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Abstract. While modeling approaches of evapotranspiration (λE) perform reasonably well when 
evaluated at daily or monthly time scales, they can show systematic deviations at the sub-daily time 
scale, which results in potential biases in modeled λE to global climate change. Here we decompose the 
diurnal variation of heat fluxes and meteorological variables into their direct response to incoming solar 15 
radiation (Rsd) and a phase shift to Rsd. We analyze data from an Eddy-Covariance station at a temperate 
grassland site, which experienced a pronounced summer drought. We employ three structurally 
different modeling approaches of λE, which are used in remote sensing retrievals and quantify how well 
these models represent the observed diurnal cycle under clear sky conditions. We find that energy 
balance residual approaches, which use the surface-air temperature gradient as input are able to 20 
reproduce the reduction of the phase lag from wet to dry conditions. However, approaches which use 
the vapor pressure deficit (Da) as driving gradient (Penman-Monteith) show significant deviations from 
the observed phase lags, which is found to depend on the parameterization of surface conductance to 
water vapor. This is due to the typically strong phase lag of 2-3h of Da, while the observed phase lag of 
λE is only in the order of 15 min. In contrast, the temperature gradient shows phase differences in 25 
agreement with the sensible heat flux and represents the wet-dry difference rather well. We conclude 
that phase lags contain important information on the different mechanisms of diurnal heat storage and 
exchange, and, thus allow a process-based insight to improve the representation of land-atmosphere 
interactions in models. 

1 Introduction 30 

Evapotranspiration and the corresponding latent heat flux (λE) couple the surface water and energy 
budgets and are of high relevance for water resources assessment. λE is generally limited by four 
physical factors, (i) the availability of energy mostly supplied by solar radiation, (ii) the availability of 
and the access to water, (iii) the plant physiology, and (iv) the atmospheric transport of moisture away 
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from the surface (Brutsaert 1982). These different limitations have led to different approaches on how 
to model λE.  
 
Key approaches either focus on the surface energy balance where the surface-air temperature gradient 
dominates the flux; or approaches which focus on the moisture transfer limitation where vapor pressure 5 
gradients dominate the flux. It is critical to recognize that these two limitations are not independent of 
each other but rather are shaped by land-atmosphere heat and water exchange and thus covary with each 
other. The diurnal variation of incoming solar radiation (Rsd) causes a strong diurnal imbalance in 
surface heating leading to the pronounced diurnal cycles of surface states and fluxes (Oke 1987, 
Kleidon and Renner, 2017). This heat exchange of the surface with the lower atmosphere thus 10 
influences the near-surface air temperature (Ta), skin temperature (Ts), vapor pressure (ea), soil or 
canopy saturation water pressure (es), vapor pressure deficit (Da), and wind speed (u), that are being 
regarded as important controls on λE (e.g. Penman 1948). These interactions are particularly dominant 
at the diurnal time scale (e.g. De Bruin and Holtslag 1982) and depend on meteorological as well as on 
surface conditions (Jarvis and McNaughton, 1986; van Heerwaarden et al., 2010). Ignoring the 15 
interdependence of the surface variables may lead to biases in model parameterizations and 
compensating errors when evaluating the model performance only with respect to a single variable 
(Matheny et al., 2014, Best et al., 2015, Santanello et al., 2018).  
 
There is a strong need to investigate and to derive metrics based on comprehensive observation that 20 
characterize the whole land surface-atmosphere system (Wulfmeyer et al. 2018). Several authors 
proposed different multivariate metrics to better evaluate land-atmosphere (L-A) interactions in 
observations and models. Generally, these metrics explore internal relationships between state variables 
to better characterize key processes and to guide a more systematic exploration and understanding of 
model deficiencies.  A number of metrics focus on the diurnal evolution of the heat and moisture 25 
budgets in the planetary boundary layer (e.g., Betts 1992, Santanello et al. 2009, Santanello et al., 
2017).  Also statistical metrics exploring the strength of linear relationships between surface heat fluxes 
and states to surface radiation components have been employed to evaluate the performance of 
reanalysis with observations (Zhou and Wang 2016, Zhou et al., 2017, 2018).   
Furthermore, there are pattern-based metrics which focus on non-linear interactions at the diurnal time 30 
scale. Wilson et al., (2003) proposed the method of a diurnal centroid to measure the timing of the 
surface heat fluxes and their timing difference, which was more recently used by Nelson et al., 2018 to 
quantify the timing of evapotranspiration under different dryness condition for the FLUXNET dataset.  
In contrast Matheny et al., 2014 and Zhang et al., 2014 explored the diurnal relationship of the latent 
heat flux to vapor pressure deficit showing a pronounced hysteresis loop. Zheng et al., 2014 also 35 
included air temperature and net radiation as references variables and showed that the hysteresis loops 
of λE to 𝐷𝑎 or 𝑇𝑎 are large, while there are only small hysteresis effects when Rn was used.  Hysteresis 
loops have also been found when heat fluxes plotted against net radiation (Camuffo and Bernadi 1982; 
Mallick et al., 2015), with many studies showing hysteretic loops of the soil heat flux against net 
radiation (Fuchs and Hadas, 1972; Santanello and Friedl, 2003; Sun et al., 2013). The presence of a 40 
hysteresis loop indicates that there is a time dependent non-linear control on the variable of interest, 
typically induced by heat storage processes. Camuffo and Bernardi (1982) showed that the magnitude 
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and direction of such hysteretic loops can be estimated by a multi-linear regression of the variable of 
interest against the forcing variables and its first order time-derivative. This simple model allows  
estimating storage effects on diurnal (Sun et al. 2013) to seasonal time scales (Duan and Bastiaansen 
2017).  
 5 
Here, we choose the Camuffo and Bernardi (1982) model because it provides an objective measure of 
the magnitude of hysteresis loops and it allows for an assessment of statistical significance. We extend 
the Camuffo and Bernardi (1982) model in two ways.  
First, we use incoming solar radiation (Rsd) as reference variable instead of net radiation to estimate the 
phase lag of surface heat flux observations and models. And secondly, we use a harmonic 10 
transformation of the Camuffo and Bernardi (1982) regression model to estimate the phase lag in time 
units. This extension allows to compare the diurnal phase lag signatures of the different model inputs 
and how these influence the resulting diurnal course of the latent heat flux estimate.  
 
We specifically choose incoming solar radiation Rsd as the reference for the phase shift analysis, since 15 
Rsd can be regarded as an independent forcing of the surface energy balance (e.g. Ohmura 2014):  
 
𝑅%&(1 − 𝛼) + 𝑅-& − 𝐻 − 𝜆𝐸 − 𝐺 = 𝜎𝑇4 + 𝑚        (1) 
 

With surface albedo a, incoming longwave radiation Rld, sensible heat flux H, latent heat flux lE, the 20 
conductive soil heat flux G, the outgoing longwave radiation  𝜎𝑇4and storage terms of the surface layer 
summarized in m. This formulation of the surface energy balance provides the direction of the energy 
exchange processes at the surface, illustrating that the terms on the right-hand side depend on heat 
fluxes on the left-hand side of Eq. (1) (Ohmura 2014). As a consequence, the term net radiation Rn, 
which resembles the radiation budget of the shortwave and longwave components: 𝑅6 = 	𝑅%&(1 − 𝛼) +25 
𝑅-& − 𝜎𝑇4, cannot be regarded as an independent surface forcing. Consequently, we choose Rsd instead 
of Rn or Rn-G as the reference variable for the phase shift analysis of the latent heat flux and the main 
input variables of evapotranspiration model approaches.  
We focus on two different approaches to estimate λE. The first approach is based on the energy 
limitation of λE, using the equilibrium evaporation concept (Schmidt 1915) as formulated by Priestley 30 
and Taylor (1972) for potential evaporation. For actual evaporation we focus on one source and two 
source energy balance schemes (OSEB and TSEB, respectively) which derive λE as residual term of the 
surface energy balance and parameterize the sensible heat flux by a temperature gradient - resistance 
description (Kustas and Norman 1996) (referred to as ‘temperature gradient scheme’). The second 
approach is based on the Penman-Monteith (PM hereafter) approach (Monteith 1965), which adds water 35 
vapor pressure deficit as a driving gradient (referred to as ‘vapor gradient scheme’). We use the widely 
used FAO Penman-Monteith formulation (Allen et al., 1998) for potential or reference 
evapotranspiration. For actual evapotranspiration we use a modified PM approach which was 
formulated by Mallick et al. (2014, 2015, 2016, 2018); (see also Bhattarai et al., 2018) and is termed as 
a surface temperature initiated closure (STIC). STIC is based on finding the analytical solution of the 40 
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surface and aerodynamic conductances in the PM equation while simultaneously constraining the 
surface and aerodynamics conductances through both surface temperature and vapor pressure deficit.  
 
Several inter-comparison studies evaluated the performance of these schemes using observations from 
different landscapes. OSEB and TSEB which are often used in remote sensing retrievals of λE have 5 
been found to perform comparably well in reproducing tower-based energy flux observations 
(Timmermans et al. 2007; Choi et al. 2009; French et al., 2015). Yang et al. (2015) compared 
temperature gradient approaches (including TSEB) with the Penman-Monteith approach (based on 
vapor pressure gradient only) employed by the MODIS evapotranspiration product (MOD16, Mu et al., 
2011) and found strongly reduced capability of MOD16 to estimate spatial variability of 10 
evapotranspiration. They concluded that the moisture availability information obtained from relative 
humidity and vapor pressure deficit of the air is not able to capture the surface water limitations as 
reflected in surface temperature.  
 
In this study, we focus on the ability of these different evapotranspiration models to reproduce the 15 
diurnal cycle of λE under wet and dry conditions. In particular, we assess if significant non-linear 
relationships in form of hysteretic loops exist, if these change under different wetness conditions and if 
temperature-gradient and vapor-gradient approaches such as PM are able to reproduce this behavior. 
Further, we evaluate which input variables of the evapotranspiration schemes show a hysteretic pattern 
and how these patterns influence the flux estimation.  To address these questions, we analyze 20 
observations and models with respect to internal functional relationships (pattern-based) and use solar 
radiation as independent driver of land-atmosphere exchange. We focus on wet vs. dry conditions since 
this is another critical deficiency identified in previous analyses (e.g. Wilson et al., 2003, Matheny et 
al., 2014, Zhou and Wang 2016). To ensure similar radiative forcing and avoid variability due to cloud 
cover we focus the evaluation on clear-sky days. We illustrate our approach on a grassland site in a 25 
temperate semi-oceanic climate using surface energy balance observations. 
 
The analysis will shed light on the capabilities of process-based evapotranspiration schemes to capture 
the dynamics of diurnal land-atmosphere exchange. We show that the phase lag of surface states and 
fluxes reveals important imprints of heat storage processes and how this guides the evaluation of the 30 
different approaches for modeling λE. This is important for applications in remote sensing with respect 
to the choice of observational input variables. In doing so, we provide a further, pattern-based metric to 
assess land-atmosphere interactions, and, thus guide process-based improvements and calibration of 
land-surface schemes.  

2 Methods and Data 35 

2.1 Diurnal patterns and hysteresis loop quantification 

We first illustrate the pattern-based evaluation of the diurnal cycle using two hypothetical variables Y1 
and Y2, as shown in Figure 1.  If a variable (Y1) is in phase with Rsd, it shows a linear behavior when 
plotted against Rsd (Fig. 1 b). However, if a variable (Y2) has a time lag with respect to Rsd, showing a 
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significant difference between morning and afternoon values, it results in a hysteretic loop. The area 
inside the loop indicates the magnitude of the phase difference, while the direction of the loop, marked 
by an arrow at the morning rising limb in Fig. 1b, indicates if a variable is preceding or lagging Rsd in 
time. If a variable shows consistently larger values during the afternoon as compared to the morning, 
this will appear as a counter-clockwise (CCW) hysteretic loop indicating a positive phase lag with 5 
respect to Rsd. A negative phase lag appears as a clockwise (CW) loop.   
 

 
Figure 1: Illustration of a pattern-based evaluation of the diurnal cycle. Panel a) shows the diurnal cycle of Rsd under clear-sky 
conditions and the diurnal cycle of two variables Y1 and Y2, one in phase with Rsd and another lagging Rsd. Panel b) illustrates the 10 
relationship of these variables when plotted against Rsd. The bold arrow indicates the direction of the loop and the area inside the 
hysteresis describes the magnitude of the phase shift. 

To obtain a quantitative measure of the hysteretic pattern, we use the Camuffo-Bernardi equation 
(Camuffo and Bernardi 1982), which relates the time series of the response variable Y(t) to the forcing 
variable Rsd(t) and its first order time derivative dRsd(t)/dt: 15 
 
Y(t) = a + b Rsd(t) + c (dRsd(t)/dt) + ε(t).        (2) 
 
Using multi-linear regression, we obtain the coefficients a, b and c assuming a normal distribution of 
the residuals ε(t). If Y is linear with Rsd, the parameter c should be zero. However, if a consistent pattern 20 
such as a hysteretic loop exists, then parameter c should be significantly different from zero. Hence, by 
using regression analysis we can determine if a significant hysteretic relationship between two variables 
exists, and if the inclusion of such a non-linear term (with c ≠ 0) would improve the model fit.  
 
Although significance testing of the coefficient c is an advantage, it is clear from Eq. (2) that the 25 
magnitude of c depends on the units and magnitude of the response variable Y. In order to estimate a 
comparable estimate of the phase lag we employ a harmonic transformation of the regression model. 
Assuming that Rsd is a harmonic function with an angular frequency ω, the phase difference φ can be 
estimated from the two regression coefficients b and c: 
 30 
φ  = tan-1 (c  ω / b)            (3) 
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To derive the first order time derivative of solar radiation, we use a simple difference between time 
steps. Since the data we use is available in 30 min time steps (see below), we have 48 time steps per 
day, thus ω = 48/ (2π). To obtain a phase lag between Y and Rsd as a time lag tφ [min] we use: 
 
tφ = tan-1 (48/(2π)  c / b) (60 x 24/(2 π)).        (4) 5 
 
Note that the phase lag estimate tφ is somewhat similar to the relative diurnal centroid metric proposed 
by Wilson et al., (2003) for the analysis of the timing of heat and mass fluxes. The diurnal centroid 
identifies the timing of the peak of a variable with respect to local time. Since the peak of Rsd is at noon 
local time both metrics are qualitatively comparable.   10 

2.2 Field site and observations  

The study area is a grassland site in Petit-Nobressart, Luxembourg, situated on a gentle east facing 
slope. The grassland is used as a hay meadow and had short vegetation of about 10-15 cm as the grass 
was mowed before the start of the experiment. An Eddy-Covariance (EC) station (with the setup 
described in Wizemann et al. 2015) was installed at the grassland close to the village of Petit Nobressart 15 
(Fig. 2, exact coordinates: N 49° 46.77’ E 05° 48.22’). The EC station was operated from 11 June until 
23 July 2015. The three-dimensional wind and temperature fluctuations were measured at 2.41 m above 
ground by a sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, USA) facing to the mean 
wind direction of 290°. A fast response open-path CO2/H2O infrared gas analyzer (IRGA LI-7500, LI-
COR, USA) installed in a lateral distance of 0.2 m to the sonic path was used to measure CO2 and H2O 20 
fluctuations. The high-frequency signals were recorded at 10 Hz by a CR3000 data logger and the TK3 
software was used to compute turbulent fluxes of sensible heat (H), latent heat (λE) and CO2 (Mauder 
and Foken, 2015).  
 
Downwelling and upwelling shortwave and longwave radiation were obtained by a four-component net-25 
radiation sensor (NR01, Hukseflux, Netherlands). The meteorological variables (air temperature, 
humidity and precipitation) were monitored with a time resolution of 30 minutes. Soil heat flux was 
measured by heat flux plates (two in 8 cm depth, HFP01, Hukseflux, Netherlands), soil temperature (2, 
5, 15, 30 cm, model 107, Campbell Scientific Inc., UK), water content (2.5, 15, 30 cm, CS616, 
Campbell Scientific Inc., UK) and matric potential (5, 15, 30 cm, model 253, Campbell Scientific Inc., 30 
UK) were installed between the turbulence and radiation measurement devices.  
Unfortunately, the two upper temperature probes and soil matric potential sensors showed data gaps and 
erroneous values from 30 June until excavation on 23 July, 2015. Thus, the ground heat flux was 
calculated by the heat flux plate method with correction for heat storage (Massman, 1992) only for the 
period from 11 June to 30 June, 2015. To still obtain soil heat fluxes for the entire measuring period, 35 
additionally harmonic wave analysis (Duchon and Hale, 2012) of the heat flux plate data was applied. 
The harmonic wave analysis calculates the wave spectrum at the soil surface from the Fourier transform 
of the soil heat flux measured by the heat flux plates in a few cm depth (here: 8 cm) by correcting for 
wave amplitude damping and phase shift. The surface ground heat flux is then obtained by an inverse 
Fourier transformation of the corrected wave spectrum. The method has a dependence on soil moisture 40 
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affecting the damping depth. The dependence is, however, weak for clayey soils with soil water 
contents > 10% (Jury and Horton 2004) as observed at the site. The damping depth was obtained by the 
exponential decay of the soil temperature amplitude measured at the various depths. Differences in the 
damping depth between wet and drier soil moisture conditions only yielded differences in G smaller 
than 10 W m-2. Therefore, we used a constant damping depth for the whole period.  5 
Both methods for deriving the total soil heat flux agreed well for the period before 30 June, so that the 
latter method should provide reliable ground heat flux values for the entire period until 23 July. Table 1 
lists the variables obtained from the EC station and used in this work. For more details on 
instrumentation and EC data processing see Ingwersen et al. (2011) and Wizemann et al. (2015).  

 10 
Figure 2: Location of the EC site at Petit-Nobressart, Luxembourg.  Top right inset shows the mast with sonic anemometer and 
infrared gas sensor (center), radiation sensor (right) and rain sensor (left). The soil sensors are located on the right of the solar 
panel. Photo: Elisabeth Thiem. Background: ESRI ® World Imagery. 
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2.2.1 Derived meteorological variables 

We derived the saturated water vapor pressure es (hPa) by the empirical Magnus equation (Magnus 
1844) as a function of air temperature T (°C) with empirical coefficients from (Alduchov and Eskridge, 
1996): 
 5 
es (T) = 6.1094 hPa e (17.625 T / (243.04 + T)) 
 
Then, the water vapor pressure of the air ea (hPa) was obtained by using air temperature Ta and relative 
humidity (rH): 
 10 
ea = es (Ta) rH/100. 
 
To assess the moisture conditions of each date of the site we used the evaporative fraction fE: 
 
fE = λE / (H + λE). 15 
 
Since daily averages can be influenced by single large values of the turbulent fluxes and contain 
missing values, we estimated a daily fE based on the 30 min values of each day using the following 
linear regression: 
 20 
λE = fE (H + λE) + b + εR 
 
where fE is the slope of the linear regression, b its intercept and εR the residuals. Since we use the fluxes 
of H and λE without energy balance closure correction we obtain the upper range of fE.  
 25 
Since the sonic anemometer measures friction velocity (u*) and the absolute value of wind speed u = 
sqrt(U2+V2), we estimate the aerodynamic conductance for momentum (u*2/u) and the aerodynamic 
conductance (gah) for heat including the excess resistance to heat transfer using an empirical formula by 
Thom (1972): 
 30 

𝑔ah,Thom = ? @
@∗"

+ A.C

@∗
"
#
D
EF

            (5) 

 
We chose to use this formula for its simplicity and similar performance than more recent, complex 
parameterizations (Knauer et al., 2018, Mallick et al. 2016). Also note that effects of atmospheric 
stability are accounted for in the first term of Eq. (5).  35 



9 
 

2.2.2 Energy balance closure gap correction 

Most EC measurements show that the sum of the observed turbulent heat fluxes are smaller than the 
available energy and thus do not close the energy balance leaving an energy balance closure gap (Qgap) 
(Foken et al., 2008)  
 5 
Qgap = Rn – (G + H + λE) 
 
For our site we observed on average  a slope of (H + λE) ~ (Rn – G) = 0.81 (by linear regression) with 
an average gap of 37 W m-2 over the whole duration of the field campaign. These values are in the 
typical range what is commonly found for grassland sites (Stoy et al., 2013). 10 
 
To correct the turbulent fluxes for the energy balance closure gap (evaluated at the 30 min time steps), 
we use a correction based on the Bowen ratio (BR) (Twine et al., 2000), which is directly related to the 
evaporative fraction fE = 1/(BR+1) to obtain corrected fluxes:  
 15 
λEBRC =  λE + Qgap * fE  
 
and  
 
HBRC = H + Qgap * (1-fE) 20 
 
Thereby, we used the daily fE estimate. We use these corrected fluxes in the further analysis.  

2.2.3 Clear-sky day classification 

In order to achieve comparable conditions with respect to incoming solar radiation, we identified clear-
sky conditions. A clear-sky day was defined by its daily sum of incoming solar radiation being larger 25 
than 85% of the potential surface radiation (Rsd,pot), which is a function of latitude and day of year 
(using R package REddyProc, function fCalcPotRadiation): 
 
Rsd/ Rsd,pot > 0.85  Σ(Rsd(t)) /   ( fdiff Σ(Rsd,pot (t))), 
 30 
where t corresponds to each time step of measurement and fdiff = 0.78 being a constant factor taking 
account for atmospheric extinction of solar radiation.  

2.3 One and Two Source Energy Balance models 

Thermal remote sensing based models estimate evapotranspiration by solving the surface energy 
balance and rely on land surface temperature (Ts) information as a key boundary condition (Kustas and 35 
Norman 1996). A bulk layer formulation of the soil-plus-canopy sensible heat flux is employed and λE 
is derived by enforcing the surface energy balance. Hence λE is written as: 
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  λE =  Rn - G - H = Rn - G – ρ cp (Ts – Ta) gah ,       (6) 
 
where ρ is density of air, cp is the specific heat of air at constant pressure, and gah is the effective 
aerodynamic conductance of heat that characterizes the transport of sensible heat between the surface 
and the atmosphere. We obtained Ts from the observed longwave emission of the surface Ts = (Rlu/(σ 5 
εs))1/4 with σ = 5.67 x 10-8 W K-4 the Stefan Boltzmann constant and a surface emissivity εs = 0.98, 
which is typical for a grassland and agrees with Brenner et al., (2017).   
We use two different approaches which are generally classified as one- and two-source models with 
regard to the implemented treatment of the energy exchange with the surface. While one-source energy 
balance models (OSEB) treat the surface as a uniform layer, two-source energy balance models (TSEB) 10 
partition temperatures, radiative and energy fluxes into a soil and vegetation component. The one-
source approach (OSEB) parameterizes the aerodynamic conductance gah as follows (e.g. Kalma et al., 
2008, Tang et al., 2013): 
 
𝑔GH,IJKL =

M"@
[ln((Q$E&)/Q%&)ES&]	[ln((Q'E&)/Q%&)UVW(Q%&/Q%()ES(]

       (7) 15 

 
where zu and zt are the measurement heights of wind and air temperature, respectively, z0m and z0h are 
roughness lengths for momentum and heat, respectively, k is the von Kármán constant, d is the 
displacement height, u is the wind speed and Ψm and Ψh are the the integrated Monin-Obukhov (MO) 
similarity functions which correct for atmospheric stability conditions (Brutsaert 2005, Jiménez et al., 20 
2012). For the investigated grassland site, d and z0m were calculated as fractions of the vegetation 
height, hc, with  d = 0.65 hc and z0m = 0.125 hc.  The roughness length for heat z0h was set using the 
dimensionless parameter kB-1 = ln(z0m/z0h), which was set to 2.3 in accordance with Bastiaanssen et al., 
1998. Note that this parameterization of aerodynamic conductance does not explicitly distinguish 
between bare soil and canopy boundary layer conductance, as it is done in two-source approaches. 25 
 
In addition to OSEB we applied the Two-Source Energy Balance (TSEB) model developed by Norman 
et al., (1995), Kustas and Norman (1999). For both, the soil and canopy components a separate energy 
balance (with different component temperatures) and bulk resistance scheme with different 
aerodynamic conductance are formulated. Then the energy balance equations are solved iteratively. It 30 
starts by assuming that a fraction of the canopy (described by vegetation greenness fraction fg) 
transpires at a potential rate as described by the Priestley-Taylor equation (Priestley and Taylor 1972):   
 
𝜆𝐸XY = 	𝛼XY

%
%U	Z

(𝑅6 − 𝐺)            (8) 
 35 
where αPT is the Priestley-Taylor coefficient (1.26), s is the slope of the saturation water vapor pressure 
curve and γ is the psychrometric constant. However, the canopy latent heat flux λEc = fg λEPT might be 
too large and the soil component would become negative (condensation at the soil surface) which is 
unlikely during daytime conditions. To avoid condensation at the soil surface, the αPT coefficient is 
reduced incrementally until the soil latent heat flux becomes zero or positive. Once this condition is 40 
met, all other energy balance components are updated accordingly to satisfy the energy balance 
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equation. For this study we used a constant vegetation fraction of fc = 0.9 and a greenness fraction fg 
which was derived from close-up pictures taken at the beginning and the end of the field campaign and 
linearly interpolated in-between. 

2.4 Penman-Monteith approach  

In the Penman-Monteith approach (Monteith 1965) the inclusion of physiological conductance (gs) 5 
imposes a critical control on λE:  
 
𝜆𝐸 = %	([*E\)U	]	^+_,-(`.(Y,)E`,)

%U	Z(FU/,-/.
)

         (9) 

 
In equation), the transfer of moisture is linked to a supply-demand reaction where the net available 10 
energy (Rn – G) is the supplies the energy for evaporation and the vapor pressure deficit of the air, Da [= 
es(Ta) – ea] is the demand for evaporation from the atmosphere. In the PM approach, the two 
conductances, the aerodynamic conductance gav and the surface conductance gs to water vapor are 
unknown. A widely used approach to obtain a reference evapotranspiration estimate from 
meteorological data is the FAO Penman-Monteith reference evapotranspiration (Allen et al., 1998). It 15 
defines the two conductances for a well-watered grass surface with a standard height of h = 0.12 m. The 
aerodynamic conductance is obtained by a bulk approach (eq. 7) with wind speed u measured at 2m 
above the surface, d = ⅔ h, z0m = 0.123h, z0h = 0.1z0m yielding gav = u/208 (Box 4 in Allen et al., 1998).  
Surface conductance is fixed at a constant gs = 1/70 m/s. Here, we use the latter definitions of the 
conductances and use direct measurements for the other input variables of equation (9) to obtain the 20 
FAO Penman-Monteith estimate. While the FAO estimate is typically intended for estimates of the 
reference evaporation for well-watered grass on a daily basis, we use it here as a reference for 
comparison on a sub-daily scale. In order to understand the effect of the aerodynamic conductance 
parameterizations we add another reference evapotranspiration estimate in which the aerodynamic 
conductance is given by eq. (5) using observations of friction velocity and wind speed, but keeping gs 25 
fixed.  

2.4.1 Penman-Monteith based Surface Temperature Initiated Closure (STIC) (version STIC1.2) 

In order to estimate an actual evapotranspiration rate from meteorological data we employ a method 
(STIC1.2 hereafter referred to as STIC), which is based on the PM equation, but which in addition 
integrates surface temperature information. The STIC methodology is based on finding analytical 30 
solutions for the two unknown conductances to directly estimate λE (Mallick et al., 2016, 2018). STIC 
is a one-dimensional physically-based SEB model that treats the vegetation-substrate complex as a 
single unit (Mallick et al., 2016; Bhattarai et al., 2018). The fundamental assumption in STIC is the first 
order dependency of ga and gs on soil moisture through Ts and on environmental variables through Ta, 
Da, and net radiation. Thereby, surface temperature is assumed to provide information on water-35 
limitation which is linked to the advection-aridity hypothesis (Brutsaert and Stricker 1979). In STIC, no 
wind speed is required as input data, as opposed to the temperature gradient approaches, but vapor 
pressure of the air and its saturation value become critical input variables, see Table 2 for an overview. 
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A detailed description of STIC version 1.2 is available in Mallick et al. (2016, 2018) and Bhattarai et al. 
(2018). 
 

3 Results 

3.1 Daily clear-sky and moisture classification 5 

The field campaign was conducted during an exceptionally warm and dry period characterized by clear 
sky conditions with remarkably high air temperatures with daily maxima above 30°C and little 
precipitation. Compared to the climatic normal (1981-2010) the precipitation deficit in this region was -
44% in June and -41% in July, respectively (source: meteorological station Arsorf, Administration des 
services techniques de l'agriculture (ASTA)). The air temperature anomaly was higher in July (1.9°C) 10 
than in June (0.7°C) (source: meteorological station Clemency, ASTA). The soil water content 
decreased and parts of the site, especially in the upper part, showed clear signs of vegetation water 
stress (see Brenner et al., (2017) for an analysis of the spatial heterogeneity of water limitation). 
However, the dry period was interrupted by a few but strong rainfall events, which significantly 
changed soil moisture and thus fE with time (Fig. 3a). Based on the observed fE we classified dry days 15 
with fE < 0.5 and wet days with fE > 0.6. This separation of dry and wet days is also reflected in the top 
soil moisture conditions (measured at 5 cm depth) as shown in Fig 3b.  
 

 
Figure 3: Daily observations of soil moisture, evaporative fraction, ratio of observed to potential solar radiation and mean 20 
precipitation. Panel a) shows the daily time series and panel b) the relationship of fE to soil moisture used to classify “wet” and 
“dry” days depending on fE > 0.6 or fE < 0.5, respectively. Sunny days are defined using a threshold of 85% of Rsd to potential 
radiation and are marked with solid symbols, with blue circles referring to wet and red squares to dry days. Top soil moisture 
measured at 5 cm below surface is shown. 

 25 
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Based on the classification into wet and dry days under clear-sky conditions we computed composites 
of the diurnal cycle for each hour. By using only sunny days we aim to achieve similar conditions with 
respect to downwelling shortwave radiation (Rsd). Figure 4a confirms that Rsd and net radiation (Rn) had 
very similar diurnal cycles and magnitudes for the wet and dry days. However, the downwelling 
longwave radiation Rld and the soil heat flux were somewhat higher under wet conditions (Fig. 4a). The 5 
higher Rld is related to a higher air temperatures and air vapor pressures observed under wet conditions 
(Fig. 4b), which may explain the greater value of Rld by affecting the atmospheric emissivity for 
longwave radiative exchange. This has also an impact on the minimum temperatures both for air and 
skin temperature, which are higher under wet conditions and lower under dry conditions (Fig. 4b). 
Hence, although we achieve fairly similar conditions for shortwave radiation under wet and dry 10 
conditions, we observed a small but significant difference in the longwave radiative exchange.  
 

 
Figure 4: Observations of average diurnal cycles of energy fluxes (panel a, with Rsd: shortwave downwelling flux, Rld: longwave 
downwelling flux; Rn: net radiation; G: ground heat flux); surface and air temperatures, Ts and Ta, and air vapor pressure, ea, 15 
(panel b) comparing wet and dry days. 

3.2 Diurnal cycle of evapotranspiration under wet and dry conditions 

Next, we evaluate how the different evapotranspiration schemes are able to reproduce the fluxes during 
wet and dry conditions under similar Rsd forcing. Figure 5 shows the average diurnal cycle of 
observations and models for λE. The observations showed a significant difference in λE between dry 20 
and wet conditions, with the maximum value of λE of about 200 W m-2 for dry and 350 W m-2 under 
wet conditions, which amounts to a mean difference of 100 W m-2 for daylight conditions (Table 3). As 
reference, we also included two common formulations of potential evapotranspiration, the Priestley-
Taylor potential evapotranspiration (PT) and the FAO Penman-Monteith reference evapotranspiration 
(FAO-PM). Both do not account for water limitation and show a marginal difference of 10 W m-2 25 
between wet and dry conditions. While FAO-PM yielded lower mean conditions than PT, it showed 
lower correlation and RMSE as compared to PT (Table 3). We find that all models for actual λE (rather 
than PT or FAO-PM) showed differences in λE between wet and dry conditions. Both OSEB and TSEB 
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showed a tendency to overestimate λE under dry conditions but captured the high λE values under wet 
conditions. In contrast, STIC captured the low λE magnitude under dry conditions (fE<0.5) but 
underestimated λE under wet conditions (for fE>0.6).  
 
Table 3 shows the statistical metrics of the model performances with respect to the Bowen ratio 5 
corrected λE. In general, both OSEB and TSEB produced mean λE values within the range of 96 - 98% 
(255 W m-2 and 259 W m-2) of the observed λE (264 W m-2) in wet conditions, while mean λE from 
STIC was within 83% (218 W m-2) of observed λE for the same conditions. However, for the dry 
conditions, simulated λE from STIC (180 W m-2) was 91% of the observed mean λE (164 W m-2), while 
the simulated mean λE from OSEB and TSEB was 77 - 78% of the observed mean λE.  Overall, the 10 
three models captured 86% (OSEB), 88% (TSEB), and 95% (STIC) of the observed mean λE. Results 
show that under wet conditions, RMSE of the OSEB /TSEB models is well within the range of the 
errors when compared with the uncorrected λE, whereas STIC showed relatively higher RMSE. 
However, under dry conditions the RMSE of OSEB /TSEB models was found to be larger than for 
STIC. For the entire observation period the three models produced comparable RMSE (41 - 46 W m-2) 15 
but with different correlation. STIC produced relatively low correlation (r2 = 0.72) as compared to the 
other two models (r2 = 0.84 – 0.85). Thereby, we find that the correlation of the schemes is distinctly 
larger under wet conditions as compared to dry conditions. The correlation under wet conditions of 
OSEB and TSEB are in the range of the correlation of the uncorrected λE (r2 = 0.91), whereas STIC and 
FAO-PM showed lower correlation. Under dry conditions the correlation was significantly lower than 20 
the correlation of the uncorrected λE (r2 = 0.93). While OSEB/TSEB explained 62% of the observed 
uncorrected λE variability in dry conditions (STIC explained 44%), both models produced higher 
RMSE (57 - 58 W m-2) as compared to STIC (45 W m-2) under these conditions.   
 
 25 
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Figure 5: Average diurnal cycle of λE estimates for (a) dry and (b) wet days. Error bars denote the standard deviation obtained for 
each hour. The bold black line with squares shows the observed latent heat flux corrected for the surface energy balance closure 
(λEBRC). The grey-shaded area depicts the range induced by the energy balance closure gap.  

 

3.3 Diurnal patterns of evapotranspiration 5 

The evaluation of the diurnal cycle shows that λE was strongly related to the incoming solar radiation, 
emphasizing that Rsd is the dominant driver of λE (Fig. 6). However, under wet conditions we found a 
marked and consistent difference between morning and afternoon in λE forming a CCW hysteresis loop 
(Fig. 6b). Using the Camuffo-Bernardi regression we found a significant phase lag for the BR corrected 
flux (λEBRC) with a mean tφ = 15 min under wet conditions and no significant lag under dry conditions 10 
(Fig. 7 and Table 4). The uncorrected observations showed only a slightly lower wet-dry difference, 
highlighting that the method to close the energy balance closure gap does not significantly influence the 
estimated phase lag.   
 
The two potential evapotranspiration estimates showed large differences in their phase lag. While the 15 
PT estimate showed a small hysteretic loop with a phase lag between tφ =  6-9 min, the FAO-PM 
estimate showed a substantial loop with a phase lag of tφ = 31 min. This large phase lag of the FAO-PM 
estimate is very similar to the phase lag when we use a constant gs in the PM equation but with gav 
obtained from Eq. (5) using friction velocity observations (Table 4).  The temperature gradient schemes 
(OSEB and TSEB) reproduced the observed phase lag relatively well (mean tφ = 9 min for wet and 20 
around 0 for dry conditions).  However, the temperature-vapor gradient scheme (STIC) showed 
relatively larger phase lags under both dry and wet conditions (tφ = 14-20 min) (Fig. 7, Table 4).  
 
Since all evapotranspiration schemes use Rn-G as forcing, we also computed the phase lags with Rn-G as 
a reference variable (see Table 4). The differences to Rsd as reference are, however, rather small with 25 
slightly lower phase lags and in the range of the standard deviation of the daily estimates. This small 
difference can be attributed to a negligible phase lag between Rsd and Rn as well as the rather small 
magnitude and the phase lag of the soil heat flux.  
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Figure 6: Diurnal hysteresis of λE to Rsd for (a) dry and (b) wet conditions of observations and different models. Bold arrows 
indicate the rising limb in the morning hours (7:00 to 8:00) showing a counterclockwise hysteresis of λE under wet conditions. 
Vertical arrows depict the standard deviation of λEBRC for each hour. 

 5 
Figure 7: Boxplot of the daily phase lag of λE to Rsd for observed (without and with Bowen Ratio correction) and modeled latent 
heat flux using sunny, dry (red) and wet (blue) days. A positive phase lag means that λE follows Rsd, and thus forms a CCW 
hysteresis as shown in Fig. 6. Dots show the actual data for each day with filled symbols indicating significant phase lags (P < 0.05, 
t-test of coefficient significantly different from 0). 
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3.4 Diurnal patterns of observed fluxes and states  

In order to understand the diurnal patterns of λE we also analyzed the hysteresis loops of the observed 
surface energy balance components [λE = (Rn – G) – H] with respect to Rsd (Figure 8). Generally, there 
was only a small hysteresis in the available energy (Rn – G) (Table 4). The turbulent heat fluxes showed 5 
significant hysteresis under wet conditions but not under dry conditions. Interestingly, under wet 
conditions the CCW hysteresis of λE with a phase lag (mean tφ = 15 min) was mostly compensated by a 
CW hysteresis of H (mean tφ = -22 min) (Figure 8 and Table 4). This compensation is an outcome of net 
available energy (Rn – G) showing little hysteresis for both conditions.  
 10 
 

 
Figure 8: Diurnal patterns of observed surface energy balance components for (a) dry and (b) wet days. The lines show the 
composite average and vertical bars the standard deviation for available energy (black), latent (blue) and sensible heat (red) of 
each hour. There is a nearly linear response of all surface heat fluxes to Rsd under dry conditions, and a systematic hysteresis loop 15 
under wet conditions. Under wet conditions the CCW hysteresis of λE is mostly compensated for by a CW hysteresis of H.  

 

We next analyzed the bulk sensible heat flux formulation used in the OSEB and TSEB models to 
understand how the observations of temperature and the inferred aerodynamic conductances are related 
to each other. The diurnal patterns of both air and surface temperature revealed a strong CCW hysteresis 20 
with Rsd (Fig. 9).  Air temperature showed a more pronounced hysteretic loop than surface temperature, 
and with a triangular shape with higher values during the afternoon when solar radiation reduces. 
Interestingly, the surface-air temperature gradient, being the driving gradient for the sensible heat flux, 
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showed much less hysteretic behavior.  The hysteresis is in a clockwise direction, with a higher gradient 
in the morning hours compared to the afternoon.  It had a similar phase lag as H (see Table 4).  

 
Figure 9: Diurnal patterns of observed anomalies in surface temperature (Ts), air temperature at 2m (Ta), and their gradient (Ts – 
Ta) for (a) dry and (b) wet days. Both Ta and Ts show a pronounced CCW hysteresis, but the form of the hysteretic loop is 5 
significantly different, with air temperature featuring a more pronounced, triangular shape with afternoon values almost 
independent of incoming solar radiation. The temperature gradient, however, shows a much smaller CW hysteretic loop.  Note 
that the temperature gradient is comparatively higher in the morning than in the afternoon, corresponding to the diurnal course 
of the sensible heat flux (cf. Fig. 8). 

 10 
 
We further analyzed different formulations of the aerodynamic conductance (ga) directly inferred from 
measurements and from how these are represented in the models evaluated here (FAO-PM, OSEB, 
TSEB, STIC). We inferred the aerodynamic conductance from observations in three different ways: 
Firstly, we used the Eddy-Covariance measurements of friction velocity (u*) and wind speed (u) to 15 
estimate the aerodynamic conductance for momentum (gam = u*2/u).  We then used the empirical 
formula by Thom (1972) to calculate the aerodynamic conductance for heat including the excess 
resistance to heat transfer (Eq. 5). Thirdly, we inferred the aerodynamic conductance from the observed 
sensible heat flux (HBRC) and temperature gradient (Ts - Ta) by inverting HBRC using Eq. (6). The FAO-
PM describes the aerodynamic conductance with a simple linear relationship to wind speed. OSEB and 20 
TSEB estimates the aerodynamic conductance to heat (gah), while STIC estimates the conductance to 
water vapor (gav). Thus by comparing these different conductance estimates we assume similarity 
between the fluxes.  
The different estimates for the aerodynamic conductance are compared to each other in Fig. 10 for 
midday conditions. Although the three observation-based estimates show some variations in the 25 
absolute value of the aerodynamic conductance, they consistently showed a significantly greater 
conductance for dry days compared to wet days, suggesting a stronger aerodynamic exchange between 
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the surface and the atmosphere under dry conditions. This difference in aerodynamic conductance is 
partly reproduced by the simple FAO-PM scheme which means that the median wind speed was higher 
under the drier conditions. The temperature-gradient schemes (OSEB and TSEB) reproduce the wet-dry 
difference rather well, which also use wind speed but rely on MOST similarity and stability correction. 
STIC which does not use wind speed did not show any significant differences in gav between wet and 5 
dry conditions.  
 
 

 
Figure 10: Boxplot of the different estimates of aerodynamic conductance under dry (red) and wet (blue) conditions. Only sunny 10 
days are sampled and midday values (10:00-15:00) are used in the comparison.  The top three estimates are directly inferred from 
observations, as described in the text. 

 

Finally we analyze the diurnal patterns of the vapor pressure deficit Da = es(Ta) – ea which is a critical 
driver of the latent heat flux in the PM equation. Since Da is derived from the observations, we analyzed 15 
its diurnal patterns in Fig. 11. We found that the vapor pressure in the air remained fairly constant 
during the day, hence it did not co-vary with Rsd, and only showed a small CW hysteresis with higher 
vapor pressure during the morning than during the afternoon. The saturation vapor pressure, which is a 
function of air temperature, however, showed a distinct and large CCW hysteresis loop with respect to 
Rsd, which is consistent with the large hysteresis in air temperature (Figs. 9 and 12). As a consequence, 20 
Da also showed a distinct and large CCW hysteresis with a large phase lag of tφ =~ 150 min (see Table 
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4).  This large hysteresis and phase lag is consistent with the respective characteristics of air 
temperature, but not with those of the temperature gradient, cf. Fig 9.  Furthermore, we note that the 
phase lag in Da did not show any significant influence of wetness, while the phase lag of the 
temperature gradient became more negative under wet conditions (Fig. 12, Table 4).  It would thus seem 
that the bias in PM-based estimates identified here may relate to a too pronounced role of Da in the 5 
evapotranspiration estimate. 
 

 

Figure 11: Diurnal patterns of vapor pressure in air (black), the saturated vapor pressure evaluated at observed air temperature 
(red), and the vapor pressure deficit (blue) for (a) dry and (b) wet days. 10 
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Figure 12: Phase lag to solar radiation of surface energy fluxes and surface state variables used as input for the evapotranspiration 
models for dry (red) and wet (blue) days. Boxplot and daily estimates with filled symbols showing significant phase lag estimates. 

 

4 Discussion 5 

4.1 Dominant controls of λE at the diurnal cycle  

Our analysis of the diurnal cycle showed that λE follows the diurnal course of incoming solar radiation, 
explaining most of the variance in λE. However, a significant non-linearity in form of a phase lag 
between λE and Rsd was detected which showed larger λE for the same Rsd in the afternoon as in the 
morning. We found that the lag in λE is accompanied by a preceding phase lag of the sensible heat flux, 10 
while the other surface energy balance components (e.g., net radiation and soil heat flux) revealed very 
small phase lags with Rsd. Hence, there is compensation between the phase shifts of sensible and latent 
heat fluxes, which becomes more apparent under the wet conditions. Our results are consistent with 
comprehensive FLUXNET studies of Wilson et al. (2003) and Nelson et al. (2018) which used a 
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different metric (median centroid) for assessing diurnal phase shifts. Wilson et al. (2003) found that H 
precedes λE at most sites, with the exception of sites in a Mediterranean climate. Using the 
FLUXNET2015 dataset, Nelson et al. (2018) found that the median centroid of λE occurs 
predominantly in the afternoon across all plant functional types when fE > 0.35, while for very dry 
conditions (fE  < 0.2) a shift of the λE centroid towards the morning was found. This indicates that our 5 
results are not just applicable to Luxembourg, but are a general phenomenon which justifies a wider 
interpretation within temperate climates.  
 
It is important to emphasize here, that the observed phase lags are not dominated by diurnal heat storage 
changes below the surface, since both the diurnal magnitude and the phase lag of the soil heat flux were 10 
relatively small compared to the turbulent heat fluxes. The models employed here use available energy 
(Rn–G) as input to estimate λE. However, the phase lag of the latent heat flux would only reduce by 
about 3 min when choosing Rn-G instead of Rsd as reference variable to calculate the phase lags. Hence, 
the observed phase lags of λE and H to Rsd  are not an artifact of the analysis, but can be considered as 
an imprint of L-A interaction.   15 
 
The obtained phase lags of the surface fluxes and variables allow for a process-based insight into the 
diurnal heat exchange of the surface with the atmosphere. Since there is only limited heat storage in the 
surface layer itself, which explains the small phase lags of the heat fluxes, the heating imbalance caused 
by solar radiation must be effectively redistributed. Over land it is the lower atmosphere which acts as 20 
efficient heat storage to buffer most of the diurnal imbalance caused by solar radiation, because the heat 
storage of the subsurface is limited by the relatively slow heat conduction into the soil. Thus, the lower 
atmosphere is effectively heated by surface longwave emission and the sensible heat flux, which in 
combination with the diurnal cycle of vertically transported turbulent kinetic energy (TKE) leads to the 
development of the convective planetary boundary layer (CBL) (e.g., Oke 1987). The changes in heat 25 
storage in the CBL are reflected by the very large phase lags for air temperature and longwave 
downwelling radiation, which both have a phase lag of about 2.5h. This large phase lag of air 
temperature then shapes (i) the vertical surface-air temperature gradient, which drives the sensible heat 
flux, and (ii) the vapor pressure deficit of the air. Despite the complexity of processes within the 
convective boundary layer, including the morning transition and entrainment at its top, we find that all 30 
surface energy components correlate strongly with solar radiation (Table 4).  What this suggests is that 
the state of the surface-atmosphere system is predominantly shaped by fluxes, particularly by solar 
radiation as its primary driver, with the state in terms of temperatures and humidity gradients adjusting 
to these fluxes, rather than the reverse, where the state (in terms of temperature and humidity) drives the 
fluxes. 35 
 
We also found that the phase lag of the turbulent heat fluxes is affected by soil water availability. This 
is most clearly seen for the surface-air temperature gradient and the sensible heat flux, whose phase lag 
is two times larger for wet than for dry days. This means that for the same solar radiation forcing we 
find higher values of the sensible heat flux in the morning than in the afternoon. The effect of water 40 
availability is also seen for the phase lag of the latent heat flux and to a lesser extent for the soil heat 
flux.  
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Our findings agree well with studies which use the diurnal centroid method, showing that moisture 
limitation decreases the lag in timing of λE (Wilson et al. 2003, Xiang et al., 2017, Nelson et al., 2018). 
The phase shift of Da might enhance evaporation at the cost of the sensible heat flux during the 
afternoon under sufficient moisture availability. However, under drier conditions, our findings suggest 
that the surface heats more strongly and generates more buoyancy, which is reflected by higher 5 
aerodynamic conductances as compared to the wet conditions (Fig. 10). The larger aerodynamic 
conductance would then enable a more effective sensible heat exchange, and would thus lower the 
phase difference between the sensible and latent heat fluxes.    
 
Note, that our interpretation disregards the effects of horizontal advection of moisture and temperature. 10 
Events of strong advection, e.g. of temperature can add heat to the surface energy balance and thus alter 
the diurnal cycle. Similarly, events of dry air advection may enhance local  λE at the cost of the sensible 
heat flux. Since we used composite averages and statistics over a set of days we aim to reduce the 
impact of such advective events. We expect that it is unlikely that such events occurred throughout all 
wet / dry days in a consistent manner.  15 
 

4.2 Using phase lags to identify model biases 

Our comparison of different modeling approaches shows that by using phase lags, one can identify 
biases in evapotranspiration parameterizations and relate these towards processes for a better 
understanding of surface-atmosphere interactions under different conditions of water availability.  One 20 
of our main findings is that the surface energy balance fluxes and the temperature gradient have a 
comparatively small phase lag to the incoming solar radiation, while air temperature and vapor pressure 
deficit have substantial phase lags.  This difference in phase lags can then be used to infer biases in 
estimates of evapotranspiration. In our application of this approach to observations of one site in a 
temperate climate we found that evapotranspiration exhibits a comparatively small phase lag, indicating 25 
that it was dominantly driven by solar radiation and temperature gradients, and not by the water vapor 
pressure deficit. Our findings are in line with observations of a near linear relationship of λE to Rsd by 
Jackson et al., 1983 which stimulated remote sensing based spatial mapping of λE  (Crago, 1996). Also 
the semi-empirical Makkink equation to estimate potential evapotranspiration (Makkink 1957, De Bruin 
and Lablans 1997, De Bruin et al., 2015) uses Rsd as main driver.  30 
Further support of the argument is given by the successful application of equilibrium evapotranspiration 
(Schmidt 1915, Priestley-Taylor 1972, Miralles et al., 2011, Renner et al., 2016) which uses Rn and air 
temperature as key inputs.  
Our interpretation is consistent with studies of non-water-stressed evapotranspiration that is best 
represented by potential evapotranspiration schemes which are primarily driven by net radiation, as 35 
demonstrated for FLUXNET observations by Maes et al., (2018) and for climate model simulations by 
Milly and Dunne, (2016).  Milly and Dunne (2016) interpreted these findings in terms of strong 
feedbacks between the surface and the atmosphere, which couple the surface variables and which result 
in a top-down energy constraint that is well captured by energy-only formulations. 
 40 
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Our analysis allows to better understand the relevance of the feedbacks which occur at a sub-daily time 
scale. These feedbacks are driven by the redistribution of heat gained by absorption of solar radiation at 
the surface, which causes a significant co-variation of the input variables to incoming solar radiation 
(Table 4). This is especially important for the vapor pressure deficit of the air which acts as a driver of 
λE and is also known to affect the stomatal conductance (Jarvis 1976, Jarvis and McNaughton 1986). 5 
De Bruin and Holtslag (1982) showed that a positive correlation between Da and Rn allows simplifying 
the complex PM equation to a form similar to equilibrium evaporation (Eq. 8) with net radiation as the 
dominant driver. Therefore, simpler, energy based formulations for λE show similar performance as PM 
based approaches, but with less input parameters (De Bruin and Holtslag 1982, Beljaars and Bosveld 
1997). The challenge of the PM equation is then a parameterization of the conductances, which must 10 
capture the feedbacks included in the input data. Since the co-variation originates from the diurnal 
redistribution of heat, a mismatch would then clearly be seen at the sub-daily timescale. Hence by 
focusing on the internal relationship of the modeled λE to Rsd at the sub-daily time scale we found that 
(i) the Penman-Monteith based approaches showed a consistently larger phase lag than what was 
actually observed and (ii) these approaches did not show a reduction of the phase lag under dry 15 
conditions. The PM approaches use the vapor pressure deficit as an input which showed a substantial 
hysteresis loop in the order of 2.5 h lagging Rsd. This is due to the temperature dependency of the 
saturation vapor pressure, while the actual vapor pressure shows no relationship with Rsd.  Besides Da 
and s, all other input variables to the Penman-Monteith approaches used here (both FAO and STIC) 
showed minor phase lags with respect to Rsd. Since the surface conductance in FAO Penman-Monteith 20 
is fixed with time, the resulting prediction of potential λE showed a significant and large phase lag in 
the order of 0.5 h. Even when we use the observed aerodynamic conductance as input, the effect 
remains the same, which emphasizes that a constant surface conductance results in biases in the diurnal 
cycle of λE. In contrast to assuming a constant gs, STIC computes λE through analytical estimation of gs 
and gav from the information of both, the surface-air temperature gradient and the vapor pressure deficit. 25 
This dynamic treatment of gs reduced the phase lag to values similar as the observations under the wet 
conditions. However, under dry conditions STIC still showed significant phase lags, which may be 
related to the lag of Da to Rsd which was similar for both dry and wet conditions (Fig. 12). Hence, our 
analysis indicates that the PM-based approaches used here overestimated the effect of water vapor 
deficit on actual evapotranspiration, which, in the end, reflects in the estimation of the surface and the 30 
aerodynamic conductance to water vapor.   
 
The temperature-gradient approaches used here (OSEB and TSEB) are structurally different from the 
PM approaches, since they infer λE from the residual of the surface energy balance and thus do not 
explicitly deal with the aerodynamic and surface conductance of water vapor.  The phase lag analysis of 35 
the environmental variables used to drive the predictive models of λE helped to identify an important 
benefit of the temperature-gradient approaches over the Penman-Monteith based approach.  
The temperature-gradient approaches employ the vertical temperature gradient (Ts - Ta) which showed a 
significant counter-clockwise, i.e. a leading hysteretic loop, which is in the order of the phase shift 
detected for the sensible heat flux (Fig. 12). In addition, there is a distinct and significant increase of the 40 
phase shift in both the temperature gradient and the sensible heat flux under the wet conditions. Hence, 



25 
 

the temperature gradient as input contains valuable information on water limitation in terms of the 
magnitude (i.e. the slope of (Ts – Ta) to Rsd) and the diurnal phase lag (see Table 4).  
 
While the PM approaches must identify two conductances simultaneously, the temperature-gradient 
approaches only need to parameterize the aerodynamic conductance to heat (gah) using wind-speed as 5 
input. Thereby we found that these approaches agreed well with the approximated gah from the EC 
tower, which shows an enhanced conductance under dry conditions. Contrarily, the diagnosed gav from 
STIC did not show substantial differences between dry and wet conditions, pointing to the difficulty of 
the analytical approach and its associated assumptions to identify two bulk conductances parameters 
from the available radiometric and meteorological data (Mallick et al., 2018) for the climatic conditions 10 
in which these were evaluated here. 
 
Note, that we evaluated a temperate grassland site which experienced an exceptional summer drought. 
Thereby, the evaporative fraction did not decline below 0.3. In semi-arid ecosystems the evaporative 
fraction may decrease substantially   below 0.3 and Nelson et al., 2018 showed that there is a morning 15 
shift of λE (analogous to a negative phase lag) under very dry conditions (fE < 0.2). This points towards 
a different stomatal regulation changing the diurnal course of surface conductance. While it was shown 
by Bhattarai et al., (2018) that STIC performs well also under semi-arid conditions, temperature-
gradient approaches can show larger biases under semi-arid conditions (Morillas et al., 2013). The 
difficulty of temperature-gradient approaches are predominantly in the parameterization of aerodynamic 20 
conductance of heat which becomes more challenging under these very dry conditions (Kustas et al., 
2016).  
 
The relevance of the diurnal time scale for the problem of surface conductance parameterizations was 
already highlighted by Matheny et al., 2014. However, they and others evaluated the diurnal patterns of 25 
the hysteretic loops between λE and Da  (see also Zhang et al., 2014,  Zheng et al., 2014). Given that 
solar radiation is the cause of the strong L-A feedbacks at the diurnal time scale we believe that solar 
radiation is better suited as a reference variable than Da. Our results show that the new metric of the 
phase lag of heat fluxes and surface states to incoming solar radiation reveals important biases of 
evapotranspiration schemes. These biases may well be compensated for at a longer time scales 30 
(Matheny et al., 2014) but would lead to biased sensitivities with respect to climate change (Milly and 
Dunne 2016). Here, we applied the phase lag metric to observationally driven evapotranspiration 
schemes. In the future, we plan to apply these new metrics based on hysteretic loops to model outputs of 
land-surface models (such as NOAH-MP, Niu et al., 2011) as well as of fully coupled surface-
atmosphere simulations in order to detect and to identify errors in the parameterization of state-of-the-35 
art LSMs.  

5 Conclusions  

We analyzed the relationship of surface heat fluxes and states to incoming solar radiation at the sub-
daily timescale for a temperate grassland site which experienced a summer drought. Most variables 
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showed significant hysteresis loops which we objectively quantified by a linear component and a non-
linear phase lag component using multiple linear regression and harmonic analysis. We then compared 
these diurnal signatures obtained from observations of an Eddy-Covariance station with commonly used 
but structurally different approaches to model actual and potential evapotranspiration. The models have 
been forced by the observational data such that the differences to observations can be attributed to 5 
model formulation and signals contained in the input data. Our analysis guides model selection with a 
preference for the temperature gradient approaches, because the vertical temperature gradient contains 
relevant signals of soil moisture limitation as opposed to the vapor pressure deficit of the air. 
Furthermore, schemes which use vapor pressure deficit as additional input (such as the Penman-
Monteith formulation), require a dynamic, i.e. time dependent characterization of surface conductance 10 
to account for the strong phase lag in vapor pressure deficit. Hence, our results suggest that simpler λE 
approaches based on the surface energy balance and surface temperature may be more suitable to 
estimate evapotranspiration from observational data (e.g. remote sensing data) in climates without 
substantial water stress.  Apparently, the surface observations already contain the imprint of land-
atmosphere interactions, whereas in the case of coupled land surface-atmosphere models these 15 
interactions are explicitly resolved. Hence, detailed models of aerodynamic and surface conductance 
and its interaction with the environment are of crucial importance for skillful climate predictions 
including the carbon cycle (Prentice et al., 2014, Wolf et al., 2016; Konings et al., 2017).  
 
We suggest that an evaluation of these schemes should be based on the sub-daily time scale, because a 20 
land-atmosphere exchange scheme must accomplish a balance between the surface energy balance with 
small imprints of heat storage changes and the lower atmosphere with strong imprints of heat storage 
changes (Kleidon and Renner 2017).  Although a mismatch of the diurnal patterns may not be detected 
at the aggregated time scales of days and months, it may lead to biased model sensitivities (Matheny et 
al., 2014). For example, an overly sensitive formulation of evapotranspiration to vapor pressure deficit 25 
and thus to temperature would predict larger changes in potential evapotranspiration under global 
warming (Milly and Dunne 2016).  Here, we analyzed observationally driven evapotranspiration 
schemes and their inputs, which revealed an apparent energy constraint. This constraint, which appears 
as strong correlation of surface fluxes and gradients to incoming solar radiation should be correctly 
represented by any land-surface model which resolves the land-atmosphere interaction. While this may 30 
sound trivial, recent benchmarking studies showed that current state-of-the-art land-surface models have 
difficulties to represent the strong link of turbulent heat fluxes to solar radiation (Best et al., 2015; 
Haughton et al., 2016). Our findings provide an explanation of this model deficiency and we suggest 
that further information is gained by evaluating land surface schemes in terms of phase lags in surface 
fluxes and states such as the sensible and soil heat flux including the diurnal dynamics of surface and air 35 
temperatures. Correctly representing these metrics will lead towards a more accurate representation of 
the diurnal heat and mass exchange of the land with the atmosphere. 
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6 Code availability 

The data analysis was performed with the open-source environment R (www.r-project.org). Functions 
to calculate the phase lag are provided as R-package “phaselag” available from github at 
https://github.com/laubblatt/phaselag  and released at zenodo https://doi.org/10.5281/zenodo.2540534. 
The script to perform data analysis and figures can be obtained from 5 
https://github.com/laubblatt/2018_DiurnalEvaporation and is released at zenodo 
https://doi.org/10.5281/zenodo.2540690.   
Code to perform OSEB and TSEB simulations can be found at 
https://github.com/ClaireBrenner/pyTSEB_Renner_et_al_2018. Code to simulate STIC1.2 simulations 
is available upon request at Kaniska Mallick (LIST, kaniska.mallick@list.lu).  10 

7 Data availability 

Data of observations (Wizemann et. al., 2018, http://doi.org/10.5880/fidgeo.2018.024) and model 
output (Renner et. al., 2018, http://doi.org/10.5880/fidgeo.2018.019) used in this study can be obtained 
from the research data repository GFZ Data Services http://dataservices.gfz-potsdam.de.  
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Table 1: Variables provided by the surface energy balance station and used for this work. 

Variable Symbol  Unit  
    
Horizontal wind components u, V m s-1  
Vertical wind w m s-1  
Sensible heat flux H W m-2  
Latent heat flux λE W m-2  
Ground heat flux G W m-2  
Upward shortwave radiation Rsu W m-2  
Incoming shortwave 
radiation Rsd W m-2  
Upward longwave radiation Rlu W m-2  
Downward longwave 
radiation Rld W m-2  
Friction velocity u* m s-1  
Air temperature Ta K, °C  
Relative humidity rH %  
Surface air pressure p hPa  
Precipitation P mm  
Soil moisture (5, 15 and 30 
cm) θ v/v  
Soil temperature (5, 15 and 
30 cm) Tsoil K  
    
 
 
Table 2: Input variables used in the different evapotranspiration schemes.  

Scheme Rn G Ta Ts  ea  es  u Other parameters 
Priestley-Taylor Obs Obs Obs      
Penman-Monteith  
(with constant gs) 

Obs Obs Obs  Obs Obs Obs gah,Thom =   f(u,u*) (3), 
gs = const 

FAO Penman-
Monteith 

Obs Obs Obs  Obs Obs Obs gav = u/208, gs = 1/70 
m/s 

OSEB Obs Obs Obs Obs   Obs hc 
TSEB Obs Obs Obs Obs   Obs fc, fg, hc 
STIC Obs Obs Obs Obs Obs Obs   
 5 
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Table 3: Statistics for all days, and sunny wet or dry days based on 30min values during daytime hours 6:00-18:00. Performance 
statistics, root mean square error (rmse) and explained variance r2 are computed with respect to the observed latent heat flux 
corrected for the closure gap by the Bowen Ratio (λEBRC). As a reference we also provide statistics for the uncorrected, observed 
latent heat flux (λEuncor). Potential evapotranspiration estimates are Priestley-Taylor (PT) and FAO Penman-Monteith (FAO-PM) 
reference evapotranspiration. Actual λE estimates are provided by the three schemes.  Statistics are computed for all days and for 5 
clear-sky days classified as “wet” and “dry”.  

Statistic  Period  λEBRC  λEuncor  PT  FAO-PM  OSEB  TSEB  STIC  
mean  all  178  145  259  224  202  204  170  
mean  wet  264  213  325  294  255  259  218  
mean  dry  164  134  315  285  212  209  180  
rmse  all  0  40  106  81  41  43  46  
rmse  wet  0  57  71  52  29  24  66  
rmse  dry  0  33  169  140  57  58  45  
r2  all  1.00  0.94  0.72  0.62  0.85  0.84  0.72  
r2  wet  1.00  0.91  0.96  0.83  0.92  0.92  0.66  
r2  dry  1.00  0.93  0.75  0.56  0.62  0.61  0.44  
 
 
Table 4: Results of the Camuffo-Bernardi regression model with mean (standard deviation) for wet and dry days. The slope of the 
variable against Rsd is represented by b (note that the unit of b depends on the unit of the variable) and the phase lag to incoming 10 
solar radiation is converted to minutes. The adjusted explained variance by the multi-linear regression model is given in column 
R2.  The phase lag to Rn-G is reported in the last column for comparison.    

Variable  Moisture 
Conditions  

Slope b  Phase Lag to Rsd 
(in min.)  

R2adj  Phase Lag to 
Rn-G (in min.)  

Net Radiation  wet  0.7162 
(0.0106)  

1 (3)  0.998  -2 (2)  

dry  0.6980 
(0.0119)  

-1 (2)  0.998  0 (1)  

Soil Heat Flux  wet  0.1483 
(0.0194)  

-6 (8)  0.964  -8 (9)  

dry  0.1261 
(0.0173)  

-0 (8)  0.968  2 (7)  

Available Energy  wet  0.5679 
(0.0122)  

3 (3)  0.998  -  

dry  0.5719 
(0.0180)  

-1 (2)  0.998  -  

Sensible Heat Flux  wet  0.1715 
(0.0275)  

-22 (6)  0.964  -25 (7)  

dry  0.3388 
(0.0470)  

-3 (8)  0.988  -3 (8)  

Incoming Longwave  wet  0.0340 
(0.0092)  

133 (84)  0.600  124 (77)  
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dry  0.0263 
(0.0115)  

176 (51)  0.459  158 (49)  

λE BRC  wet  0.3992 
(0.0186)  

15 (4)  0.990  11 (3)  

dry  0.2380 
(0.0317)  

3 (12)  0.981  3 (11)  

λE uncor  wet  0.3284 
(0.0289)  

14 (5)  0.967  10 (4)  

dry  0.1939 
(0.0271)  

2 (16)  0.963  3 (14)  

Priestley-Taylor  wet  0.5354 
(0.0279)  

9 (5)  0.997  5 (2)  

dry  0.5238 
(0.0414)  

6 (4)  0.996  6 (3)  

Penman-Monteith 
const. gs  

wet  0.4326 
(0.0371)  

30 (9)  0.981  25 (6)  

dry  0.4288 
(0.0456)  

35 (11)  0.974  32 (10)  

FAO Penman-
Monteith  

wet  0.4233 
(0.0432)  

31 (11)  0.980  26 (9)  

dry  0.4200 
(0.0533)  

31 (12)  0.981  29 (12)  

λE OSEB  wet  0.3718 
(0.0100)  

9 (6)  0.976  5 (4)  

dry  0.2978 
(0.0372)  

-2 (5)  0.948  -1 (5)  

λE TSEB  wet  0.3793 
(0.0228)  

9 (5)  0.989  5 (2)  

dry  0.2843 
(0.0545)  

1 (6)  0.962  1 (4)  

λE STIC  wet  0.3037 
(0.0695)  

20 (19)  0.876  15 (19)  

dry  0.2387 
(0.0655)  

14 (14)  0.892  13 (12)  

Air Temperature  wet  0.0088 
(0.0008)  

130 (41)  0.742  122 (41)  

dry  0.0084 
(0.0017)  

138 (35)  0.685  130 (37)  

Surface Temperature  wet  0.0203 
(0.0010)  

51 (18)  0.923  46 (16)  

dry  0.0228 51 (13)  0.933  49 (13)  



38 
 

(0.0027)  
Ts - Ta  wet  0.0116 

(0.0013)  
-22 (8)  0.966  -24 (10)  

dry  0.0145 
(0.0017)  

-10 (7)  0.973  -7 (7)  

Vapor Pressure  wet  0.0003 
(0.0015)  

127 (186)  0.266  115 (183)  

dry  -0.0003 
(0.0012)  

52 (246)  0.316  71 (250)  

Vapor Pressure 
Deficit  

wet  0.0143 
(0.0031)  

145 (39)  0.791  134 (40)  

dry  0.0128 
(0.0032)  

153 (46)  0.719  144 (47)  

 

 
 


