved fit to lake volume observations, with NSE increasing from 0.81 

to 0.95, but the fit of observed inflow into the lake slightly worsens from 0.88 to 0.85. In this variant, the RS_Q variant 
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parameters were used, except the maximum active lake depth was set to 9 m and the potential evaporation multiplier to 2. We 

conclude that in the case of the end Lake Urmia, calibration against time series of lake volume anomalies could, in the absence 

of inflow data, help to improve simulation of inflow, while calibration against time series of inflow could, in the absence of 

lake volume observation, improve simulation of lake volume anomalies. Still, calibration to both observational data types leads 

to the best simulation of both annual lake inflow and lake volume anomalies. However, the groundwater storage dynamics 5 

could not be improved without calibration against groundwater level dynamics. 

 Finally, we found that calibration aimed at optimizing the three criteria CC, NSE and RMSE with respect to monthly 

time series of observed total, groundwater and lake storages, with similar achieved performance values (Table 4), does not 

necessarily lead to similar estimates of total and compartmental water losses over the whole time period 2003 to 2013. For 

example, variants RS and RS_LV have the same values for all three performance criteria with respect to TWS (not shown) but 10 

TWS loss between 2003 and 2013 is simulated to be 11.15·109 m3 and 7.86·109 m3, respectively (Table 5). TWS loss according 

to variant RS_Q_GW_NA is, with 10.04·109 m3, in between and quite different, even though NSE is only 0.04 better. We 

conclude that in case of relevant trends, the calibration criteria should include minimization of the difference between observed 

and simulated trends. 

Table 5. Water loss in Lake Urmia basin between 2003 and 2013 as observed and simulated by the different calibrated WGHM 15 
variants. 

  
 Water loss between 2003 and 2013 [109 m3]  

(mean annual storage in 2003 minus mean annual storage in 2013) 

  Observed Standard RS RS_LV RS_Q RS_Q_LV RS_Q_GW RS_Q_GW_NA 

Total  9.9 3.62 11.15 7.86 12.20 8.24 9.78 10.04 

Groundwater   1.8 0.17 0.11 0.06 0.02 0.03 2.68 2.52 

Soil water  N.A. 0.15 0.15 0.20 0.29 0.24 0.25 0.23 

Lake water  8.0 3.16 10.76 7.37 11.83 7.78 6.62 7.02 

4 Differential impacts of human water use and climate variation on Lake Urmia basin 

The impact of human water use and man-made reservoirs on water flows and storages can be quantified by comparing the 

output of WGHM in which human water use and man-made reservoirs are considered (this is normally done, now called 

WGHM-ANT) with the output of a model run for naturalized conditions, where it is assumed that there are no reservoirs and 20 

no human water use (WGHM-NAT). We determined that the results of the naturalized run differ by less than 2% from a run 

with reservoirs but without human water use. Therefore, differences between WGHM-ANT and WGHM-NAT outputs can be 

considered to be caused by human water use. Note that all simulated and observed storages (total, groundwater, lake) are not 

absolute values but anomalies with respect to the mean water storage during 2004-2009 (baseline period used for the provided 

GRACE data) 25 
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When comparing TWSA under anthropogenic and naturalized conditions in Fig. 9a, remember that TWSA in Lake 

Urmia basin is dominated by water storage in Lake Urmia. Seasonal TWSA variation of WGHM-ANT and WGHM-NAT do 

not differ much. Starting after the heavy rain in April 2007 and strongly caused by the lack of spring precipitation in 2008, 

both WGHM-ANT and WGHM-NAT (as well as GRACE TWSA) show a decreasing trend that is only somewhat more 

pronounced in WGHM-ANT (Fig. 9a). Thus, this decrease is mainly due to dry climate conditions during the well-known 5 

severe drought of 2008, with an annual precipitation of only 241 mm, i.e. 74% of the mean value for 2003-2013 (Fig. 8b). 

Also in the absence of human water use, total water storage would not have recovered after 2009 but would have stayed 50-

100 mm below the values occurring before 2008. However, while in WGHM-NAT the minimum storage in late summer, i.e. 

the period with high irrigation, remains at a constant level after 2009, it decreases each year in WGHM-ANT due to 

consumptive increasing irrigation water use (Fig. 7c). The linear trend of WGHM-ANT and WGHM-NAT TWSA time series 10 

for the period 2003-2013 is -24.5 mm/yr (GRACE: -24.4 mm/yr) and -11.8 mm/yr, respectively. The TWSA trend for two 

sub-periods before and after 2008, 2003-2007 and 2009-2013 -14.2 and -16 mm/yr, respectively, for WGHM-ANT and only 

0.7 and -3.85 mm/yr, respectively, for WGHM-NAT. The last mentioned trends are not significant at the 5% confidence level 

based on Mann-Kendall’s test. According to WGHM, the basin lost, on average during 2003-2013, 1,274·106 m3 water/yr, 

while in the absence of human water use, it would have lost 614·106 m3 water/yr, i.e. 52% less. Of this total water volume, 15 

920·106 m3/yr of lake water was lost, while only 548·106 m3/yr would have been lost without human water use (Fig. 9b). 

The lower lake water loss under naturalized conditions is clearly caused by more inflow into the lake even though 

lake evaporation is somewhat higher under naturalized inflow conditions due to the larger lake extent. While mean inflow 

during 2003-2013 is computed to be 4,454·106 m3/yr under naturalized conditions, it decreases by 41% to 2,639·106 m3/yr 

under anthropogenically altered conditions (Fig. 9c). The difference is only half of NA as only a fraction of (potential) net 20 

abstractions from surface water NAs (required to allow optimal irrigation) could be done due to a lack of water availability in 

the surface water bodies and because some part of NAg is provided a decrease in groundwater storage. The computed 

percentage decline of lake inflow is similar to the values of Shadkam et al. (2016) for the years 2003-2009 (comp. their Figs. 

8 and 9).  

A loss of lake water volume is expected for these low inflows; since 2008, inflow has never reached 3,085·106 m3, 25 

the value estimated to be the minimum environmental water requirements that compensates the amount of annual evaporation 

from of the lake surface (Abbaspour and Nazaridoust, 2007). In WGHM-NAT, inflow was lower than 3,085·106 m3 only in 

2008 and 2009. Still, even in the WGHM-NAT, the average inflow into the lake from 2009-2013 of 3,670·106 m3 would have 

been only enough to keep the lake from further loosing volume but would not have been enough for a recovery to conditions 

between 2003 and 2007 (Fig. 9b), as during this time period, mean inflow under naturalized conditions would have been 54% 30 

larger. The ratio of inflow into the lake over precipitation in the basin varies strongly among the years, reaching a maximum 

value of 0.30 and 0.41 for anthropogenic and naturalized conditions, respectively, in 2003, and a minimum value of 0.11 and 

0.18 in the drought year 2008. For the period 2009-2013, these ratios are, with 0.11 (ANT) and 0.22 (NAT), much smaller 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-318
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 25 July 2018
c© Author(s) 2018. CC BY 4.0 License.



22 

 

than the values for 2003-2007, 0.21 and 0.32. Thus, the drought year 2008 as well as the still relatively dry climate in the last 

five years of the study period play an equally important role as human water use in the decline of inflow and lake water storage. 

 
Figure 9: Time series of simulated (variant RS_Q_GW_NA) and observed monthly TWSA (a), lake water storage anomaly (b), 

annual inflow into the lake (c), and monthly groundwater storage anomaly (d), under anthropogenic (WGHM-ANT) and naturalized 5 
(WGHM-NAT) conditions. 
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While groundwater storage is estimated to decline by 251·106 m3/yr during 2003-2013 in WGHM-ANT, the decline 

is only 27·106 m3/yr in WGHM-NAT (Fig. 9d). Different from lake water storage, groundwater storage would have recovered 

after 2008/2009 if there had been no (increasing) net groundwater abstractions (Fig. 9d, compare Fig. 7b), even though mean 

groundwater recharge was on 2,579·106 m3/yr during 2009-2013 as compared to 3,310·106 m3/yr during 2009-2013. In 

WGHM, the groundwater compartment is modelled using a linear storage model where the change of groundwater storage is 5 

the difference between inflows to groundwater and outflow to surface water bodies, supplement by a prescribed outflow due 

to human groundwater use in case of anthropogenic conditions. Long-term average outflow from groundwater to surface water 

is proportional to the groundwater storage. Therefore, in case of less groundwater recharge, also the outflow to surface water 

bodies is decreased, while mean groundwater storage decreases only slightly, in particular in areas with a low average 

groundwater recharge like the Lake Urmia basin. In the absence of groundwater abstractions, the groundwater level cannot 10 

drop below the level of the surface water in WGHM. WGHM cannot simulate the case where groundwater switches from 

discharging groundwater to surface water bodies to receiving water from rivers and other surface water bodies. In case of 

groundwater abstractions, however, storage can drop below the level of the surface water, and outflow to surface water bodies 

ceases in this case.  

In the WGHM-ANT simulations, such a drop below the surface water level, indicated by a negative water storage, 15 

value occurs in 7 out of the 22 0.5° grid cells within the basin (Fig. A1a). In 6 of these 7 grid cells, groundwater levels were 

stable during 2003-2007, and only declined from 2008-2013, caused by increased NAg and decreased groundwater recharge 

in the latter part of the study period. It is these 7 cells that cause the basin groundwater decline under anthropogenic condition 

shown in Fig. 9d. For naturalized conditions, peak seasonal water storages decrease somewhat but minimum water storages 

cannot drop appreciably given the very low minimum seasonal storage values already during the relatively wet five first years 20 

of the growing period (Fig. A1b). Thus, contribution of human water use to groundwater storage decline might therefore be 

overestimated as WaterGAP cannot simulate a possible drop of the groundwater table below the surface water level in the 

absence of groundwater abstractions. To summarize, human water use was the reason for 52% of the total water loss in the 

basin, for a maximum of 90% of the groundwater loss and for 40% of the Lake Urmia water loss during 2003-2013, and lake 

inflow was 41% less than it would have been without human water use.  25 

5 Conclusions 

This study investigated the differential impact of human water use and climate variations on water storage in the Lake Urmia 

basin, including total water, groundwater and lake water storage, as well as on the inflow into the lake between 2003 and 2013. 

This was done by utilizing the information contained in multiple types of observation data to calibrate, specifically for the 

Lake Urmia basin, the global hydrological model WGHM that takes into account the impact of human water use and man-30 

made reservoirs on flows and storages. Using the best-performing model variant, the impact of human water use was 

determined by comparing the output of a naturalized run, where human water use was assumed to be zero, with the run with 
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the historic water use. To understand the value of different observational data types for calibration, four calibration variants 

were defined where, in a step-wise fashion, basin-wide averages of 1) remote sensing data (for irrigated area and TWSA), 2) 

in-situ streamflow observations (for of lake inflow), 3) groundwater well data (groundwater level and storage), and 4) statistical 

data on water withdrawals in the basin were added. A time series of observed lake volume was used for validation. 

We found that the time series for water demand by irrigation, as assumed in the standard WGHM version, had to be 5 

adjusted using MODIS data such that the modification of four model parameters could result in a good fit to observed TWSA. 

Consideration of these remote sensing data somewhat improved the dynamics of both inflow into Lake Urmia and lake water 

storage, inflow into the lake was still strongly overestimated by a factor of 0.92%, and groundwater dynamics should a strongly 

shifted seasonality. Additional calibration against observed inflow into the lake did not affect TWSA simulation and slightly 

improved the simulation of the lake water storage anomaly. Only the consideration of monthly time series of groundwater 10 

level variations leads to the adjustment the fractions of human water use taken from groundwater and surface water and thus 

to simulating the correct seasonality of groundwater storage. Only by calibrating against these observations was is possible to 

simulate the observed groundwater loss, and loss of loss of lake volume was no longer overestimated. Statistical information 

on sectoral water withdrawals in the basin for one year as well as estimates for sectoral return flow fractions further improved 

the model, but only slightly. Based on this study, we recommend that in case of relevant trends in observations, one of the 15 

calibration criteria assess the difference between observed and simulated trends, and not only differences between e.g. monthly 

or annual values. 

The calibration exercise showed that the calibration variant for which the highest number of observational data types 

were used, WGHM variant RS_Q_GW_NA, showed the best fit to all observations. Certainly, no general conclusions on the 

worth of multiple observation data types for model calibration, including trade-offs among fit to multiple data types, can be 20 

derived from this study. Conclusions are expected to be basin-specific, and Lake Urmia basin is particular with respect to 1) 

draining into a large end lake that dominates TWSA, 2) the strong impact of human water use and 3) the fact that the standard 

WGHM version estimates a net recharge to the groundwater due to surface water irrigation, which had to be corrected to a net 

abstraction. 

Based on the good fit of WGHM variant RS_Q_GW_NA to four types of observational data, we are confident that 25 

human water use reduced lake inflow that would have occurred without human water use during 2003-2013 by about 41%. 

About 52% of the total water storage loss in Lake Urmia basin and only 40% of lake water loss during this time period was 

due to human water use, and the 48% and 60%, respectively, to climate variations. The human impact on groundwater storage 

losses of 90% may be somewhat overestimated by WGHM because climate-driven loss under naturalized conditions may be 

underestimated due to the simplified representation of groundwater-surface water exchanges in the model.  30 

GRACE TWSA data indicate an increasing trend in water storage in the basin during 2014-2017 due to both the wet 

years 2015/2016 with and less water use due to water management. This trend is about half as strong as the decreasing trend 

during 2003-2013. Further strengthening of efforts for decreasing human water use in the basin should be undertaken, while 

at the same time, climate change must be constrained to prevent strong decreases of precipitation and runoff.  
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Appendix A: Simulated groundwater storage in individual grid cells  

 
Figure A1: Simulated groundwater storage in each of the 22 0.5° grid cells in Lake Urmia basin under anthropogenically altered 

(Fig. A1a) and naturalized conditions (Fig. A1b). 15 
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