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Abstract. During the last decades, the endorheic Lake Urmia basin in northwestern Iran has suffered from declining 

groundwater tables and a very strong reduction in the volume as well as recently in the extent of Lake Urmia. For the case of 

Lake Urmia basin, this study explores the value of different locally and globally available observation data for adjusting a 

global hydrological model such that it can be reliably used for distinguishing the impacts of human water use and climate 

variations. The WaterGAP Global Hydrology Model (WGHM) was for the first time calibrated against multiple in-situ and 15 

spaceborne data to analyse the decreasing lake water volume, lake river inflow, loss of groundwater, and total water storage 

in the entire basin during 2003-2013. Then the best-performing calibration variant was run with or without considering water 

use to quantify the impact of human water use. Observations encompass remote-sensing based time series of annual irrigated 

area in the basin from MODIS, monthly total water storage anomaly (TWSA) from GRACE satellites, and monthly lake 

volume anomalies. In-situ observations include time series of annual inflow into the lake and basin averages of groundwater 20 

level variations based on 284 wells. In addition, local estimates of sectoral water withdrawals in 2009 and return flow fractions 

were utilized. Four calibration variants were set up in which the number of considered observation types was increased in a 

stepwise fashion. The best fit to each and all observations, including the time series of lake volume not used for calibration, 

was achieved if the maximum amount of observations was used for calibration. Calibration against MODIS and GRACE data 

alone improved simulated inflow into Lake Urmia but inflow and lake volume loss were still still overestimated, while 25 

groundwater loss was understimated and seasonality of groundwater storage was shifted as compared to observations. Lake 

and groundwater dynamics could only be simulated well if calibration against groundwater levels led to an adjustment the 

fractions of human water use from groundwater and surface water. Thus, in some basins, globally available space-born 

observations may not suffice for improving the simulation of human water use. According to our study, human water use was 

the reason for 50% of the total basin water loss of about 10 km3 during 2003-2013, for 40% of the Lake Urmia water loss of 30 

about 8 km3 and for up to 90% of the groundwater loss. Lake inflow was 40% less than it would have been without human 

water use. This study proved that even without human water use Lake Urmia would not have recovered from the significant 
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loss of lake water volume caused by the drought year 2008. These findings can support water management in the basin and 

more specifically Lake Urmia restoration plans.  

1 Introduction 

Iran is a country with arid and semi-arid climate where population growth and the government’s aim of food self-sufficiency 

has led to increasing irrigated crop production and exploitation of surface water and groundwater resources. Climate change 5 

has resulted in increased temperatures and, in particular the northwest of the country, in decreased precipitation (Tabari and 

Talaee, 2011a, b) and thus decreased renewable water resources. In the last decades, numerous wetlands and lakes in Iran have 

dried up, and groundwater levels have strongly declined in most areas (Madani et al., 2016). The most serious disaster has 

occurred in the Lake Urmia basin, an interior basin in the northwest of Iran located in the three provinces West Azarbaijan, 

East Azarbaijan, and Kurdistan that covers an area of 52,000 km2 (Fig. 1). At the downstream of the basin, 17 permanent rivers 10 

and 12 seasonal rivers discharge into the largest natural water body in Iran, Lake Urmia. Over the past two decades, climate 

variations and human activities (Hassanzadeh et al., 2012) have decreased inflow into the lake. Precipitation in the basin shows 

a decreasing trend over the period 1951-2013, with particularly low values after 1995, and evaporation has increased (Alizadeh-

Choobari et al., 2016). Lake water volume is now approximately 30·109 m3 below its historical maximum (ULRP, 2015a).  

 15 

 
Figure 1: Location of Lake Urmia basin. 

Lake Urmia is one of the largest hypersaline lakes in the world, which due to its ecological and natural features is a 

National Park, a Ramsar Site and a UNESCO Biosphere Reserve (Eimanifar and Mohebbi, 2007). It is a terminal lake that 

loses water only by evaporation (Hassanzadeh et al., 2012). Abbaspour and Nazaridoust (2007) estimated that inflows of at 20 

least 3·109 m3/yr are needed to compensate for lake evaporation, while Alborzi et al. (2018) estimated values between 2.9·109 

to 5.4·109 m3/yr depending on climatic conditions. According to Alborzi et al. (2018), recovery of the lake could range from 

3 to 16 years depending on climatic condition, water use reductions, and environmental releases. Inflow from groundwater to 
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the lake was estimated to be less than 3% of total inflow from precipitation, rivers, and groundwater (Hasemi, 2011). In the 

1970s and 80s, the water table of Lake Urmia was approximately at 1,276 m above sea level and then increased to more than 

1,278 m in 1995 due to a few wet years (Shadkam et al., 2016). Afterwards, the water table dropped to 1,274 m in 2003 

specially because of the severe drought in 1999-2001 exacerbated by human water use (Shadkam et al., 2016). From 2003 to 

2014, lake extent was approximately halved, and water level declined by another 3 m, while seasonal variability of lake water 5 

extent increased (Tourian et al., 2015) (Fig. 2). After 2015, lake extent and storage have stabilized (Fig. 3) due to the relatively 

high precipitation in 2015 and 2016, increased releases from reservoirs and management activities for decreasing water 

consumption (ULRP, 2015b). 

 
Figure 2: Time series of surface water extent and water table elevation of Lake Urmia (data from Tourian et al., 2015). 10 

Studies on various aspects of the Lake Urmia disaster abound. With decreasing lake water volume, salt concentration 

has increased, endangering the aquatic biota feeing birds; exposed salt layers may lead to salt storms (Pengra, 2012).  

Precipitation reduction, temperature increase, agricultural development including construction of man-made dams and building 

a causeway across the lake have been identified as the main reasons for the degradation of Lake Urmia (Abbaspour and 

Nazaridoust, 2007; Zeinoddini et al., 2009; Delju et al., 2012; Jalili et al., 2012; Sima and Tajrishy, 2013; Fathian et al., 2014; 15 

Farajzadeh et al., 2014; Banihabib et al., 2015; AghaKouchak et al., 2015; Azarnivand et al., 2015; Alizadeh-Choobari et al., 

2016; Ghale et al., 2018; Khazaei et al., 2019). By using Gravity Recovery And Climate Experiment (GRACE) satellite 

observations, altimetry data for Lake Urmia and outputs of the Global Land Data Assimilation System (GLDAS), Forootan et 

al. (2014) estimated the trend of groundwater storage changes in the Lake Urmia basin as -11.2 mm/yr between the years of 

2005 to 2011, the largest decrease of the six investigated Iranian basins. Zarghami (2011) examined four routes to transfer the 20 

water from Aras basin in the north of Lake Urmia basin to provide an alternative for the water supply for the agricultural and 

drinking demands in the north of the basin. Ahmadzadeh et al. (2016) investigated the effect of irrigation system changes in 

the basin from the surface to pressurized systems; they found that such changes would increase water productivity but would 

have no effect on lake inflow and would reduce groundwater levels by 20%.  
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Figure 3: Lake Urmia during the time period 2002-2016 (Google Earth Timelapse, last accessed: 28 Apr. 2018). 

Three hydrological modelling studies for Lake Urmia basin focused on quantifying the contributions of various 

factors on lake water volume (Hassanzadeh et al., 2012), lake inflow (Shadkam et al., 2016) or both (Chaudhari et al., 2018). 5 

Using a lumped system dynamics modelling approach and observed time series of lake water volume for model calibration, 

Hassanzadeh et al. (2012), determined that about 65% of lake level decline between 1997 and 2006 was due to reduced river 

inflow, while four major man-made reservoirs contributed 25% and diminished precipitation on the lake surface 10%. Shadkam 

et al. (2016) evaluated the impact of climate, irrigation with surface water and reservoirs on inflow into the lake for the period 

1960-2010 using a modified version of the macro-scale gridded hydrological model Variable Infiltration Capacity (VIC) 10 
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model, which was calibrated against time series of river discharge at six observation station at the downstream end of six sub-

basins draining into Lake Urmia. While the model was driven by global gridded WFDEI climate data set with a spatial 

resolution of 0.5°, basin-specific information on 41 reservoirs and on the temporal development of irrigated areas were taken 

into account. The study found that reservoirs had a very small impact on annual inflows and that climate variations accounted 

for 60% of lake inflow decrease of 48% over the 50-year period. In the model, all irrigation requirements need to be fulfilled 5 

by available surface water. Therefore, reduced availability of surface water during the 2000s due to low precipitation and high 

temperature resulted in unfulfilled irrigated water demand and a cap on the effect of human water use in the model while in 

reality, groundwater abstractions occurred and even increased (Delju et al., 2012; Hesami and Amini, 2016). In addition, the 

modelling study of Shadkam et al. (2016) did not consider the impact of domestic and industrial water use in the basin which 

can be expected to have increased during the last decades, given a population increase from 4.8 to 5.9  million from 2002 to 10 

2010 (http://ulrp.sharif.ir/en/page/about-urmia-lake-basin, last accessed: 28 Apr. 2018). Chaudhari et al. (2018) used the output 

of the global HiGW-MAT model, with 1°×1° grid cell size of approx. 10,000 km2, to distinguish climatic and anthropogenic 

contributions to the shrinkage of Urmia Lake. By running the model with and without human impacts (surface and groundwater 

use as well as reservoirs), they estimated that the human-induced river flow decline between 1995-2010 to account for 86% of 

the observed decrease of lake volume. However, a comparison with GRACE TWSA showed that the model overestimates the 15 

decrease in TWSA in the basin between 2003 and 2010. The HiGW-MAT model was not calibrated for the Lake Urmia basin 

but net irrigation requirements were simulated specifically for this study based on Landsat satellite images for 5 years between 

1987 and 2016. The lake water balance is not simulated by the model such that no comparison with observed lake water levels 

was possible. A comparison with river discharge or groundwater observations was not done either. 

The aim of our study was twofold. On the one hand, we wanted to quantify, by a holistic and reliable modelling 20 

approach, the contributions of climate variations and human activities to the decrease of Lake Urmia water volume and river 

inflows as well as, different from previous studies, to groundwater storage and total water storage in the whole Lake Urmia 

basin. Such a modelling approach requires the set-up of a model that is able to simulate the impact of surface and groundwater 

use as well as of climate variations on these water storages and flows. The hypothesis is that if model output for all these 

variables fit well to observations, then the model can be used to assess the contribution of human water use by comparing the 25 

outputs of two model variants, one with human water use and one where human water use is assumed to be zero. To achieve 

a good fit to observations, hydrological models need to be calibrated by comparison of observations with model output 

variables. While hydrological models are usually calibrated only against observations of river discharge, it is well known that 

a good fit of simulated and observed river discharge does not lead necessarily lead to an appropriate simulation of other flows 

and storages (Beven and Freer, 2001). However, in previous hydrological modeling studies of Lake Urmia basin, model 30 

calibration was either not done at all or only using a single observation type. On the other hand, using Lake Urmia basin as a 

test case, we wanted to explore the value of different types of observation data for adjusting a global hydrological model by 

multi-observation calibration. Currently, global hydrological models are mostly uncalibrated but globally available space-born 

observations have increased the opportunity for model calibration at the global scale (Döll et al., 2016). 

http://ulrp.sharif.ir/en/page/about-urmia-lake-basin
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We used the state-of-the-art global hydrological model WaterGAP 2.2c (spatial resolution 0.5°×0.5°) which simulates 

human water uses from surface water and groundwater and how these affect river discharge, groundwater, lake water, and total 

water storage. In its standard version, WaterGAP is calibrated against observed mean annual river discharge at 1319 stations 

worldwide by adjusting 1-3 model parameters related to runoff generation and streamflow (Müller Schmied et al., 2014), but 

for reasons of data availability not for a station in Lake Urmia basin. A previous WaterGAP version was calibrated, for 22 5 

large basins, against streamflow and total water storage anomalies by adjusting 6-8 parameters (Werth and Güntner, 2010). 

For this study on the differential impacts of climate and human water use on Lake Urmia basin, WGHM was for the first time 

calibrated for a specific basin by using multiple types of independent data. Multi-observation calibration included the 

adjustment of temporally constant model parameters as well as the adjustment of human water use input data. To understand 

the value of different observations or other regionally available data for understanding dynamics of water flows and storages 10 

in a basin, WGHM was calibrated sequentially by considering, in each calibration variant, an additional data type. In the first 

variant, only remote sensing data were used (variant RS). In-situ river discharge observations were added in variant RS_Q. In 

the third variant RS, discharge and groundwater level data were used (variant RS_Q_GW), and finally RS, discharge, 

groundwater levels as well as regional data of basin-wide total withdrawals plus estimated return flow fractions 

(RS_Q_GW_NA variant). Model evaluation was done by comparison of simulated lake water volume anomalies against 15 

observed anomalies. The best-performing model variant RS_Q_GW_NA was then applied to simulate the water flows and 

storages in Lake Urmia basin that would have occurred under naturalized conditions, i.e. without any human water use (and 

man-made reservoirs). By comparing the output of the naturalized run with the output of the model run with human impacts, 

we determined the contributions of human water use and climate variation on lake inflow and water storages in the period 

2003-2013. In section 2, we describe the utilized data and the simulation setup. The results of the four calibration variants and 20 

the impacts of human water use are shown in section 3. Section 4 discusses multi-observation calibration and the analysis of 

human impact as well as the limitations of the study. Finally, conclusions are drawn.  

2 Methods and data 

We analyzed the 11-year period from the beginning of 2003 until the end of 2013, as both GRACE data and global climate 

data to drive WaterGAP where available for this period. In the following sections, WaterGAP, WaterGAP input data and 25 

observational data used for calibration as well as the calibration variants are described.  

2.1 WaterGAP 

WaterGAP is a global hydrological model for assessing water resources under the influence of humans (Döll et al., 2003; 

Müller Schmied et al., 2014). With a spatial resolution of 0.5°×0.5°, it simulates water abstractions and consumptive water use 

(so-called net abstractions, i.e. the amount of water that evapotranspirates during use and does not flow to surface water bodies 30 

and groundwater afterwards) in five sectors (irrigation, livestock, domestic, manufacturing and cooling of thermal power 
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plants); then net abstractions from either groundwater (NAg) or surface water bodies (NAs) are computed (Müller Schmied et 

al., 2014; Döll et al., 2012). Negative values of NAg occur where return flow to groundwater from irrigation with surface water 

is so high that water is added to groundwater storage by human water use. NA is the sum of NAg and NAs and equal to 

consumptive water use. Time series of NAg and NAs in each grid cells are then input to the WaterGAP Global Hydrology 

model WGHM that simulates their effect on water flows and storages. In WGHM, NAg and NAs are subtracted from either 5 

the groundwater or surface water bodies (lakes, reservoirs or rivers) (Müller Schmied et al., 2014).  

WGHM simulates daily water storage as well as flows like evapotranspiration, groundwater recharge (Döll and 

Fiedler, 2008), runoff, and river discharge for all continents except Antarctica. Water is transported between grid cells 

according to the DDM30 drainage direction map (Döll et al., 2003). Water storage compartments encompass snow, canopy, 

soil, groundwater, rivers, lakes, wetlands, and man-made reservoirs (Eicker et al., 2014). Lake water storage is simulated as 10 

the difference of precipitation on the lake, evapotranspiration, inflows, and outflows. Outflow is zero for end lakes like Lake 

Urmia. The temporal variation of lake area, affecting precipitation on and evapotranspiration from the lake, is simulated as a 

non-linear function of lake water storage. WGHM contains more than 20 parameters that can be potentially be adjusted by 

calibration (Werth and Güntner, 2010). 

WaterGAP includes a multitude of global data sets including information on irrigated areas, the fraction of irrigated 15 

areas that is equipped to be irrigated with groundwater (Siebert et al., 2010) and artificial drainage affecting return flows to 

surface water (Döll et al., 2012). For more information on data and model algorithms used in WaterGAP please refer to Müller 

Schmied et al. (2014) and Döll et al. (2014a). WGHM can be run globally or for specific basins only. In this study, it was run 

only for the 22 0.5° grid cells that represent the Lake Urmia basin in WGHM (Fig.  4).  

WaterGAP outputs were extensively compared to in-situ streamflow observations (e.g., Döll et al., 200; Müller 20 

Schmied et al., 2014), to GRACE TWSA (Döll et al., 2012, 2014a, b) and GPS TWSA (Döll et al., 2014b). Results were shown 

to depend on applied climate input data sets (e.g., Müller Schmied et al., 2014, 2016; Döll et al., 2014b), model structure 

(Müller Schmied et al., 2014), and assumptions on water use (Döll et al. 2014a, b). Comparison of observed streamflow regime 

indicators (different streamflow percentiles representing statistical low and high flows) to the values computed by nine (or 

seven) GHMs showed that WaterGAP is one of the best fitting models (Gudmundsson et al. 2012; Tallaksen and Stahl, 2014). 25 

Prudhomme et al. (2011) concluded that “of the three global models considered here, WaterGAP is arguably best suited to 

reproduce most regional characteristics of large-scale high and low flow events in Europe.” Regarding the fit to GRACE and 

GPS TWS, Döll et al. (2014b) found that WaterGAP underestimates seasonal variations of TWS on most of the land area of 

the globe and that seasonal maximum TWS occurs one month earlier according to WaterGAP than according to GRACE on 

most land areas. 30 
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Figure 4: Grid cells in WGHM corresponds to Lake Urmia basin along with the location of groundwater wells across the basin. 

2.2 Data 

2.2.1 Remote sensing data 

Irrigated area in Lake Urmia basin. Based on MODIS images, Kamali and Youneszadeh Jalili (2015) estimated annual time 5 

series of irrigated areas in Lake Urmia basin from 2001 to 2012. Considering that water management in the basin aims at 

preventing any increase of irrigated areas, it is assumed that irrigated area in 2013 remained at the 2012 value (Fig. 5).  

 
Figure 5: Irrigated area in Lake Urmia basin assumed in WaterGAP and derived from MODIS (data from Kamali and Youneszadeh 

Jalili, 2015). 10 
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GRACE total water storage anomalies. GRACE satellite data allow derivation of monthly time series of total water storage 

anomalies (TWSA) over all continents. TWSA describes the total amount of water stored on the continents, including water 

storage in surface water bodies, groundwater and soil, as compared to the mean value of total water storage over a reference 

period. In our study CSR GRACE RL05 mascon solutions (Save et al., 2016; 

http://www2.csr.utexas.edu/grace/RL05_mascons.html, last accessed: 17 Jul. 2018) were used. While it is recommended 5 

GRACE data products only for areas with at least 100,000 km2 (Watkins et al., 2015; Landerer and Swenson, 2012), studies 

by Tourian et al. (2015) and Lorenz et al. (2014) showed that signal strength or the so-called gravimetric resolution is 

determining the applicability of GRACE data. In fact, Lake Urmia basin has experienced an 8·109 m3 change in the water 

volume in the last decade, which allows the use of GRACE for monitoring the changes in water storage in the basin (Tourian 

et al., 2015). This fact is supported by the very small gain factor of 1.0083 for the Lake Urmia basin based on Community 10 

Land Model 4 (CLM4) for spherical harmonic solutions (Landerer and Swenson, 2012), which is the factor with which signal 

attenuation due to leakage could be balanced. We can assume errors of the applied GRACE monthly time series of TWSA are 

small compared to the uncertainty of TWSA as computed by WGHM, such that model calibration against GRACE TWSA is 

meaningful. 

2.2.2 Inflow into Lake Urmia  15 

We used total annual observed inflow into the lake during 2003-2013 which was computed by the Urmia Lake Restoration 

Program )ULRP( based on 19 hydrometric stations around the lake (data available in http://ulrp.sharif.ir/ (In Persian), last 

accessed: 12 Nov. 2017). Monthly observations were not available. It was compared to the sum of simulated river discharge 

of all WGHM grid cells flowing into the grid cell representing Lake Urmia. 

2.2.3 Groundwater levels 20 

For evaluating the groundwater status in Lake Urmia basin, we used groundwater head data of 284 wells during 2003-2013 

(Fig. 4). To obtain a monthly time series of average groundwater level in the basin, first the average of all groundwater level 

in each 0.5° grid cell was calculated and then the average values of all grid cells (see Strassberg et al., 2009).  

2.2.4 Water withdrawals and consumptive uses 

There are no water withdrawals time series data in Lake Urmia basin. However, water withdrawals in the Lake Urmia basin 25 

for 2009 was reported to be 4,825·106 m3 (ULRP, 2015c) of which 89% is used for irrigation (Table 1). 57% of the withdrawn 

water is taken from surface water, the rest from groundwater. According to the report of Mahab Ghodss Consulting Engineering 

(2013), 16% of the water withdrawn for irrigation returns to groundwater and only 2% to surface water bodies, while the 

respective values for industrial and domestic water withdrawals are 50% and 10%. In this study, observed consumptive 

irrigation use was computed by subtracting total return flow from total water withdrawals for irrigation. Thus, it was set to 30 

82% of water withdrawals for irrigation, while observed consumptive use in the domestic/industry sector was set to 40% of 

http://www2.csr.utexas.edu/grace/RL05_mascons.html
http://ulrp.sharif.ir/en
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sectoral water withdrawals. The sum of consumptive water use in all sectors is the so-called total net abstraction (NA) from 

either surface water bodies or groundwater. 

Table 1: Water withdrawals in Lake Urmia basin in 2009 [106 m3] (data from URLP, 2015c). 

Source 
 Sector  

Total 
 Agricultural Domestic Industry  

Surface water   2424 276 33  2733 

Groundwater   1867 190 35  2092 

Total   4291 466 68  4825 

2.2.5 Climate 

The 0.5° gridded EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-corrected for ISIMIP (EWEMBI) dataset 5 

(Lange, 2016) was used as forcing data set. EWEMBI includes daily climate data for 1979 to 2013. For EWEMBI, ERA-

Interim Reanalysis Data were bias-corrected with monthly observation data on temperature, precipitation and the number of 

wet days as well as daily radiation data. We compared, for the period 2003-2013, basin-average monthly precipitation and 

temperature values of EWEMBI dataset with those derived as the mean over monthly values observed at 143 rain gauges and 

six temperature gauging stations. The correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), and Willmott’s refined 10 

index of agreement (Willmott et al., 2012) were 0.985, 0.946, and 0.897, respectively, for precipitation, and 0.996, 0.983, and 

0.941 respectively, for temperature. 

2.2.6 Lake volume 

Based on remote sensing data for lake extent and water table elevation as well as on in-situ bathymetry data, a time series of 

monthly water volume in Lake Urmia for the period 2003-2013 was generated by Tourian et al. (2015) (their Fig. 9). It was 15 

used for evaluation of the model variants.  

2.3 Calibration variants 

Calibration was done by trial-and-error. It included the modification time series of irrigated area, of NAg and NAs, with 

different multipliers for individual years, as well as the modification of a maximum of seven temporally constant model 

parameters or, in case of spatially heterogeneous parameters, multipliers. Modifications were done homogeneously for the 20 

whole basin. Months with assumed irrigation in Lake Urmia basin according to WaterGAP correspond to the actual irrigation 

months (Apr. and Oct.) in the basin according to Saemian et al. (2015), Thus, no correction of the seasonality was needed in 

the calibration process. Fig. 6 shows a schematic of the calibration process for the four calibration variants. Please note that 

the identified parameter combinations are not the only ones that would lead to a good fit to observations.  
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Figure 6: Flowchart for the four calibration variants. The black line is common in all variants, the mustard, blue, green and red 

lines represent calibration based on RS data (RS variant), RS data and inflow data (RS_Q variant), RS, inflow and groundwater 

level data (RS_Q_GW variant), and RS, inflow, groundwater level and net abstraction data (RS_Q_GW_NA variant), respectively. 

2.3.1 RS variant: Calibration using remote sensing data   5 

Irrigated area in Lake Urmia basin used in the standard version of WaterGAP is larger than the MODIS-based irrigated area 

until 2010, and smaller afterwards (Fig. 4). The largest differences, in 2004 and 2011, exceed 20%, or 1,000 km2, and the 

strongly increasing trend is not represented in WaterGAP. The constant value of irrigated area in WaterGAP is due to the fact 

that the Food and Agricultural Organization of the UN does not provide more recent estimates of irrigated area in Iran (see 

http://www.fao.org/nr/water/aquastat, last accessed: 13 Feb. 2018). To utilize the MODIS-based time series, consumptive 10 

irrigation water use in the whole basin of WaterGAP in year i was first adjusted by multiplying it by a correction factor CF1(i), 

with: 

𝐶𝐹1(𝑖) =
𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖)

 (1) 

where 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑀𝑂𝐷𝐼𝑆(𝑖) is irrigated area from MODIS in year i and 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑊𝐺 (𝑖) is irrigated area from WaterGAP database. The 

modified consumptive irrigation use was then added to the consumptive use of WaterGAP for the other sectors to obtain an 

updated basin-wide NA for each year. Then, modified monthly NAg and NAs in year i were calculated by multiplying, for 15 

each grid cell, the standard WaterGAP NAg and NAs values with the ratio of modified over standard basin-wide NA in year 

i. Then, WGHM was run with the modified NAg and NAs time series, and a small number of WGHM parameters was varied 

until achieving a good fit to monthly time series of basin-average GRACE TWSA (Fig. 6, yellow lines).  
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2.3.2 RS_Q variant: Calibration using remote sensing data and inflow into the lake  

Model parameters of WGHM driven by modified NAs and NAg from the RS variant were adjusted to achieve a good fit for 

both GRACE TWSA and the time series of annual total inflows to Lake Urmia (Fig. 6, blue lines).  

2.2.3 RS_Q_GW variant: Calibration using remote sensing data, inflow into the lake, and groundwater level  

Since WGHM does not compute groundwater level but only groundwater storage, and there is no good information of basin-5 

wide specific yield that would allow a translation of observed groundwater level variations into storage variations, model 

calibration in this variant aimed at optimizing the fit between the monthly time series of normalized basin-average observed 

groundwater levels (calculated by subtracting the mean and dividing by the standard deviation) to the monthly time series of 

normalized WGHM groundwater storage. To achieve a good fit to groundwater levels, and at the same time to GRACE TWSA 

and observed inflow into the lake, NAg and NAs as adjusted in variant RS had to be further modified. Keeping total NA(i) 10 

constant, correction factors 𝛼(𝑖) and 𝛽(𝑖) were  determined , with: 

𝑁𝐴(𝑖) = 𝛼(𝑖) × 𝑁𝐴𝑠(𝑖) + 𝛽(𝑖) × 𝑁𝐴𝑔(𝑖) (2) 

and new values of temporally constant model parameters were identified (Fig. 6, green lines).  

2.3.4 RS_Q_GW_NA variant: Calibration using remote sensing data, inflow into the lake, groundwater level, and net 

abstractions  

In the most involved calibration variant, statistical data on water withdrawals in 2009 (Table 1) was used together with 15 

information on return flow to compute a consumptive irrigation water use 𝐶𝑢𝑖𝑟𝑟𝑖
𝑂𝑏𝑠 in the basin of 3,520·106 m3. To estimate 

irrigation use in all other years, with different climatic conditions, the per area consumptive irrigation water use from 

WaterGAP was used to compute, for each year, a climatic correction factor CF2(i) as 

𝐶𝐹2(𝑖) = (
𝐶𝑢𝑖𝑟𝑟𝑖

𝑊𝐺 (𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖)

−
𝐶𝑢𝑖𝑟𝑟𝑖

𝑊𝐺 (2009)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑊𝐺 (2009)

) (3) 

where 𝐶𝐹2(𝑖) is represents the difference in the per area consumptive irrigation use in year i and the year 2009, 𝐶𝑢𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖) is 

consumptive irrigation use in year i obtained in standard WaterGAP. Finally, Eq. 4 was used for estimating water consumption 20 

time series over Urmia basin: 

𝐶𝑢𝑖𝑟𝑟𝑖(𝑖) = (
𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖)

𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑀𝑂𝐷𝐼𝑆(2009)

) × 𝐶𝑢𝑖𝑟𝑟𝑖
𝑂𝑏𝑠(2009) + 𝐶𝐹2(𝑖) × 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑀𝑂𝐷𝐼𝑆(𝑖) (4) 

where 𝐶𝑢𝑖𝑟𝑟𝑖(𝑖) is consumptive irrigation water use in year i. Unlike in the RS_Q_GW variant, consumptive use of the other 

sectors was added based on withdrawal data in Table 1 and a return flow fraction of 60%, resulting in total NA. Then, new 

values for correction factors 𝛼(𝑖) and 𝛽(𝑖) (Eq. 2) were identified by trial-and-error, and model parameters were modified to 

obtain a good fit to the data also used in the RS_Q_GW variant (Fig. 6, red lines).  25 
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2.4 Performance indicators 

Performance of the calibration variants of WGHM was evaluated using CC, NSE, root mean square error (RMSE), relative 

absolute error (RAE), and Kling Gupta efficiency (KGE, Gupta et al., 2009) with 

(5) 𝐶𝐶 =
𝐶𝑜𝑣 (𝑂𝑏𝑠. 𝑆𝑖𝑚)

𝜎𝑜𝑏𝑠 × 𝜎𝑆𝑖𝑚
 

(6) 𝑁𝑆𝐸 = 1 −  
∑ (𝑆𝑖𝑚(𝑡) − 𝑂𝑏𝑠(𝑡))2𝑇

𝑡=1

∑ (𝑂𝑏𝑠(𝑡) − 𝑂𝑏𝑠̅̅ ̅̅ ̅)2𝑇
𝑡=1  

(7) 
𝑅𝑀𝑆𝐸 = √

1

𝑇
∑(𝑂𝑏𝑠(𝑡) − 𝑆𝑖𝑚(𝑡))

2
𝑇

𝑡=1

 

(8) 
𝑅𝐴𝐸 =

∑ |𝑂𝑏𝑠(𝑡) − 𝑆𝑖𝑚(𝑡)|𝑇
𝑡=1

∑ |𝑂𝑏𝑠(𝑡) − 𝑂𝑏𝑠̅̅ ̅̅ ̅|𝑇
𝑡=1

 

(9) 
𝐾𝐺𝐸 = 1 − √(𝐶𝐶 − 1)2 − (

𝜎𝑆𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝑆𝑖𝑚̅̅ ̅̅ ̅

𝑂𝑏𝑠̅̅ ̅̅ ̅
− 1)2 

where Cov is covariance function, Obs is observed value, Sim is simulated value, t refers to time counter and T is the period 

length. Optimum values of CC, NSE and KGE are 1, and of RMSE and RE are 0. Trends and overall behaviour of the time 5 

series were also analysed. 

3 Results 

3.1 Multi-observation calibration 

In variants RS and RS_Q, annual time series of irrigated area in Lake Urmia basin derived from MODIS (Fig. 4), which were 

applied in all four calibration variants, lead to a more strongly increasing trend of NA (consumptive water use) and NAs, as 10 

compared to the standard WaterGAP version (Fig. 7). Due to the dominant irrigation with surface water assumed in the standard 

version of WaterGAP, return flows from irrigation are larger than groundwater withdrawals, and there is a net recharge of 

groundwater by irrigation, i.e. a negative NAg. Therefore, a more strongly increasing irrigation with surface water in variants 

RS and RS_Q leads to return flows to groundwater that increase more strongly over time, i.e. NAg becomes increasingly 

negative with time (Fig. 7).  Average NA in 2003-2010 decreased from 4,185·106 m3/yr in the standard version to 3,815·106 15 

m3/yr, and increased from 4,233·106 m3/yr to 4,781·106 m3/yr in 2011-2013. However, increased net recharge of groundwater 

by return flows was found to be incompatible with decreasing observed groundwater levels (Fig. 8c). Positive NAg values 

were found to be necessary to simulate the observed lowering of groundwater levels from 2003 to 2013 Therefore, in variant 

RS_Q_GW, NAg and NAs were adjusted according to Eq. 2 by applying 𝛼  and 𝛽 time series presented in Table 2. With these 

adjustment factors, average NAg changed from -2,294·106 m3/yr in variants RS and RS_Q to 1,147·106 m3/yr in variant 20 
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RS_Q_GW (Fig. 7b). Keeping annual NA constant, NAs decreased accordingly from 6,373·106 m3/yr to 2,931·106 m3/yr. 

Total NA slightly decreased in variant RS_Q_GW_NA as compared to the other calibrations variants.  

 
Figure 7: Time series of net abstractions from surface water (a) and groundwater (b), as well as total net abstractions (i.e. 

consumptive use) (c) in Lake Urmia basin in the standard version of WaterGAP as well as the various calibration variants. 5 

Table 2: Correction factors for modifying NAs and NAg (see Eq. 2). 

Variant  RS_Q_GW  RS_Q_GW_NA 

Year  𝛼 𝛽  𝛼 𝛽 

2003  0.47 -0.48  0.39 -0.41 

2004  0.46 -0.49  0.37 -0.39 

2005  0.46 -0.50  0.39 -0.46 

2006  0.46 -0.50  0.38 -0.43 

2007  0.46 -0.50  0.42 -0.43 

2008  0.45 -0.52  0.29 -0.63 

2009  0.46 -0.49  0.38 -0.57 

2010  0.47 -0.48  0.43 -0.41 

2011  0.47 -0.47  0.56 -0.49 

2012  0.46 -0.51  0.49 -0.52 

2013  0.45 -0.52  0.47 -0.54 
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Figure 8: Time series of monthly TWSA of GRACE and WGHM (a), annual inflow into the lake Q from observations and WGHM 

(b) normalized observed groundwater level and normalized groundwater storage from WGHM (c), groundwater storage change 

GWSC from month to month from observations and WGHM (d) and the monthly lake volume anomaly (e), for standard WaterGAP 

and the four calibration variants. 5 
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Model runs driven by the different NAg and NAs of the four variants lead to the best fit to the variant-specific 

observational datasets if seven model parameters were re-set to the values listed in Table 3. It is emphasized that the listed 

parameter sets are not the only possible ones but those requiring the least number of parameters to be changed. In all four 

calibration variants, the minimum daily precipitation values for which groundwater recharge can occur in semi-arid regions 

(Döll and Fiedler, 2008) was slightly decreased (increasing groundwater recharge) and the maximum canopy storage was 5 

increased (increasing canopy evaporation). When the more observational data types were considered in the calibration process, 

the number of parameters that needed to be adjusted increased whereas the required parameter changes decreased.  

According to GRACE observations, total water storage in Lake Urmia basin declined by 9.9·109 m3 from its annual 

average in 2003 to its annual average in 2013, while the standard WGHM version computes a much smaller loss. According 

to the data of Tourian et al. (2015), about 80 % of the total water loss in the basin was due to the loss of lake water. A stronger 10 

increase of human water abstractions over time (Fig. 7a), doubling of rooting depth and thus soil water capacity and a higher 

maximum canopy storage everywhere in the basin, as well as an increase of maximum active lake depth of Lake Urmia from 

5 m to 9 m in variant RS resulted in a good fit of WGHM TWSA to GRACE TWSA (Fig. 8a). With the larger soil and canopy 

water storage capacities, runoff and thus inflow into Lake Urmia decrease as compared to standard WGHM (Fig. 8b). More 

water could be stored in canopy, soil, and the lake at the beginning of the period such that storages could react to the decline 15 

of inflows and decrease after 2007. Still, simulated inflows into Lake Urmia computed in variant RS are still much higher than 

the observed values (Fig. 8b) and seasonality of groundwater levels is totally misrepresented (Figs. 8c, d). 

Table 3: WGHM parameter values adjusted by calibration in the different model variants. 

Variant Rooting 

depth 
multiplier 

Maximum 

active lake 
depth 

Runoff 

coefficient 
multiplier 

Multiplier for the 

fraction of total 
runoff  that 

becomes 

groundwater 
recharge 

Maximum amount of 

groundwater 
recharge per day 

multiplier 

Minimum amount of daily 

precipitation necessary in 
arid/semi-arid areas to get 

groundwater recharge 

[mm] 

Maximum 

canopy 
storage 

[mm] 

Standard 1 5 1 1 1 12.5 0.3 

RS 2 9 1 1 1 10 1 

RS_Q 2.8 10 0.9 1 1 10 1 

RS_Q_GW 3 9 0.8 0.5 4 10 1 

RS_Q_GW_NA 3 8 0.8 0.5 5 10 1 

 

The required reduction of computed lake inflow (Q) can be achieved (Fig. 8b) by further increasing soil water storage 20 

capacity in variant RS_Q, together with small adjustment of the runoff coefficient and active lake depth (Table 3), while the 

fit to GRACE TWSA remains good (Fig. 8a). However, seasonality of groundwater table fluctuations is still not simulated 

properly. This could only be achieved by adjusting the sources of total net abstractions. Only if net abstractions from 

groundwater are multiplied by approximately -0.5 (Table 2), in variant RS_Q_GW, does the seasonality of computed 

groundwater storage variations fit to observations (Fig. 8c). NAg in the standard, RS and RS_Q variants is negative, which  25 

means that there is artificial groundwater recharge due to irrigation by surface water during the summer irrigation months, 
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leading to an increase in groundwater level and storage. Groundwater level observations, however, show a decrease during 

this period, indicating that irrigation causes a net abstraction from groundwater. Multiplication of standard WGHM NAg by a 

negative value leads to a net abstraction of water from the groundwater body, and results in a seasonality of groundwater 

storage that fits well to the seasonality of the mean groundwater table in the basin. In addition to the NAg and NAs adjustment, 

two groundwater recharge-related parameters had to be re-set in variant RS_Q_GW (Table 3). The fit to observed TWSA and 5 

lake inflow remains good (Figs. 8a, b). Use of local information on water withdrawals and return flows in variant 

RS_Q_GW_NA barely changed the parameter values (Table 3) and the fit to all observational data (Fig. 8).  

From the results of the RS_Q_GW_NA variant, which was the most comprehensive calibration variant, we estimated 

the average specific yield of the aquifers in the Lake Urmia Basin, i.e. the change in groundwater storage per unit change of 

the elevation of the groundwater table. We first divided the standard deviation of the simulated groundwater storage time series 10 

by the basin area to obtain groundwater storage variability in terms of equivalent water height and then divided this value by 

the standard deviation of the observed groundwater levels. This resulted in a specific yield estimate of 0.02, which is equal to 

the average value derived from pumping tests at 10 locations south of the lake (Hamzekhani and Aghaie, 2015). Estimated 

specific yield allows to compute an “observed” groundwater water storage anomaly, and thus an observed decline of 

groundwater storage between the year 2003 and 2013 of 1.8·109 m3, accounting for 18% of the observed total water storage 15 

loss in the basin. We compared the time series of simulated groundwater storage changes from month to month (GWSC) to 

those derived from observations of groundwater level changes. Since groundwater level observations were done only once per 

month and at different days, three-month moving averages were compared (Fig. 8d). Observations and model variants 

RS_Q_GW and RS_Q_GW_NA agree that the strongest monthly increase in groundwater storage occurs in early spring, and 

the largest decrease in early autumn.  20 

The performance indicators CC, NSE, RMSE, RAE, and KGE with respect to monthly TWSA (Fig. 8a), annual Q 

(inflow to Lake Urmia, Fig. 8b) and monthly GWSC (Fig. 8d) are presented in Table 4 for the standard version and four 

calibrated variants. Regarding the fit to TWSA observations, NSE increased from 0.48 in the standard version to 0.84 in the 

RS variant for which TWSA was the only observation considered, and increased slightly to 0.88 when groundwater 

observations were taken into account in variants RS_Q_GW and RS_Q_GW_NA variants. This performance improvement is 25 

also reflected by CC, RMSE, RAE, and KGE. The performance with respect to observed inflow to the lake only improves 

marginally by calibration against TWSA, in variant RS. Only calibration against inflow observations strongly improves model 

performance, with NSE and KGE jumping from negative values for the standard variant to values around 0.9 and RAE from 

3.92 to 0.30. Integration of groundwater observations again leads to a small performance improvement (see also RMSE). The 

good performance shown by CC for all model variants indicates that all model variants identify correctly high and low flow 30 

years. In the case of GWSC, all performance indicators show that consideration of remote sensing and streamflow observations 

only do not lead to an acceptable simulation of groundwater storage. Only the two variants for which groundwater observations 

were taken into account lead to satisfactory performance. With a maximum NSE of 0.59 and KGE of 0.75, the fit to GWSC 

remains lower than the one to TWSA and lake inflow, which may also be due to the uncertainty in estimating the basin-wide 
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average monthly groundwater storage behavior from well observations. The most data-demanding variant RS_Q_GW_NA 

achieves the best fit to all three observational time series. The fit, however, is only slightly better than the fit of variant 

RS_Q_GW, and a much more variable time series of NAg and NAs correction coefficients (Table 2) is necessary as compared 

to variant RS_Q_GW (Table 2). 

For model performance evaluation, we compared the lake volume simulated by WGHM with the observed lake 5 

volume of Tourian et al. (2015) (Fig.8e and Table 4). The standard model underestimates the decline in both lake water and 

TWSA, all calibrated variants simulate the TWSA trend correctly, but both variant RS and RS_Q, with worse KGE than the 

standard version, overestimate the decline of lake water storage, thus compensating for not decreasing sufficiently groundwater 

storage (Fig. 8d) due to assuming a net groundwater recharge due to surface water irrigation. Only variants RS_Q_GW and 

RS_Q_GW_NA simulate not only the groundwater dynamics but also the decline of lake water volume correctly. NSE for the 10 

monthly lake volume anomaly is 0.68 for the standard WGHM and improves to 0.77 for RS, where GRACE TWSA could be 

simulated well by approximately doubling both soil and lake water storage capacity (Table 3). Including groundwater level 

data further improved the fit to observed lake volume, leading to a very high NSE of 0.94 or 0.95 (Table 4). We conclude that 

calibration of WGHM against diverse observations (that do not include lake volume observations) leads to improved simulation 

of lake volume dynamics. 15 

Table 4: Performance of standard and calibrated WGHM variants with respects to observations of TWSA, inflow to lake, GWSC 

and lake volume anomaly 
Phase  Variables  Criteria Standard RS RS_Q RS_Q_GW RS_Q_GW_NA 

C
al

ib
ra

ti
o
n
 

 Monthly TWSA  CC 0.84 0.93 0.92 0.94 0.94 

   NSE 0.48 0.84 0.83 0.88 0.88 

   RMSE [mm] 77 42 44 38 37 

   RAE 0.72 0.41 0.42 0.37 0.36 

   KGE 0.64 0.80 0.79 0.82 0.83 

 Annual Q  CC 0.94 0.96 0.95 0.97 0.97 

   NSE -8.51 -2.33 0.88 0.91 0.93 

   RMSE [106 m3/year] 4121 2438 458 390 358 

   RAE 3.92 2.32 0.38 0.33 0.30 

   KGE -0.60 0.07 0.84 0.88 0.91 

 Monthly GWSC  CC -0.14 0.05 -0.31 0.80 0.82 

   NSE -0.72 -0.39 -1.05 0.55 0.59 

   RMSE [106 m3/month] 271 244 296 109 103 

   RAE 1.28 1.13 1.42 0.60 0.58 

   KGE -0.57 -0.44 -0.79 0.71 0.75 

E
v

al
u
at

io
n
  Monthly lake 

volume anomaly 
 CC 0.82 0.97 0.99 0.98 0.97 

  NSE 0.68 0.77 0.81 0.94 0.95 

  RMSE [106 m3] 1922 1837 1611 757 739 

  RAE 0.51 0.47 0.42 0.21 0.20 

  KGE 0.70 0.34 0.41 0.88 0.90 

3.2 Differential impacts of human water use and climate variation on Lake Urmia basin 

The impact of human water use and man-made reservoirs on water flows and storages was quantified by comparing the output 

of WGHM in which human water use and man-made reservoirs are considered (this is normally done, now called WGHM-20 
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ANT) with the output of a model run for naturalized conditions, where it is assumed that there are no reservoirs and no human 

water use (WGHM-NAT). We determined that the results of the naturalized run differ by less than 2% from a run with 

reservoirs but without human water use. Therefore, differences between WGHM-ANT and WGHM-NAT outputs can be 

considered to be caused by human water use. It should be mentioned that all simulated and observed storages (total, 

groundwater, lake) are not absolute values but anomalies with respect to the mean water storage during 2004-2009 (baseline 5 

period used for the provided GRACE data). 

When comparing TWSA under anthropogenic and naturalized conditions in Fig. 9a, remember that TWSA in Lake 

Urmia basin is dominated by water storage in Lake Urmia. Seasonal TWSA variation of WGHM-ANT and WGHM-NAT do 

not differ much. Starting after the heavy rain in April 2007 and strongly caused by the lack of spring precipitation in 2008, 

both WGHM-ANT and WGHM-NAT (as well as GRACE TWSA) show a decreasing trend that is only somewhat more 10 

pronounced in WGHM-ANT (Fig. 9a). Thus, this decrease is mainly due to dry climate conditions during the well-known 

severe drought of 2008, with an annual precipitation of only 241 mm, i.e. 74% of the mean value for 2003-2013 (Fig. 8b). 

Also in the absence of human water use, total water storage would not have recovered after 2009 but would have stayed 50-

100 mm below the values occurring before 2008. However, while in WGHM-NAT the minimum storage in late summer, i.e. 

the period with high irrigation, remains at a constant level after 2009, it decreases each year in WGHM-ANT due to 15 

consumptive increasing irrigation water use (Fig. 7c). The linear trend of WGHM-ANT and WGHM-NAT TWSA time series 

for the period 2003-2013 is -24.5 mm/yr (GRACE: -24.4 mm/yr) and -11.8 mm/yr, respectively. The TWSA trend for two 

sub-periods before and after 2008, 2003-2007 and 2009-2013 -14.2 and -16 mm/yr, respectively, for WGHM-ANT and only 

0.7 and -3.85 mm/yr, respectively, for WGHM-NAT. The last mentioned trends are not significant at the 5% confidence level 

based on Mann-Kendall’s test. According to WGHM, the basin lost, on average during 2003-2013, 1,274·106 m3 water/yr, 20 

while in the absence of human water use, it would have lost 614·106 m3 water/yr, i.e. 52% less. Of this total water volume, 

920·106 m3/yr of lake water was lost, while only 548·106 m3/yr would have been lost without human water use (Fig. 9b). 

The smaller decreasing trend for lake water volume under naturalized conditions is clearly caused by more inflow 

into the lake, even though lake evaporation is somewhat higher under naturalized inflow conditions due to the larger lake 

extent.  While mean inflow during 2003-2013 is computed to be 4,454·106 m3/yr under naturalized conditions, it decreases by 25 

41% to 2,639·106 m3/yr under anthropogenically altered conditions (Fig. 9c). The difference is only 50% of NA as only a 

fraction of (potential) net abstractions from surface water NAs (required to allow optimal irrigation) could be made 1) due to 

a lack of water availability in the surface water bodies and 2) because a fraction oft of NAg is provided a decrease in 

groundwater storage.  

Since 2008 the inflow into the lake has never reached 3,085·106 m3/yr. This is the value estimated to be the minimum 30 

environmental water requirements that compensates the amount of annual evaporation from of the lake surface (Abbaspour 

and Nazaridoust, 2007). Therefore, a decrease of lake water storage can be expected for the best estimate of WaterGAP of 

2,639·106 m3/yr. In WGHM-NAT, inflow was lower than 3,085·106 m3 only in 2008 and 2009. Still, the average inflow into 

the lake from 2009-2013 of 3,670·106 m3 would have been only enough to keep the lake from further loosing volume )needed 
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to compensate for lake evaporation). Thus even in the WGHM-NAT, inflow into the lake would not have been enough for a 

recovery to conditions between 2003 and 2007 (Fig. 9b), as during this time period, mean inflow under naturalized conditions 

would have been 54% larger. The ratio of inflow into the lake over precipitation in the basin varies strongly among the years, 

reaching a maximum value of 0.30 and 0.41 for anthropogenic and naturalized conditions, respectively, in 2003, and a 

minimum value of 0.11 and 0.18 in the drought year 2008. For the period 2009-2013, these ratios are, with 0.11 (ANT) and 5 

0.22 (NAT), much smaller than the values for 2003-2007, 0.21 and 0.32. Thus, the drought year 2008 as well as the relatively 

small ratio of inflow into the lake over precipitation in the last five years of the study period play an equally important role as 

human water use in the decline of inflow and lake water storage. 

While groundwater storage is estimated to decline by 251·106 m3/yr during 2003-2013 in WGHM-ANT, the decline 

is only 27·106 m3/yr in WGHM-NAT (Fig. 9d). Different from lake water storage, groundwater storage would have recovered 10 

after 2008/2009 if there had been no (increasing) net groundwater abstractions (Fig. 9d, compare Fig. 7b), even though mean 

groundwater recharge was on 2,579·106 m3/yr during 2009-2013 as compared to 3,310·106 m3/yr during 2009-2013. In 

WGHM, the groundwater compartment is modelled using a linear storage model where the change of groundwater storage is 

the difference between inflows to groundwater and outflow to surface water bodies, supplement by a prescribed outflow due 

to human groundwater use in case of anthropogenic conditions. Long-term average outflow from groundwater to surface water 15 

is proportional to the groundwater storage. Therefore, in case of less groundwater recharge, also the outflow to surface water 

bodies is decreased, while mean groundwater storage decreases only slightly, in particular in areas with a low average 

groundwater recharge like the Lake Urmia basin. In the absence of groundwater abstractions, the groundwater level cannot 

drop below the level of the surface water in WGHM. WGHM cannot simulate the case where groundwater switches from 

discharging groundwater to surface water bodies to receiving water from rivers and other surface water bodies. In case of 20 

groundwater abstractions, however, storage can drop below the level of the surface water, and outflow to surface water bodies 

ceases in this case.  

In the WGHM-ANT simulations, such a drop below the surface water level, indicated by a negative water storage, 

value occurs in 7 out of the 22 0.5° grid cells within the basin (Fig. A1a). In 6 of these 7 grid cells, groundwater levels were 

stable during 2003-2007and only declined from 2008-2013, caused by increased NAg and decreased groundwater recharge in 25 

the latter part of the study period. It is these 7 cells that cause the basin groundwater decline under anthropogenic condition 

shown in Fig. 9d. For naturalized conditions, peak seasonal water storages decrease somewhat but minimum water storages 

cannot drop appreciably given the very low minimum seasonal storage values already during the relatively wet five first years 

of the growing period (Fig. A1b). Thus, the contribution of human water use to groundwater storage decline might therefore 

be overestimated as WaterGAP cannot simulate a possible drop of the groundwater table below the surface water level in the 30 

absence of groundwater abstractions. To summarize, human water use was the reason for 52% of the total water loss in the 

basin, for a maximum of 90% of the groundwater loss and for 40% of the Lake Urmia water loss during 2003-2013, and lake 

inflow was 41% less than it would have been without human water use.  
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Figure 9: Time series of simulated (variant RS_Q_GW_NA) and observed monthly TWSA (a), lake water storage anomaly (b), 

annual inflow into the lake (c), and monthly groundwater storage anomaly (d), under anthropogenic (WGHM-ANT) and naturalized 

(WGHM-NAT) conditions. 
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4 Discussion 

4.1 Multi-observation calibration 

The output of hydrological models at all scales is uncertain as these models suffer from uncertain model inputs (e.g., climate 

variables or soil properties), parameter values and model structure (Döll et al., 2016). To decrease uncertainty, model 

calibration against independent data (e.g. observations) is performed by adjusting, for example, model parameters. While 5 

observations of river discharge are ideally suited for validating hydrological models because the point observation integrates 

over processes in the whole upstream basin of the gauging station, additional types of observations have to be added to avoid 

the well-known problem of equifinality (Beven and Freer, 2001; Döll et al., 2016). Without additional data, more than one 

parameter combination can lead to a good fit to e.g. observed river discharge. While e.g. total groundwater storage dynamics 

would be simulated very differently by model variants with the parameter sets that simulate river discharge time series equally 10 

well.  

Global hydrological models suffer from a particularly high uncertainty, in particular as model inputs are uncertain. 

For example, climate input data are based on low-density climate observations and information on water use is often very 

scarce and outdated. For modelling at the global scale, it is generally not possible to obtain, the same detailed data for a specific 

region compared to the case that modelling this region only. Still, a global hydrological model includes all data for simulating 15 

water flows and storages in specific regions of interest everywhere on the globe, and model calibration against multiple 

(regional) observations is a means for improving the performance of the global model regionally. In this way, an efficient 

simulation of regional water flows and storages can be achieved, possibly as an alternative to a costlier setup of a regional 

model. More importantly, the regional-scale multi-observation calibration done in this study can serve to inform efforts for 

global-scale but region-specific multi-observation calibration of global hydrological models that would allow to strongly 20 

improve performance of global hydrological models at the scale that they are made for (Döll et al., 2016). 

Remote sensing data are the most accessible data for calibration of global hydrological models, including TWSA 

from GRACE. Therefore, the model variant RS only used globally available RS data, MODIS and GRACE data products. 

However, MODIS data can only be used to determine the temporally variable extent of irrigated areas in dry regions of the 

globe such that the important adjustment of temporal dynamics of statistics-based irrigated areas is not possible everywhere. 25 

GRACE TWSA quantify the anomalies and changes of water storage aggregated over all land water storage compartments 

such as snow, soil, groundwater, lakes, wetlands, and rivers. Considering GRACE TWSA improved the simulation of the 

important water storage compartment Lake Urmia. However, the unsatisfactory simulation of inflow into Lake Urmia and of 

groundwater dynamics clearly shows that a good fit to observed TWSA does not guarantee a good simulation of river flows 

or groundwater storages. Still, calibration against TWSA did, even if only very slightly, improve model performance also with 30 

respect to lake inflow and groundwater dynamics.  

By adding discharge data, the model was able to simulate TWSA and Q accurately without changing the inputs of the 

model and only based on modifying the parameters, mainly increasing the rooting depth further (Table 3). Interestingly, the 
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significant increase of the rooting depth multiplier from 2.0 to 2.8 strongly increased evapotranspiration but barely affected 

TWSA (Figs. 7a, b). In the case of the Lake Urmia basin, no trade-off between the fit to TWSA and river discharge exists as 

the performance indicators with respect to TWSA for variant RS_Q are even slightly higher than for variant RS (Table 4).  

Groundwater level data were found to be necessary to identify that different from what is estimated by the standard 

version of WaterGAP, there is more irrigation with groundwater and less with surface water such that a net abstraction of 5 

groundwater and not artificial groundwater recharge occurs due to irrigation. Information on groundwater level dynamics with 

a suitable spatial density is not readily available for most regions of the globe. To simulate groundwater dynamics properly, it 

was not sufficient to adjust parameters of the hydrological model (in particular two groundwater recharge related model 

parameters, Table 3), but it was necessary to alter the fractions of net water abstractions that come from groundwater and 

surface water bodies. Only then, groundwater storage decline by net groundwater abstraction was simulated, and lake water 10 

storage decline could be correctly simulated instead of being overestimated when only TWSA and lake inflow data are used 

for calibration. As in the case of adding lake inflow as calibration data type, no trade-off between the fits to the different data 

types occurred.  

Consideration of regional estimates of human water withdrawals in a specific year as well as regional estimates of 

return flow fractions in variant RS_Q_GW_NA does not improve the fit to observations significantly and only leads to slight 15 

parameter adjustments. This indicates a reasonable simulation of per hectare water consumption for irrigation by the 

WaterGAP model. To summarize, consideration of more and more observations and other independent data results with 

improved fits to three type of observations, TWSA, lake inflow, and groundwater dynamics, while at the same time more and 

more parameters need to be adjusted (Tables 3 and 4). No trade-offs between the fits to the three observational data types 

occurred in the case of the Lake Urmia basin. 20 

While the introduction of annually varying corrections for NAg and NAs (Eq. 2, Table 2) for variants RS_Q_GW and 

RS_Q_GW_NA leads to the most suitable fit to multiple observation types, it may be preferable to have instead of 11 free 

parameters just 1, i.e. a temporally constant 𝛽.With a temporally constant 𝛽 of -0.5 in variant RS_Q_GW, the fit to TWSA 

and inflow to the lake does not change at all, and groundwater storage is only slightly increased in the dry year 2008 and 2009. 

Thus, given the uncertainty of observed groundwater storage variations, a temporally constant NAg correction factor is 25 

sufficient for achieving a good fit for all observations. 

To assess the potential of using observed lake volume time series as calibration target and not only for model 

evaluation, we also calibrated WGHM against RS observations and lake volume (RS_LV variant) and against RS, lake inflow 

and lake volume (RS_Q_LV variant). In the RS_LV variant, simulation of TWSA and GWSC did not change appreciably but 

not only simulated lake volume anomaly but also simulated inflow into the lake greatly improved as compared to the RS 30 

variant. NSE for monthly lake volume anomaly and annual lake inflow reaches 0.95 and 0.44, respectively. Inflow into the 

lake is much less overestimated than in variant RS. To achieve these fits, the variant RS parameters where adjusted by 

increasing the rooting depth multiplier to 2.5 and setting the potential evaporation multiplier to 2. Adding lake volume 

observations on top of lake inflow observations in RS_Q_LV variant leads to an improved fit to lake volume observations, 
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with NSE increasing from 0.81 to 0.95, but the fit of observed inflow into the lake slightly worsens from 0.88 to 0.85. In this 

variant, the RS_Q variant parameters were used, except the maximum active lake depth was set to 9 m and the potential 

evaporation multiplier to 2. We conclude that in the case of the end Lake Urmia, calibration against time series of lake volume 

anomalies could, in the absence of inflow data, help to improve simulation of inflow, while calibration against time series of 

inflow could, in the absence of lake volume observation, improve simulation of lake volume anomalies. Still, calibration to 5 

both observational data types leads to the best simulation of both annual lake inflow and lake volume anomalies. However, the 

groundwater storage dynamics could not be improved without calibration against groundwater level dynamics. 

 Finally, we found that calibration aimed at optimizing the five criteria CC, NSE, RMSE, RAE and KGE with respect 

to monthly time series of observed total, groundwater and lake storages, with almost similar achieved performance values 

(Table 4), does not necessarily lead to similar estimates of total and compartmental water losses over the whole time period 10 

2003 to 2013. For example, variants RS and RS_LV have the same values for all five performance criteria (expect KGE with 

0.1 difference) with respect to TWS (not shown) but TWS loss between 2003 and 2013 is simulated to be 11.15·109 m3 and 

7.86·109 m3, respectively (Table 5). TWS loss according to variant RS_Q_GW_NA is, with 10.04·109 m3, in between and 

quite different, even though NSE and KGE are only 0.04 and 0.06 better, respectively. We conclude that in the case of relevant 

trends, the calibration criteria should include minimization of the difference between observed and simulated trends. 15 

Table 5. Water loss in Lake Urmia basin between 2003 and 2013 as observed and simulated by the different calibrated WGHM 

variants. 

  
 Water loss between 2003 and 2013 [109 m3]  

(mean annual storage in 2003 minus mean annual storage in 2013) 

  Observed Standard RS RS_LV RS_Q RS_Q_LV RS_Q_GW RS_Q_GW_NA 

Total  9.9 3.62 11.15 7.86 12.20 8.24 9.78 10.04 

Groundwater   1.8 0.17 0.11 0.06 0.02 0.03 2.68 2.52 

Soil water  N.A. 0.15 0.15 0.20 0.29 0.24 0.25 0.23 

Lake water  8.0 3.16 10.76 7.37 11.83 7.78 6.62 7.02 

4.2 Comparison to human vs. climate contribution as determined in previous studies 

In order to define the lake restoration program, it is vital to know which factors contribute how much to shrinkage of the lake. 

All previous studies (e.g. Hassanzadeh et al., 2012; AghaKouchak et al., 2015; Ghale et al., 2018; Chaudhari et al., 2018) 20 

agreed that shrinkage is caused by both climate variations and human activities, but there is no consensus about the relative 

contributions. For example, Chaudari et al. (2018) concluded that human-induced changes accounted for 86% of the lake 

volume decline during 1995-2010, while we determined the value of 40% for 2002-2013. According to our study, human water 

use was the reason for 41% inflow reduction into the lake during 2003-2013 which is similar to the values of Shadkam et al. 

(2016) for the years 2003-2009 (comp. their Figs. 8). Discrepancies are likely due to different analysis methods but different 25 

analysis periods, as well as different conceptualizations, make a direct comparison of the estimated relative contributions 

difficult.  
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While Ghale et al. (2018) seem to support the results of Chaudhari et al. (2018), as they state that 80% of drying of 

Lake Urmia is due to anthropogenic impacts during 1998-2010, there statistical analysis assumes that river inflow can be 

considered to reflect “anthropogenic impacts” while precipitation and evaporation changes reflect climatic variations while 

river inflow is in reality also affected by climate variations. Also using a statistical change point analysis and without 

modelling, Khazaei et al. (2019) stated that given the stable conditions of precipitation and temperature, climatic changes 5 

cannot explain the dramatic decline of the lake level. They did not use in-situ data (except lake water level data) for their 

analysis. Based on a analysis of Standardized Precipitation Index (SPI), a drought index, AghaKouchak et al. )2015) reported 

there was no significant trend in droughts over the basin during past three decades and concluded from this that human activities 

not climatic variations are the main reason lake shrinkage. Different from our study and the modelling studies of Shadkam et 

al. (2016) and Chaudhari et al. (2018), these three studies consider only the dynamics of monthly and annual precipitation, not 10 

taking into account the changes in the variability of daily precipitation. During the last three decades, there was a significant 

increase the frequency of daily precipitation of less than 5 mm and a significant decrease in the frequency of daily precipitation 

of 10-15 mm, suggesting a runoff reduction even in case of constant annual precipitation (Fig. 2 in Bavil et al., 2018). Hosseini-

Moghari et al. (2018) showed that an increasing frequency of days with less than 5 mm precipitation in combination with 

decreasing monthly precipitation has lead to the observed reduced inflow into two dams in the Lake Urmia basin that are 15 

located downstream of areas with insignificant human water use. We conclude that analyses should be done at the daily time 

scale or smaller.  

In addition, a comprehensive modeling approach is preferable that takes into account, for example, the impacts of 

changing temperatures on runoff and thus river inflow and on evapotranspiration of the lake itself. Such comprehensive 

modelling was done by Chaudhari et al. (2018) but their uncalibrated global hydrological model that represented the basin by 20 

5-6 cells only was not able to simulate well the flows and storages in the basin. For example, annual inflow into the lake was 

estimated to be 3,700·106 m3 in 2003 (their Fig. 8) while observed inflow was much higher, 5,835·106 m3. In 2009, observed 

inflow, with 1,036·106 m3, was only half of the simulated one. Therefore, the very high human contribution to lake volume 

decline of 86% determined by Chaudhari et al. (2018) may arise from the poor performance of the uncalibrated model. 

4.3 Limitations 25 

Even after multi-objective calibration of a state-of-the-art comprehensive hydrological model, there remain many uncertainties 

that affect the accuracy of the model results. Like the results of all hydrological models, our results are affected by uncertainties 

in model input, model parameters, and model structure. Model parameter uncertainty was reduced by the comprehensive multi-

observation calibration, albeit conditioned on just one climate input data set and using just one model (instead of the state-of-

the-art multi-model ensemble approach, compare www.isimip.org, last accessed: 14 Dec. 2018). Given the low spatial model 30 

resolution (0.5°×0.5°), the model results are only valid for the basin as a whole and results for individual grid cells are very 

uncertain. Also due to a lack of data at the basin scale, the hydrogeology of the basin was not taken into account in the model. 

Information on irrigated area in each grid cell was taken from a global data set of areas equipped for irrigation from 
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groundwater and surface water (Siebert et al., 2010), which was adapted in this study by scaling it by basin-wide correction 

factors to better capture the temporal development of irrigation. Calibrated modeling results are also affected by uncertainties 

of the observation data. GRACE TWSA data are more reliable for larger (100,000 km2 (Landerer and Swenson, 2012)) areas 

than the basin area. Estimation of groundwater storage changes based on water level data for unevenly distributed wells is 

rather uncertain due to the unknown heterogeneities in the subsurface. Evaluation results, here the good fit of simulated to 5 

“observed” lake water volume decline, are be affected by a likely underestimation of the actual decline by the “observed” 

value derived from remote sensing of lake water level elevation and lake water area by Tourian et al. (2015) assuming a 

constant bathymetry. However, there was an increase in the elevation of the lake bottom due to sedimentation and salt 

precipitation (Shadkam et al., 2016) so that the “observed” water volume decline was likely lower than the actual one, and our 

model would underestimate the lake storage decline, too. 10 

5 Conclusions 

This study investigated the differential impact of human water use and climate variations on water storage (total, groundwater, 

lake) in the Lake Urmia basin as well as on inflow into the lake during 2003-2013. This was done by utilizing the information 

contained in multiple types of observation data to calibrate, specifically for the Lake Urmia basin, the global hydrological 

model WGHM that takes into account the impact of human water use and man-made reservoirs on flows and storages. Using 15 

the best-performing model variant, the impact of human water use was determined by comparing the output of a naturalized 

run, where human water use was assumed to be zero, with the run with the historic water use. To understand the value of 

different observational data types for calibration, four calibration variants were defined where, in a step-wise fashion, basin-

wide averages of 1) remote sensing data (for irrigated area and TWSA), 2) in-situ streamflow observations (for of lake inflow), 

3) groundwater well data (groundwater level and storage), and 4) statistical data on water withdrawals in the basin were added. 20 

A time series of observed lake volume was used for evaluation. 

We found that the time series for water demand by irrigation, as assumed in the standard WGHM version, had to be 

adjusted using MODIS data such that the modification of four model parameters could result in a good fit to observed TWSA. 

Consideration of these remote sensing data somewhat improved the dynamics of both inflow into Lake Urmia and lake water 

storage, inflow into the lake was still strongly overestimated by a factor of 0.92%, and groundwater dynamics should a strongly 25 

shifted seasonality. Additional calibration against observed inflow into the lake did not affect TWSA simulation and slightly 

improved the simulation of the lake water storage anomaly. Only by using monthly time series of mean groundwater level 

variations in the basins for calibration, we could adjust the fractions of human water use taken from groundwater and surface 

water such that seasonality of groundwater storage was simulated correctly. Only then it was possible to simulate the observed 

groundwater loss, and loss of lake volume was no longer overestimated. Statistical information on sectoral water withdrawals 30 

in the basin for one year as well as estimates for sectoral return flow fractions further improved the model, but only slightly. 
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We recommend to include, in case of relevant trends in observations, the difference between observed and simulated trends as 

one of the calibration criteria, not only differences between time series of daily, monthly or annual values. 

The calibration exercise showed that the calibration variant for which the highest number of observational data types 

were used, WGHM variant RS_Q_GW_NA, showed the best fit to all observations. Certainly, no general conclusions on the 

worth of specific observation data types for model calibration, including trade-offs among fit to multiple data types, can be 5 

derived from this study. Lake Urmia basin is particular with respect to 1) draining into a large end lake that dominates TWSA, 

2) the strong impact of human water use and 3) the fact that the standard WGHM version estimates a net recharge to the 

groundwater due to surface water irrigation, which had to be corrected to a net abstraction. In basins with large lakes, and in 

particular with end lakes, remotely sensed time series on lake area and the elevation of the lake water table should be used to 

estimate time series of lake water storage as these observational data can be expected to be of high value for understanding the 10 

freshwater system by hydrological model calibration. Groundwater storage cannot be observed from space but relies on in-situ 

observations on groundwater heads in wells but, as in the case of Lake Urmia basin, such data can be crucial for a correct 

understanding of the freshwater system. 

Based on the good fit of WGHM variant RS_Q_GW_NA to four types of observational data, we are confident that 

human water use reduced lake inflow that would have occurred without human water use during 2003-2013 by about 41%. 15 

About 52% of the total water storage loss in Lake Urmia basin and only 40% of lake water loss during this time period was 

due to human water use, and the 48% and 60%, respectively, to climate variations. 90% of groundwater storage loss is 

estimated to be caused by human water use but this value may be somewhat overestimated by WGHM because climate-driven 

loss under naturalized conditions may be underestimated due to the simplified representation of groundwater-surface water 

exchanges in the model.  20 

GRACE TWSA data indicate an increasing trend in water storage in the basin during 2014-2017 due to both less 

water use due to water management (ULRP, 2015b) and the wet years 2015/2016. This trend is about half as strong as the 

decreasing trend during 2003-2013. Further strengthening of efforts for decreasing human water use in the basin should be 

undertaken, while at the same time, global-scale mitigation of climate change by reducing greenhouse gas emissions to prevent 

strong decreases of precipitation and runoff.  Our study has shown that management of the Lake Urmia basin should be based 25 

on a comprehensive assessment of all water storages and flows in the basin, including human water uses of groundwater and 

surface water. We recommend refining the estimated net abstractions from surface water and groundwater by a basin-wide 

spatially explicit quantification not only of water abstractions but also return flows to groundwater and surface water. 

Data availability 

In-situ data from "Iran Water Resources Management Company" including groundwater levels, precipitation and temperature 30 

publicly are available upon request from the corresponding author. GRACE data is available through 

http://www2.csr.utexas.edu/grace/RL05_mascons.html (last accessed: 17 Jul. 2018). Lake water surface extents and water 
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levels are available at http://hydrosat.gis.uni-stuttgart.de/php/index.php (last accessed: 17 Jul. 2018). All simulation results are 

available in the supplement. 
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Appendix A: Simulated groundwater storage in individual grid cells  

 10 

 
Figure A1: Simulated groundwater storage in each of the 22 0.5° grid cells in Lake Urmia basin under anthropogenically altered 

(Fig. A1a) and naturalized conditions (Fig. A1b). 
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