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Dear Editor and Reviewers, 

We have revised the manuscript according to the insightful comments provided by the editor and 

reviewers. All recommendations have been addressed in the revised manuscript. We would like to thank 

you for the thorough consideration and critical comments that helped us improve our manuscript. 

  Editor Comments 5 

Editor Comment: You received two new reviews, one minor revisions but with some critical points and 

one rejected (with extensive review). Both reviewers agree the manuscript is really too long, the 

groundwater aspect of Lake Urmia (lake-groundwater relationship) should be discussed much more in 

depth and the model set-up, assumptions and uncertainty need more attention. This could mean the 

manuscripts will be even longer. See some suggestions to shorten it below. 10 

Response: We would like to thank you for your time and suggestions. We have reduced the manuscript 

size and provided some description of the lake-groundwater relationship, model setup, and uncertainty. 

We hope the changes have made the manuscript suitable for publication and we look forward to your 

response. 

Editor Comment: A formal uncertainty analysis is not required for me (as requested by reviewer 2), but 15 

some more quantification and discussion as requested by the second reviewer needs to be included. 

Response: We have changed the model set up to consider uncertainty. We have discussed the uncertainty 

based on different optimal parameter sets which were obtained from the optimization algorithms (GA and 

NSGA-II). 

 20 

Editor Comment: Having gone through the paper I do want to stress I think editorial or only textual 

changes are not sufficient, I recommend to have a fresh look at the current manuscript and bring in some 

more focus (choice of results to present and discussion and decide which less important results should be 

presented in supplement only). 

Response: We have restructured the results and discussion sections and rewriting other parts 25 

accordingly. We have put some parts of the result section related to modifying NA in the supplement. 
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Also, we have put some parts of the material and methods in the supplement. In the revised version, we 

have focused more on uncertainty and model setup. 

Editor Comment: Could you reduce the introduction, and see whether the method section really needs 

all info? I could imagine that the well-known WaterGAP model(s) could be summarized in terms of Urmia 

application only (more, extensive info in supplement). For me, the main aspect (novelty) of your article 5 

seems using the comparison of calibrating using RS without and with ground information, so keep that in 

main text but bring all short references to your input data to the supplement as well. 

Response: We have restructured the manuscript based on your suggestion and put all the detailed 

information in the supplement. Also, in the revised version, an automatic approach was developed for 

calibrating WGHM based on evolutionary optimization algorithms. To reduce the length of the 10 

manuscript, we have focused on two calibration variants i.e. calibrating using RS with and without 

ground information as you mentioned in the next comment. We have summarized the descriptions of the 

WaterGAP model in the manuscript instead we have added some descriptions for the model in the 

supplement. 

Editor Comment: The results section is very long whereas the discussion is shorter. Typically, one would 15 

like to see the reverse. Instead of giving all correction parameters and time-series, you could try to 

highlight 1-2 results (and present rest in supplement). Furthermore, quite some paragraphs in the results 

section have discussions. Please re-evaluate whether these parts could not be combined in the discussion. 

Response: We agree that the results section is longer than normal size. We have reduced the size of the 

results and put some parts in the supplement. Also, we reconsidered the result and discussion sections 20 

based on your comment (see the result and discussion sections in the revised version). 

Editor Comment: Note, section 3 consists only of 1 subsection (3.1). 

Response: In the revised version it has two subsections.  

A point-by-point response to the Referee #2 

Referee #2: The revised version of the article is much more understandable and better. However, I still 25 

think it is too long and there are a lot of assumptions made in the text which can be criticized separately. 
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But, I think a minor revision would be proper for the final decision considering an additional comment 

below. 

Response: First of all, we genuinely appreciate your time in reviewing the revised version. We have 

reduced the manuscript size and revised it according to your comments. We hope that you are satisfied, 

after the changes have been made. 5 

Referee #2: I think that you are aware that the role of groundwater on the lake has been discussed by 

many researchers of this field. Some of these researches e.g. Amiri et al. (2016) think that there is no 

significant relationship between lake and groundwater in the basin but some like Ashraf et al. (2017), and 

Vaheddoost and Aksoy (2018) believe that there is strong evidence of a relationship between them. Since 

your modeling includes analysis of groundwater I think you should compare your results by these articles 10 

and try to confirm or reject obtained results by them using similarities and dissimilarities in results. 

Response: We run the models under two scenarios (1) there is a relationship between lake and 

groundwater and (2) there is no relationship between lake and groundwater. In scenario 1, the seasonality 

of the groundwater storage was strongly misrepresented. Therefore, we could not calibrate the model 

when there is a relationship between lake and groundwater. However, WGHM as a hydrological model 15 

that does not include a gradient-based groundwater model has some limitations for studying 

groundwater-lake water flows. We believe that there is an indirect relationship between lake and 

groundwater i.e. groundwater-river, river-lake as accepted by ULRP (2015). In addition, as you 

mentioned some studies e.g. Amiri et al. (2016) using isotopic analyses and chemical tracer rejected the 

significant relationship between lake and groundwater. Also, Danesh-Yazdi and Ataie-Ashtiani (2019) 20 

stated that the study by Vaheddoost and Aksoy (2018) is not reliable and there is some doubt in accepting 

that. Therefore, we have added the following part in the discussion of the revised version. 

“It is worth mentioning that WGHM as a hydrological model that does not include a gradient-based 

groundwater model has some limitations for studying groundwater-lake water flows. We attempted to 

calibrate WGHM under the assumption that there are direct water flows between lake and groundwater. 25 

Under this assumption, the seasonality of the groundwater storage was strongly misrepresented. 

Therefore, as accepted by ULRP (2015c), we assumed there is no direct flow between the lake and 

groundwater. While Vaheddoost and Aksoy (2018) using traditional hydrograph separation methods 
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claimed that there is a significant relationship between the lake and groundwater, Danesh-Yazdi and 

Ataie-Ashtiani (2019) rejected their claim. Equally, some studies that applied isotope and chemical tracer 

analyses (e.g. Amiri et al. 2016) rejected any significant relationship between lake and groundwater. In 

conclusion, the results of this study support the idea that there are no significant direct interactions 

between lake and groundwater within the basin.” 5 

 

References: 

Danesh-Yazdi, M., and Ataie-Ashtiani, B. (2019). Lake Urmia Crisis and Restoration Plan: Planning 

without Appropriate Data and Model Is Gambling. Journal of Hydrology, 576, 639-651. 

 10 

Amiri, V., Nakhaei, M., Lak, R., and Kholghi, M. (2016). Geophysical, isotopic, and hydrogeochemical 

tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW 

Iran. Environmental Science and Pollution Research, 23(16), 16738-16760. 

 

Vaheddoost, B., and Aksoy, H. (2018). Interaction of groundwater with Lake Urmia in Iran. Hydrological 15 

processes, 32(21), 3283-3295. 

ULRP (2015), Urmia Lake - Causes of shrinkage and potential threats. 36 pp (In Persian). 

A point-by-point response to the Referee #3:  

Referee #3: Overall assessment: The aim of the study essential is to quantify the impact of human 

activities (mostly in terms of water consumption) vs climatic changes on the Lake Urmia water balance. 20 

Even though 3 of the referees provided detailed reviews and pointed out to several shortcomings of the 

paper mostly on model setup and uncertainty, the authors’ revision is minimal and in fact insufficient as 

many comments are effectively ignored. 

Response: Firstly, we are thankful for your time in reviewing our manuscript. We do not agree with you 

about the “many comments are effectively ignored” because referee#2 was satisfied with the revised 25 

version. In the new revised version, we have addressed the shortcomings of the model setup and 

uncertainty.  

Referee #3: All reviewers except Chaudhari took issue with the experiment design, particularly the model 

set up, input data time period, and lack of adequate model calibration and evaluation. Yet, authors have 
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not changed the experiment design, and only added two performance metrics. No uncertainty or 

sensitivity analysis was conducted whatsoever, which is a common analysis required for any hydrological 

modeling study. This is even more serious as the manuscript is in fact inconsistent on the issue of 

uncertainty. While authors discussed the limitations of the work such as parameter uncertainty, no account 

of the hydrogeology of the lake, assuming constant bathymetry, among others; not only they have not 5 

accounted for these uncertainty sources by even a simple uncertainty/sensitivity analysis, they kept 

pushing that their study is “a holistic and reliable modelling approach”, “we are confident that human 

water use reduced lake inflow that would have occurred without human water use during 2003-2013 by 

about 41%”, and “This study proved that even without human water use Lake Urmia would not have 

recovered from the significant loss of lake water volume caused by the drought year 2008”, among other 10 

instances of false overpromises. 

Response: We have developed a new model set up based on an auto-calibrated approach using a genetic 

algorithm (GA) and Non-dominated sorting genetic algorithm II (NSGA-II). We also have discussed 

uncertainty arising from the different possible optimal parameters that were obtained from the 

optimization algorithms. About the limitations, we should mention as you know all modeling studies faced 15 

some limitations that are inevitable. About the “holistic modeling”, if you review the modeling study on 

Lake Urmia, all modeling applied a trial and error method based on a single objective calibration. 

Therefore, when we consider all possible data for our model, we consider it as a holistic one that includes 

TWSA, inflow, groundwater, lake volume. About the “reliable modeling” we agree with you. We have 

removed it from the manuscript. We also replaced the “we are confident ...” and “This study proved that” 20 

with “we found ...” and “Based on the results can be claimed that…”, respectively.  

Referee #3: The manuscript is filled with redundant discussions (either well established in the literature 

or not relevant to the core research question of the paper), and is written in poor language with several 

typos. It is a waste of the editor’s time and reviewers to resubmit a manuscript that has not been proof-

read especially that most reviewers pointed this out. Further, some of the sources are either not peer-re-25 

viewed or in Persian. While local knowledge can be useful, the credibility of a non-peer reviewed source 

is always questionable. In such cases, authors should provide reason and demonstrate clearly instead of 

just referring to the source. 
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Response: We have reformatted the manuscript, results and discussions have made shorter. We have 

checked the writing of the manuscript. We believe that readability is sufficient now. After acceptance 

HESS will proof again the manuscript by native speakers. Regarding the Persian references, we agree 

with you but unfortunately there are no English references, however, all ULRP reports have been 

reviewed by the scientific committee. Besides, actually we have no other way, for example about the 5 

“water withdrawals data” how we can cite it? Or about “irrigated area”? We should either use Persian 

references or do not provide any sources for these cases. Moreover, referring to ULRP as the main data 

center for lake Urmia is common in all published papers in international journals.  

Referee #3: In my evaluation, the manuscript is rejected. If authors wish to resubmit the work, they must 

revise the modeling experiment to sufficiently address the comments by reviewers, and by addressing I 10 

specifically mean to change their modeling setup by providing a more robust calibration than a simple 

and insufficient trial and error, transparently explaining the modeling setup to ensure (somewhat) the 

reproducibility of the study, and perform some sensitivity or uncertainty analysis. Also, remove all the 

redundant discussions from the manuscript and focus their discussion on the relevance of the results to 

the lake given the uncertainties. While most of the comments by reviewers still hold, here I high-lights a 15 

few urgent ones. 

Response: As aforementioned, we have revised the model setup and added uncertainty analysis to the 

revised version. Readers might not just focus on one objective of the study (quantify the impact of human 

water use and climate variation on the Lake Urmia water balance). As the editor has stated, one novelty 

of this study is assessing the value of remote sensing data and ground information for calibrating a 20 

hydrological model. Therefore, there are not such redundant discussions as you stated. However, we have 

reduced discussions with more direct focus on two objectives of the study. 

 

Referee #3: Problem description: The problem description (i.e. drivers of the lake desiccation) 

particularly in the introduction as well as the later discussion of the results is problematic. It is misleading 25 

and inaccurate to stack the climatic and human drivers together (e.g. page 29 lines 1- 10). Khazaei et al. 

[2019] disentangled these two: they compared the influence of these two sets of drivers for the lake drying 

and demonstrated the regional human activities (including water management, but not limited to) are the 
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primary drivers compared to climatic changes (including atmospheric droughts). AghaKouchak et al. 

[2015] also argued that droughts cannot be the primary driver. These two studies, among others, are based 

on directly analysing the data themselves, without relying on a model of the system which in most cases 

are inadequate. While these studies have their own shortcomings, as any scientific study has, your 

modeling results are inadequate to challenge them. As pointed out by the reviewers your modeling setup 5 

has several issues. Inadequate models, regardless of the extent of their inputs and their results, are 

inadequate. Authors said: “This study proved that even without human water use Lake Urmia would not 

have recovered from the significant loss of lake water volume caused by the drought year 2008”. This 

conclusion is in direct contradiction with AghaKouchak et al. [2015] conclusion that “a satellite based 

gauge-adjusted climate record… of Lake Urmia basin's Standardized Precipitation Index… indicates no 10 

significant trend in droughts over the past three decades at the 0.05 significance (95% confidence) level... 

In fact, the region has experienced more severe drought events in the past (e.g., 1997– 2002) that did not 

lead to a substantial change in the lake's surface area. Thus, we caution against overrating the role of 

droughts in the disruption of the lake's water balance to the extent that would cause such a massive 

shrinkage”. Given that AghaKouchak et al. [2015] directly analysed the historic data of the lake without 15 

relying on any inadequate model of the lake system, it is reasonable to say this contradiction indicates the 

shortcoming and (un)reliability of the model set-up in this study. Notwithstanding the unscientific 

language of this sentence. Science is not in the business of proving anything. In science we demonstrate 

and approximate. This is more so the case when it comes to hydrological modeling with numerous types 

and sources of uncertainty including both model structure and data. Also, what do you mean by “climate 20 

variations”? Are you referring to only natural climate variability or climatic changes which include both 

natural variability and human-induced changes? 

Response: We agree with you about the “page 29 lines 1-10”. To clarify we have removed the word 

“main” in line 6, now the sentence would be accurate. About two mentioned studies, Khazaei et al. [2019] 

and AghaKouchak et al. [2015], we discussed in “Comparison to human vs. climatic contribution as 25 

determined in previous studies” section, why our results are different with some studies and in line with 

some other studies. Analysis of the monthly data used in calculating SPI cannot take into account the 

changes in the pattern of daily precipitation. To approve this claim, we refer to two studies that they also 
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used directly in-situ data without modeling. Bavil et al. (2018) showed a significant increase in the 

frequency of daily precipitation of less than 5 mm and a significant decrease in the frequency of daily 

precipitation of 10-15 mm, suggesting a runoff reduction even in case of constant annual precipitation. 

Also, Hosseini-Moghari et al. (2018) showed that an increasing frequency of days with less than 5 mm 

precipitation in combination with decreasing monthly precipitation has led to reductions of inflow into 5 

two dams in the Lake Urmia basin that are located downstream of the areas with insignificant human 

water use. Therefore, we did not rely just on our results and provided some facts from pure in-situ data 

which has been rarely mentioned in the previous studies. Moreover, Shadkam et al. (2016) who 

considered only inflow into the lake, reported the same results for the impact of human water use on the 

reduction of inflow into the lake. About “climate variations” we cannot claim that it is a natural climate 10 

variability or climatic change. To speak about climate change must be conscious. It might be considered 

as any change or variations in climate variables data in our study. 

 

 References: 

Bavil, S. S., Zeinalzadeh, K., and Hessari, B.: The changes in the frequency of daily precipitation in Urmia 15 

Lake basin, Iran, Theoretical and Applied Climatology, 133(1-2), 205-214, doi:10.1007/s00704-017-

2177-7, 2018. 

Hosseini-Moghari, S.M., Araghinejad, S. and Ebrahimi, K.: Monthly Precipitation Assessment: a 

misleading tool for understanding the effects of climate change, 8th Global FRIEND-Water Conference, 

Beijing, China, 6-9 November 2018. 20 

Shadkam, S., Ludwig, F., van Oel, P., Kirmit, Ç., and Kabat, P.: Impacts of climate change and water 

resources development on the declining inflow into Iran's Urmia Lake, Journal of Great Lakes Research, 

42, 942-952, doi:10.1016/j.jglr.2016.07.033, 2016. 

 

Referee #3: Introduction: The introduction is very long, has redundant sections:  25 

• Figure 3 has already been published and discussed by Aghakouchak and been repeated many times 

in the literature. (also pointed out by the referee 1)  

• Citation to Zarghami (2011) on page 29 is irrelevant.  
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• Last 2 paragraphs are “method” material and not introduction  

Another issue is that some of the sources are not peer-reviewed. Whether right or wrong, it is hard to rely 

on such sources. While local knowledge and literature may be a valuable source, it has to treated with 

caution, not to propagate any errors. So, I am hesitant to accept such discussions. 

Response: Figure 3 and Zarghami (2011) have been deleted and the last two paragraphs of introduction 5 

have been reconstructed. Almost all references are peer-reviewed except for some sources that reported 

in-situ data. It should be noted that all ULRP reports were reviewed by scientific committees. 

Unfortunately, there are no English references in some cases. 

 

Referee #3: Time period: the time period 2003-2013 is inadequate for modeling the lake dynamics. 10 

Before 2000 the lake was not as heavily impacted by over-regulation of the river flows, and also between 

2000-2003 there is significant variation in the lake level and annual inflows to the lake. Therefore, it is 

essential to include these years, for as many variable as possible. Otherwise, the model is biased and not 

representative of the lake dynamics. 

Response: We have considered this period due to the fact that the observed data was available for this 15 

period. We completely agree with you; it was better to consider a longer period for calibration. However, 

we don't prefer to reconstruct data, that is error-prone. The GRACE data and irrigated areas are not 

available for the period 2000-2003. Further, we don't want to use the model for out of calibration period, 

therefore we believe that for using the model in the calibration period there is no concern about the bias. 

 20 

Referee #3: Model setup: as pointed out by R1 comment 2 (and a few other comments), the model setup 

is not transparent and justifiable. Surely, documenting model setup (even as supplement) is more 

necessary than many redundant discussions. As a test, an adequate model setup should work against the 

updated observation (2013-present). Can the authors demonstrate this? 

Response: We have added some descriptions for the model setup in the revised version. Unfortunately, 25 

there is no information about the irrigated areas after the calibration period. Forcing data also available 

until the end of 2013. However, we have tested the model against lake volume which is really is more 

challenging those simulation variables used in the calibration process.    
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Referee #3: Standard model: inclusion and discussion of the standard model, as a reviewer pointed out, 

in unnecessary given that this model is not calibrated for this catchment. 

Response: As you know the outputs of the standard version of WGHM as a global model have been 

commonly used worldwide. For instance, Tourian et al. (2015) used the standard version of WGHM over 5 

lake Urmia. Therefore, it would be valuable to show the validity of using the standard version of WGHM 

in another study. Hence, we would keep this section in the revised version.  

Reference: 

Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, S., and Sneeuw, N.: A spaceborne multisensor 

approach to monitor the desiccation of Lake Urmia in Iran, Remote Sensing of Environment, 156, 349-10 

360, doi:10.1016/j.rse.2014.10.006, 2015. 

 

Referee #3: Model calibration and evaluation: the model calibration is also questionable. It is only 

based on trial and error so the identified parameter sets are not reliable. Also, it is not clear how sensitive 

the model results are to these parameters. There is issue about over-parametrizing the model as in each 15 

variant new data is added (issue about correction factors pointed out by reviewers). A single model run 

for each variant is not sufficient, even if the calibration was done through an automatic parameter space 

search scheme. This is well-established in the literature and a model ensemble is required to account for 

the uncertainties, even though partly. If the model is run on a daily basis, authors should be trans-parent 

and present the daily results too. 20 

Monthly and annual performance metrics are usually high for most models. The devil is in the details 

though. On table 4, the flow is only calibrated on an annual scale and not evaluated at all. There is 

significant seasonality in this region. It is quite possible that seasonal errors are just cancelling each other 

out and give seemingly good annual results. This can be seen on figure 8 where the model exhibits 

unrealistic seasonality which is not in the observed data, e.g. in Fig 8e, there is generally a negative bias 25 

in the first half of the RS_Q_GW_NA simulation, and positive bias in the second half (red line is first 

below the black line systematically, and then above it). 
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Response: We have reconsidered the model calibration by using two optimization algorithms, namely 

genetic algorithm (GA) and Non-dominated sorting genetic algorithm II (NSGA-II). As editor request, to 

keep the length of the revised version no more than the previous version, we just focus on two calibration 

variants using RS with and without ground information. Other variants only considered for some 

discussions. In the revised version, we used an ensemble of model outputs that were obtained from 5 

different GA runs or Pareto front for NSGA-II. Therefore, we have discussed the uncertainties in the 

revised version. Adding daily outputs making the manuscript longer than the current version and we 

believe that it is redundant. Because most of the outputs are anomaly based on the monthly mean, 

therefore daily data could not be beneficial. However, to consider your concern about the inflow into the 

lake, we have plotted the daily inflow here. About Fig 8e, it should be noted that modeling lake volume is 10 

not a simple task for a hydrological model. Therefore, we believe that the performance of the model is 

quite acceptable, while in the revised version the performance of the model improved in this regard.  

 

Figure R: Time series of simulated daily inflow into the lake 

 15 

Referee #3: Uncertainties: as Referee 1 pointed out in their comment 6 and elsewhere, the uncertainties 

are playing a crucial role here. While authors added a section of uncertainty discussion, it is an ad-hoc 

discussion. While the discussion obviously undermines the experiment design and the results, they have 
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not revised the experiment design to account for these uncertainties, and also they keep overpromising 

about the reliability of their results. Further, their discussion of uncertainty shows a lack of understanding 

about the area of model uncertainty. For instance, they said “Model parameter uncertainty was reduced 

by the comprehensive multi-observation calibration”. Parameter uncertainty will not be reduced by just 

adding more data to the model; data uncertainty matters, “garbage in, garbage out” [Kuczera et al., 2010]. 5 

The authors must demonstrate how adding input to the model reduced parameter uncertainty, while 

justifying the credibility of the data themselves. They have not done any uncertainty or sensitive analysis 

whatsoever. 

Response: We have revised the model set up and added some uncertainty analysis to the manuscript. We 

believe the parameter uncertainty should be reduced when a multi calibration approach is used. Because 10 

the model should satisfy more than one objective therefore change in one parameter should be done with 

less freedom. We already showed this issue in Table 5 where the model provides changes in total water 

storage through only by changing lake depth. In addition, use more observed data always help us improve 

the calibration uncertainty that is arising from our lack of awareness of the observed values of a given 

variable. 15 

Thank you very much again for your time and for providing valuable comments. 

 

 

 

 20 

 

 

 

 

 25 
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Quantifying the impacts of human water use and climate variations 

on recent drying of Lake Urmia basin: the value of different sets of 

spaceborne and in-situ data for calibrating a hydrological model 

Seyed-Mohammad Hosseini-Moghari1, Shahab Araghinejad1, Mohammad J. Tourian2, Kumars 

Ebrahimi1, Petra Döll3,4 
5 

1Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran 
2University of Stuttgart, Institute of Geodesy (GIS), Stuttgart, Germany 
3Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany 
4Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany 

Correspondence to: Seyed-Mohammad Hosseini-Moghari (Hosseini_sm@ut.ac.ir) 10 

Abstract. During the last decades, the endorheic Lake Urmia basin in northwestern Iran has suffered from declining 

groundwater tables and a very strong reduction in the volume as well as recently in the extent of Lake Urmia. For the case of 

Lake Urmia basin, this study explores the value of different locally and globally available observation data for adjusting a 

global hydrological model such that it can be reliably used for distinguishing the impacts of human water use and climate 

variations. The WaterGAP Global Hydrology Model (WGHM) was for the first time calibrated against multiple in-situ and 15 

spaceborne data to analyse the decreasing lake water volume, lake river inflow, loss of groundwater, and total water storage 

in the entire basin during 2003-2013. The calibration process was done using an automated approach including a genetic 

algorithm (GA) and Non-dominated sorting genetic algorithm II (NSGA-II). Then the best-performing calibration variant was 

calibrated models were run with orand without considering water use to quantify the impact of human water use. Observations 

encompass remote-sensing based time series of annual irrigated areaareas in the basin from MODIS, monthly total water 20 

storage anomaly (TWSA) from GRACE satellites, and monthly lake volume anomalies. In-situ observations include time 

series of annual inflow into the lake and basin averages of groundwater level variations based on 284 wells. In addition, local 

estimates of sectoral water withdrawals in 2009 and return flow fractions were utilized. Four calibration variants were set up 

in which the number of considered observation types was increased in a stepwise fashion. The best fit to each and all 

observations, including the time series of lake volume not used for calibration, was achieved if the maximum amount of 25 

observations was used for calibration. Calibration against MODIS and GRACE data alone improved simulated inflow into 

Lake Urmia but inflow and lake volume loss were still still overestimated, while groundwater loss was 

understimatedunderestimated and seasonality of groundwater storage was shifted as compared to observations. Lake and 

groundwater dynamics could only be simulated well if calibration against groundwater levels led to an adjustment of the 

fractions of human water use from groundwater and surface water. Thus, in some basins, globally available space-born 30 

observations may not suffice for improving the simulation of human water use. According to our studyWGHM simulations 

with 18 optimal parameter sets, human water use was the reason for 5052-57% of the total basin water loss of about 10 km3 

during 2003-2013, for 4039-43% of the Lake Urmia water loss of about 8 km3 and for up to 87-90% of the groundwater loss. 

mailto:Hosseini_sm@ut.ac.ir
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Lake inflow was 4039-45% less than it would have been without human water use. ThisThe study provedshows that even 

without human water use Lake Urmia would not have recovered from the significant loss of lake water volume caused by the 

drought year 2008. These findings can support water management in the basin and more specifically Lake Urmia restoration 

plans.  

1 Introduction 5 

Iran is a country with an arid and semi-arid climate where population growth and the government’s aim of food self-sufficiency 

has led to increasing irrigated crop production and exploitation of surface water and groundwater resources. Climate change 

has resulted in increased temperatures and, in particular the northwest of the country, in decreased precipitation (Tabari and 

Talaee, 2011a, b) and thus decreased renewable water resources. In the last decades, numerous wetlands and lakes in Iran have 

dried up, and groundwater levels have strongly declined in most areas (Madani et al., 2016). The most serious disaster has 10 

occurred in the Lake Urmia basin, an interior basin in the northwest of Iran located in the three provinces West Azarbaijan, 

East Azarbaijan, and Kurdistan that covers an area of 52,000 km2 (Fig. 1). At the downstream of the basin, 17 permanent rivers 

and 12 seasonal rivers discharge into the largest natural water body in Iran, Lake Urmia. Over the past two decades, climate 

variations and human activities (Hassanzadeh et al., 2012) have decreased inflow into the lake. Precipitation in the basin shows 

a decreasing trend over the period 1951-2013, with particularly low values after 1995, and evaporation has increased (Alizadeh-15 

Choobari et al., 2016). Lake water volume is now approximately 30·109 m3 below its historical maximum (ULRP, 2015a).  

 

 
Figure 1: Location of Lake Urmia basin. 

Lake Urmia is one of the largest hypersaline lakes in the world, which due to its ecological and natural features is a 20 

National Park, a Ramsar Site and a UNESCO Biosphere Reserve (Eimanifar and Mohebbi, 2007). It is a terminal lake that 

loses water only by evaporation (Hassanzadeh et al., 2012). Abbaspour and Nazaridoust (2007) estimated that inflows of at 

least 3·109 m3/yr are needed to compensate for lake evaporation, while Alborzi et al. (2018) estimated values between 2.9·109 
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to 5.4·109 m3/yr depending on climatic conditions. According to Alborzi et al. (2018), recovery of the lake could range from 

3 to 16 years depending on climatic conditionconditions, water use reductions, and environmental releases. Inflow from 

groundwater to the lake was estimated to be less than 3% of total inflow from precipitation, rivers, and groundwater (Hasemi, 

2011). In the 1970s and 80s, the water table of Lake Urmia was approximately at 1,276 m above sea level and then increased 

to more than 1,278 m in 1995 due to a few wet years (Shadkam et al., 2016). AfterwardsAfterward, the water table dropped to 5 

1,274 m in 2003 specially because of the severe drought in 1999-2001 exacerbated by human water use (Shadkam et al., 2016). 

From 2003 to 2014, lake extent was approximately halved, and water level declined by another 3 m, while seasonal variability 

of lake water extent increased (Tourian et al., 2015) (Fig. 2). After 2015, lake extent and storage have stabilized (Fig. 3) due 

to the relatively high precipitation in 2015 and 2016, increased releases from reservoirs and management activities for 

decreasing water consumption (ULRP, 2015b). 10 

 
Figure 2: Time series of surface water extent and water table elevation of Lake Urmia (data from Tourian et al., 2015). 

Studies on various aspects of the Lake Urmia disaster abound. With decreasing lake water volume, salt concentration 

has increased, endangering the aquatic biota feeing birds; exposed salt layers may lead to salt storms (Pengra, 2012).  

Precipitation reduction, temperature increase, agricultural development including construction of man-made dams and building 15 

a causeway across the lake have been identified as the main reasons for the degradation of Lake Urmia (Abbaspour and 

Nazaridoust, 2007; Zeinoddini et al., 2009; Delju et al., 2012; Jalili et al., 2012; Sima and Tajrishy, 2013; Fathian et al., 2014; 

Farajzadeh et al., 2014; Banihabib et al., 2015; AghaKouchak et al., 2015; Azarnivand et al., 2015and Banihabib 2017; 

Alizadeh-Choobari et al., 2016; Ghale et al., 2018; Khazaei et al., 2019). By using Gravity Recovery And Climate Experiment 

(GRACE) satellite observations, altimetry data for Lake Urmia and outputs of the Global Land Data Assimilation System 20 

(GLDAS), Forootan et al. (2014) estimated the trend of groundwater storage changes in the Lake Urmia basin as -11.2 mm/yr 

between the years of 2005 to 2011, the largest decrease of the six investigated Iranian basins. Zarghami (2011) examined four 

routes to transfer the water from Aras basin in the north of Lake Urmia basin to provide an alternative for the water supply for 

the agricultural and drinking demands in the north of the basin. Ahmadzadeh et al. (2016) investigated the effect of irrigation 
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system changes in the basin from the surface to pressurized systems; they found that such changes would increase water 

productivity but would have no effect on lake inflow and would reduce groundwater levels by 20%.  

 
Figure 3: Lake Urmia during the time period 2002-2016 (Google Earth Timelapse, last accessed: 28 Apr. 2018). 

Three hydrological modelling studies for Lake Urmia basin focused on quantifying the contributions of various 5 

factors on lake water volume (Hassanzadeh et al., 2012), lake inflow (Shadkam et al., 2016) or both (Chaudhari et al., 2018). 

Using a lumped system dynamics modelling approach and observed time series of lake water volume for model calibration, 

Hassanzadeh et al. (2012), determined that about 65% of lake level decline between 1997 and 2006 was due to reduced river 

inflow, while four major man-made reservoirs contributed 25% and diminished precipitation on the lake surface 10%. Shadkam 

et al. (2016) evaluated the impact of climate, irrigation with surface water and reservoirs on inflow into the lake for the period 10 

1960-2010 using a modified version of the macro-scale gridded hydrological model Variable Infiltration Capacity (VIC) 

model, which was calibrated against time series of river discharge at six observation station at the downstream end of six sub-

basins draining into Lake Urmia. While the model was driven by global gridded WFDEI climate data set with a spatial 

resolution of 0.5°, basin-specific information on 41 reservoirs and on the temporal development of irrigated areas were taken 

into account. The study found that reservoirs had a very small impact on annual inflows and that climate variations accounted 15 

for 60% of lake inflow decrease of 48% over the 50-year period. In the model, all irrigation requirements need to be fulfilled 

by available surface water. Therefore, reduced availability of surface water during the 2000s due to low precipitation and high 

temperature resulted in unfulfilled irrigated water demand and a cap on the effect of human water use in the model while in 

reality, groundwater abstractions occurred and even increased (Delju et al., 2012; Hesami and Amini, 2016). In addition, the 

modelling study of Shadkam et al. (2016) did not consider the impact of domestic and industrial water use in the basin which 20 

can be expected to have increased during the last decades, given a population increase from 4.8 to 5.9  million from 2002 to 

2010 (http://ulrp.sharif.ir/en/page/about-urmia-lake-basin, last accessed: 28 Apr. 2018). Chaudhari et al. (2018) used the output 

of the global HiGW-MAT model, with 1°×1° grid cell size of approx. 10,000 km2, to distinguish climatic and anthropogenic 

contributions to the shrinkage of Urmia Lake. By running the model with and without human impacts (surface and groundwater 

use as well as reservoirs), they estimated that the human-induced river flow decline between 1995-2010 to account for 86% of 25 

the observed decrease of lake volume. However, a comparison with GRACE TWSA showed that the model overestimates the 

decrease in TWSA in the basin between 2003 and 2010. The HiGW-MAT model was not calibrated for the Lake Urmia basin 

but net irrigation requirements were simulated specifically for this study based on Landsat satellite images for 5 years between 

1987 and 2016. The lake water balance is not simulated by the model such that no comparison with observed lake water levels 

was possible. A comparison with river discharge or groundwater observations was not done either. 30 

The aim of our study was twofold. On the one hand, we wanted to quantify, by a holistic and reliable modelling 

approach,In previous hydrological modeling studies of Lake Urmia basin, there either no model calibration or calibration was 

only done using a single observation type, in particular surface water inflow into the lake. Although streamflow observations 

are very informative for hydrological modelling as they integrate over processes in the whole upstream basin, a good fit of 

http://ulrp.sharif.ir/en/page/about-urmia-lake-basin
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simulated and observed streamflow may not necessarily lead to an appropriate simulation of other flows and storages (Beven 

and Freer, 2001). Therefore, additional types of observations have to be added to avoid equifinality (Beven and Freer, 2001; 

Döll et al., 2016). In this study, a multi-observation calibration approach was used to calibrate a hydrological model which 

was then applied to quantify the contributions of climate variations and human activities to the decrease of Lake Urmia water 

volume and river inflows as well as, different from previous studies, to groundwater storage and total water storage in the 5 

whole Lake Urmia basin. Such a modelling approach requires the set-up of a model that is able to simulate the impact of 

surface and groundwater use as well as of climate variations on these water storages and flows. The hypothesis is that if model 

output for all these variables fit well to observations, then the model can be used to assess the contribution of human water use 

by comparing the outputs of two model variants, one with human water use and one where human water use is assumed to be 

zero. To achieve a good fit to observations, hydrological models need to be calibrated by comparison of observations with 10 

model output variables. While hydrological models are usually calibrated only against observations of river discharge, it is 

well known that a good fit of simulated and observed river discharge does not lead necessarily lead to an appropriate simulation 

of other flows and storages (Beven and Freer, 2001). However, in previous hydrological modeling studies of Lake Urmia basin, 

model calibration was either not done at all or only using a single observation type. On the other hand. In addition, using Lake 

Urmia basin as a test case, we wanted to explore the value of different types of observation data for adjusting a global 15 

hydrological model by multi-observation calibration. Currently, global hydrological models are mostly uncalibrated but 

globally available space-born observations have increased the opportunity for model calibration at the global scale (Döll et al., 

2016). 

We used the state-of-the-art global hydrological model WaterGAP 2.2c (spatial resolution 0.5°×0.5°) which simulates 

human water uses from surface water and groundwater and how these affect river discharge, groundwater, lake water, and total 20 

water storage. In its standard version, WaterGAP is calibrated against observed mean annual river discharge at 1319 stations 

worldwide by adjusting 1-3 model parameters related to runoff generation and streamflow (Müller Schmied et al., 2014), but 

for reasons of data availability not for a station in Lake Urmia basin. A previous WaterGAP version was calibrated, for 22 

large basins, against streamflow and total water storage anomalies by adjusting 6-8 parameters (Werth and Güntner, 2010). 

For this study on the differential impacts of climate and human water use on Lake Urmia basin, WGHM was for the first time 25 

calibrated for a specific basin by using multiple types of independent data. Multi-observation calibration included the 

adjustment of temporally constant model parameters as well as the adjustment of human water use input data. To understand 

the value of different observations or other regionally available data for understanding dynamics of water flows and storages 

in a basin, WGHM was calibrated sequentially by considering, in each calibration variant, an additional data type. In the first 

variant, only remote sensing data were used (variant RS). In-situ river discharge observations were added in variant RS_Q. In 30 

the third variant RS, discharge and groundwater level data were used (variant RS_Q_GW), and finally RS, discharge, 

groundwater levels as well as regional data of basin-wide total withdrawals plus estimated return flow fractions 

(RS_Q_GW_NA variant). Model evaluation was done by comparison of simulated lake water volume anomalies against 

observed anomalies. The best-performing model variant RS_Q_GW_NA was then applied to simulate the water flows and 
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storages in Lake Urmia basin that would have occurred under naturalized conditions, i.e. without any human water use (and 

man-made reservoirs). By comparing the output of the naturalized run with the output of the model run with human impacts, 

we determined the contributions of human water use and climate variation on lake inflow and water storages in the period 

2003-2013. In section 2, we describe the utilized data and the simulation setup. The results of the four For this purpose, the 

WaterGAP global hydrology  model (WGHM) was calibrated by means of genetic algorithm (GA) and Non-dominated sorting 5 

genetic algorithm II (NSGA-II) for the Lake Urmia basins. Descriptions of the used data and the simulation setup are presented 

in section 2. The results of the different calibration variants and the impacts of human water use are shown in section 3. Section 

4 discusses multi-observation calibration and the analysis of human impact as well as the limitations of the study. Finally, 

conclusions are drawn. 

2 Methods and data 10 

We analyzed the 11-year period from the beginning of 2003 until the end of 2013, as both GRACE data and global climate 

data to drive WaterGAP wherewere available for this period. In the following sections, WaterGAP, WaterGAPits input data 

and the observational data used for calibration as well as the calibration variantsapproach are described.  

2.1 WaterGAP 

WaterGAP is a global hydrological model for assessing water resources under the influence of humans (Döll et al., 2003; 15 

Müller Schmied et al., 2014). With a spatial resolution of 0.5°×0.5°, it simulates water abstractions and consumptive water use 

(so-called net abstractions, i.e. the amount of water that evapotranspirates during use and does not flow to surface water bodies 

and groundwater afterwards) in five sectors (irrigation, livestock, domestic, manufacturing and cooling of thermal power 

plants); then net abstractions from either groundwater (NAg) or surface water bodies (NAs) are computed (Müller Schmied et 

al., 2014; Döll et al., 2012). Negative values of NAg occur where return flow to groundwater from irrigation with surface water 20 

is so high that water is added to groundwater storage by human water use. NA is the sum of NAg and NAs and equal to 

consumptive water use. Time series of NAg and NAs in each grid cells are then input to the WaterGAP Global Hydrology 

model WGHM that simulates their effect on water flows and storages. In WGHM, NAgits standard version, WaterGAP is 

calibrated against observed mean annual river discharge at 1319 stations worldwide by adjusting 1-3 model parameters related 

to runoff generation and NAs are subtracted from either the groundwater or surface water bodies (lakes, reservoirs or 25 

rivers)streamflow (Müller Schmied et al., 2014).  

WGHM simulates daily), but due to  lack of data not for any station in Lake Urmia basin. A previous WaterGAP 

version was calibrated, for 22 large basins, against streamflow and total water storage as well as flows like evapotranspiration, 

groundwater recharge (Döll and Fiedler, 2008), runoff, and river discharge for all continents except Antarctica. Water is 

transported between grid cells according to the DDM30 drainage direction map (Döll et al., 2003). Water storage compartments 30 

encompass snow, canopy, soil, groundwater, rivers, lakes, wetlands, and man-made reservoirs (Eicker et al., 2014). Lake water 
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storage is simulated as the difference of precipitation on the lake, evapotranspiration, inflows, and outflows. Outflow is zero 

for end lakes like Lake Urmia. The temporal variation of lake area, affecting precipitation on and evapotranspiration from the 

lake, is simulated as a non-linear function of lake water storage. WGHM contains more than 20 parameters that can be 

potentially be adjusted by calibrationanomalies by adjusting 6-8 parameters (Werth and Güntner, 2010). 

WaterGAP includes a multitude of global data sets including information on irrigated areas, the fraction of irrigated areas that 5 

is equipped to be irrigated with groundwater (Siebert et al., 2010) and artificial drainage affecting return flows to surface water 

(Döll et al., 2012). For more information on data and model algorithms used in WaterGAP please refer to Müller Schmied et 

al. (2014) and Döll et al. (2014a). WGHM can be run globally or for a specific basins onlybasin. In this study, it was run only 

for the 22 0.5° grid cells that represent the Lake Urmia basin in WGHM (Fig.  4).3). A more detailed description of WGHM 

can be found in the supplement.  10 

WaterGAP outputs were extensively compared to in-situ streamflow observations (e.g., Döll et al., 200; Müller 

Schmied et al., 2014), to GRACE TWSA (Döll et al., 2012, 2014a, b) and GPS TWSA (Döll et al., 2014b). Results were shown 

to depend on applied climate input data sets (e.g., Müller Schmied et al., 2014, 2016; Döll et al., 2014b), model structure 

(Müller Schmied et al., 2014), and assumptions on water use (Döll et al. 2014a, b). Comparison of observed streamflow regime 

indicators (different streamflow percentiles representing statistical low and high flows) to the values computed by nine (or 15 

seven) GHMs showed that WaterGAP is one of the best fitting models (Gudmundsson et al. 2012; Tallaksen and Stahl, 2014). 

Prudhomme et al. (2011) concluded that “of the three global models considered here, WaterGAP is arguably best suited to 

reproduce most regional characteristics of large-scale high and low flow events in Europe.” Regarding the fit to GRACE and 

GPS TWS, Döll et al. (2014b) found that WaterGAP underestimates seasonal variations of TWS on most of the land area of 

the globe and that seasonal maximum TWS occurs one month earlier according to WaterGAP than according to GRACE on 20 

most land areas. 
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Figure 4: Grid cells in WGHM corresponds to Lake Urmia basin along with the location of groundwater wells across the basin. 

2.2 Data 

2.2.1We used the following observations for calibrating WGHM: (1) Remote sensing data including irrigated area in Lake 

Urmia basin. Based on MODIS images, Kamali and Youneszadeh Jalili (2015) estimated annual time series of irrigated areas 

in Lake Urmia basin from 2001 to 2012. Considering that water management in the basin aims at preventing any increase of 5 

irrigated areas, it is assumed that irrigated area in 2013 remained at the 2012 value (Fig. 5).  

 
Figure 5: Irrigated area in Lake Urmia basin assumed in WaterGAP and derived from MODIS (data from Kamali and Youneszadeh 

Jalili, 2015). 

GRACE total water storage anomalies. GRACE satellite data allow derivation of monthly time series of total water storage 10 

anomalies (TWSA) over all continents. TWSA describes the total amount of water stored on the continents, including water 

storage in surface water bodies, groundwater and soil, as compared to the mean value of total water storage over a reference 

period. In our study CSR GRACE RL05 mascon solutions (Save et al., 2016; , last accessed: 17 Jul. 2018) were used. While 

it is recommended GRACE data products only for areas with at least 100,000 km2 (Watkins et al., 2015; Landerer and Swenson, 

2012), studies by Tourian et al. (2015) and Lorenz et al. (2014) showed that signal strength or the so-called gravimetric 15 

resolution is determining the applicability of GRACE data. In fact, Lake Urmia basin has experienced an 8·109 m3 change in 

the water volume in the last decade, which allows the use of GRACE for monitoring the changes in water storage in the basin 

(Tourian et al., 2015). This fact is supported by the very small gain factor of 1.0083 for the Lake Urmia basin based on 

Community Land Model 4 (CLM4) for spherical harmonic solutions (Landerer and Swenson, 2012), which is the factor with 

which signal attenuation due to leakage could be balanced. We can assume errors of the applied GRACE monthly time series 20 

of TWSA are small compared to the uncertainty of TWSA as computed by WGHM, such that model calibration against 

GRACE TWSA is meaningful. 
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, (2.2.2) inflow into Lake Urmia  

We used total annual observed inflow into the lake during 2003-2013 which was computed by the Urmia Lake Restoration 

Program )ULRP( based on 19 hydrometric stations around the lake (data available in  (In Persian), last accessed: 12 Nov. 

2017). Monthly observations were not available. It was compared to the sum of simulated river discharge of all WGHM grid 

cells flowing into the grid cell representing Lake Urmia. 5 

2.2.Q, (3) groundwater levels 

For evaluating the groundwater status in Lake Urmia basin, we used groundwater head data of 284 wells during 2003-2013 

(Fig. 4). To obtain a monthly time series of average groundwater level in the basin, first the average of all groundwater level 

in each 0.5° grid cell was calculated and then the average values of all grid cells (see Strassberg et al., 2009).  

2.2.4 from well observations, which were converted into groundwater storage anomalies GWSA (see section S2) and 10 

(4) statistical information on water withdrawals and consumptive uses 

There are no water withdrawals time series data in Lake Urmia basin. However, water withdrawals in the Lake Urmia basin 

for 2009 was reported to be 4,825·106 m3 (ULRP, 2015c) of which 89% is used for irrigation (Table 1). 57% of the withdrawn 

water is taken from surface water, the rest from groundwater. According to the report of Mahab Ghodss Consulting Engineering 

(2013), 16% of the water withdrawn for irrigation returns to groundwater and only 2% to surface water bodies, while the 15 

respective values for industrial and domestic water withdrawals are 50% and 10%. In this study, observed consumptive 

irrigation use was computed by subtracting total return flow from total water withdrawals for irrigation. Thus, it was set to 

82% of water withdrawals for irrigation, while observed consumptive use in the domestic/industry sector was set to 40% of 

sectoral water withdrawals. The sum of consumptive water use in all sectors is the so-called total net abstraction (NA) from 

either surface water bodies or groundwater. 20 

Table 1: Water withdrawals in Lake Urmia basin in 2009 [106 m3] (data from URLP, 2015c). 

Source 
 Sector  

Total 
 Agricultural Domestic Industry  

Surface water   2424 276 33  2733 

Groundwater   1867 190 35  2092 

Total   4291 466 68  4825 

 

2.2.5 Climate 

The 0.5° gridded EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-corrected for ISIMIP (EWEMBI) dataset 

(Lange, 2016) was used as forcing data set. EWEMBI includes daily climate data for 1979 to 2013. For EWEMBI, ERA-25 

Interim Reanalysis Data were bias-corrected with monthly observation data on temperature, precipitation and the number of 

wet days as well as daily radiation data. We compared, for the period 2003-2013, basin-average monthly precipitation and 



  

22 

 

temperature values of EWEMBI dataset with those derived as the mean over monthly values observed at 143 rain gauges and 

six temperature gauging stations. The correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), and Willmott’s refined 

index of agreement (Willmott et al., 2012) were 0.985, 0.946, and 0.897, respectively, for precipitation, and 0.996, 0.983, and 

0.941 respectively, for temperature. 

2.2.6 Lake volume 5 

 in the basin. In addition, time series of lake volume based on remote sensing data for lake extent and water table elevation as 

well as on in-situ bathymetry data, a time series of monthly water volume in Lake Urmia for the period 2003-2013 was 

generated by Tourian et al. (2015) (their Fig. 9). It was used for evaluation of the model variants. was used for validation. The 

0.5° gridded EWEMBI data set was used as climate forcing. Irrigated area and Q are at the annual time scale, TWSA, GWSA 

and lake volume on the monthly scale and the climate forcing is on a daily scale. All data cover the period 2003-2013 (see 10 

section S2 for details). 

 

 

Figure 3: Grid cells in WGHM corresponding to Lake Urmia basin along with the locations of groundwater wells across the basin. 

2.3 Calibration variantsapproach 15 

Calibration was done by trial-and-error. It included the modification time series of irrigated areaTwo calibration variants were 

applied. In the RS variant, only the remote sensing information was used for calibration, including irrigated area from MODIS 

and GRACE TWSA. In the variant RS_Q_GW_NA, ground-based information was used in addition to the remote sensing 

observations. This included inflow into the lake, groundwater data and statistical information regarding water use. Calibration 
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was done using the genetic algorithm (GA) for variant RS, with just one calibration objective, and the non-dominated sorting 

genetic algorithm II (NSGA-II), a multi-objective version of GA, for the variant RS_Q_GW_NA. To integrate optimization 

algorithm with WGHM, we scripted the codes in shell and R environments by modifying ‘GA’ (Scrucca, 2013), and ‘nsga2R’ 

(Tsou, 2013) Packages in R. GA and NSGA-II are the most common evolutionary optimization algorithms in hydrological 

model calibration (e.g. Azarnivand et al. 2019). Both algorithms start with a random population (here WGHM parameters) and 5 

after evaluating the objective function(s) (here KGE) the better parameter sets are selected based on the value of the objective 

function (in GA) and non-domination and crowding distance (in NSGA-II). Then, the crossover and mutation operators are 

applied and the process will be continued until one stopping criteria met. The details of GA and NSGA-II can be found in 

Mirjalili (2019) and Deb et al. (2002), respectively. Because of the use of the random generators in GA and NSGA-II, we did 

five runs for each algorithm to achieve more reliable results. The selected parameters for each algorithm are presented in the 10 

supplement (Table S3). Fig. 4 shows the flowchart of these algorithms along with a schematic of the calibration process for 

the two calibration variants. In short, calibration included the modification time series of irrigated areas, of NAg and NAs, 

with different multipliers for individual years, as well as the modification of a maximum of seven temporally constant model 

parameters or, in case of spatially heterogeneous parameters, multipliers. (see Table 1). Modifications were done 

homogeneously for the whole basin. Months with assumed irrigation in Lake Urmia basin according to WaterGAP correspond 15 

to the actual irrigation months (Apr. and Oct.) in the basin according to Saemian et al. (2015),). Thus, no correction of the 

seasonality was needed in the calibration process. Fig. 6 shows a schematic of the calibration process for the four calibration 

variants. Please note that the identified parameter combinations are not the only ones that would lead to a good fit to 

observations.  
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Figure 6: Flowchart for the four calibration variants. The black line is common in all variants, the mustard, blue, green and red 

lines represent calibration based on RS data (RS variant), RS data and inflow data (RS_Q variant), RS, inflow and groundwater 

level data (RS_Q_GW variant), and RS, inflow, groundwater level and net abstraction data (RS_Q_GW_NA variant), respectively. 

2.3.1 RS variant: Calibration using remote sensing data   

Irrigated area in Lake Urmia basin used in the standard version of WaterGAP is larger than the MODIS-based irrigated area 5 

until 2010, and smaller afterwards (Fig. 4). The largest differences, in 2004 and 2011, exceed 20%, or 1,000 km2, and the 

strongly increasing trend is not represented in WaterGAP. The constant value of irrigated area in WaterGAP is due to the fact 

that the Food and Agricultural Organization of the UN does not provide more recent estimates of irrigated area in Iran (see , 

last accessed: 13 Feb. 2018). To utilize the MODIS-based time series, consumptive irrigation water use in the whole basin of 

WaterGAP in year i was first adjusted by multiplying it by a correction factor CF1(i), with: 10 

where 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖
𝑀𝑂𝐷𝐼𝑆(𝑖) is irrigated area from MODIS in year i and 𝐴𝑟𝑒𝑎𝑖𝑟𝑟𝑖

𝑊𝐺 (𝑖) is irrigated area from WaterGAP database. The 

modified consumptive irrigation use was then added to the consumptive use of WaterGAP for the other sectors to obtain an 

updated basin-wide NA for each year. Then, modified monthly NAg and NAs in year i were calculated by multiplying, for 

each grid cell, the standard WaterGAP NAg and NAs values with the ratio of modified over standard basin-wide NA in year 

i. Then, WGHM was run with the modified NAg and NAs time series, and a small number of WGHM parameters was varied 15 

until achieving a good fit to monthly time series of basin-average GRACE TWSA (Fig. 6, yellow lines).  

2.3.2 RS_Q variant: Calibration using remote sensing data and inflow into the lake  

Model parameters of WGHM driven by modified NAs and NAg from the RS variant were adjusted to achieve a good fit for 

both GRACE TWSA and the time series of annual total inflows to Lake Urmia (Fig. 6, blue lines).  

2.2.3 RS_Q_GW variant: Calibration using remote sensing data, inflow into the lake, and groundwater level  20 

Since WGHM does not compute groundwater level but only groundwater storage, and there is no good information of basin-

wide specific yield that would allow a translation of observed groundwater level variations into storage variations, model 

calibration in this variant aimed at optimizing the fit between the monthly time series of normalized basin-average observed 

groundwater levels (calculated by subtracting the mean and dividing by the standard deviation) to the monthly time series of 

normalized WGHM groundwater storage. To achieve a good fit to groundwater levels, and at the same time to GRACE TWSA 25 

and observed inflow into the lake, NAg and NAs as adjusted in variant RS had to be further modified. Keeping total NA(i) 

constant, correction factors 𝛼(𝑖) and 𝛽(𝑖) were determined , with: 

and new values of temporally constantMore details are provided in the supplement. During calibration, seven model parameters 

were identified (Fig. 6, green lines).  
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2.3.4 RS_Q_GW_NA variant: Calibration using remote sensing data, inflow into the lake, groundwater level, and net 

abstractions  

In the most involved calibration variant, statistical data on water withdrawals in 2009 (Table 1) was used together with 

information on return flow to compute a consumptive irrigation water use 𝐶𝑢𝑖𝑟𝑟𝑖
𝑂𝑏𝑠 in the basin of 3,520·106 m3. To estimate 

irrigation use in all other years, with different climatic conditions, the per area consumptive irrigation water use from 5 

WaterGAP was used to compute, for each year, a climatic correction factor CF2(i) as 

where 𝐶𝐹2(𝑖) is represents the difference in the per area consumptive irrigation use in year i and the year 2009, 𝐶𝑢𝑖𝑟𝑟𝑖
𝑊𝐺 (𝑖) is 

consumptive irrigation use in year i obtained in standard WaterGAP. Finally,were adjusted that are known to have an impact 

on TWSA, Q and GWSA. We used a modified version of the Kling Gupta efficiency (KGE) as the objective function, where 

the trend of the time series was added as a fourth component to the KGE (see Eq. 4 was used for estimating water consumption 10 

time series over Urmia basin:5 below).  

where 𝐶𝑢𝑖𝑟𝑟𝑖(𝑖) is consumptive irrigation water use in year i. Unlike in the RS_Q_GW variant, consumptive use of the other 

sectors was added based on withdrawal data in Table 1 and a return flow fraction of 60%, resulting in total NA. Then, new 

values for correction factors 𝛼(𝑖) and 𝛽(𝑖) (Eq. 2) were identified by trial-and-error, and model parameters were modified to 

obtain a good fit to the data also used in the RS_Q_GW variant (Fig. 6, red lines).  15 
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Table 1: WGHM parameters with the most effect on TWSA, inflow into the lake, groundwater storage. 

Parameter 
Value 

Default Minimum Maximum 

P1: Rooting depth multiplier 1 0.5 3 

P2: Maximum active lake depth [m] 5 2 12 

P3: Runoff coefficient multiplier 1 0.5 1.5 

P4: Multiplier for the fraction of total runoff  that becomes groundwater recharge 1 0.5 5 

P5: Maximum amount of groundwater recharge per day multiplier 1 0.5 5 

P6: Minimum amount of daily precipitation necessary in arid/semi-arid areas to get groundwater recharge [mm] 12.5 5 15 

P7: Maximum canopy storage [mm] 0.3 0.1 1.4 

 

2.4 Performance indicators 

Performance of the calibration variants of WGHM was evaluated using the correlation coefficient (CC, ), Nash-Sutcliffe 5 

efficiency (NSE,),, root mean square error (RMSE), relative absolute error (RAE), and a modified version of the Kling Gupta 

efficiency (KGE, Gupta et al., 2009) with 

(1) 𝐶𝐶 =
𝐶𝑜𝑣 (𝑂𝑏𝑠, 𝑆𝑖𝑚)

𝜎𝑜𝑏𝑠 × 𝜎𝑆𝑖𝑚
 

(2) 𝑁𝑆𝐸 = 1 −  
∑ (𝑆𝑖𝑚(𝑡) − 𝑂𝑏𝑠(𝑡))2𝑇

𝑡=1

∑ (𝑂𝑏𝑠(𝑡) − 𝑂𝑏𝑠̅̅ ̅̅ ̅)2𝑇
𝑡=1  

(3) 
𝑅𝑀𝑆𝐸 = √

1

𝑇
∑(𝑂𝑏𝑠(𝑡) − 𝑆𝑖𝑚(𝑡))

2
𝑇

𝑡=1

 

(4) 
𝑅𝐴𝐸 =

∑ |𝑂𝑏𝑠(𝑡) − 𝑆𝑖𝑚(𝑡)|𝑇
𝑡=1

∑ |𝑂𝑏𝑠(𝑡) − 𝑂𝑏𝑠̅̅ ̅̅ ̅|𝑇
𝑡=1

 

(5) 
𝐾𝐺𝐸 = 1 − √(𝐶𝐶 − 1)2 + (

𝜎𝑆𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝑆𝑖𝑚̅̅ ̅̅ ̅

𝑂𝑏𝑠̅̅ ̅̅ ̅
− 1)2 + (

𝑇𝑟𝑒𝑛𝑑𝑆𝑖𝑚

𝑇𝑟𝑒𝑛𝑑𝑂𝑏𝑠
− 1)2 

where Cov is covariance function, 𝜎 refers to standard division, Trend indicates the linear trend of the time series, Obs is 

observed value, Sim is simulated value, t refers to time counter and T is the period length. Optimum values of CC, NSE and 

KGE are 1, and of RMSE and RE are 0. Trends and overall behaviour of the time series were also analysed. 10 

3 Results 

3.1 Multi-observation Model calibration 
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In variants RS and RS_Q, annual time series of irrigated area in Lake Urmia basin derived from MODIS (Fig. 4), which were 

applied in all four calibration variants, lead to a more strongly increasing trend of NA (consumptive water use) and NAs, as 

compared to the standard WaterGAP version (Fig. 7). Due to the dominant irrigation with surface water assumed in the standard 

version of WaterGAP, return flows from irrigation are larger than groundwater withdrawals, and there is a net recharge of 

groundwater by irrigation, i.e. a negative NAg. Therefore, a more strongly increasing irrigation with surface water in variants 5 

RS and RS_Q leads to return flows to groundwater that increase more strongly over time, i.e. NAg becomes increasingly 

negative with time (Fig. 7).  Average NA in 2003-2010 decreased from 4,185·106 m3/yr in the standard version to 3,815·106 

m3/yr, and increased from 4,233·106 m3/yr to 4,781·106 m3/yr in 2011-2013. However, increased net recharge of groundwater 

by return flows was found to be incompatible with decreasing observed groundwater levels (Fig. 8c). Positive NAg values 

were found to be necessary to simulate the observed lowering of groundwater levels from 2003 to 2013 Therefore, in variant 10 

RS_Q_GW, NAg and NAs were adjusted according to Eq. 2 by applying 𝛼  and 𝛽 time series presented in Table 2. With these 

adjustment factors, average NAg changed from -2,294·106 m3/yr in variants RS and RS_Q to 1,147·106 m3/yr in variant 

RS_Q_GW (Fig. 7b). Keeping annual NA constant, NAs decreased accordingly from 6,373·106 m3/yr to 2,931·106 m3/yr. 

Total NA slightly decreased in variant RS_Q_GW_NA as compared to the other calibrations variants.  

 15 
Figure 7: Time series of net abstractions from surface water (a) and groundwater (b), as well as total net abstractions (i.e. 

consumptive use) (c) in Lake Urmia basin in the standard version of WaterGAP as well as the various calibration variants. 

Table 2: Correction factors for modifying NAs and NAg (see Eq. 2). 

Variant  RS_Q_GW  RS_Q_GW_NA 
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Year  𝛼 𝛽  𝛼 𝛽 

2003  0.47 -0.48  0.39 -0.41 

2004  0.46 -0.49  0.37 -0.39 

2005  0.46 -0.50  0.39 -0.46 

2006  0.46 -0.50  0.38 -0.43 

2007  0.46 -0.50  0.42 -0.43 

2008  0.45 -0.52  0.29 -0.63 

2009  0.46 -0.49  0.38 -0.57 

2010  0.47 -0.48  0.43 -0.41 

2011  0.47 -0.47  0.56 -0.49 

2012  0.46 -0.51  0.49 -0.52 

2013  0.45 -0.52  0.47 -0.54 
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Figure 8: Time series of monthly TWSA of GRACE and WGHM (a), annual inflow into the lake Q from observations and WGHM 

(b) normalized observed groundwater level and normalized groundwater storage from WGHM (c), groundwater storage change 

GWSC from month to month from observations and WGHM (d) and the monthly lake volume anomaly (e), for standard WaterGAP 

and the four calibration variants. 5 
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Model runs driven by the different NAg and NAs of the four variants lead to the best fit to the variant-specific 

observational datasets if seven model parameters were re-set to the values listed in Table 3. It is emphasized that the listed 

parameter sets are not the only possible ones but those requiring the least number of parameters to be changed. In all four 

calibration variants, the minimum daily precipitation values for which groundwater recharge can occur in semi-arid regions 

(Döll and Fiedler, 2008) was slightly decreased (increasing groundwater recharge) and the maximum canopy storage was 5 

increased (increasing canopy evaporation). When the more observational data types were considered in the calibration process, 

the number of parameters that needed to be adjusted increased whereas the required parameter changes decreased.  

According to GRACE observations, total water storage in Lake Urmia basin declined by 9.9·109 m3 from its annual average 

in 2003 to its annual average in 2013, while the standardFirst, NA was adjusted based on either MODIS data only (variant RS) 

or MODIS data and information of basin water use (variant RS_Q_GW_NA) (section S3). Then, optimal model parameters 10 

were identified using GA and NSGA-II for both variants. Figure 5a shows the calibration history of WGHM based on the best 

performance of GA among five runs for the variant RS. GA started from a KGE value with respect to TWSA near 0.60 and 

reached to 0.87 after about 5,000 functional evaluations (WGHM runs). Figure 5b illustrates the final Pareto fronts obtained 

by five runs of NSGA-II for the variant RS_Q_GW_NA. For the variant RS_Q_GW_NA after about 12,000 functional 

evaluations (for each NSGA-II run), NSGA-II found 18 optimal parameter sets. Figure 6 shows the parameter ranges (5 and 15 

18 values for each parameter for variants RS and RS_Q_GW_NA) obtained by five different runs of GA and NSGA-II in RS 

and RS_Q_GW_NA variants. Then, an ensemble of WGHM simulations was generated for the variants RS and 

RS_Q_GW_NA which comprises the model runs with the optimal parameter sets. 
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Figure 5: Best convergence history of GA in calibrating WGHM for the variant RS (a) and Pareto fronts for the multi-objective 

calibrations generated by NSGA-II for the variant RS_Q_GW_NA (b1), (b2) and (b3).  

 

 5 

Figure 6: Adjusted WGHM version computes parameter values for variant RS (a much smaller loss. According to ) and 

RS_Q_GW_NA (b). 
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Figure 7 compares the data of Tourian et al. (2015), about 80 %output of the calibrated model ensembles (variants 

RS and RS_Q_GW_NA) with observations and the output of the standard version of WGHM. The minimum and maximum 

value of each variable in each time period are shown as uncertainty bound of the results in each variant. Standard WGHM 

underestimates total water lossstorage decline in the Lake Urmia basin wasbetween 2003 and 2013as compared to GRACE 

observations. A good fit to GRACE results in calibration variant RS, due to the loss of lake water.1) a stronger increase of 5 

human water abstractions over time (Fig. 7a), doublingas indicated by MODIS (Fig. S4), 2) an almost tripling of rooting depth 

and thus soil water capacity and(P1), 3) an increased fraction of runoff that recharges the groundwater (P4-P6) and a 4) a 

higher maximum canopy storage everywhere in the basin, as well as (P7) and 5) an increase of maximum active lake depth of 

Lake Urmia from 5 m to 9more than 8 m in variant RS resulted in a good fit of WGHM TWSA to GRACE TWSA (Fig. 8a(P2) 

(Figs. 6a and 7a). With the larger soil and canopy water storage capacities, runoff and thus inflow into Lake Urmia decrease 10 

as compared to standard WGHM (Fig. 8b). More water could be stored in canopy, soil, and the lake at the beginning of the 

period such that storages could react to the decline of inflows and decrease after 2007.7b). Still, simulated inflows into Lake 

Urmia computed in variant RS are still much higher than the observed values (Fig. 8b7b) and seasonality of groundwater 

levelsstorage is totally misrepresented (Figs. 8c, d). 

Table 3: WGHM parameter values adjusted by calibration in the different model variants. 15 
Variant Rooting 

depth 
multiplier 

Maximum 

active lake 
depth 

Runoff 

coefficient 
multiplier 

Multiplier for the 

fraction of total 
runoff  that 

becomes 

groundwater 
recharge 

Maximum amount of 

groundwater 
recharge per day 

multiplier 

Minimum amount of daily 

precipitation necessary in 
arid/semi-arid areas to get 

groundwater recharge 

[mm] 

Maximum 

canopy 
storage 

[mm] 

Standard 1 5 1 1 1 12.5 0.3 

RS 2 9 1 1 1 10 1 

RS_Q 2.8 10 0.9 1 1 10 1 

RS_Q_GW 3 9 0.8 0.5 4 10 1 

RS_Q_GW_NA 3 8 0.8 0.5 5 10 1 

 

Fig. 7c). The required reduction of computed lake inflow (Q) can be achieved (Fig. 8b) by further increasing soil 

water storage capacity in variant RS_Q, together with small_GW_NA by adjustment of the runoff coefficient and active lake 

depth (Table 3a slight further increase in maximum soil and canopy storage (Fig. 6), while the fit to GRACE TWSA remains 

good (Fig. 8a7a). However, the seasonality of groundwater table fluctuations is still not simulated properly. This storage could 20 

only be achieved by adjusting the sources of total net abstractions. Only if net abstractions from groundwater are multiplied 

by approximately -0.5 (Table 2), in variant RS_Q_GW, does the seasonality of computed groundwater storage variations fit 

to observations (Fig. 8c)._NA (Fig. 7c). NAg in the standard, RS and RS_Q variants is negative, which means that there is an 

artificial groundwater recharge due to irrigation by surface water during the summer irrigation months, leading to an increase 

in groundwater level and storage. Groundwater levelstorage observations, however, show a decrease during this period, 25 

indicating that irrigation causes a net abstraction from groundwater. Multiplication of standard WGHM NAg by a negative 



  

33 

 

value leads to a net abstraction of water from the groundwater body, and results in a seasonality of groundwater storage that 

fits well to the seasonality of the mean groundwater table in the basin. In addition to the NAg and NAs adjustment, two 

groundwater recharge-related parameters had to be re-set in variant RS_Q_GW (Table 3). The fit to observed TWSA and lake 

inflow remains good (Figs. 8a, b). Use of local information on water withdrawals and return flows in variant RS_Q_GW_NA 

barely changed the parameter values (Table 3) and the fit to all observational data (Fig. 8Therefore, annual values of NAg as 5 

computed by WGHM were multiplied, in variant RS_Q_GW_NA, by a negative correction factors (Table S2).  

From the results of the RS_Q_GW_NA variant, which was the most comprehensive calibration variant, we estimated 

the average specific yield of the aquifers in the Lake Urmia Basin, i.e. the change in groundwater storage per unit change of 

the elevation of the groundwater table. We first divided the standard deviation of the simulated groundwater storage time series 

by the basin area to obtain groundwater storage variability in terms of equivalent water height and then divided this value by 10 

the standard deviation of the observed groundwater levels. This resulted in a specific yield estimate of 0.02, which is equal to 

the average value derived from pumping tests at 10 locations south of the lake (Hamzekhani and Aghaie, 2015). Estimated 

specific yield allows to compute an “observed” groundwater water storage anomaly, and thus an observed decline of 

groundwater storage between the year 2003 and 2013 of 1.8·109 m3, accounting for 18% of the observed total water storage 

loss in the basin. We compared the time series of simulated groundwater storage changes from month to month (GWSC) to 15 

those derived from observations of groundwater level changes. Since groundwater level observations were done only once per 

month and at different days, three-month moving averages were compared (Fig. 8d). Observations and model variants 

RS_Q_GW and RS_Q_GW_NA agree that the strongest monthly increase in groundwater storage occurs in early spring, and 

the largest decrease in early autumn.  

The Performance indicators CC, NSE, RMSE, RAE, and KGE with respect to monthly TWSA (Fig. 8a7a), annual Q 20 

(inflow to Lake Urmia, Fig. 8b7b) and monthly GWSCGWSA (Fig. 8d7c) are presented in Table 42 for the standard version 

and four calibratedthe ensemble means of the two calibration variants. Regarding the fit to TWSA observations, NSE increased 

from 0.48 in the standard version to 0.8486 in the RS variant for which TWSA was the only observation considered, and 

increased slightly to 0.88 when groundwater observations were taken into account in variants RS_Q_GW and RS_Q_GW_NA 

variantsvariant. This performance improvement is also reflected by CC, RMSE, RAE, and KGE. Although the performance 25 

of WGHM with respect to the observed lake inflow to the lake only improves marginally by was improved in the RS variant, 

the variant does not yet provide reliable simulations of lake inflow. The calibration against TWSA, in variant RS. Only 

calibration against inflow observations in variant RS_Q_GW_NA strongly improves model performanceinflow simulation, 

with NSE and KGE jumping from negative values for the standard variant to values around0.93 and 0.9 and RAE from 3.92 

to 0.30. Integration of groundwater observations again leads to a small performance improvement (see also RMSE).82, 30 

respectively. The good performance shown by CC for all model variants indicates that all model variants identify correctly 

high and low flow years. In the case of GWSCGWSA, all performance indicators show that consideration of remote sensing 

and streamflow observationsdata only dodoes not lead to an acceptable simulation of groundwater storage. Only the two 



  

34 

 

variantsvariant for which groundwater observations were taken into account lead to satisfactory performance. With a maximum 

NSE of 0.59 and KGE of 0.75, the fit to GWSC remains lower than the one to TWSA and 
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Figure 7: Time series of monthly total water storage anomaly TWSA (a), annual lake inflow, which may also be due to the uncertainty 

in estimating the basin-wide average Q (b), monthly groundwater storage behavior from well observations. The most data-

demanding variant RS_Q_GW_NA achieves the best fit to all three observational time series. The fit, however, is only slightly better 
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than the fit of variant RS_Q_GW, and a much more variable time series of NAg and NAs correction coefficients (Table 2) is necessary 

as compared to variant RS_Q_GW (Table 2).anomaly GWSA (c) and monthly lake volume anomaly (d), from observations, standard 

WGHM and the two calibration variants RS and RS_Q_GW_NA. 

 

For model performance evaluation, we compared the lake volume simulated by WGHM with the observed lake 5 

volume of Tourian et al. (2015) (Fig.8e7d and Table 42). The standard model underestimates the decline in both lake water 

and TWSA, allboth calibrated variants simulate the TWSA trend correctly, but both variant RS and RS_Q, with worse KGE 

than the standard version, overestimate the decline of lake water storage, thus compensating for not decreasing sufficiently 

groundwater storage (Fig. 8d7c) due to assuming a net groundwater recharge due to surface water irrigation. Only variants 

RS_Q_GW andvariant RS_Q_GW_NA simulatesimulates not only the groundwater dynamics but also the decline of lake 10 

water volume correctly. NSEKGE for the monthly lake volume anomaly is 0.6852 for the standard WGHM and improves to 

0.7775 for RS, where GRACE TWSA could be simulated well by approximately doubling both soil and lake water storage 

capacity (Table 3).. Including groundwater level data further improved the fit to observed lake volume, leading to a very high 

NSEKGE of 0.94 or 0.9589 (Table 42). We conclude that the calibration of WGHM against diverse observations (that do not 

include lake volume observations) leads to improved simulation of lake volume dynamics. 15 

Table 4: Performance of standard and calibrated WGHM variants with respects to observations of TWSA, inflow to lake, GWSC 

and lake volume anomaly 
Phase  Variables  Criteria Standard RS RS_Q RS_Q_GW RS_Q_GW_NA 

C
al

ib
ra

ti
o
n
 

 Monthly TWSA  CC 0.84 0.93 0.92 0.94 0.94 

   NSE 0.48 0.84 0.83 0.88 0.88 

   RMSE [mm] 77 42 44 38 37 

   RAE 0.72 0.41 0.42 0.37 0.36 

   KGE 0.64 0.80 0.79 0.82 0.83 

 Annual Q  CC 0.94 0.96 0.95 0.97 0.97 

   NSE -8.51 -2.33 0.88 0.91 0.93 

   RMSE [106 m3/year] 4121 2438 458 390 358 

   RAE 3.92 2.32 0.38 0.33 0.30 

   KGE -0.60 0.07 0.84 0.88 0.91 

 Monthly GWSC  CC -0.14 0.05 -0.31 0.80 0.82 

   NSE -0.72 -0.39 -1.05 0.55 0.59 

   RMSE [106 m3/month] 271 244 296 109 103 

   RAE 1.28 1.13 1.42 0.60 0.58 

   KGE -0.57 -0.44 -0.79 0.71 0.75 

E
v

al
u
at

io
n
  Monthly lake 

volume anomaly 
 CC 0.82 0.97 0.99 0.98 0.97 

  NSE 0.68 0.77 0.81 0.94 0.95 

  RMSE [106 m3] 1922 1837 1611 757 739 

  RAE 0.51 0.47 0.42 0.21 0.20 

  KGE 0.70 0.34 0.41 0.88 0.90 

 

 

 20 
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Table 2: Performance of standard and calibrated WGHM variants with respects to observations of TWSA, inflow to lake, GWSA 

and lake volume anomaly. 

Phase  Variables  Criteria Standard RS RS_Q_GW_NA 
C

al
ib

ra
ti

o
n

 
 Monthly TWSA  CC 0.84 0.93 0.94 

   NSE 0.48 0.86 0.88 

   RMSE [mm] 77 40 37 

   RAE  0.72 0.39 0.36 

   KGE -0.36 0.85 0.86 

 Annual Q  CC 0.94 0.97 0.97 

   NSE -8.51 -0.75 0.93 

   RMSE [106 m3/yr] 4121 1767 356 

   RAE  3.92 1.67 0.33 

   KGE -0.61 0.29 0.82 

 Monthly GWSA  CC 0.03 0.16 0.95 

   NSE -0.31 -0.28 0.89 

   RMSE [mm] 21 20 6 

   RAE  1.07 1.04 0.30 

   KGE -0.87 -0.83 0.85 

E
v

al
u

at
io

n
  Monthly lake volume anomaly  CC 0.82 0.98 0.98 

   NSE 0.68 0.92 0.96 

   RMSE [106 m3] 1922 928 656 

   RAE  0.51 0.25 0.18 

   KGE 0.52 0.75 0.89 

 

3.2 Differential impacts of human water use and climate variation on Lake Urmia basin 

The impact of human water use and man-made reservoirs on water flows and storages was quantified by comparing the output 5 

of WGHM in which human water use and man-made reservoirs are considered (this is normally done, now called WGHM-

ANT) with the output of a model run for naturalized conditions, where it is assumed that there are no reservoirs and no human 

water use (WGHM-NAT). We determined that the results of the naturalized run differ by less than 2% from a run with 

reservoirs but without human water use. Therefore, differences between WGHM-ANT and WGHM-NAT outputs can be 

considered to be caused by human water use. It should be mentioned that all simulated and observed storages (total, 10 

groundwater, lake) are not absolute values but anomalies with respect to the mean water storage during 2004-2009 (baseline 

period used for the provided GRACE data). Moreover, to quantify the uncertainty in the model calibrations, WGHM-ANT 

and WGHM-NAT were run based on all 18 optimal parameter sets were obtained from Pareto front for variant RS_Q_GW_NA. 

All results were presented by min-max ranges. 

When comparing TWSA under anthropogenic and naturalized conditions in Fig. 9a8a, remember that TWSA in Lake 15 

Urmia basin is dominated by water storage in Lake Urmia. Seasonal TWSA variation of WGHM-ANT and WGHM-NAT do 

not differ much. Starting after the heavy rain in April 2007 and strongly caused by the lack of spring precipitation in 2008, 

both WGHM-ANT and WGHM-NAT (as well as GRACE TWSA) show a decreasing trend that is only somewhat more 

pronounced in WGHM-ANT (Fig. 9a8a). Thus, this decrease is mainly due to dry climate conditions during the well-known 

severe drought of 2008, with an annual precipitation of only 241 mm, i.e. 74% of the mean value for 2003-2013 (Fig. 8b).. 20 
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Also in the absence of human water use, total water storage would not have recovered after 2009 but would have stayed 50-

100 mm below the values occurring before 2008. However, while in WGHM-NAT the minimum storage in late summer, i.e. 

the period with high irrigation, remains almost at a constant level after 2009, it decreases each year in WGHM-ANT due to 

consumptive increasing irrigation water use (see Fig. 7cS4). The linear trendtrends of WGHM-ANT and WGHM-NAT TWSA 

time series for the period 2003-2013 is -24.5are between -23.6 and -25.1 mm/yr (GRACE: -24.4 mm/yr) and between -10.1 5 

and -11.8 mm/yr9, respectively. The TWSA trend for two sub-periods before and after 2008, 2003-2007 and 2009-2013 -

14.2[-11.7, -18.5] and -[-10.6,-16.3] mm/yr, respectively, for WGHM-ANT and only [-1.8,3.3] and [-2.9,-0.7 and -3.856] 

mm/yr, respectively, for WGHM-NAT. The last-mentioned trends are not significant at the 5% confidence level based on 

Mann-Kendall’s test. According to WGHM, the basin lost, on average during 2003-2013, between 1,274226·106 and 1,305·106 

m3 water/yr, while in the absence of human water use, it would have lost 614between 524·106 and 618·106 m3 water/yr, i.e. 10 

52-57% less. Of this total water volume, 920 between 914·106 and 975·106 m3/yr of lake water was lost, while only 548523·106 

and 598·106 m3/yr would have been lost without human water use (Fig. 9b8b). 

The smaller decreasing trend for lake water volume under naturalized conditions is clearly caused by more inflow 

into the lake, even though lake evaporation is somewhat higher under naturalized inflow conditions due to the larger lake 

extent. While mean inflow during 2003-2013 is computed to be 4,454between 4,323·106 and 4,685·106 m3/yr under naturalized 15 

conditions, it decreases by 41%39-45% reached to between 2,639463·106 and 2,742·106 m3/yr under anthropogenically altered 

conditions (Fig. 9c8c). The difference is only 50% of NA as only a fraction of (potential) net abstractions from surface water 

NAs (required to allow optimal irrigation) could be made 1) due to a lack of water availability in the surface water bodies and 

2) because a fraction oft of NAg is provided a decrease in groundwater storage. Since 2008 the inflow into the lake has never 

reached 3,085·106 m3/yr. This is the value estimated to be the minimum environmental water requirementsrequirement that 20 

compensates the amount of annual evaporation from of the lake surface (Abbaspour and Nazaridoust, 2007). Therefore, a 

decrease ofin lake water storage can be expected for the best estimate ofestimated inflow by WaterGAP ofbetween 

2,639463·106 and 2,742·106 m3/yr. during 2003-2013. In WGHM-NAT, the inflow was lower than 3,085·106 m3 only in 2008 

and 2009. Still, the average inflow into the lake from 2009-2013 of between 3,670528·106 and 3,840·106 m3/yr would have 

been only enough to keep the lake from further loosinglosing volume )needed to compensate for lake evaporation). Thus even 25 

in the WGHM-NAT, inflow into the lake would not have been enough for a recovery to conditions between 2003 and 2007 

(Fig. 9b), as during this time period, mean inflow under naturalized conditions would have been 54% larger. The ratio of inflow 

into the lake over precipitation in the basin varies strongly among the years, reaching a maximum value of 0.30 and 0.41 for 

anthropogenic and naturalized conditions, respectively, in 2003, and a minimum value of 0.11 and 0.18 in the drought year 

2008. For the period 2009-2013, these ratios are, with 0.11 (ANT) and 0.22 (NAT), much smaller than the values for 2003-30 

2007, 0.21 and 0.32. Thus, the drought year 2008 as well as the relatively small ratio of inflow into the lake over precipitation 

in the last five years of the study period play an equally important role as human water use in the decline of inflow and lake 

water storage.8b).  
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While Groundwater storage is estimated to decline by 251between 239·106 and 267·106 m3/yr during 2003-2013 in 

WGHM-ANT, the decline is only 27between 24·106 and 35·106 m3/yr in WGHM-NAT (Fig. 9d8d). Different from lake water 

storage, groundwater storage would have recovered after 2008/2009 if there had been no (increasing) net groundwater 

abstractions (Fig. 9d8d, compare Fig. 7bS4b), even though mean groundwater recharge was onwere between 2,579340·106 

and 3,103·106 m3/yr during 2009-2013 as compared to 3,310between 3,091·106 and 4,179·106 m3/yr during 2009-2013. In 5 

WGHM, the groundwater compartment is modelled using a linear storage model where the change of groundwater storage is 

the difference between inflows to groundwater and outflow to surface water bodies, supplement by a prescribed outflow due 

to human groundwater use in case of anthropogenic conditions. Long-term average outflow from groundwater to surface water 

is proportional to the groundwater storage. Therefore, in case of less groundwater recharge, also the outflow to surface water 

bodies is decreased, while mean groundwater storage decreases only slightly, in particular in areas with a low average 10 

groundwater recharge like the Lake Urmia basin. In the absence of groundwater abstractions, the groundwater level cannot 

drop below the level of the surface water in WGHM. WGHM cannot simulate the case where groundwater switches from 

discharging groundwater to surface water bodies to receiving water from rivers and other surface water bodies. In case of 

groundwater abstractions, however, storage can drop below the level of the surface water, and outflow to surface water bodies 

ceases in this case.  15 

In the WGHM-ANT simulations, such a drop below the surface water level, indicated by a negative water storage, 

value occurs in 7 out of the 22 0.5° grid cells within the basin (Fig. A1a). In 6 of these 7 grid cells, groundwater levels were 

stable during 2003-2007and only declined from 2008-2013, caused by increased NAg and decreased groundwater recharge in 

the latter part of the study period. It is these 7 cells that cause the basin groundwater decline under anthropogenic condition 

shown in Fig. 9d. For naturalized conditions, peak seasonal water storages decrease somewhat but minimum water storages 20 

cannot drop appreciably given the very low minimum seasonal storage values already during the relatively wet five first years 

of the growing period (Fig. A1b). Thus, the contribution of human water use to groundwater storage decline might therefore 

be overestimated as WaterGAP cannot simulate a possible drop of the groundwater table below the surface water level in the 

absence of groundwater abstractions.2007. To summarize, human water use was the reason for 52-57% of the total water loss 

in the basin, for a maximum of 87-90% of the groundwater loss and for 4039-43% of the Lake Urmia water loss during 2003-25 

2013, and lake inflow was 4139-45% less than it would have been without human water use.  
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Figure 9: Time series of simulated (variant RS_Q_GW_NA) and observed monthly TWSA (a), lake water storage anomaly (b), 

annual inflow into the lake (c), and monthly groundwater storage anomaly (d), under anthropogenic (WGHM-ANT) and naturalized 

(WGHM-NAT) conditions. 

 5 

 

4 Discussion 
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4.1 Multi-observationModel calibration 

The output of hydrological models at all scales is uncertain as these models suffer from uncertain model inputs (e.g., climate 

variables or soil properties), parameter values and model structure (Döll et al., 2016). To decrease uncertainty, model 

calibration against independent data (e.g. observations) is performed by adjusting, for example, model parameters. While 

observations of river discharge are ideally suited for validating hydrological models because the point observation integrates 5 

over processes in the whole upstream basin of the gauging station, additional types of observations have to be added to avoid 

the well-known problem of equifinality (Beven and Freer, 2001; Döll et al., 2016). Without additional data, more than one 

parameter combination can lead to a good fit to e.g. observed river discharge. While e.g. total groundwater storage dynamics 

would be simulated very differently by model variants with the parameter sets that simulate river discharge time series equally 

well.  10 

Global hydrological models suffer from a particularly high uncertainty, in particular as model inputs are uncertain. For 

example, climate input data are based on low-density climate observations and information on water use is often very scarce 

and outdated. For modelling at the global scale, it is generally not possible to obtain, the same detailed data for a specific 

region compared to the case that modelling this region only. Still, a global hydrological model includes all data for simulating 

water flows and storages in specific regions of interest everywhere on the globe, and model calibration against multiple 15 

(regional) observations is a means for improving the performance of the global model regionally. In this way, an efficient 

simulation of regional water flows and storages can be achieved, possibly as an alternative to a costlier setup of a regional 

model. More importantly, the regional-scale multi-observation calibration done in this study can serve to inform efforts for 

global-scale but region-specific multi-observation calibration of global hydrological models that would allow to strongly 

improve the performance of global hydrological models at the scale that they are made for (Döll et al., 2016). 20 

Remote sensing data are the most accessible data for calibration of global hydrological models, including TWSA 

from GRACE. Therefore, the model variant RS only used globally available RS data, MODIS and GRACE data products. 

However, MODIS data can only be used to determine the temporally variable extent of irrigated areas in dry regions of the 

globe such that the important adjustment of temporal dynamics of statistics-based irrigated areas is not possible everywhere. 

GRACE TWSA quantify the anomalies and changes of water storage aggregated over all land water storage compartments 25 

such as snow, soil, groundwater, lakes, wetlands, and rivers. Considering GRACE TWSA improved the simulation of the 

important water storage compartment Lake Urmia. However, the unsatisfactory simulation of inflow into Lake Urmia and of 

groundwater dynamics clearly shows that a good fit to observed TWSA does not guarantee a good simulation of river flows 

or groundwater storagesstorage. Still, calibration against TWSA did, even if only very slightly, improve model performance 

also with respect to lake inflow and groundwater dynamics.  30 

By adding discharge data, 
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Figure 8: Time series of simulated (variant RS_Q_GW_NA) and observed monthly TWSA (a), lake water storage anomaly (b), 

annual inflow into the lake Q (c), and monthly groundwater storage anomaly GWSA (d), under anthropogenic (WGHM-ANT) and 

naturalized (WGHM-NAT) conditions. 
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To assess the value of using inflow into the lake (Q), groundwater observations (GW) and observed lake volume (LV) 

time series in model calibration, WGHM was calibrated manually based on some other variants i.e. RS_Q, RS_LV, RS_Q_LV 

and RS_Q_GW in a step-wise fashion (not shown). Based on the results, by adding discharge data (RS_Q variant), the model 

was able to simulate TWSA and Q accurately without changing the inputs of the model and only based on modifying the 5 

parameters, mainly increasing the rooting depth further (Table 3). Interestingly, the significant increase of the rooting depth 

multiplier from 2.0 to 2.8 strongly increased evapotranspiration but barely affected TWSA (Figs. 7a, b). In the case of the Lake 

Urmia basin, no trade-off between the fit to TWSA and river discharge exists as the performance indicators with respect to 

TWSA for variant RS_Q are even slightly higher than for variant RS (Table 4).  

. Groundwater level data were found (variants RS_Q_GW and RS_Q_GW_NA) to be necessary to identify that 10 

different from what is estimated by the standard version of WaterGAP, there is more irrigation with groundwater and less with 

surface water such that a net abstraction of groundwater and not artificial groundwater recharge occurs due to irrigation. 

Information on groundwater level dynamics with a suitable spatial density is not readily available for most regions of the globe. 

To simulate groundwater dynamics properly, it was not sufficient to adjust parameters of the hydrological model (in particular 

two groundwater recharge related model parameters, Table 3 (Fig. 6b), but it was necessary to alter the fractions of net water 15 

abstractions that come from groundwater and surface water bodies. Only then, groundwater storage decline by net groundwater 

abstraction was simulated, and lake water storage decline could be correctly simulated instead of being overestimated when 

only TWSA and lake inflow data are used for calibration. As in the case of adding lake inflow as calibration data type, no 

trade-off between the fits to the different data types occurred.  

Consideration of regional estimates of human water withdrawals in a specific year as well as regional estimates of 20 

return flow fractions in variant RS_Q_GW_NA does not improve the fit to observations compared to variant RS_W_GW 

significantly and only leads to slight parameter adjustments. This indicates a reasonable simulation of per hectare water 

consumption for irrigation by the WaterGAP model. To summarize, consideration of more and more observations and other 

independent data results with improved fits to three typetypes of observations, TWSA, lake inflow, and groundwater dynamics, 

while at the same time more and more parameters need to be adjusted (Tables 31 and 2 and 4Fig. 6). No trade-offs between 25 

the fits to the three observational data types occurred in the case of the Lake Urmia basin. 

While the introduction of annually varying corrections for NAg and NAs (Eq. 2, Table 2S2) for variants RS_Q_GW 

andvariant RS_Q_GW_NA leads to the most suitablebest fit to multiple observation types, it may be preferable to have instead 

of 11 free parameters just 1, i.e. a temporally constant 𝛽.With a temporally constant 𝛽 of -0.5 in variant RS_Q_GW, the fit to 

TWSA and inflow to the lake does not change at all, and groundwater storage is only slightly increased in the dry yearyears 30 

2008 and 2009. Thus, given the uncertainty of observed groundwater storage variations, a temporally constant NAg correction 

factor is sufficient for achieving a good fit for all observations. 

To assess the potential of using observed lake volume time series as calibration target and not only for model 

evaluation, we also calibrated WGHM against RS observations and lake volume (RS_LV variant) and against RS, lake inflow 
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and lake volume (RS_Q_LV variant). In the RS_LV variant, simulation of TWSA and GWSCGWSA did not change 

appreciably but not onlyboth simulated lake volume anomaly but also simulatedand lake inflow into the lake greatly improved 

as compared to the RS variant. NSE for monthly lake volume anomaly and annual lake inflow reaches 0.95 and 0.44, 

respectively. Inflow into the lake is much less overestimated than in variant RS. To achieve these fits, the variant RS parameters 

wherewere adjusted by increasing the rooting depth multiplier to 2.5 and setting the potential evaporation multiplier to 2. 5 

Adding lake volume observations on top of lake inflow observations in RS_Q_LV variant leads to an improved fit to lake 

volume observations, with NSE increasing from 0.81 to 0.95, but the fit of observed inflow into the lake slightly worsens from 

0.88 in RS_Q to 0.85 in RS_Q_LV. In this variant, the RS_Q variant parameters were used, except the maximum active lake 

depth was set to 9 m and the potential evaporation multiplier to 2. We conclude that in the case of the end lake, Lake Urmia, 

calibration against time series of lake volume anomalies could, in the absence of inflow data, help to improve the simulation 10 

of inflow, while calibration against time series of inflow could, in the absence of lake volume observation, improve the 

simulation of lake volume anomalies. Still, calibration to both observational data types leads to the best simulation of both 

annual lake inflow and lake volume anomalies. However, the groundwater storage dynamics could not be improved without 

calibration against groundwater level dynamics. 

 Finally,In many hydrological model calibrations, trends are not used as performance criterion. We found that model 15 

variants obtained by calibration aimed at optimizing the five criteria CC, NSE, RMSE, RAEwithout a trend criterion, and KGE 

with respect to monthly time series of observed total, groundwater and lake storages, with almostwhich have a very similar 

achieved performance values (Table 4), doescriterion, do not necessarily lead to similar estimates of total and compartmental 

water losses over the whole time period 2003 to -2013. For example, using variants RS_LV and RS_LV have the same values 

for all five performance criteria (expect KGE Q with 0.1 difference) similar NSE with respect to monthly time series of TWS 20 

(not shown) but, TWS loss between 2003 and 2013 is simulated to be 11.15·109 m3 and 7.86·109 m3 and 12.20·109 m3, 

respectively (Table 53). TWS loss according to variant RS_Q_GW_NA is, with 10.04(based on ensemble mean) is 9.84·109 

m3, in between and quite different, even though NSE and KGE areis only 0.04 andhigher, while modified KGE (Eq. 5) for 

RS_LV, RS_Q, RS_Q_GW_NA is 0.68, 0.06 better,71, and 0.86 respectively. We conclude that in the case of relevant trends, 

the calibration criteria should include the minimization of the difference between observed and simulated trends. 25 

Table 5. Water loss in Lake Urmia basin between 2003 and 2013 as observed and simulated by the different calibrated WGHM 

variants. 

  
 Water loss between 2003 and 2013 [109 m3]  

(mean annual storage in 2003 minus mean annual storage in 2013) 

  Observed Standard RS RS_LV RS_Q RS_Q_LV RS_Q_GW RS_Q_GW_NA 

Total  9.9 3.62 11.15 7.86 12.20 8.24 9.78 10.04 

Groundwater   1.8 0.17 0.11 0.06 0.02 0.03 2.68 2.52 

Soil water  N.A. 0.15 0.15 0.20 0.29 0.24 0.25 0.23 

Lake water  8.0 3.16 10.76 7.37 11.83 7.78 6.62 7.02 
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Table 3: Water loss in the storage compartments of Lake Urmia basin between 2003 and 2013 as observed and simulated by the 

WGHM variants that were calibrated using different observation variables. 

  Water loss between 2003 and 2013 [109 m3]  

(mean annual storage in 2003 minus mean annual storage in 2013) 

Storage compartment  Observed Standard RS RS_LV RS_Q RS_Q_LV RS_Q_GW RS_Q_GW_NA 

TWS Storage  9.90 3.62 10.30 7.86 12.20 8.24 9.78 9.84 

GW Storage  1.80 0.17 0.33 0.06 0.02 0.03 2.68 2.26 

Soil Water Storage  N.A. 0.15 0.26 0.20 0.29 0.24 0.25 0.25 

Lake Storage  8.00 3.16 9.53 7.37 11.83 7.78 6.62 7.24 

 

 Based on spaceborne TWSA and lake level observations, total water storage in Lake Urmia basin declined by 9.9·109 

m3 from its annual average in 2003 to its annual average in 2013 and about 80% was due to the loss of lake water (Tourian et 5 

al. 2015). Observed decline of groundwater storage was 1.8·109 m3, i.e. 18% of the observed total water storage loss in the 

basin. WGHM overestimates observed loss from groundwater in both calibrations variants that take into account groundwater 

observations. In WGHM simulations, groundwater decline and depletion below the level of surface water storages occur in 

only 7 out of the 22 0.5° grid cells within the basin (Fig. S5a). In 5 of these 7 grid cells, groundwater levels were stable during 

2003-2007 and only declined from 2008-2013, caused by increased NAg and decreased groundwater recharge in the latter part 10 

of the study period. It is these 7 cells that cause the basin groundwater decline under the anthropogenic conditions shown in 

Fig. 8d. For naturalized conditions, peak seasonal water storages decrease somewhat but minimum water storages cannot drop 

appreciably given the already very low minimum seasonal storage values during the relatively wet five first years of the 

investigate period (Fig. S5b) because WaterGAP cannot simulate a possible drop of the groundwater table below the surface 

water level in the absence of groundwater abstractions. Thus, the contribution of human water use to groundwater storage 15 

decline might be overestimated as 1) groundwater storage decline under the impact of human water use is overestimated (Table 

3, variant RS_Q_GW_NA as compared to observations and 2) groundwater storage decline under naturalized conditions 

without human water use may be underestimated.  

 It is worth mentioning that WGHM as a hydrological model that does not include a gradient-based groundwater model 

has some limitations for studying groundwater-lake water flows. We attempted to calibrate WGHM under the assumption that 20 

there are direct water flows between lake and groundwater. Under this assumption, the seasonality of the groundwater storage 

was strongly misrepresented. Therefore, as accepted by ULRP (2015c), we assumed there is no direct flow between the lake 

and groundwater. While Vaheddoost and Aksoy (2018) using traditional hydrograph separation methods claimed that there is 

a significant relationship between the lake and groundwater, Danesh-Yazdi and Ataie-Ashtiani (2019) rejected their claim. 

Equally, some studies that applied isotope and chemical tracer analyses (e.g. Amiri et al. 2016) rejected any significant 25 

relationship between lake and groundwater. In conclusion, the results of this study support the idea that there are no significant 

direct interactions between lake and groundwater within the basin. 
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4.2 Comparison to human vs. climateclimatic contribution as determined in previous studies 

In order to definedesign the Lake Urmia restoration program, it is vital to know which factors contribute how much to the 

shrinkage of the lake. All previous studies (e.g. Hassanzadeh et al., 2012; AghaKouchak et al., 2015; Ghale et al., 2018; 

Chaudhari et al., 2018) agreed that shrinkage is caused by both climate variations and human activities, but there is no 

consensus about the relative contributions. For example, ChaudariChaudhari et al. (2018) concluded that human-induced 5 

changes accounted for 86% of the lake volume decline during 1995-2010, while we determined the valuevalues of 4039-43% 

for 20022003-2013. According to our study, human water use was the reason for 4139-45% inflow reduction into the lake 

during 2003-2013 which is very similar to the values of Shadkam et al. (2016) for the years 2003-2009 (comp. their FigsFig. 

8). Discrepancies are likely due to different analysis methods but different analysis periods, as well as different and 

conceptualizations, make a direct comparison of the estimated relative contributions difficult.  10 

While Ghale et al. (2018) seem to support the results of Chaudhari et al. (2018),) as they state that 80% of drying of 

Lake Urmia is due to anthropogenic impacts during 1998-2010, theretheir statistical analysis assumes that riverlake inflow 

from rivers can be considered to reflect “anthropogenic impacts” while precipitation and evaporation changes reflect climatic 

variations while rivervariation. However, inflow is in reality also affected by climateclimatic variations. Also Using a statistical 

change point analysis and without modelling, Khazaei et al. (2019) stated that given the stable conditions of precipitation and 15 

temperature, climatic changes cannotcould not explain the dramatic decline of the lake level.; however, they did not use in-

situ data (except lake water level data) for their analysis. Based on aan analysis of the Standardized Precipitation Index (SPI), 

a drought index, AghaKouchak et al. )2015) reported there was no significant trend in droughts over the basin during the past 

three decades and concluded from this that human activities and not climatic variations arewere the main reason for lake 

shrinkage. Different from our study and the modelling studies of Shadkam et al. (2016) and Chaudhari et al. (2018), these three 20 

studies consider only the dynamics of monthly and annual precipitation, not taking into account the and neglect changes in the 

variability of daily precipitation. During the last three decades, there was a significant increase the frequency of daily 

precipitation of less than 5 mm and a significant decrease in the frequency of daily precipitation of 10-15 mm, suggesting a 

runoff reduction even in case of constant annual precipitation (Fig. 2 in Bavil et al., 2018). Hosseini-Moghari et al. (2018) 

showed that an increasing frequency of days with less than 5 mm precipitation in combination with decreasing monthly 25 

precipitation has leadled to the observed reduced inflow into two dams in the Lake Urmia basin that are located downstream 

of areas with insignificant human water use. We conclude that analyses should be done at the daily time scale or smaller. on a 

daily time scale or smaller. Moreover, we examined the ratio of annual inflow into the lake (based on the ensemble mean) over 

annual precipitation during the study period. This ratio reached maximum values in 2003 (0.29 and 0.41 for the anthropogenic 

and naturalized conditions, respectivly) and minimum values in 2009 (0.07 and 0.15). Averaged over the period 2009-2013, 30 

these ratios are, with 0.11 (ANT) and 0.22 (NAT), much smaller than the values for 2003-2007, 0.20 and 0.32. Thus, the 

drought year 2008 as well as the relatively small ratio of inflow into the lake over precipitation in the last five years of the 

study period play a significant role in the decline of inflow and lake water storage. 
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In additionFor quantifying human and climatic contributions to observed hydrological changes, a comprehensive 

modeling approach is preferable that takes into account, for example, the impacts of changing temperatures on runoff and thus 

river inflow and on evapotranspiration of the lake itself. is preferable. Such comprehensive modelling was done by Chaudhari 

et al. (2018) but their uncalibrated global hydrological model that represented the basin by 5-6 cells only was not able to 

simulate well the flows and storages in the basin. For example, simulated annual inflow into the lake was estimated to be 5 

3,700·106 m3 in 2003 (their Fig. 8) while observed inflow was much higher, 5,835·106 m3. In 2009, observed inflow, with 

1,036·106 m3, was only half of the simulated one. Therefore, the very high human contribution to the lake volume decline of 

86% determined by Chaudhari et al. (2018) may arise from the poor performance of the uncalibrated model. 

4.3 Limitations 

Even after multi-objective calibration of a state-of-the-art comprehensive hydrological model, there remain many uncertainties 10 

that affect the accuracy of the model results. Like the results of all hydrological models, our results are affected by uncertainties 

in model input, model parameters, and model structure. Model parameter uncertainty was reduced by the comprehensive multi-

observation calibration, albeit conditioned on just one climate input data set and using just one model (instead of the state-of-

the-art multi-model ensemble approach, compare www.isimip.org, last accessed: 14 Dec. 2018).). Given the low spatial model 

resolution (0.5°×0.5°), the model results are only valid forpreferably aggregated to the basin as a whole andas results for 15 

individual grid cells are very uncertain. Also due to a lack of data at the basin scale, the hydrogeology of the basin was not 

taken into account in the model. Information on the irrigated area in each grid cell was taken from a global data set of areas 

equipped for irrigation from groundwater and surface water (Siebert et al., 2010), which was adaptedadopted in this study by 

scaling it by basin-wide correction factors to better capture the temporal development of irrigation. Calibrated modeling results 

are also affected by the uncertainties of the observation data. GRACE TWSA data are more reliable for larger (100,000 km2 20 

(according to Landerer and Swenson, 2012))) areas than the basin area of 52,000 km2. Estimation of groundwater storage 

changes based on water level data for unevenly distributed wells is rather uncertain due to the unknown heterogeneities in the 

subsurface. Evaluation results, here the good fit of simulated to and uncertain specific yields. The “observed” lake water 

volume decline, are be affected by a likely underestimation ofunderestimates the actual decline by the “observed” value 

derivedas a constant bathymetry was assumed when deriving lake water volume decline from remote sensing of lake water 25 

level elevation and lake water area by (Tourian et al. (2015) assuming a constant bathymetry.). However, there was an increase 

in the elevation of the lake bottom due to sedimentation and salt precipitation (Shadkam et al., 2016) so that the “observed” 

water volume decline was likely lower than the actual one, and our model would underestimate the lake storage decline, 

too.2016). 
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5 Conclusions 

This study investigated the differential impact of human water use and climate variations on water storage (total, groundwater, 

and lake)  water storage in the Lake Urmia basin as well as on inflow into the lake during 2003-2013. This was done by 

utilizing the information contained in multiple types of observation data to calibrate, specifically for the Lake Urmia basin, the 

global hydrological model WGHM that, which takes into account the impact of human water use and man-made reservoirs on 5 

flows and storages. Observations include remote sensing data (for irrigated area, TWSA, and lake volume), in-situ streamflow 

observations (for of lake inflow), groundwater well data (for deriving groundwater storage anomalies) and statistical data on 

water use in the basin. A time series of observed lake volume was used for evaluation. Using the ensemble of best-performing 

models where all available observations were used for model variantcalibration, the impact of human water use was determined 

by comparing the output of a naturalized run, wherewith human water use was assumed to be zero, with the runruns with the 10 

historichistorical water use. To understand the value of different observational data types for calibration, four 

calibrationWGHM was calibrated in six variants were defined where, in a step-wise fashion, basin-wide averages of 1) remote 

sensing data (for irrigated area and TWSA), 2) in-situ streamflow observations (for of lake inflow), 3) groundwater well data 

(groundwater level and storage),(two auto-calibrated and 4) statistical data on water withdrawals in the basin were added. A 

time series of observed lake volume was used for evaluation.four manually calibrated) to different combinations of 15 

observational data types.  

We found that the time series for water demand by irrigation, as assumed in the standard WGHM version, had to be 

adjusted using MODIS data such that the modification of fourseven model parameters could result in a good fit to observed 

GRACE TWSA. Consideration of these remote sensing data somewhat improved the dynamics of both inflow into Lake Urmia 

and lake water storage, but lake inflow into the lake was still strongly overestimated by a factor of 0.92%,66% and the 20 

seasonality of groundwater dynamics should astorage was strongly shifted seasonality. Additional calibration against observed 

inflow into the lake did not affect TWSA simulation and slightly improved the simulation of the lake water storage anomaly. 

Only by using monthly time series of mean groundwater level variations in the basins for calibration, we could adjust the 

fractions of human water use taken from groundwater and surface water such that seasonality of groundwater storage was 

simulated correctly. Only then it was possible to simulate the observed groundwater loss, and loss of lake volume was no 25 

longer overestimated. Statistical information on sectoral water withdrawals in the basin for one year as well as estimates for 

sectoral return flow fractions further improved the model, but only slightly. We recommend to include, in case of relevant 

trends in observations, the difference between observed and simulated trends as one of the calibration criteria, not only 

differences between time series of daily, monthly or annual values. 

The calibration exercise showed that the calibration variant for which the highest number of observational data types 30 

were used, WGHM variant RS_Q_GW_NA, showed the best fit to all observations. Certainly, no general conclusions on the 

worth of specific observation data types for model calibration, including trade-offs among fit to multiple data types, can be 

derived from this study. Lake Urmia basin is particular with respect to 1) draining into a large end lake that dominates TWSA, 
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2) the strong impact of human water use and 3) the fact that the standard WGHM version estimates a net recharge to the 

groundwater due to surface water irrigation, which had to be corrected to a net abstraction. In basins with large lakes, and in 

particular with end lakes, remotely sensed time series on lake area and the elevation of the lake water table should be used to 

estimate time series of lake water storage as these observational data can be expected to be of high value for understanding the 

freshwater system by hydrological model calibration. Groundwater storage cannot be observed from space but relies on in-situ 5 

observations on groundwater heads in wells but, as in the case of Lake Urmia basin, such data can be crucial for a correct 

understanding of the freshwater system. 

Based on the good fit of WGHM variant RS_Q_GW_NA to four types of observational data, we are confidentfound 

that human water use reduced lake inflow that would have occurred without human water use during 2003-2013 by about 

4139-45%. About 52-57% of the total water storage loss in Lake Urmia basin and only 4039-43% of lake water loss during 10 

this time period was due to human water use, and the 43-48% and 6057-61%, respectively, to climate variations. 87-90% of 

groundwater storage loss is estimated to be caused by human water use but this value may be somewhat overestimated by 

WGHM because climate-driven loss under naturalized conditions may be underestimated due to the simplified representation 

of groundwater-surface water exchanges in the model.  

GRACE TWSA data indicate an increasing trend in water storage in the basin during 2014-2017 due to both less 15 

water use due to water management (ULRP, 2015b) and the wet years 2015/2016. This trend is about half as strong as the 

decreasing trend during 2003-2013. Further strengthening of efforts for decreasing human water use in the basin should be 

undertaken, while at the same time, global-scale mitigation of climate change by reducing greenhouse gas emissions to prevent 

strong decreases of precipitation and runoff. Our study has shown that the management of the Lake Urmia basin should be 

based on a comprehensive assessment of all water storages and flows in the basin, including human water uses of groundwater 20 

and surface water. We recommend refining the estimated net abstractions from surface water and groundwater by a basin-wide 

spatially explicit quantification not only of water abstractions but also return flows to groundwater and surface water. 
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Appendix A: Simulated groundwater storage in individual grid cells  

 

 
Figure A1: Simulated groundwater storage in each of the 22 0.5° grid cells in Lake Urmia basin under anthropogenically altered 10 
(Fig. A1a) and naturalized conditions (Fig. A1b). 
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