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Dear Editor and Reviewers,
We have revised the manuscript according to the insightful comments provided by the editor and
reviewers. All recommendations have been addressed in the revised manuscript. We would like to thank

you for the thorough consideration and critical comments that helped us improve our manuscript.

Editor Comments

Editor Comment: You received two new reviews, one minor revisions but with some critical points and
one rejected (with extensive review). Both reviewers agree the manuscript is really too long, the
groundwater aspect of Lake Urmia (lake-groundwater relationship) should be discussed much more in
depth and the model set-up, assumptions and uncertainty need more attention. This could mean the
manuscripts will be even longer. See some suggestions to shorten it below.

Response: We would like to thank you for your time and suggestions. We have reduced the manuscript
size and provided some description of the lake-groundwater relationship, model setup, and uncertainty.
We hope the changes have made the manuscript suitable for publication and we look forward to your

response.

Editor Comment: A formal uncertainty analysis is not required for me (as requested by reviewer 2), but
some more quantification and discussion as requested by the second reviewer needs to be included.
Response: We have changed the model set up to consider uncertainty. We have discussed the uncertainty
based on different optimal parameter sets which were obtained from the optimization algorithms (GA and
NSGA-II).

Editor Comment: Having gone through the paper | do want to stress | think editorial or only textual
changes are not sufficient, | recommend to have a fresh look at the current manuscript and bring in some
more focus (choice of results to present and discussion and decide which less important results should be
presented in supplement only).

Response: We have restructured the results and discussion sections and rewriting other parts

accordingly. We have put some parts of the result section related to modifying NA in the supplement.



10

15

20

25

Also, we have put some parts of the material and methods in the supplement. In the revised version, we

have focused more on uncertainty and model setup.

Editor Comment: Could you reduce the introduction, and see whether the method section really needs
all info? I could imagine that the well-known WaterGAP model(s) could be summarized in terms of Urmia
application only (more, extensive info in supplement). For me, the main aspect (novelty) of your article
seems using the comparison of calibrating using RS without and with ground information, so keep that in
main text but bring all short references to your input data to the supplement as well.

Response: We have restructured the manuscript based on your suggestion and put all the detailed
information in the supplement. Also, in the revised version, an automatic approach was developed for
calibrating WGHM based on evolutionary optimization algorithms. To reduce the length of the
manuscript, we have focused on two calibration variants i.e. calibrating using RS with and without
ground information as you mentioned in the next comment. We have summarized the descriptions of the
WaterGAP model in the manuscript instead we have added some descriptions for the model in the

supplement.

Editor Comment: The results section is very long whereas the discussion is shorter. Typically, one would
like to see the reverse. Instead of giving all correction parameters and time-series, you could try to
highlight 1-2 results (and present rest in supplement). Furthermore, quite some paragraphs in the results
section have discussions. Please re-evaluate whether these parts could not be combined in the discussion.
Response: We agree that the results section is longer than normal size. We have reduced the size of the
results and put some parts in the supplement. Also, we reconsidered the result and discussion sections

based on your comment (see the result and discussion sections in the revised version).

Editor Comment: Note, section 3 consists only of 1 subsection (3.1).

Response: In the revised version it has two subsections.

A point-by-point response to the Referee #2

Referee #2: The revised version of the article is much more understandable and better. However, | still

think it is too long and there are a lot of assumptions made in the text which can be criticized separately.
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But, I think a minor revision would be proper for the final decision considering an additional comment
below.

Response: First of all, we genuinely appreciate your time in reviewing the revised version. We have
reduced the manuscript size and revised it according to your comments. We hope that you are satisfied,

after the changes have been made.

Referee #2: | think that you are aware that the role of groundwater on the lake has been discussed by
many researchers of this field. Some of these researches e.g. Amiri et al. (2016) think that there is no
significant relationship between lake and groundwater in the basin but some like Ashraf et al. (2017), and
Vaheddoost and Aksoy (2018) believe that there is strong evidence of a relationship between them. Since
your modeling includes analysis of groundwater | think you should compare your results by these articles
and try to confirm or reject obtained results by them using similarities and dissimilarities in results.
Response: We run the models under two scenarios (1) there is a relationship between lake and
groundwater and (2) there is no relationship between lake and groundwater. In scenario 1, the seasonality
of the groundwater storage was strongly misrepresented. Therefore, we could not calibrate the model
when there is a relationship between lake and groundwater. However, WGHM as a hydrological model
that does not include a gradient-based groundwater model has some limitations for studying
groundwater-lake water flows. We believe that there is an indirect relationship between lake and
groundwater i.e. groundwater-river, river-lake as accepted by ULRP (2015). In addition, as you
mentioned some studies e.g. Amiri et al. (2016) using isotopic analyses and chemical tracer rejected the
significant relationship between lake and groundwater. Also, Danesh-Yazdi and Ataie-Ashtiani (2019)
stated that the study by Vaheddoost and Aksoy (2018) is not reliable and there is some doubt in accepting
that. Therefore, we have added the following part in the discussion of the revised version.

“It is worth mentioning that WGHM as a hydrological model that does not include a gradient-based
groundwater model has some limitations for studying groundwater-lake water flows. We attempted to
calibrate WGHM under the assumption that there are direct water flows between lake and groundwater.
Under this assumption, the seasonality of the groundwater storage was strongly misrepresented.
Therefore, as accepted by ULRP (2015c), we assumed there is no direct flow between the lake and

groundwater. While Vaheddoost and Aksoy (2018) using traditional hydrograph separation methods
3
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claimed that there is a significant relationship between the lake and groundwater, Danesh-Yazdi and
Ataie-Ashtiani (2019) rejected their claim. Equally, some studies that applied isotope and chemical tracer
analyses (e.g. Amiri et al. 2016) rejected any significant relationship between lake and groundwater. In
conclusion, the results of this study support the idea that there are no significant direct interactions

between lake and groundwater within the basin.”

References:
Danesh-Yazdi, M., and Ataie-Ashtiani, B. (2019). Lake Urmia Crisis and Restoration Plan: Planning
without Appropriate Data and Model Is Gambling. Journal of Hydrology, 576, 639-651.

Amiri, V., Nakhaei, M., Lak, R., and Kholghi, M. (2016). Geophysical, isotopic, and hydrogeochemical
tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW
Iran. Environmental Science and Pollution Research, 23(16), 16738-16760.

Vaheddoost, B., and Aksoy, H. (2018). Interaction of groundwater with Lake Urmia in Iran. Hydrological
processes, 32(21), 3283-3295.
ULRP (2015), Urmia Lake - Causes of shrinkage and potential threats. 36 pp (In Persian).

A point-by-point response to the Referee #3:

Referee #3: Overall assessment: The aim of the study essential is to quantify the impact of human
activities (mostly in terms of water consumption) vs climatic changes on the Lake Urmia water balance.
Even though 3 of the referees provided detailed reviews and pointed out to several shortcomings of the
paper mostly on model setup and uncertainty, the authors’ revision is minimal and in fact insufficient as
many comments are effectively ignored.

Response: Firstly, we are thankful for your time in reviewing our manuscript. We do not agree with you
about the “many comments are effectively ignored” because referee#2 was satisfied with the revised
version. In the new revised version, we have addressed the shortcomings of the model setup and

uncertainty.

Referee #3: All reviewers except Chaudhari took issue with the experiment design, particularly the model
set up, input data time period, and lack of adequate model calibration and evaluation. Yet, authors have

4
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not changed the experiment design, and only added two performance metrics. No uncertainty or
sensitivity analysis was conducted whatsoever, which is a common analysis required for any hydrological
modeling study. This is even more serious as the manuscript is in fact inconsistent on the issue of
uncertainty. While authors discussed the limitations of the work such as parameter uncertainty, no account
of the hydrogeology of the lake, assuming constant bathymetry, among others; not only they have not
accounted for these uncertainty sources by even a simple uncertainty/sensitivity analysis, they kept
pushing that their study is “a holistic and reliable modelling approach”, “we are confident that human
water use reduced lake inflow that would have occurred without human water use during 2003-2013 by
about 41%”, and “This study proved that even without human water use Lake Urmia would not have
recovered from the significant loss of lake water volume caused by the drought year 2008, among other
instances of false overpromises.

Response: We have developed a new model set up based on an auto-calibrated approach using a genetic
algorithm (GA) and Non-dominated sorting genetic algorithm Il (NSGA-I1). We also have discussed
uncertainty arising from the different possible optimal parameters that were obtained from the
optimization algorithms. About the limitations, we should mention as you know all modeling studies faced
some limitations that are inevitable. About the “holistic modeling”, if you review the modeling study on
Lake Urmia, all modeling applied a trial and error method based on a single objective calibration.
Therefore, when we consider all possible data for our model, we consider it as a holistic one that includes
TWSA, inflow, groundwater, lake volume. About the “reliable modeling” we agree with you. We have
removed it from the manuscript. We also replaced the “we are confident ...” and “This study proved that”

with “we found ...” and “Based on the results can be claimed that...”, respectively.

Referee #3: The manuscript is filled with redundant discussions (either well established in the literature
or not relevant to the core research question of the paper), and is written in poor language with several
typos. It is a waste of the editor’s time and reviewers to resubmit a manuscript that has not been proof-
read especially that most reviewers pointed this out. Further, some of the sources are either not peer-re-
viewed or in Persian. While local knowledge can be useful, the credibility of a non-peer reviewed source
is always questionable. In such cases, authors should provide reason and demonstrate clearly instead of

just referring to the source.
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Response: We have reformatted the manuscript, results and discussions have made shorter. We have
checked the writing of the manuscript. We believe that readability is sufficient now. After acceptance
HESS will proof again the manuscript by native speakers. Regarding the Persian references, we agree
with you but unfortunately there are no English references, however, all ULRP reports have been
reviewed by the scientific committee. Besides, actually we have no other way, for example about the
“water withdrawals data” how we can cite it? Or about “irrigated area’”? \We should either use Persian
references or do not provide any sources for these cases. Moreover, referring to ULRP as the main data

center for lake Urmia is common in all published papers in international journals.

Referee #3: In my evaluation, the manuscript is rejected. If authors wish to resubmit the work, they must
revise the modeling experiment to sufficiently address the comments by reviewers, and by addressing |
specifically mean to change their modeling setup by providing a more robust calibration than a simple
and insufficient trial and error, transparently explaining the modeling setup to ensure (somewhat) the
reproducibility of the study, and perform some sensitivity or uncertainty analysis. Also, remove all the
redundant discussions from the manuscript and focus their discussion on the relevance of the results to
the lake given the uncertainties. While most of the comments by reviewers still hold, here I high-lights a
few urgent ones.

Response: As aforementioned, we have revised the model setup and added uncertainty analysis to the
revised version. Readers might not just focus on one objective of the study (quantify the impact of human
water use and climate variation on the Lake Urmia water balance). As the editor has stated, one novelty
of this study is assessing the value of remote sensing data and ground information for calibrating a
hydrological model. Therefore, there are not such redundant discussions as you stated. However, we have

reduced discussions with more direct focus on two objectives of the study.

Referee #3: Problem description: The problem description (i.e. drivers of the lake desiccation)
particularly in the introduction as well as the later discussion of the results is problematic. It is misleading
and inaccurate to stack the climatic and human drivers together (e.g. page 29 lines 1- 10). Khazaei et al.
[2019] disentangled these two: they compared the influence of these two sets of drivers for the lake drying

and demonstrated the regional human activities (including water management, but not limited to) are the
6
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primary drivers compared to climatic changes (including atmospheric droughts). AghaKouchak et al.
[2015] also argued that droughts cannot be the primary driver. These two studies, among others, are based
on directly analysing the data themselves, without relying on a model of the system which in most cases
are inadequate. While these studies have their own shortcomings, as any scientific study has, your
modeling results are inadequate to challenge them. As pointed out by the reviewers your modeling setup
has several issues. Inadequate models, regardless of the extent of their inputs and their results, are
inadequate. Authors said: “This study proved that even without human water use Lake Urmia would not
have recovered from the significant loss of lake water volume caused by the drought year 2008”. This
conclusion is in direct contradiction with AghaKouchak et al. [2015] conclusion that “a satellite based
gauge-adjusted climate record... of Lake Urmia basin's Standardized Precipitation Index... indicates no
significant trend in droughts over the past three decades at the 0.05 significance (95% confidence) level...
In fact, the region has experienced more severe drought events in the past (e.g., 1997— 2002) that did not
lead to a substantial change in the lake's surface area. Thus, we caution against overrating the role of
droughts in the disruption of the lake's water balance to the extent that would cause such a massive
shrinkage”. Given that AghaKouchak et al. [2015] directly analysed the historic data of the lake without
relying on any inadequate model of the lake system, it is reasonable to say this contradiction indicates the
shortcoming and (un)reliability of the model set-up in this study. Notwithstanding the unscientific
language of this sentence. Science is not in the business of proving anything. In science we demonstrate
and approximate. This is more so the case when it comes to hydrological modeling with numerous types
and sources of uncertainty including both model structure and data. Also, what do you mean by “climate
variations”? Are you referring to only natural climate variability or climatic changes which include both
natural variability and human-induced changes?

Response: We agree with you about the “page 29 lines 1-10”. To clarify we have removed the word
“main” in line 6, now the sentence would be accurate. About two mentioned studies, Khazaei et al. [2019]
and AghaKouchak et al. [2015], we discussed in “Comparison to human vs. climatic contribution as
determined in previous studies” section, why our results are different with some studies and in line with
some other studies. Analysis of the monthly data used in calculating SPI cannot take into account the

changes in the pattern of daily precipitation. To approve this claim, we refer to two studies that they also
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used directly in-situ data without modeling. Bavil et al. (2018) showed a significant increase in the
frequency of daily precipitation of less than 5 mm and a significant decrease in the frequency of daily
precipitation of 10-15 mm, suggesting a runoff reduction even in case of constant annual precipitation.
Also, Hosseini-Moghari et al. (2018) showed that an increasing frequency of days with less than 5 mm
precipitation in combination with decreasing monthly precipitation has led to reductions of inflow into
two dams in the Lake Urmia basin that are located downstream of the areas with insignificant human
water use. Therefore, we did not rely just on our results and provided some facts from pure in-situ data
which has been rarely mentioned in the previous studies. Moreover, Shadkam et al. (2016) who
considered only inflow into the lake, reported the same results for the impact of human water use on the
reduction of inflow into the lake. About “climate variations” we cannot claim that it is a natural climate
variability or climatic change. To speak about climate change must be conscious. It might be considered

as any change or variations in climate variables data in our study.

References:

Bavil, S. S., Zeinalzadeh, K., and Hessari, B.: The changes in the frequency of daily precipitation in Urmia
Lake basin, Iran, Theoretical and Applied Climatology, 133(1-2), 205-214, doi:10.1007/s00704-017-
2177-7, 2018.

Hosseini-Moghari, S.M., Araghinejad, S. and Ebrahimi, K.: Monthly Precipitation Assessment: a
misleading tool for understanding the effects of climate change, 8th Global FRIEND-Water Conference,
Beijing, China, 6-9 November 2018.

Shadkam, S., Ludwig, F., van Oel, P., Kirmit, C., and Kabat, P.: Impacts of climate change and water
resources development on the declining inflow into Iran's Urmia Lake, Journal of Great Lakes Research,
42, 942-952, doi:10.1016/j.jglr.2016.07.033, 2016.

Referee #3: Introduction: The introduction is very long, has redundant sections:
* Figure 3 has already been published and discussed by Aghakouchak and been repeated many times
in the literature. (also pointed out by the referee 1)

» Citation to Zarghami (2011) on page 29 is irrelevant.
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* Last 2 paragraphs are “method” material and not introduction
Another issue is that some of the sources are not peer-reviewed. Whether right or wrong, it is hard to rely
on such sources. While local knowledge and literature may be a valuable source, it has to treated with
caution, not to propagate any errors. So, | am hesitant to accept such discussions.
Response: Figure 3 and Zarghami (2011) have been deleted and the last two paragraphs of introduction
have been reconstructed. Almost all references are peer-reviewed except for some sources that reported
in-situ data. It should be noted that all ULRP reports were reviewed by scientific committees.

Unfortunately, there are no English references in some cases.

Referee #3: Time period: the time period 2003-2013 is inadequate for modeling the lake dynamics.
Before 2000 the lake was not as heavily impacted by over-regulation of the river flows, and also between
2000-2003 there is significant variation in the lake level and annual inflows to the lake. Therefore, it is
essential to include these years, for as many variable as possible. Otherwise, the model is biased and not
representative of the lake dynamics.

Response: We have considered this period due to the fact that the observed data was available for this
period. We completely agree with you; it was better to consider a longer period for calibration. However,
we don't prefer to reconstruct data, that is error-prone. The GRACE data and irrigated areas are not
available for the period 2000-2003. Further, we don't want to use the model for out of calibration period,

therefore we believe that for using the model in the calibration period there is no concern about the bias.

Referee #3: Model setup: as pointed out by R1 comment 2 (and a few other comments), the model setup
is not transparent and justifiable. Surely, documenting model setup (even as supplement) is more
necessary than many redundant discussions. As a test, an adequate model setup should work against the
updated observation (2013-present). Can the authors demonstrate this?

Response: We have added some descriptions for the model setup in the revised version. Unfortunately,
there is no information about the irrigated areas after the calibration period. Forcing data also available
until the end of 2013. However, we have tested the model against lake volume which is really is more

challenging those simulation variables used in the calibration process.
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Referee #3: Standard model: inclusion and discussion of the standard model, as a reviewer pointed out,
in unnecessary given that this model is not calibrated for this catchment.

Response: As you know the outputs of the standard version of WGHM as a global model have been
commonly used worldwide. For instance, Tourian et al. (2015) used the standard version of WGHM over
lake Urmia. Therefore, it would be valuable to show the validity of using the standard version of WGHM
in another study. Hence, we would keep this section in the revised version.

Reference:

Tourian, M. J., EImi, O., Chen, Q., Devaraju, B., Roohi, S., and Sneeuw, N.: A spaceborne multisensor
approach to monitor the desiccation of Lake Urmia in Iran, Remote Sensing of Environment, 156, 349-
360, doi:10.1016/j.rse.2014.10.006, 2015.

Referee #3: Model calibration and evaluation: the model calibration is also questionable. It is only
based on trial and error so the identified parameter sets are not reliable. Also, it is not clear how sensitive
the model results are to these parameters. There is issue about over-parametrizing the model as in each
variant new data is added (issue about correction factors pointed out by reviewers). A single model run
for each variant is not sufficient, even if the calibration was done through an automatic parameter space
search scheme. This is well-established in the literature and a model ensemble is required to account for
the uncertainties, even though partly. If the model is run on a daily basis, authors should be trans-parent
and present the daily results too.

Monthly and annual performance metrics are usually high for most models. The devil is in the details
though. On table 4, the flow is only calibrated on an annual scale and not evaluated at all. There is
significant seasonality in this region. It is quite possible that seasonal errors are just cancelling each other
out and give seemingly good annual results. This can be seen on figure 8 where the model exhibits
unrealistic seasonality which is not in the observed data, e.g. in Fig 8e, there is generally a negative bias
in the first half of the RS_Q_GW_NA simulation, and positive bias in the second half (red line is first

below the black line systematically, and then above it).

10
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Response: We have reconsidered the model calibration by using two optimization algorithms, namely
genetic algorithm (GA) and Non-dominated sorting genetic algorithm Il (NSGA-I11). As editor request, to
keep the length of the revised version no more than the previous version, we just focus on two calibration
variants using RS with and without ground information. Other variants only considered for some
discussions. In the revised version, we used an ensemble of model outputs that were obtained from
different GA runs or Pareto front for NSGA-II. Therefore, we have discussed the uncertainties in the
revised version. Adding daily outputs making the manuscript longer than the current version and we
believe that it is redundant. Because most of the outputs are anomaly based on the monthly mean,
therefore daily data could not be beneficial. However, to consider your concern about the inflow into the
lake, we have plotted the daily inflow here. About Fig 8e, it should be noted that modeling lake volume is
not a simple task for a hydrological model. Therefore, we believe that the performance of the model is

quite acceptable, while in the revised version the performance of the model improved in this regard.
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Figure R: Time series of simulated daily inflow into the lake

Referee #3: Uncertainties: as Referee 1 pointed out in their comment 6 and elsewhere, the uncertainties
are playing a crucial role here. While authors added a section of uncertainty discussion, it is an ad-hoc

discussion. While the discussion obviously undermines the experiment design and the results, they have
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not revised the experiment design to account for these uncertainties, and also they keep overpromising
about the reliability of their results. Further, their discussion of uncertainty shows a lack of understanding
about the area of model uncertainty. For instance, they said “Model parameter uncertainty was reduced
by the comprehensive multi-observation calibration”. Parameter uncertainty will not be reduced by just
adding more data to the model; data uncertainty matters, “garbage in, garbage out” [Kuczera et al., 2010].
The authors must demonstrate how adding input to the model reduced parameter uncertainty, while
justifying the credibility of the data themselves. They have not done any uncertainty or sensitive analysis
whatsoever.

Response: We have revised the model set up and added some uncertainty analysis to the manuscript. We
believe the parameter uncertainty should be reduced when a multi calibration approach is used. Because
the model should satisfy more than one objective therefore change in one parameter should be done with
less freedom. We already showed this issue in Table 5 where the model provides changes in total water
storage through only by changing lake depth. In addition, use more observed data always help us improve
the calibration uncertainty that is arising from our lack of awareness of the observed values of a given

variable.

Thank you very much again for your time and for providing valuable comments.
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Quantifying the impacts of human water use and climate variations
on recent drying of Lake Urmia basin: the value of different sets of
spaceborne and in-situ data for calibrating a hydrological model

Seyed-Mohammad Hosseini-Moghari!, Shahab Araghinejad!, Mohammad J. Tourian?, Kumars
Ebrahimi?, Petra D614

!Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran

2University of Stuttgart, Institute of Geodesy (GIS), Stuttgart, Germany

3Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
4Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany

Correspondence to: Seyed-Mohammad Hosseini-Moghari (Hosseini_sm@ut.ac.ir)

Abstract. During the last decades, the endorheic Lake Urmia basin in northwestern Iran has suffered from declining
groundwater tables and a very strong reduction in the volume as well as recently in the extent of Lake Urmia. For the case of
Lake Urmia basin, this study explores the value of different locally and globally available observation data for adjusting a
global hydrological model such that it can be reliabhrused for distinguishing the impacts of human water use and climate
variations. The WaterGAP Global Hydrology Model (WGHM) was for the first time calibrated against multiple in-situ and

spaceborne data to analyse the decreasing lake water volume, lake river inflow, loss of groundwater, and total water storage

in the entire basin during 2003-2013. The calibration process was done using an automated approach including a genetic

algorithm (GA) and Non-dominated sorting genetic algorithm II (NSGA-II). Then the best-performing

calibrated models were run with erand without considering water use to quantify the impact of human water use. Observations

encompass remote-sensing based time series of annual irrigated areaareas in the basin from MODIS, monthly total water
storage anomaly (TWSA) from GRACE satellites, and monthly lake volume anomalies. In-situ observations include time
series of annual inflow into the lake and basin averages of groundwater level variations based on 284 wells. In addition, local

estimates of sectoral water withdrawals in 2009 and return flow fractions were utilized.

—Calibration against MODIS and GRACE data alone improved simulated inflow into
Lake Urmia but inflow and lake volume loss were still stil—overestimated, while groundwater loss was
wnderstimatedunderestimated and seasonality of groundwater storage was shifted as compared to observations. Lake and
groundwater dynamics could only be simulated well if calibration against groundwater levels led to an adjustment of the
fractions of human water use from groundwater and surface water. Thus, in some basins, globally available space-born

observations may not suffice for improving the simulation of human water use. According to ese=staesy\ VGHM simulations

with 18 optimal parameter sets, human water use was the reason for 5852-57% of the total basin water loss of about 10 km?
during 2003-2013, for 4839-43% of the Lake Urmia water loss of about 8 km?® and for up to 87-90% of the groundwater loss.
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Lake inflow was 4839-45% less than it would have been without human water use. FhisThe study prewedshows that even
without human water use Lake Urmia would not have recovered from the significant loss of lake water volume caused by the
drought year 2008. These findings can support water management in the basin and more specifically Lake Urmia restoration

plans.

1 Introduction

Iran is a country with an arid and semi-arid climate where population growth and the government’s aim of food self-sufficiency
has led to increasing irrigated crop production and exploitation of surface water and groundwater resources. Climate change
has resulted in increased temperatures and, in particular the northwest of the country, in decreased precipitation (Tabari and
Talaee, 20114, b) and thus decreased renewable water resources. In the last decades, numerous wetlands and lakes in Iran have
dried up, and groundwater levels have strongly declined in most areas (Madani et al., 2016). The most serious disaster has
occurred in the Lake Urmia basin, an interior basin in the northwest of Iran located in the three provinces West Azarbaijan,
East Azarbaijan, and Kurdistan that covers an area of 52,000 km? (Fig. 1). At the downstream of the basin, 17 permanent rivers
and 12 seasonal rivers discharge into the largest natural water body in Iran, Lake Urmia. Over the past two decades, climate
variations and human activities (Hassanzadeh et al., 2012) have decreased inflow into the lake. Precipitation in the basin shows
adecreasing trend over the period 1951-2013, with particularly low values after 1995, and evaporation has increased (Alizadeh-
Choobari et al., 2016). Lake water volume is now approximately 30-10° m® below its historical maximum (ULRP, 2015a).
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Figure 1: Location of Lake Urmia basin.

Lake Urmia is one of the largest hypersaline lakes in the world, which due to its ecological and natural features is a
National Park, a Ramsar Site and a UNESCO Biosphere Reserve (Eimanifar and Maohebbi, 2007). It is a terminal lake that
loses water only by evaporation (Hassanzadeh et al., 2012). Abbaspour and Nazaridoust (2007) estimated that inflows of at

least 3-10° m®/yr are needed to compensate for lake evaporation, while Alborzi et al. (2018) estimated values between 2.9-10°
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to 5.4-10° m3/yr depending on climatic conditions. According to Alborzi et al. (2018), recovery of the lake could range from
3 to 16 years depending on climatic eeaditienconditions, water use reductions, and environmental releases. Inflow from
groundwater to the lake was estimated to be less than 3% of total inflow from precipitation, rivers, and groundwater (Hasemi,
2011). In the 1970s and 80s, the water table of Lake Urmia was approximately at 1,276 m above sea level and then increased
to more than 1,278 m in 1995 due to a few wet years (Shadkam et al., 2016). AfterwardsAfterward, the water table dropped to
1,274 m in 2003 specialy because of the severe drought in 1999-2001 exacerbated by human water use (Shadkam et al., 2016).
From 2003 to 2014, lake extent was approximately halved, and water level declined by another 3 m, while seasonal variability
of lake water extent increased (Tourian et al., 2015) (Fig. 2).
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Figure 2: Time series of surface water extent and water table elevation of Lake Urmia (data from Tourian et al., 2015).

Studies on various aspects of the Lake Urmia disaster abound. With decreasing lake water volume, salt concentration
has increased, endangering the aquatic biota feeing birds; exposed salt layers may lead to salt storms (Pengra, 2012).
Precipitation reduction, temperature increase, agricultural development including construction of man-made dams and building
a causeway across the lake have been identified as the main-reasons for the degradation of Lake Urmia (Abbaspour and
Nazaridoust, 2007; Zeinoddini et al., 2009; Delju et al., 2012; Jalili et al., 2012; Sima and Tajrishy, 2013; Fathian et al., 2014;
Farajzadeh et al., 2014; Banihabib et al., 2015; AghaKouchak et al., 2015; Azarnivand etat=2045and Banihabib 2017;
Alizadeh-Choobari et al., 2016; Ghale et al., 2018; Khazaei et al., 2019). By using Gravity Recovery And Climate Experiment

(GRACE) satellite observations, altimetry data for Lake Urmia and outputs of the Global Land Data Assimilation System

(GLDAS), Forootan et al. (2014) estimated the trend of groundwater storage changes in the Lake Urmia basin as -11.2 mm/yr
between the years of 2005 to 2011, the largest decrease of the six investigated Iranian basins. Za
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system changes in the basin from the surface to pressurized systems; they found that such changes would increase water

productivity but would have no effect on lake inflow and would reduce groundwater levels by 20%.

Three hydrological modelling studies for Lake Urmia basin focused on quantifying the contributions of various
factors on lake water volume (Hassanzadeh et al., 2012), lake inflow (Shadkam et al., 2016) or both (Chaudhari et al., 2018).
Using a lumped system dynamics modelling approach and observed time series of lake water volume for model calibration,
Hassanzadeh et al. (2012), determined that about 65% of lake level decline between 1997 and 2006 was due to reduced river
inflow, while four major man-made reservoirs contributed 25% and diminished precipitation on the lake surface 10%. Shadkam
et al. (2016) evaluated the impact of climate, irrigation with surface water and reservoirs on inflow into the lake for the period
1960-2010 using a modified version of the macro-scale gridded hydrological model Variable Infiltration Capacity (VIC)
model, which was calibrated against time series of river discharge at six observation station at the downstream end of six sub-
basins draining into Lake Urmia. While the model was driven by global gridded WFDEI climate data set with a spatial
resolution of 0.5°, basin-specific information on 41 reservoirs and on the temporal development of irrigated areas were taken
into account. The study found that reservoirs had a very small impact on annual inflows and that climate variations accounted
for 60% of lake inflow decrease of 48% over the 50-year period. In the model, all irrigation requirements need to be fulfilled
by available surface water. Therefore, reduced availability of surface water during the 2000s due to low precipitation and high
temperature resulted in unfulfilled irrigated water demand and a cap on the effect of human water use in the model while in
reality, groundwater abstractions occurred and even increased (Delju et al., 2012; Hesami and Amini, 2016). In addition, the
modelling study of Shadkam et al. (2016) did not consider the impact of domestic and industrial water use in the basin which
can be expected to have increased during the last decades, given a population increase from 4.8 to 5.9 million from 2002 to
2010 (http://ulrp.sharif.ir/en/page/about-urmia-lake-basin, last accessed: 28 Apr. 2018). Chaudhari et al. (2018) used the output

of the global HIGW-MAT model, with 1°x1° grid cell size of approx. 10,000 km?, to distinguish climatic and anthropogenic
contributions to the shrinkage of Urmia Lake. By running the model with and without human impacts (surface and groundwater
use as well as reservoirs), they estimated that the human-induced river flow decline between 1995-2010 to account for 86% of
the observed decrease of lake volume. However, a comparison with GRACE TWSA showed that the model overestimates the
decrease in TWSA in the basin between 2003 and 2010. The HIGW-MAT model was not calibrated for the Lake Urmia basin
but net irrigation requirements were simulated specifically for this study based on Landsat satellite images for 5 years between
1987 and 2016. The lake water balance is not simulated by the model such that no comparison with observed lake water levels

was possible. A comparison with river discharge or groundwater observations was not done either.

appreaeh:In previous hydrological modeling studies of Lake Urmia basin, there either no model calibration or calibration was

only done using a single observation type, in particular surface water inflow into the lake. Although streamflow observations

are very informative for hydrological modelling as they integrate over processes in the whole upstream basin, a good fit of
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simulated and observed streamflow may not necessarily lead to an appropriate simulation of other flows and storages (Beven

and Freer, 2001). Therefore, additional types of observations have to be added to avoid equifinality (Beven and Freer, 2001;

Déll et al., 2016). In this study, a multi-observation calibration approach was used to calibrate a hydrological model which

was then applied to quantify the contributions of climate variations and human activities to the decrease of Lake Urmia water

volume and river inflows=s

ard. In addition, using Lake
Urmia basin as a test case, we wanted to explore the value of different types of observation data for adjusting a global
hydrological model by multi-observation calibration. Currently, global hydrological models are mostly uncalibrated but
globally available space-born observations have increased the opportunity for model calibration at the global scale (D6ll et al.,
2016).
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WaterGAP global hydrology model (WGHM) was calibrated by means of genetic algorithm (GA) and Non-dominated sorting

genetic algorithm 11 (NSGA-II) for the Lake Urmia basins. Descriptions of the used data and the simulation setup are presented

in section 2. The results of the different calibration variants and the impacts of human water use are shown in section 3. Section

4 discusses multi-observation calibration and the analysis of human impact as well as the limitations of the study. Finally,
conclusions are drawn.

2 Methods and data

We analyzed the 11-year period from the beginning of 2003 until the end of 2013, as both GRACE data and global climate
data to drive WaterGAP wherewere available for this period. In the following sections, WaterGAP, WaterGARIts input data

and the observational data used for calibration as well as the calibration wasiantsapproach are described.

2.1 WaterGAP

WaterGAP is a global hydrological model for assessing water resources under the influence of humans (D6l et al., 2003;
Miiller Schmied et al., 2014). With a spatial resolution of 0.5°x0.5°, it simulates water abstractions and consumptive water use
(so-called net abstractions, i.e. the amount of water that evapotranspirates during use and does not flow to surface water bodies
and groundwater afterwards) in five sectors (irrigation, livestock, domestic, manufacturing and cooling of thermal power
plants); then net abstractions from either groundwater (NAQ) or surface water bodies (NAs) are computed (Miiller Schmied et
al., 2014; Doll et al., 2012). Negative-values-ofNAg-occurwherereturnflowto-groundwaterfrom-irrigationwith-surfacewatel

e=Time series of NAg and NAs in each grid cells are then input to the WaterGAP Global Hydrology
model WGHM that simulates their effect on water flows and storages. In WGHM-NAgits standard version, WaterGAP is

calibrated against observed mean annual river discharge at 1319 stations worldwide by adjusting 1-3 model parameters related

NLA

to runoff generation and
giversystreamflow (Maller Schmied et al., 20143

WGHM-simulatesdaily), but due to lack of data not for any station in Lake Urmia basin. A previous WaterGAP
version was calibrated, for 22 large basins, against streamflow and total water storage a i Hrath
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- WGHM can be run globally or for a specific basias-eabybasin. In this study, it was run only
for the 22 0.5° grid cells that represent the Lake Urmia basin in WGHM (Fig. 4=3). A more detailed description of WGHM

can be found in the supplement.
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2.2 Data

222\We used the following observations for calibrating WGHM: (1) Remote sensing data including irrigated area in Lake
Urmia basin—Based-en-MODIS Hnages—Kamali and i i i

Irrigated area [10° m?]
ol
al
o
o

—— WaterGAP

---MODIS

4,000 T
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-——-—
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2003

2007 2009 2011
Time [years]

2013
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, (222) inflow into Lake Urmia

224 from well observations, which were converted into groundwater storage anomalies GWSA (see section S2) and
(4) statistical information on water withdrawals and consumptive uses
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0.5° gridded EWEMBI data set was used as climate forcing. Irrigated area and Q are at the annual time scale, TWSA, GWSA

and lake volume on the monthly scale and the climate forcing is on a daily scale. All data cover the period 2003-2013 (see

section S2 for details).
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Figure 3: Grid cells in WGHM corresponding to Lake Urmia basin along with the locations of groundwater wells across the basin.

2.3 Calibration wasiartsapproach

alibration-was-dene-by-trial-and-error—H-included-the-modification-time-ser ies-of Hrigated-area Two calibration variants were

applied. In the RS variant, only the remote sensing information was used for calibration, including irrigated area from MODIS
and GRACE TWSA. In the variant RS Q GW_NA, ground-based information was used in addition to the remote sensing

observations. This included inflow into the lake, groundwater data and statistical information regarding water use. Calibration
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was done using the genetic algorithm (GA) for variant RS, with just one calibration objective, and the non-dominated sorting

genetic algorithm 11 (NSGA-II), a multi-objective version of GA, for the variant RS Q GW _ NA. To integrate optimization

algorithm with WGHM, we scripted the codes in shell and R environments by modifying ‘G4’ (Scrucca, 2013), and ‘nsgalR’

(Tsou, 2013) Packages in R. GA and NSGA-II are the most common evolutionary optimization algorithms in hydrological

model calibration (e.g. Azarnivand et al. 2019). Both algorithms start with a random population (here WGHM parameters) and

after evaluating the objective function(s) (here KGE) the better parameter sets are selected based on the value of the objective

function (in GA) and non-domination and crowding distance (in NSGA-II). Then, the crossover and mutation operators are

applied and the process will be continued until one stopping criteria met. The details of GA and NSGA-II can be found in

Mirjalili (2019) and Deb et al. (2002), respectively. Because of the use of the random generators in GA and NSGA-11, we did

five runs for each algorithm to achieve more reliable results. The selected parameters for each algorithm are presented in the

supplement (Table S3). Fig. 4 shows the flowchart of these algorithms along with a schematic of the calibration process for

the two calibration variants. In short, calibration included the modification time series of irrigated areas, of NAg and NAs,

with different multipliers for individual years, as well as the modification of a-maximum-efseven temporally constant model
parameters or, in case of spatially heterogeneous parameters, multipliers= (see Table 1). Modifications were done
homogeneously for the whole basin. Months with assumed irrigation in Lake Urmia basin according to WaterGAP correspond

to the actual irrigation months (Apr. and Oct.) in the basin according to Saemian et al. (2015)). Thus; no correction of the

seasonality was needed in the calibration process. Fig—&

RS data Q data GW data NA data Modifying WGHM
parameters
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Reporti Are the

Modifying NA Running WGHM thepor ITIQ results
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on TWSA, Q and GWSA. We used a modified version of the Kling Gupta efficiency (KGE) as the objective function, where
10 the trend of the time series was added as a fourth component to the KGE (see Eq. 4 imati i

=5 below).
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Table 1: WGHM parameters with the most effect on TWSA, inflow into the lake, groundwater storage.

Value
Parameter
Default Minimum Maximum

P1: Rooting depth multiplier 1 0.5 3
P2: Maximum active lake depth [m] 5 2 12
P3: Runoff coefficient multiplier 1 0.5 15
P4: Multiplier for the fraction of total runoff that becomes groundwater recharge 1 0.5 5
P5: Maximum amount of groundwater recharge per day multiplier 1 0.5 5
P6: Minimum amount of daily precipitation necessary in arid/semi-arid areas to get groundwater recharge [mm] 125 5 15
P7: Maximum canopy storage [mm] 0.3 0.1 14

2.4 Performance indicators

5 Performance of the ealibration~variantseEWGHM was evaluated using the correlation coefficient (CC=), Nash-Sutcliffe
efficiency (NSE;),, root mean square error (RMSE), relative absolute error (RAE), and a modified version of the Kling Gupta
efficiency (KGE=Gupta-etal-—2009) with

= Cov (Obs, Sim)

1
Oobs X Osim 1)
T (Sim — Obs(p)?
NSE =1- E“Tl( © — 0b5)) )
thl(ObS(t) - 0bS)2
T
1 . 2 (3)
RMSE = TZ(ObS(t) - Slm(t))
t=1
I, |0bsiy — Sim
RAE — Zt_T1| ® _(t)l 4)
Zt:l |0bS(t) - 0bS|
Trendgiy, )

1)2

obs TrendODS

Osim 2 Sim
KGE =1— cc—12+<—_1)+__1z+
j( 2+ (2 G = 12 +

where Cov is covariance function, o refers to standard division, Trend indicates the linear trend of the time series, Obs is

observed value, Sim is simulated value, t refers to time counter and T is the period length. Optimum values of CC, NSE and

10 KGE are 1, and of RMSE and RE are 0. Trends and overall behaviour of the time series were also analysed.

3 Results

3.1 Multiebservatien-Model calibration
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or MODIS data and information of basin water use (variant RS Q GW_NA) (section S3). Then, optimal model parameters

were identified using GA and NSGA-II for both variants. Figure 5a shows the calibration history of WGHM based on the best

performance of GA among five runs for the variant RS. GA started from a KGE value with respect to TWSA near 0.60 and

reached to 0.87 after about 5,000 functional evaluations (WGHM runs). Figure 5b illustrates the final Pareto fronts obtained
by five runs of NSGA-II for the variant RS Q GW_NA. For the variant RS Q_GW_NA after about 12,000 functional
evaluations (for each NSGA-1I run), NSGA-I1I found 18 optimal parameter sets. Figure 6 shows the parameter ranges (5 and
18 values for each parameter for variants RS and RS_Q_GW_NA) obtained by five different runs of GA and NSGA-II in RS

and RS QO GW_NA variants. Then, an ensemble of WGHM simulations was generated for the variants RS and

RS O GW_NA which comprises the model runs with the optimal parameter sets.
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Figure 7 compares the data i al 80-%output of the calibrated model ensembles (variants

RS and RS Q GW_NA) with observations and the output of the standard version of WGHM. The minimum and maximum

value of each variable in each time period are shown as uncertainty bound of the results in each variant. Standard WGHM

underestimates total water dessstorage decline in the Lake Urmia basin wasbetween 2003 and 2013as compared to GRACE
observations. A good fit to GRACE results in calibration variant RS, due to thedess-eflake-water1) a stronger increase of
human water abstractions over time {=ig—faj—deublingas indicated by MODIS (Fig. S4), 2) an almost tripling of rooting depth

and thus soil water capacity and(P1), 3) an increased fraction of runoff that recharges the groundwater (P4-P6) and a 4) a

higher maximum canopy storage everywhere in the basin—assweH-as (P?) and 5) an increase of maximum active lake depth of

Lake Urmia from 5 m to @more than 8 m in variant RS

(Figs. 6a and 7a). With the larger soil and canopy water storage capacities, runoff and thus inflow into Lake Urmia decrease

as compared to standard WGHM (Fig. €
i -7b). Still, simulated inflows into Lake

Urmia computed in variant RS are still much higher than the observed values (Fig. 867b) and seasonality of groundwater
levelsstorage is totally misrepresented (Figs=8e—)-

10 T IRV

Fig. 7c). The required reduction of computed lake inflow (Q) can be achieved
Hy-in variant RS_Q-tegetherwithsmall G\W_NA by adjustment of the runoff coefficient and astive-lake
depth-Lrable-3a slight further increase in maximum soil and canopy storage (Fig. 6), while the fit to GRACE TWSA remains

i torage could

good (Fig. 8a7a). However, the seasonality of groundwater $

only be achieved by adjusting the sources of total net abstractions-

- NA (Fig. 7c). NAg in the standard=RS and RS=8 variants is negative, which means that there is an
artificial groundwater recharge due to irrigation by surface water during the summer irrigation months, leading to an increase
in groundwater leveland-storage. Groundwater levelsiorage observations, however, show a decrease during this period,

indicating that irrigation causes a net abstraction from groundwater.
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Fhe-Performance indicators CC, NSE, RMSE, RAE, and KGE with respect to monthly TWSA (Fig. 8a7a), annual Q
(inflow to Lake Urmia, Fig. 887b) and monthly SYASEGWSA (Fig. 847c) are presented in Table 42 for the standard version
and feseakibratedihe ensemble means of the two calibration variants. Regarding the fit to TWSA observations, NSE increased

from 0.48 in the standard version to 0.8486 in the RS variant for which TWSA was the only observation considered, and
increased slightly to 0.88 when groundwater observations were taken into account in yaHants-RS—0O-C\Wand-RS Q GW_NA
variaatsvariant. This performance improvement is also reflected by CC, RMSE, RAE, and KGE. Although the performance
of WGHM with respect to the observed lake inflow : i
the variant does not yet provide reliable simulations of lake inflow. The calibration against FASA——varant-RS—0Only

sakibration-agaiastinflow observations in variant RS QO GW_NA strongly improves #redelperformanseinflow simulation,
with NSE and KGE jumping from negative values for the standard variant to values aresrd0.93 and 0.9-and-RAEfrem-3.92

was improved in the RS variant,

io—0-30—lntoaration—otcroundwator ghcopyations aoata o, ads—ta—a-—Si ol _oociormionnon oocrcimcannt lean alse-RMSE-82,

respectively. The good performance shown by CC for all model variants indicates that all model variants identify correctly

high and low flow years. Inthe case of SASSGWSA, all performance indicators show that consideration of remote sensing

data only dedoes not lead to an acceptable simulation of groundwater storage. Only the twe
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variaatsvariant for which groundwater observations were taken into account lead to satisfactory performance. WWith-admaximum
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Figure 7:
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WGHI\/I and the two callbratlon varlants RSand RS O GW NA.

For model performance evaluation, we compared the lake volume simulated by WGHM with the observed lake
volume of Tourian et al. (2015) (Fig.8e7d and Table 42). The standard model underestimates the decline in both lake water
and TWSA, aHboth calibrated variants simulate the TWSA trend correctly, but beth-variant RS- }
, overestimate the decline of lake water storage, thus compensating for not decreasing sufficiently

groundwater storage (Fig. 8¢7c) due to assuming a net groundwater recharge due to surface water irrigation. Only wariants
RS—O-GW-andvariant RS_Q_GW_NA skmulatesimulates not only the groundwater dynamics but also the decline of lake
water volume correctly. NSEKGE for the monthly lake volume anomaly is 0.6852 for the standard WGHM and improves to
0.#£75 for RS=
eapasiy-rable-3)-. Including groundwater level data further improved the fit to observed lake volume, leading to a very high
NSEKGE of 0.94-6£0:9589 (Table 42). We conclude that the calibration of WGHM against diverse observations (that do not

include lake volume observations) leads to improved simulation of lake volume dynamics.
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Table 2: Performance of standard and calibrated WGHM variants with respects to observations of TWSA, inflow to lake, GWSA
and lake volume anomaly.

Phase Variables Criteria Standard RS RS Q GW _NA

Monthly TWSA CcC 0.84 0.93 0.94
NSE 0.48 0.86 0.88

RMSE [mm] 77 40 37
RAE 0.72 0.39 0.36
KGE -0.36 0.85 0.86
c Annual Q cc 0.94 0.97 0.97
% NSE -8.51 -0.75 0.93
= RMSE [108 m®/yr] 4121 1767 356
= RAE 3.92 1.67 0.33
© KGE -0.61 0.29 0.82
Monthly GWSA CcC 0.03 0.16 0.95
NSE -0.31 -0.28 0.89

RMSE [mm] 21 20 6
RAE 1.07 1.04 0.30
KGE -0.87 -0.83 0.85
- Monthly lake volume anomaly cC 0.82 0.98 0.98
2 NSE 0.68 0.92 0.96
E RMSE [10® m?] 1922 928 656
L% RAE 0.51 0.25 0.18
KGE 0.52 0.75 0.89

3.2 Differential impacts of human water use and climate variation on Lake Urmia basin

The impact of human water use and man-made reservoirs on water flows and storages was quantified by comparing the output
of WGHM in which human water use and man-made reservoirs are considered (this is normally done, now called WGHM-
ANT) with the output of a model run for naturalized conditions, where it is assumed that there are no reservoirs and no human
water use (WGHM-NAT). We determined that the results of the naturalized run differ by less than 2% from a run with
reservoirs but without human water use. Therefore, differences between WGHM-ANT and WGHM-NAT outputs can be
considered to be caused by human water use. It should be mentioned that all simulated and observed storages (total,
groundwater, lake) are not absolute values but anomalies with respect to the mean water storage during 2004-2009 (baseline

period used for the provided GRACE data). Moreover, to quantify the uncertainty in the model calibrations, WGHM-ANT

and WGHM-NAT were run based on all 18 optimal parameter sets were obtained from Pareto front for variant RS Q GW_NA.

All results were presented by min-max ranges.

When comparing TWSA under anthropogenic and naturalized conditions in Fig. 9a8a, remember that TWSA in Lake
Urmia basin is dominated by water storage in Lake Urmia. Seasonal TWSA variation of WGHM-ANT and WGHM-NAT do
not differ much. Starting after the heavy rain in April 2007 and strongly caused by the lack of spring precipitation in 2008,
both WGHM-ANT and WGHM-NAT (as well as GRACE TWSA) show a decreasing trend that is only somewhat more
pronounced in WGHM-ANT (Fig. 8a8a). Thus, this decrease is mainly due to dry climate conditions during the well-known
severe drought of 2008, with as<annual precipitation of only 241 mm, i.e. 74% of the mean value for 2003-2013-4=ig—8b5-.
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Also in the absence of human water use, total water storage would not have recovered after 2009 but would have stayed 50-
100 mm below the values occurring before 2008. However, while in WGHM-NAT the minimum storage in late summer, i.e.
the period with high irrigation, remains_almost at a constant level after 2009, it decreases each year in WGHM-ANT due to
consumptive increasing irrigation water use (see Fig. #654). The linear trendtrends of WGHM-ANT and WGHM-NAT TWSA
time series for the period 2003-2013 is=245are between -23.6 and -25.1 mm/yr (GRACE: -24.4 mm/yr) and between -10.1
and -11.8=mmAx9, respectively. The TWSA trend for two sub-periods before and after 2008, 2003-2007 and 2009-2013 -
442[-11.7, -18.5] and =[-10.6,-16.3] mm/yr, respectively, for WGHM-ANT and only [-1.8,3.3] and [-2.9,-0.7-are—3-856]
mml/yr, respectively, for WGHM-NAT. The last-mentioned trends are not significant at the 5% confidence level based on
Mann-Kendall’s test. According to WGHM, the basin lost, on average during 2003-2013, between 1,274226-10°and 1,305-108
m?® water/yr, while in the absence of human water use, it would have lost 8&4between 524-10° and 618-10% m® water/yr, i.e.
52-57% less. Of this total water volume=9828 between 914-10°and 975-10° m3/yr of lake water was lost, while only 548523.10°

and 598-108 m3/yr would have been lost without human water use (Fig. 968b).

The smaller decreasing trend for lake water volume under naturalized conditions is clearly caused by more inflow
into the lake, even though lake evaporation is somewhat higher under naturalized inflow conditions due to the larger lake
extent. While mean inflow during 2003-2013 is computed to be 4454between 4,323-10° and 4,685-10% m3/yr under naturalized
conditions, it decreases by 44%39-45% reached to between 2,639463-10° and 2,742-10° m®/yr under anthropogenically altered

conditions (Fig. 9e8c). The difference is only 50% of NA as only a fraction of (potential) net abstractions from surface water
NAs (required to allow optimal irrigation) could be made 1) due to a lack of water availability in the surface water bodies and
2) because a fraction oft of NAg is provided a decrease in groundwater storage. Since 2008 the inflow into the lake has never
reached 3,085-10% m3/yr. This is the value estimated to be the minimum environmental water reguirementsrequirement that
compensates the amount of annual evaporation from efthe lake surface (Abbaspour and Nazaridoust, 2007). Therefore, a
decrease efin lake water storage can be expected for the best—estimate—sfestimated inflow by WaterGAP efbetween
2,629463-10° and 2,742-108 m3/yr- during 2003-2013. In WGHM-NAT, the inflow was lower than 3,085-10% m? only in 2008
and 2009. Still, the average inflow into the lake from 2009-2013 of between 3,6%#8528-10° and 3,840-10% m?/yr would have

been only enough to keep the lake from further leeskaglosing volume (needed to compensate for lake evaporation). Thus even
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While-Groundwater storage is estimated to decline by 25&between 239-10° and 267-10% m3/yr during 2003-2013 in
WGHM-ANT, the decline is only 2Zbetween 24-10° and 35-10% m¥/yr in WGHM-NAT (Fig. 848d). Different from lake water

storage, groundwater storage would have recovered after 2008/2009 if there had been no (increasing) net groundwater

abstractions (Fig. 9d8d, compare Fig. #54b), even though mean groundwater recharge was-enwere between 2,549340-106
5 and 3,103-106 m3/yr during 2009-2013 as compared to 3-38between 3,091-10° and 4,179-10% m¥/yr during 2009-2043—n
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25 in the basin, for a maximum of 87-90% of the groundwater loss and for 4839-43% of the Lake Urmia water loss during 2003-

2013, and lake inflow was 4439-45% less than it would have been without human water use.
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4.1 MultiebservatisnModel calibration

Global hydrological models suffer from a—partieularly high uncertainty, in particular as model inputs are uncertain. For

example, climate input data are based on low-density climate observations and information on water use is often very scarce
and outdated. For modelling at the global scale, it is generally not possible to obtain, the same detailed data for a specific
region compared to the case that modelling this region only. Still, a global hydrological model includes all data for simulating
water flows and storages in specific regions of interest everywhere on the globe, and model calibration against multiple
(regional) observations is a means for improving the performance of the global model regionally. In this way,=ar efficient
simulation of regional water flows and storages can be achieved, possibly as an alternative to a costlier setup of a regional
model. More importantly, the regional-scale multi-observation calibration done in this study can serve to inform efforts for
global-scale but region-specific multi-observation calibration of global hydrological models that would allow to strongly
improve the performance of global hydrological models at the scale that they are made for (Déll et al., 2016).

Remote sensing data are the most accessible data for calibration of global hydrological models, including TWSA
from GRACE. Therefore, the model variant RS only used globally available RS data, MODIS and GRACE data products.
However, MODIS data can only be used to determine the temporally variable extent of irrigated areas in dry regions of the
globe such that the important adjustment of temporal dynamics of statistics-based irrigated areas is not possible everywhere.
GRACE TWSA quantify the anomalies and changes of water storage aggregated over all land water storage compartments
such as snow, soil, groundwater, lakes, wetlands, and rivers. Considering GRACE TWSA improved the simulation of the
important water storage compartment Lake Urmia. However, the unsatisfactory simulation of inflow into Lake Urmia and of
groundwater dynamics clearly shows that a good fit to observed TWSA does not guarantee a good simulation of river flows
or groundwater steragesstorage. Still, calibration against TWSA did, even if only very slightly, improve model performance

also with respect to lake inflow and groundwater dynamics.
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Figure 8: Time series of simulated (variant RS O GW NA) and observed monthly TWSA (a), lake water storage anomaly (b),

annual inflow into the lake Q (c), and monthly groundwater storage anomaly GWSA (d), under anthropogenic (WGHM-ANT) and

naturalized (WGHM-NAT) conditions.
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To assess the value of using inflow into the lake (Q), groundwater observations (GW) and observed lake volume (LV)

time series in model calibration, WGHM was calibrated manually based on some other variantsi.e. RS Q,RS LV, RS QO LV

and RS Q GW. in a step-wise fashion (not shown). Based on the results, by adding discharge data (RS _Q variant), the model

was able to simulate TWSA and Q accurately without changing the inputs of the model and only based on modifying the

. Groundwater level data were found (variants RS QO GW and RS _Q GW_NA) to be necessary to identify that

different from what is estimated by the standard version of WaterGAP, there is more irrigation with groundwater and less with
surface water such that a net abstraction of groundwater and not artificial groundwater recharge occurs due to irrigation.
Information on groundwater level dynamics with a suitable spatial density is not readily available for most regions of the globe.
To simulate groundwater dynamics properly, it was not sufficient to adjust parameters of the hydrological model (in particular
two groundwater recharge related model parameters—Fable=3 (Fig. 6b), but it was necessary to alter the fractions of net water
abstractions that come from groundwater and surface water bodies. Only then, groundwater storage decline by net groundwater
abstraction was simulated, and lake water storage decline could be correctly simulated instead of being overestimated when
only TWSA and lake inflow data are used for calibration. As in the case of adding lake inflow as calibration data type, no
trade-off between the fits to the different data types occurred.

Consideration of regional estimates of human water withdrawals in a specific year as well as regional estimates of

return flow fractions in variant RS_Q_GW_NA does not improve the fit to observations compared to variant RS W _GW

significantly and only leads to slight parameter adjustments. This indicates a reasonable simulation of per hectare water
consumption for irrigation by the WaterGAP model. To summarize, consideration of more and more observations and other
independent data results with improved fits to three tygetypes of observations, TWSA, lake inflow, and groundwater dynamics,
while at the same time more ard-mere-parameters need to be adjusted (Tables 31 and 2 and 4Fig. 6). No trade-offs between

the fits to the three observational data types occurred in the case of the Lake Urmia basin.

While the introduction of annually varying corrections for NAg and NAs (Eg=2-Table 252) for varants-RS—O-C\W
andvariant RS_Q_GW_NA leads to the mestsuitablebest fit to multiple observation types, it may be preferable to have instead
of 11 free parameters just 1, i.e. a temporally constant 8.With a temporally constant 8 of -0.54a~vasriant-RS—O-GCGW the fit to
TWSA and inflow to the lake does not change at all, and groundwater storage is only slightly increased in the dry yearyears

2008 and 2009. Thus, given the uncertainty of observed groundwater storage variations, a temporally constant NAg correction

factor is sufficient for achieving a good fit for all observations.




10

15

20

25

—In the RS_LV variant, simulation of TWSA and SASSGWSA did not change
appreciably but H@%@ﬂyboth simulated lake volume anomaly butalse-simutatedand lake inflow-iate-thetake greatly improved
as compared to the RS variant. NSE for monthly lake volume anomaly and annual lake inflow reaches 0.95 and 0.44,
respectively. Inflow into the lake is much less overestimated than in variant RS. To achieve these fits, the variant RS parameters
wherewere adjusted-by—aereasing the rooting depth multiplier to 2.5 and setting the potential evaporation multiplier to 2.
Adding lake volume observations on top of lake inflow observations in RS_Q_LV variant leads to an improved fit to lake

volume observations, with NSE increasing from 0.81 to 0.95, but the fit of observed inflow into the lake slightly worsens from

0.88In RS 0 1t00.85in RS _Q LV. In this variant, the RS_Q variant parameters were used, except the maximum active lake
depth was set to 9 m and the potential evaporation multiplier to 2. We conclude that in the case of the end lake, Lake Urmia,
calibration against time series of lake volume anomalies could, in the absence of inflow data, help to improve the simulation
of inflow, while calibration against time series of inflow could, in the absence of lake volume observation, improve the
simulation of lake volume anomalies. Still, calibration to both observational data types leads to the best simulation of both
annual lake inflow and lake volume anomalies. However, the groundwater storage dynamics could not be improved without
calibration against groundwater level dynamics.

Einally=In many hydrological model calibrations, trends are not used as performance criterion. We found that model

variants obtained by calibration & x=without a trend criterion, and KGE

almestwhich have a very similar
achieved-performance valses{Fable-43—doescriterion, do not necessarily lead to similar estimates of total and compartmental
water losses over the whole time period 2003+e--2013. For example, using variants RS_LV and RS_{=-have-thesame-values
i Q with 94-differenee)-similar NSE with respect to monthly time series of TWS
{retshewn)but, TWS loss between 2003 and 2013 is simulated to be 4325-46°-m*ard-7.86-10° m3and 12.20-10° m®,
respectlvely (Table 53) TWS loss according to variant RS_Q GW_NA is—with-10-04(based on ensemble mean) is 9.84-10°
even though NSE ardGE=areis only 0.04 ardhigher, while modified KGE (Eqg. 5) for
RS LV,RS Q,RS Q GW _NAis 0.68, 0.86better;71, and 0.86 respectively. We conclude that in the case of relevant trends,

the calibration criteria should include the minimization of the difference between observed and simulated trends.
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Table 3: Water loss in the storage compartments of Lake Urmia basin between 2003 and 2013 as observed and simulated by the

WGHM variants that were calibrated using different observation variables.
Water loss between 2003 and 2013 [10° m?]
(mean annual storage in 2003 minus mean annual storage in 2013)

Storage compartment Observed Standard RS RS LV RS Q RS Q LV RS Q GW RS Q GW_NA
TWS Storage 9.90 3.62 10.30 7.86 12.20 8.24 9.78 9.84
GW Storage 1.80 0.17 0.33 0.06 0.02 0.03 2.68 2.26
Soil Water Storage N.A. 0.15 0.26 0.20 0.29 0.24 0.25 0.25
Lake Storage 8.00 3.16 9.53 7.37 11.83 7.78 6.62 7.24

Based on spaceborne TWSA and lake level observations, total water storage in Lake Urmia basin declined by 9.9-10°

m?® from its annual average in 2003 to its annual average in 2013 and about 80% was due to the loss of lake water (Tourian et

al. 2015). Observed decline of groundwater storage was 1.8-10° m®, i.e. 18% of the observed total water storage loss in the

basin. WGHM overestimates observed loss from groundwater in both calibrations variants that take into account groundwater

observations. In WGHM simulations, groundwater decline and depletion below the level of surface water storages occur in

only 7 out of the 22 0.5° grid cells within the basin (Fig. S5a). In 5 of these 7 grid cells, groundwater levels were stable during

2003-2007 and only declined from 2008-2013, caused by increased NAg and decreased groundwater recharge in the latter part

of the study period. It is these 7 cells that cause the basin groundwater decline under the anthropogenic conditions shown in

Fig. 8d. For naturalized conditions, peak seasonal water storages decrease somewhat but minimum water storages cannot drop

appreciably given the already very low minimum seasonal storage values during the relatively wet five first years of the

investigate period (Fig. S5b) because WaterGAP cannot simulate a possible drop of the groundwater table below the surface

water level in the absence of groundwater abstractions. Thus, the contribution of human water use to groundwater storage

decline might be overestimated as 1) groundwater storage decline under the impact of human water use is overestimated (Table

3, variant RS Q_GW_NA as compared to observations and 2) groundwater storage decline under naturalized conditions

without human water use may be underestimated.

It is worth mentioning that WGHM as a hydrological model that does not include a gradient-based groundwater model

has some limitations for studying groundwater-lake water flows. We attempted to calibrate WGHM under the assumption that

there are direct water flows between lake and groundwater. Under this assumption, the seasonality of the groundwater storage

was strongly misrepresented. Therefore, as accepted by ULRP (2015c), we assumed there is no direct flow between the lake
and groundwater. While VVaheddoost and Aksoy (2018) using traditional hydrograph separation methods claimed that there is

a significant relationship between the lake and groundwater, Danesh-Yazdi and Ataie-Ashtiani (2019) rejected their claim.

Equally, some studies that applied isotope and chemical tracer analyses (e.g. Amiri et al. 2016) rejected any significant

relationship between lake and groundwater. In conclusion, the results of this study support the idea that there are no significant

direct interactions between lake and groundwater within the basin.
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4.2 Comparison to human vs. ehimateclimatic contribution as determined in previous studies

In order to definedesign the Lake Urmia restoration program, it is vital to know which factors contribute how much to the
shrinkage of the lake. All previous studies (e.g. Hassanzadeh et al., 2012; AghaKouchak et al., 2015; Ghale et al., 2018;

Chaudhari et al., 2018) agreed that shrinkage is caused by both climate variations and human activities, but there is no
consensus about the relative contributions. For example, ShaudariChaudhari et al. (2018) concluded that human-induced
changes accounted for 86% of the lake volume decline during 1995-2010, while we determined the~valdevalues of 4039-43%
for 26022003-2013. According to our study, human water use was the reason for 4£39-45% inflow reduction into the lake
during 2003-2013 which is very similar to the values of Shadkam et al. (2016) for the years 2003-2009 (comp. their EigsFig.
8). Discrepancies are likely due to different analysis methods but different analysis periods—as—weH—as—different and
conceptualizations; make a direct comparison of the estimated=relatire contributions difficult.

While Ghale et al. (2018) seem to support the results of Chaudhari et al. (2018);) as they state that 80% of drying of
Lake Urmia is due to anthropogenic impacts during 1998-2010, theretheir statistical analysis assumes that svetlake inflow

from rivers can be considered to reflect “anthropogenic impacts” while precipitation and evaporation ehanges-reflect climatic
variatienswhierivervariation. However, inflow is in reality also affected by elmateclimatic variations.-Adse Using a statistical

change point analysis and without modelling, Khazaei et al. (2019) stated that given the stable conditions of precipitation and

temperature, climatic changes earnetcould not explain the dramatic decline of the lake levels; however, they did not use in-

situ data (except lake water level data) for their analysis. Based on aan analysis of the Standardized Precipitation Index (SPI),
a drought index, AghaKouchak et al. (2015) reported there was no significant trend in droughts over the basin during the past
three decades and concluded from this that human activities and not climatic variations arewere the main reason for lake
shrinkage. Different from our study and the modelling studies of Shadkam et al. (2016) and Chaudhari et al. (2018), these three
studies consider only the dynamics of monthly and annual precipitation=rettakingiate-aceountthe and neglect changes in the
variability of daily precipitation. During the last three decades, there was a significant increase the frequency of daily
precipitation of less than 5 mm and a significant decrease in the frequency of daily precipitation of 10-15 mm, suggesting a
runoff reduction even in case of constant annual precipitation (Fig. 2 in Bavil et al., 2018). Hosseini-Moghari et al. (2018)
showed that an increasing frequency of days with less than 5 mm precipitation in combination with decreasing monthly
precipitation has eadled to the observed reduced inflow into two dams in the Lake Urmia basin that are located downstream

of areas with insignificant human water use. We conclude that analyses should be done &

daily time scale or smaller. Moreover, we examined the ratio of annual inflow into the lake (based on the ensemble mean) over

annual precipitation during the study period. This ratio reached maximum values in 2003 (0.29 and 0.41 for the anthropogenic

and naturalized conditions, respectivly) and minimum values in 2009 (0.07 and 0.15). Averaged over the period 2009-2013,
these ratios are, with 0.11 (ANT) and 0.22 (NAT), much smaller than the values for 2003-2007, 0.20 and 0.32. Thus, the

drought year 2008 as well as the relatively small ratio of inflow into the lake over precipitation in the last five years of the

study period play a significant role in the decline of inflow and lake water storage.
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dr—additienFor quantifying human and climatic contributions to observed hydrological changes, a comprehensive

modeling approach-+4spreferable that takes into account, for example, the impacts of changing temperatures on runoff and thus
river inflow and on evapotranspiration of the lake itselfs is preferable. Such comprehensive modelling was done by Chaudhari
et al. (2018) but their uncalibrated global hydrological model that represented the basin by 5-6 cells only was not able to
simulate well the flows and storages in the basin. For example, simulated annual inflow into the lake was estimated to be
3,700-10% m® in 2003 (their Fig. 8) while observed inflow was much higher, 5,835-10% m3. In 2009, observed inflow, with
1,036-10% m®, was only half of the simulated one. Therefore, the very high human contribution to the lake volume decline of

86% determined by Chaudhari et al. (2018) may arise from the poor performance of the uncalibrated model.

4.3 Limitations

Even after multi-objective calibration of a state-of-the-art comprehensive hydrological model, there remain many uncertainties
that affect the accuracy of the model results. Like the results of all hydrological models, our results are affected by uncertainties
in model input, model parameters, and model structure. Model parameter uncertainty was reduced by the comprehensive multi-
observation calibration, albeit conditioned on just one climate input data set and using just one model (instead of the state-of-
the-art multi-model ensemble approach, compare www.isimip.org
resolution (0.5°x0.5°), the model results are erby—validsferpreferably aggregated to the basin as a whole ardas results for

2}.). Given the low spatial model

individual grid cells are very uncertain. Also due to a lack of data at the basin scale, the hydrogeology of the basin was not
taken into account in the model. Information on the irrigated area in each grid cell was taken from a global data set of areas
equipped for irrigation from groundwater and surface water (Siebert et al., 2010), which was adaptedadopted in this study by
scaling it by basin-wide correction factors to better capture the temporal development of irrigation. Calibrated modeling results
are also affected by the uncertainties of the observation data. GRACE TWSA data are more reliable for larger (100,000 km?
according to Landerer and Swenson, 20123}) areas than the basin area of 52,000 km?. Estimation of groundwater storage

changes based on water level data for unevenly distributed wells is rather uncertain due to the unknown heterogeneities in the
subsurfaces: and uncertain specific vields. The “observed” lake water
volume decline—are—be—-affected-by—=a likely underestimation—ofunderestimates the actual decline

derbvedas a constant bathymetry was assumed when deriving lake water volume decline from remote sensing of lake water

level elevation and lake water area by-(Tourian et al. £2015)-5

-). However, there was an increase

in the elevation of the lake bottom due to sedimentation and salt precipitation (Shadkam et al.,

t06-2016).
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5 Conclusions

This study investigated the differential impact of human water use and climate variations on watessterage(total, groundwaters
and lake}= water storage in the Lake Urmia basin as well as on inflow into the lake during 2003-2013. This was done by
utilizing the information contained in multiple types of observation data to calibrate, specifically for the Lake Urmia basin, the

global hydrological model WGHM-that, which takes into account the impact of human water use and man-made reservoirs on

flows and storages. Observations include remote sensing data (for irrigated area, TWSA, and lake volume), in-situ streamflow

observations (for of lake inflow), groundwater well data (for deriving groundwater storage anomalies) and statistical data on

water use in the basin. A time series of observed lake volume was used for evaluation. Using the ensemble of best-performing

models where all available observations were used for model »astartcalibration, the impact of human water use was determined

by comparing the output of a=naturalized run, wherewith human water use was-assumed to be zero, with the saruns with the
histerehistorical water use. To understand the value of different observational data types for calibration, feus
eakibratien\WGHM was calibrated in six variants w i A=

observational data types.

We found that the time series for water demand by irrigation, as assumed in the standard WGHM version, had to be
adjusted using MODIS data such that the modification of festseven model parameters could result in a good fit to observed
GRACE TWSA. Consideration of these remote sensing data somewhat improved the dynamics of both inflow into Lake Urmia
and lake water storage, but lake inflow inte—thedake-was still stronghy-overestimated by a—fasterof0-0206.66% and the
seasonality of groundwater dyariesshouldastorage was strongly shifted-seasenality. Additional calibration against observed
inflow into the lake did not affect TWSA simulation and slightly improved the simulation of the lake water storage anomaly.
Only by using monthly time series of mean groundwater level variations in the basins for calibration, we could adjust the
fractions of human water use taken from groundwater and surface water such that seasonality of groundwater storage was
simulated correctly. Only then it was possible to simulate the observed groundwater loss, and loss of lake volume was no
longer overestimated. Statistical information on sectoral water withdrawals in the basin for one year as well as estimates for
sectoral return flow fractions further improved the model, but only slightly. We recommend to include, in case of relevant
trends in observations, the difference between observed and simulated trends as one of the calibration criteria, not only
differences between time series of daily, monthly or annual values.

The calibration exercise showed that the calibration variant for which the highest number of observational data types
were used, WGHM variant RS_Q_GW _NA, showed the best fit to all observations. Certainly, no general conclusions on the
worth of specific observation data types for model calibration, including trade-offs among fit to multiple data types, can be

derived from this study. Lake Urmia basin is particular with respect to 1) draining into a large end lake that dominates TWSA,
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2) the strong impact of human water use and 3) the fact that the standard WGHM version estimates a net recharge to the
groundwater due to surface water irrigation, which had to be corrected to a net abstraction. In basins with large lakes, and in
particular with end lakes, remotely sensed time series on lake area and the elevation of the lake water table should be used to
estimate time series of lake water storage as these observational data can be expected to be of high value for understanding the
freshwater system by hydrological model calibration. Groundwater storage cannot be observed from space but relies on in-situ
observations on groundwater heads in wells but, as in the case of Lake Urmia basin, such data can be crucial for a correct
understanding of the freshwater system.

Based on the good fit of WGHM variant RS_Q_GW _NA to four types of observational data, we areserfidentfound
that human water use reduced lake inflow that would have occurred without human water use during 2003-2013 by about
4439-45%. About 52-57% of the total water storage loss in Lake Urmia basin and only 4839-43% of lake water loss during
this time period was due to human water use, and the 43-48% and 6857-61%, respectively, to climate variations. 87-90% of
groundwater storage loss is estimated to be caused by human water use but this value may be somewhat overestimated by
WGHM because climate-driven loss under naturalized conditions may be underestimated due to the simplified representation
of groundwater-surface water exchanges in the model.

GRACE TWSA data indicate an increasing trend in water storage in the basin during 2014-2017 due to both less
water use due to water management (ULRP, 2015b) and the wet years 2015/2016. This trend is about half as strong as the
decreasing trend during 2003-2013. Further strengthening of efforts for decreasing human water use in the basin should be
undertaken, while at the same time, global-scale mitigation of climate change by reducing greenhouse gas emissions to prevent
strong decreases of precipitation and runoff. Our study has shown that the management of the Lake Urmia basin should be
based on a comprehensive assessment of all water storages and flows in the basin, including human water uses of groundwater
and surface water. We recommend refining the estimated net abstractions from surface water and groundwater by a basin-wide

spatially explicit quantification not only of water abstractions but also return flows to groundwater and surface water.

Data availability. In-situ data from "Iran Water Resources Management Company" including groundwater levels, precipitation
and temperature are available upon request from the corresponding author. All other data are available in supplementary. Also,
GRACE data is available through http://www2.csr.utexas.edu/grace/RL05_mascons.html (last accessed: 17 Jul. 2018). Lake
water surface extents and water levels are available at http://hydrosat.gis.uni-stuttgart.de/php/index.php (last accessed: 17 Jul.

2018). All simulation results are available from the corresponding author.
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