Response to Referees

Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments" by Sarah A. Bourke et al.

Referee #1

1. General comments It is interesting to assess the sources and fate of agriculturally derived NO3–N by the concentration of NO3-NâAL'and â ´ AL'Cl ´ –. The idea of using fd and fm to quantify the impact of denitrification and dispersion are good. The tables and figures were displayed clearly and easy to understand.

Thanks for taking the time to review, we are pleased that you saw value in the manuscript.

2. Specific comments However, some specific scientific questions should be answered in this manuscript. Although the error in fm introduced by neglecting Clb was discussed by authors, however, the error range may be underestimated. The largest error (calculated as 23% by authors) may be double as the Clb (assumed as 10 mg/L by authors) C1 increased to 20 mg/L. The suggestion to improve this part in manuscript is to use an equation related to the ratio of Clb / Cli. I would also suggest to share the Excel sheet or program used by this manuscript. (page 6, line 35 to line 38).

Our thanks to the reviewer for drawing our attention to this section of the manuscript; neglecting background concentrations was also raised by reviewer 2. The assumption that background concentrations can be neglected is a very useful simplifying assumption and is consistent with our understanding of the sites investigated. As such, we prefer to retain it in the final manuscript. Rather than altering the mathematical treatment, we have added a new figure (Figure 9) demonstrating that the influence of background concentrations on the calculated f_m is negligible in most cases. We have also updated the discussion around this assumption (see p14 of marked up manuscript).

Figure 9 Effect of neglecting background concentrations (Cl_b or NO_3 - N_b) in the mixing model on calculated f_m over the range of values in this study.

In lieu of an excel spreadsheet we have added a new table (Table S10) to the Supplementary Material outlining values of each of terms in the mixing model calculation for each sample. The only thing this Table doesn't include is the solver code in Excel, which is rudimentary.

Sample ID	Cl	NO ₃ -N	fd	NO3-Ni/Cli	<i>Cl</i> i (n	ng L ⁻¹)	<i>NO</i> ₃- <i>N</i> i	(mg L ⁻¹)	f	r m
	(mg L ⁻¹)	(mg L ⁻¹)	(mean ± stdev)	(mean ± stdev)	min	max	min	max	min	max
CFO1										
DMW11	436.1	17.1	0.17 ± 0.07	0.23 ± 0.10	436	667	98	150	0.65	1
DMW12	78.0	2.6	0.23 ± 0.10	0.14 ± 0.06	78	1047	11	150	0.07	1
DMW13	56.7	23.7	0.56 ± 0.22	0.75 ± 0.29	57	189	42	141	0.30	1
DP10-2	74.5	11.8	0.52 ± 0.22	0.30 ± 0.13	74	277	23	84	0.27	1
DP11-12b	95.7	0.6	0.15 ± 0.08	0.04 ± 0.02	96	1300	4.2	90	0.07	1
DC15-22_10m	73.0	11.0	0.47 ± 0.21	0.32 ± 0.14	73	289	23	93	0.25	1
DP11-13_4.3m	28.5	7.0	0.30 ± 0.15	0.82 ± 0.41	29	184	23	150	0.15	1
DP11-13_5.2m	25.0	7.8	0.34 ± 0.13	0.91 ± 0.35	25	160	23	146	0.16	1
DP11-13_7m	72.3	12.0	0.27 ± 0.13	0.62 ± 0.30	72	244	45	150	0.30	1
DP11-13_7.9m	70.8	9.1	0.17 ± 0.09	0.76 ± 0.40	71	199	54	150	0.36	1
DP11-13_8.8m	81.7	11.0	0.32 ± 0.15	0.89 ± 0.42	82	323	39	150	0.25	1
CFO4										
BC4	163.1	35.1	0.37 ± 0.13	0.58 ± 0.20	163	258	95	150	0.63	1
BMW2	595.6	16.5	0.13 ± 0.06	0.21 ± 0.10	596	707	127	150	0.84	1
BMW5	131.2	12.9	0.34 ± 0.16	0.29 ± 0.14	131	520	38	150	0.25	1
BMW6	156.0	0.4	0.01 ± 0.01	0.26 ± 0.26	156	1300	0.4	150	0.12	1
BMW7	134.7	11.6	0.21 ± 0.11	0.41 ± 0.22	135	365	55	150	0.37	1

Table S10 Constraining values and results of mixing model calculations

3. Technical corrections There are several technical corrections should be done before it can be published.

1)I notice that, the last paragraph of "introduction" belongs to "experimental site description" of "methodology". (page 3, line 7 to line 20).

We agree that Lines 8-15 on p3 are a description of the sites and these have been moved to the top of methods as a separate site description subsection (2.1 Experimental Sites). This new section contains an expanded description of these two study sites (see p4 of marked up manuscript).

2)This manuscript didn't mention what is the sampling depth for the "water table wells" in the "methodology" section. To my understanding, there were little difference between groundwater monitor well and groundwater sampling well. Normally, the groundwater sampling well take water samples in a specific range of depths.

The screen intervals of all wells are presented in Table 1 (cited p3 L25) along with a description of monitoring wells in 2.1.1. Table 1 reports total well depth and screen length along with the statement in the caption that all screens are at the bottom of the well – which allows the reader to easily determine screen depth for each well. We feel that this is an efficient way of presenting the data and would prefer to retain it in the manuscript.

The distinction between water table wells and piezometers is about the screen length and potential for the screen interval to include part of the unsaturated zone. For a water table well the screen interval is ~4 m (at these sites) and is screened so that water levels will be within the screen interval throughout seasonal or annual water table fluctuations. Piezometers are screened at discrete depths within the aquifer and in this study screen lengths were usually 0.5 m. The full length of these piezometers remains within the saturated zone at all times. This distinction is relatively standard within the North American hydrogeology community.

We provide this information for the benefit of readers, but once defining these terms simply refer to both as monitoring wells through-out the manuscript. We feel that this approach provides a good balance between providing detailed information if the reader desires it without unnecessarily complicating the text.

No change made

3)Sampling frequency. I'm not sure if the sample frequency of the chloride and N species were high enough to draw the conclusion, since the sample sizes was less than 30 and standard deviation seems not low.

The Cl and NO₃ concentrations were measured at monthly to quarterly sampling intervals over a period of approximately 5 years and adequately capture temporal variation (see Figures 3 and 5). However, the isotope data are effectively a snapshot in time and do not capture temporal variation. This was already noted in the text (p12 L40-P13 L2 of original manuscript).

A sample size of 30 (note that Cl and NO₃ data set is larger than this) is not unusually small for a study of nitrate in groundwater using isotopes. A brief survey of published papers yields: n = 16 (Mengis et al., 2001), n = 29 (Mariotti et al., 1988), n = 24 (Durka et al., 1994).

It isn't entirely clear which conclusion(s) the reviewer thinks are not supported by the data. We acknowledge the limitations of the individual data sets, which is why the conclusions were drawn from a synthesised analysis of multiple lines of evidence that included the spatial and temporal distribution of NO_3 in groundwater and sources, the isotopic composition of that NO3 and the mixing model results.

We believe that the conclusion that denitrification is proceeding in the groundwater system and that denitrification reduces NO_3 concentrations substantially at the farm-scale is strongly supported by the data. The attribution of sources has more uncertainty in it, but nonetheless, we feel that the spatial distribution of NO_3 as well as the mixing ratio analysis supports the conclusion that temporary piles and pens are equal or more significant sources of agricultural nitrate in groundwater at these sites.

No change made

4)Text clarity. Section 3.1 and 3.2 mentioned several "water table wells" labeled as DMW11, DMW14, etc. However, it's not easy for reader to look for those wells from figure 1 (the site description map)

It's not clear exactly what the issue is here. DMW11 is clearly visible at the top of Figure 1, DMW14 is clearly visible on the RHS of the inset (area covered delineated by blue rectangle as stated in caption), which is included specifically so that these closely spaced wells can be identified. If further guidance can be provided we have no problem making adjustments so that it is easier for the reader to understand. Perhaps just having the Figure 1 imbedded in the text rather than at the end of the manuscript will help?

No change made

Referee #2

This paper presents a study of using isotope (N15 and O18) to study the nitrate mixing and transport. Denitrification of nitrate was considered in this study. The authors argued that their study used isotope in a quantitative way, different from the qualitative way of previous study. This however seems an overstatement to me, because they only used the isotope data to calculate the mixing ratios and denitrification coefficients. This is not very quantitative.

This manuscript presents the first application of the dual-isotopic enrichment of NO_3 to quantify the fraction of NO_3 removed that includes uncertainty in source values and enrichment factors. This type of calculation is commonly made using other isotopes, (e.g. calculating the amount of water lost to evaporation), but has not as yet been utilised in NO3 studies due to uncertainties in source values and enrichment factors. This is in stark contrast to the vast majority of published papers that used nitrate isotopes to identify the process of denitrification, or to define end-members for mixing calculations. We believe that this is a clear distinction and our analysis approach and results are correctly described as quantitative.

The text of the introduction has been extensively updated to clarify our approach and highlight the novel contribution of this manuscript to published literature (p2-3 marked up manuscript). We have also included an additional figure (Figure 8) that shows the reduction in NO₃-N concentrations associated with mixing and denitrification to emphasize the quantitative nature of our results, which is discussed in Section 3.4 of the revised manuscript.

Figure 8 Measured concentrations of NO_3 -N (blue circles - attenuation by mixing and denitrification) and NO_3 -N_{mix} (red triangles - attenuation by mixing only) vs mid-range estimate of NO_3 -N_i at a) CFO1 and b) CFO4. Dashed lines are drinking water guideline (10 mg L⁻¹ of NO_3 -N).

I also have a few questions, listed below, related to their calculation of the mixing ratios and denitrification coefficients. The authors used in equation (4) of the two-member mixing method to calculate the nitrate mixing ratio. This does not seem right to me, because there should be more than C1 two nitrate sources, such as the background ambient groundwater, the direct infiltration from fertilizer, the manure source, and the transformation from ammonium to nitrate. I doubt that the two end-member method is adequate to consider the multiple sources.

To the best of our knowledge (including interviews with long-time landowners/farmers at the sites, historic air photos) fertilizer (other than manure) has not been applied at the sites. As such, manure is the only source of agricultural nitrate at these study sites, which is stated in the original manuscript (p3 L13-15). This has now been clarified in the new subsection 2.1 (p4 marked up manuscript)

The nitrate in groundwater will have originally been organic-N or ammonium, and NH₃ dominates N in the EMS at both sites. However, the data demonstrate that NH₃ is generally a relatively small component of total-N in groundwater (<10%) so that NH₃ can be neglected in the mixing model, which only considers the N-pool in the groundwater system. A new Table has been added (Table 2) that summarises the range of values of each of the components of the N-pool. Additional description of these values has also been added to the beginning of the Section 3.3 (p10 marked up manuscript).

Table 2. Range of measured concentrations of TN, NH_3 -N, NO_x -N (NO_2 -N + NO_3 -N) and TON at each study site. At CFO1 results from monitoring well DMW3 are presented separately because values in this well differed substantially from all other wells.

Site	N-pool	TN (mg L ⁻¹)	NH ₃ -N (mg L ⁻¹)	NO _x -N (mg L ⁻¹)	TON (mg L ⁻¹)
CFO1	EMS	550 - 1820	275 - 747	< 0.1 - 0.4	73 - 1301
	Catch-basin	200 - 1440	2.5 - 7.3	<0.1	196 – 1437
	DMW3	278 - 548	219 - 479	$<\!0.1 - 50^*$	31.3 - 73.9
	Other monitoring wells	< 0.25 - 33.4	< 0.05 - 2.9	< 0.1 - 31.4**	<0.2 -3.7
CF04	EMS [^]	1000 - 1240	724 – 747	0.25 - 0.29	275 - 492
	Monitoring wells	<0.25 - 84.6	< 0.05 - 0.23	< 0.1 - 80.4	< 0.2 - 13.9

* NO_x-N of 50 mg L⁻¹ in DMW3 consisted of 12.6 mg L⁻¹ as NO₃-N and 37.4 mg L⁻¹ as NO₂-N.

^{**}NO_x-N max in groundwater measured in core (NO₃-N = 66.4 mg L⁻¹, NO_x-N = 67.8 mg L⁻¹)

[^]Range across three replicates measured on 25 August 2011

At CFO4 ammonium concentrations in the groundwater system are negligible (consistently < 0.23 mg/L. At CFO1, well DMW3 directly adjacent to the EMS has NH_3 is present at high concentrations in and NO_3 concentrations were low, but the mixing calculation were not conducted on data from this well. In samples for which the mixing calculation was conducted NH_3 was <10% of total-N. This is now clearly stated in Section 2.4.2 (p7 of updated manuscript).

Also, NO₂ concentrations in groundwater at CFO1, which would be expected to be elevated in the presence of nitrification (Vogel et al., 1981), was consistently < 0.5 mg/L (see p12 L14-23 and Supplementary material). The one exception is core sample DP22_6.5m, which has now been removed from the mixing calculation results (see updated Tables, Figures and text).

As such, we believe that it is reasonable to use a two-end member mixing model for the samples reported at these sites, where the end-members represent manure-based NO₃ and background (pre-agricultural) concentrations. This may not be the case at other sites where fertilizer or nitrification in groundwater are significant sources of NO₃ in groundwater, and this is now acknowledged in the Discussion (p14 marked-up manuscript).

To account for the denitrification, the authors used a denitrification coefficient in equation (4). While this is conceptually OK, it does not consider that denitrification is a kinetic process (zerothorder or first order). In other words, the denitrification coefficient used in the paper cannot reflect the kinetics of denitrification.

In this study we assume that fractionation of NO_3 in groundwater during denitrification follows a Rayleigh distillation process, as described in Section 2.3.1. This approach has been used in numerous previously published studies of denitrification in groundwater (Böttcher et al., 1990; Otero et al., 2009; Xue et al., 2009) and these references are now clearly cited in the manuscript (see p6 marked up version).

Rates of denitrification are likely to vary, and this will be reflected in the enrichment factor (Kendall and Aravena, 2000). This leads to uncertainty in the enrichment factor, and is one of the reasons that dual-isotopic enrichment of NO3 isn't widely quantified based from isotopic enrichment. This has now been clarified in the Introduction of the manuscript and in the description of the modelling approach.

In this study we determined a global epsilon of -10 based on data across both sites. In the model, epsilon values were allowed to vary in accordance with a normal distribution (mean = -10, stdev = - 2.5), which will reflect a range of possible reaction rates. This value of epsilon was determined based on data measured at the site, as shown in Figure 2b. The slopes corresponding ± 1 std. dev. are now also shown on this Figure.

Figure 1 (a) Cross-plot of stable isotopes of nitrate at CFO1 and CFO4 showing hypothetical nitrification trend, boundary of manure-sourced NO₃⁻ values and linear enrichment trends associated with denitrification, (b) enrichment of $\delta^{15}N_{NO3}$ during denitrification (only samples within source region and with evidence of denitrification are shown) dashed lines represent ±1 std. dev. of enrichment factor (ε = -10) estimated from measured data.

As to denitrification, it is unclear to what extent denitrification occurs in the aquifer. The plots in Figure 2 do not support the conclusion on denitrification, because the slopes shown in Figure 2(a) are not 0.5. For well CFO4, the slope of 0.42 is close to 0.5m, and the data listed in Table 2 and the well locations shown in Figure 1 indeed support the conclusion of denitrification. But what about well CFO1?

We assume that the reviewer takes issue with the slope of the isotopic enrichment trend at CFO1 (0.72) as being not close enough to the general trend of 0.5 reported in some studies (Durka et al., 1994). However the value of 0.72 is not unreasonable given the range of values reported for denitrification of groundwater in the published literature of 0.47 – 0.66 (Singleton et al., 2007), 0.67 (Mengis et al., 1999), 0.77 (Fukada et al., 2003). This will has now been clarified in the description of the modelling approach.

The authors said somewhere in the manuscript that the initial nitrate concentration can be neglected. I do not think that it is a reasonable assumption for agricultural areas.

Presumably the reviewer is suggesting that there can be an historical legacy of nitrate in agricultural areas. This is true, and we consider "background" as not having been influenced by agricultural activity (whether this is recent or historical). This assumption that NO_{3b} can be neglected underpins the simplification of the mathematics and is valid for these agricultural areas. This approach would not be suitable at sites with naturally elevated nitrate concentrations in groundwater, which is now acknowledged in the manuscript.

A new figure (Figure 8, see above response to reviewer 1) has been added to the revised manuscript to demonstrate that the effect of neglecting background concentrations as these sites is negligible, and discussion of the effect of neglecting background concentrations has been updated.

References

- Böttcher J, Strebel O, Voerkelius S, Schmidt HL. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology 1990; 114: 413-424.
- Durka W, Schulze E-D, Gebauer G, Voerkeliust S. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 1994; 372: 765-767.
- Fukada T, Hiscock KM, Dennis PF, Grischek T. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Research 2003; 37: 3070-3078.
- Hendry MJ, McCready RGL, Gould WD. Distribution, source and evolution of nitrate in a glacial till of southern Alberta, Canada. Journal of Hydrology 1984; 70: 177-198.
- Kendall C, Aravena R. Nitrate Isotopes in Groundwater Systems. In: Cook P, Herczeg A, editors. Environmental Tracers in Subsurface Hydrology. Springer US, 2000, pp. 261-297.
- Mariotti A, Landreau A, Simon B. 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochimica et Cosmochimica Acta 1988; 52: 1869-1878.
- Mengis M, Schif SL, Harris M, English MC, Aravena R, Elgood RJ, et al. Multiple Geochemical and Isotopic Approaches for Assessing Ground Water NO3– Elimination in a Riparian Zone. Ground Water 1999; 37: 448-457.
- Mengis M, Walther U, Bernasconi SM, Wehrli B. Limitations of using δ180 for the source identification of nitrate in agricultural soils. Environmental science & technology 2001; 35: 1840-1844.
- Otero N, Torrentó C, Soler A, Menció A, Mas-Pla J. Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: The case of Plana de Vic (Osona, Spain). Agriculture, Ecosystems & Environment 2009; 133: 103-113.
- Singleton M, Esser B, Moran J, Hudson G, McNab W, Harter T. Saturated zone denitrification: potential for natural attenuation of nitrate contamination in shallow groundwater under dairy operations. Environmental science & technology 2007; 41: 759-765.
- Vogel JC, Talma AS, Heaton THE. Gaseous nitrogen as evidence for denitrification in groundwater. Journal of Hydrology 1981; 50: 191-200.
- Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater. Water Research 2009; 43: 1159-1170.

Sources and fate of nitrate in groundwater at agricultural operations overlying glacial sediments

Sarah A. Bourke^{1,2}, Mike Iwanyshyn³, Jacqueline Kohn⁴, M. Jim Hendry¹

¹Department of Geological Sciences, University of Saskatchewan, SK, S7N 5C9, Canada
 ²School of Earth Sciences, University of Western Australia, Crawley, WA, 6009, Australia
 ³Natural Resources Conservation Board, Calgary, AB, T2P 0R4, Canada
 ⁴Alberta Agriculture and Forestry, Irrigation and Farm Water Branch, Edmonton, AB, T6H 5T6, Canada
 Correspondence to: Sarah A. Bourke (sarah.bourke@uwa.edu.au)

Abstract. Leaching of nitrate (NO₃⁻) from animal waste or fertilizers at agricultural operations can result in NO₃⁻ contamination of groundwater, lakes, and streams. Understanding the sources and fate of nitrate in groundwater systems in glacial sediments, which underlie many agricultural operations, is critical for managing impacts of human food production on the environment. Elevated NO₃⁻ concentrations in groundwater can be naturally attenuated through mixing or denitrification. Here we use snapshotsisotopic enrichment of the stable isotope values of NO₃⁻ to quantify the amount of denitrification in groundwater at two confined feeding operations overlying glacial sediments in Alberta, Canada. Uncertainty in δ¹⁵N_{NO3} and δ¹⁸O_{NO3} values of the NO₃⁻ source and denitrification enrichment factors are accounted for using a Monte Carlo approach. When denitrification could be quantified, we reconstructed used these values to constrain a mixing model based on NO₃⁻ and Cl⁻ concentrations.

20 point of entry to the groundwater system. The addition of NO₃⁻ to the local groundwater system from temporary manure piles and pens equalled or exceeded NO₃⁻ additions due to leaching from earthen manure storages at these sites. <u>As such, on-farm management of manure waste to limit NO₃⁻ contamination of groundwater should</u> <u>increasingly focus on limiting manure piles in direct contact with the soil, and encourage storage in lined lagoons.</u> Nitrate attenuation at both sites is attributed to a spatially variable combination of mixing and denitrification, but

Using this novel approach we were able to reconstruct the initial NO₃-N concentration and NO₃-N/Cl⁻ ratio at the

- 25 is dominated by denitrification. On-site denitrification reduced agriculturally derived NO₃⁻ concentrations by at least half and, in some wells, completely. These results indicate that Therefore, infiltration to groundwater systems in glacial sediments where NO₃⁻ can be naturally attenuated is likely preferable to off-farm export via runoff or drainage networks. The application of isotopes of nitrate to constrain a mixing model based on concentrations of Cl⁻ and NO₃⁻, which can be routinely monitored in groundwater, provides a relatively simple method to assess the
- 30 sources and fate of agriculturally derived NO₃⁻ in these settings., if local groundwater is not used for potable water supply.

1 Introduction

35

The contamination of soil and groundwater with nitrate from agricultural operations is a global water quality issue that has been extensively documented (Power and Schepers, 1989; Spalding and Exner, 1993; Rodvang and Simpkins, 2001; Galloway et al., 2008; Zirkle et al., 2016; Arauzo, 2017; Ascott et al., 2017). Leaching of nitrate (NO₃⁻) from animal waste or fertilizers can result in groundwater NO₃⁻ concentrations that exceed drinking water

guidelines and pose human health risks (Fan and Steinberg, 1996; Gulis et al., 2002; Yang et al., 2007). The discharge of high- NO_3^- groundwater, runoff, or drainage can contaminate streams and lakes, resulting in eutrophication and ecosystem decline (Deutsch et al., 2006; Kaushal et al., 2011). In saturated groundwater systems with low oxygen concentrations, elevated NO_3^- can be naturally attenuated by microbial denitrification

- 5 (Wassenaar, 1995; Robertson et al., 1996; Smith et al., 1996; Tesoriero et al., 2000; Singleton et al., 2007). Concentrations of NO₃⁻ will also decrease along groundwater flow paths due to attenuation via dilution by hydrodynamic dispersion (referred to hereafter as mixing). Because of these natural attenuation mechanisms, infiltration to groundwater may be preferable to off-site drainage and runoff of nitrate-rich waters. Many agricultural operations are undertaken on fertile soils associated with glacial sediments (Spalding and Exner, 1993;
- 10 Ernstsen et al., 2015; Zirkle et al., 2016). Understanding the sources and fate of agriculturally derived nitrate in groundwater systems in glacial sediments is therefore critical for managing impacts of human food production on the environment.

Identification of the sources and fate of NO_3^- at agricultural operations can be challenging because of spatial and temporal variations in sources (e.g. earthen manure storage, temporary manure piles, or fertilizer) and the

- 15 complexity of hydrogeologic systems (Spalding and Exner, 1993; Rodvang et al., 2004; Showers et al., 2008; Kohn et al., 2016). These spatial and temporal variations can result in complex subsurface solute distributions that are difficult to interpret using classical transect studies or numerical groundwater models (Green et al., 2010; Baily et al., 2011).
- Groundwater containing significant agriculturally derived NO₃⁻ also typically has elevated chloride (Cl⁻) concentrations (Saffigna and Keeney, 1977; Rodvang et al., 2004; Menció et al., 2016). Decreasing NO₃-N/Cl⁻ (or NO₃⁻/Cl⁻) ratios have been used to define denitrification based on the assumption that NO₃⁻ is reactive while Cl⁻ is non-reactive (conservative), such that denitrification results in a decrease in the NO₃-N/Cl⁻ ratio (Kimble et al., 1972; Weil et al., 1990; Liu et al., 2006; McCallum et al., 2008). However, NO₃-N/Cl⁻ ratios can also change in response to mixing of groundwater with different NO₃-N/Cl⁻ ratios or when groundwater sampling traverses
- 25 hydraulically disconnected formations (Bourke et al., 2015b). If NO_3 -N/Cl⁻ ratios vary among potential sources and the NO_3 -N/Cl⁻ ratio at the point of entry to the groundwater system can be reconstructed, this information could be used to show that anthropogenic NO_3^- at different locations within an aquifer is derived from the same or different sources.

The stable isotopes of NO₃⁻ (δ¹⁵N_{NO3} and δ¹⁸O_{NO3}) provide an alternative approach to characterize the source and fate of NO₃⁻ in groundwater systems. In agricultural areas, multiple sources of NO₃⁻ are common and could include precipitation, soil NO₃⁻, inorganic fertilizer, manure, and septic waste (Komor and Anderson, 1993; Liu et al., 2006; Pastén-Zapata et al., 2014; Clague et al., 2015; Xu et al., 2015). While source identification is theoretically possible using δ¹⁵N_{NO3} and δ¹⁸O_{NO3} (particularly with a dual-isotope approach), in practice this can be difficult due to geologic heterogeneity, overlapping source values, and the complexity of biologically mediated reactions

- 35 (Aravena et al., 1993; Wassenaar, 1995; Mengis et al., 2001; Choi et al., 2003; Granger et al., 2008; Vavilin and Rytov, 2015; Xu et al., 2015). NO₃⁻ attenuation by denitrification in groundwater systems can be identified based on the characteristic enrichment of $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$. Numerous studies have made qualitative assessments of that identified denitrification in groundwater using the stable isotope approach (Böttcher et al., 1990; Wassenaar, 1995; Singleton et al., 2007; Baily et al., 2011; Clague et al., 2015; Xu et al., 2015). However, very few-Recently
- 40 published field studies report quantitative assessments of denitrification based on papers have also used stable

isotopic enrichment<u>values</u> of $\delta^{45}N_{NO3}NO_3^{-1}$ and $\delta^{48}O_{NO3}$ and, to our knowledge, none account<u>water as the basis</u> for uncertainties in mixing models in agricultural settings (Ji et al., 2017 ;Lentz and Lehersch, 2019). Isotopic fractionation effects can also allow for quantitative assessment of the proportion of substrate that has undergone a given reaction, if enrichment factors and source values or are known; as in the case of evpoarative loss of water,

5 for example (Dogramaci et al., 2012). To date, there have been very few attempts to quantify denitrification using dual-isotope enrichment, largely due to uncertainty in source values and enrichment factors (Böttcher et al., 1990; Otero et al., 2009; Xue et al., 2009).

The only published calculations of the fraction of NO_3^- remaining after denitrification the that we are aware of assumed a constant enrichment factor and the same isotopic source values across the field site (Otero et al., 2009).

- 10 However, the enrichment factor will vary across a field site in response to reaction rates (Kendall and Aravena 2000), and isotopic values of even the same type of source (e.g. manure) can vary substantially (Xue et al., 2009). If the varation in source values and enrichment factors can be characterized from measured data then these uncertainties can be accounted for using a Monte Carlo approach (Joerin et al., 2002; Bourke et al., 2015a; Ji et al., 2017), thereby extending the application of the dual-isotope technique to allow for a robust quantitative
- 15 assessment of denitrification in agricultural settings.

A synthesized analysis of stable isotopes of NO₃⁻ with additional ionic tracers can<u>further</u> improve the assessment of NO₃⁻ attenuation mechanisms and sources of NO₃⁻ in agricultural settings (Showers et al., 2008; Vitòria et al., 2008; Xue et al., 2009; Xu et al., 2015). If; Ji et al., 2017). We hypothesise that if the amount of denitrification can be quantified based on $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$, then <u>this estimate of the fraction of NO₃-N removed through</u>

- 20 denitrification can be used to constrain a mixing model based on NO₃-N and Cl⁻ concentrations. This novel approach allows for the ratio of NO₃-N/Cl⁻ at the point of entry to the groundwater system eanto be calculatedreconstructed from measured NO₃⁻ and Cl⁻ concentrations (see Section 2.3) and this). Where the NO₃-N/Cl⁻ ratio varies between sources, this ratio can then be used to assess the source of the NO₃⁻ in groundwater (e.g. temporary manure piles or feeding pens). These data can also then be used to quantify attenuation by mixing
- 25 and estimate the initial concentrations of NO₃⁻ and Cl⁻ at the point of entry to the groundwater system. Uncertainties in source values and enrichment factors can be constrained using measured data and explicitly and quantify attenuation by mixing. accounted for using a Monte Carlo approach (Joerin et al., 2002; Bourke et al., 2015a).

In this study, we present the application of this approach at two confined feeding operations (CFOs) in Alberta, Canada, with differing lithologies and durations of operation (Fig. 1). The first study area (CFO1), located 25 km

- 30 northeast of Lethbridge, Alberta, was established in 1928 and had approximately 150 head of dairy cattle at the time of the study. An associated earthen manure storage (EMS) facility for storing liquid dairy manure was constructed in the 1960s. A 2000 head beef feedlot, established in the 1960s, was also present at CFO1. The second study area (CFO4), located approximately 30 km north of Red Deer, Alberta and 300 km north of CFO1, was constructed in 1995 (including an EMS) and had 350 head of dairy cattle at the time of the study. To the best
- 35 of our knowledge, fertilizers have not been applied at either of these sites, and infiltration of manure waste is assumed to be the cause of elevated NO_3^- concentrations in the local groundwater. Concentrations of Cl⁻ and nitrogen species (N-species) and the stable isotopes of NO_3^- were measured in groundwater samples collected from monitoring wells and continuous soil cores, as well as manure filtrate at both sites. These data were interpreted to (1) assess the extent of agriculturally derived NO_3^- in groundwater, (2) identify sources and initial

concentrations of NO_3^- at the point of entry to the groundwater system, and (3) assess the dominant attenuation mechanisms controlling subsurface NO_3^- distributions at these sites.

2 Materials and methods

2.1 Experimental sites

- 5 This study was conducted using data from two of the five sites investigated by Alberta Agriculture and Forestry during an assessment of the impacts of livestock manure on groundwater quality (Lorenz et al., 2014). To the best of our knowledge (including discussions with farm operators) fertilizers have not been applied at either of these sites. As such, manure waste from livestock is assumed to be the sole source of agricultural nitrogen (N) and elevated NO₃⁻ concentrations in groundwater at these sites.
- 10 The first study site (CFO1) is located 25 km northeast of Lethbridge, Alberta (Fig. 1). Agricultural operations at this site were initiated with the construction of a dairy in 1928, with the capacity for the150 dairy cattle since the 1960s. A feedlot for beef cattle was added in 1960s along with an earthen manure storage (EMS) facility for storing liquid dairy manure (approx. 4 m deep) and a catch-basin that receives surface water runoff. This feedlot was expanded in the 1980s to the 2000 head capacity it was at the time of this study. There is also a dugout (or
- 15 <u>slough, a shallow wetland) on site that receives local runoff and an irrigation drainage canal at the southern</u> boundary of the property.

The second study site (CFO4) is located approximately 30 km north of Red Deer, Alberta and 300 km north of CFO1. This dairy and associated EMS (approx. 6 m deep) were constructed in 1995 and the facility had 350 head of dairy cattle at the time of the study. Runoff will drain either to the small dugout in the north-west of the site, or the natural drainage features (ephemeral ponds or a creek approx. 1.5 km east).

2.2 Sampling and instrumentation

2.12.1 Groundwater monitoring wells

25

20

Groundwater samples were collected from water table wells and piezometers (hereafter both are referred to as wells) installed at both sites (Fig. 1, Table 1). At CFO1, groundwater samples were collected from six individual water table wells (DMW1, DMW2, DMW3, DMW4, DMW5, DMW6) and eight sets of nested wells with one well screened at the water table and one well screened 20 m below ground (BG) (DP10-2 and DP10-1, DMW10 and DP11-10b, DMW11 and DP11-11b, DMW12 and DP11-12b, DMW13 and DP11-13b, DMW14 and DP11-14b, DMW15 and DP11-15b, and DMW16 and DP11-16b). Wells DP10-2 and DP10-1 were located directly adjacent to the EMS on the hydraulically downgradient side. At CFO4, groundwater samples were collected from

30 eight water table wells (BC1, BC2, BC3, BC4, BC5, BMW1, BMW3, BMW7) and four sets of nested wells, with wells screened across the water table and at 15 m BG. Two of these nests were located adjacent to the EMS (BMW2 and BP10-15e, BMW4 and BP10-15w) and two were hydraulically downgradient of the EMS (BMW5 and BP5-15, BMW6 and BP6-15).

Groundwater samples were collected for ion analysis (Cl⁻ and N species) quarterly between April 2010 and August 2015. All water samples were collected using a bailer after purging (1–3 casing volumes) and stored at \leq 4 °C prior to analysis. Samples for $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$ were collected from wells at CFO1 on 1 January 2013 and 1 May 2013. Samples for $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$ at CFO4 were collected on 27 October 2014. Wells were purged prior to sample collection (1-3 casing volumes), and samples filtered into high-density polyethylene (HDPE) bottles in the field and frozen until analysis.

Hydraulic heads in monitoring wells were determined using manual measurements (approximately monthly, 2010-2015). Rising head response tests (slug or bail tests) were conducted to determine hydraulic conductivity (K) of the formation media surrounding the intake zone on the majority of the wells at the sites.

2.12.2 Continuous core

Continuous core was collected at CFO1 immediately adjacent to well DP11-13b on 1 May 2013 (Fig. 1). Additional core samples were collected from 1 to 5 June 2015 along a transect hydraulically downgradient of the southeastern side of the EMS at CFO1 where hydrochemistry data suggested leakage from the EMS (see Section

10 3). During this 2015 drilling campaign, core samples were collected at four locations (DC15-20, DC15-21, DC15-22, DC15-23) to depths of up to 15 m below surface and distances of up to 100 m from the EMS between wells DMW3 and DP11-14.

Continuous core samples were retrieved using a hollow stem auger (1.5-m core lengths) with 0.3-m sub-samples collected at approximately 1-m intervals ensuring that visually consistent lithology could be sampled. Core

15 samples for Cl⁻ were stored in ZiplocTM bags and kept cool until analysis. Core samples for N-species analysis were stored in Ziploc bags filled with an atmosphere of argon (99.9% Ar) to minimize oxidation and kept cool until analysis. Subsamples of each core (250-300 g) were placed under 50 MPa pressure in a Carver Series NE mechanical press with a 0.5-um filter placed at the base of the squeezing chamber, which was placed within an Ar atmosphere to minimize oxidation. A syringe was attached to the base of the apparatus and 15 mL of filtered pore water were collected for analyses within 3.5 to 6.0 h (Hendry et al., 2013).

20

25

30

5

2.12.3 Liquid manure storages

Samples of liquid manure slurry were collected directly from the EMS at both sites and the catch basin (containing local runoff from the feedlot) at CFO1 using a pipe and plunger apparatus to sample from approximately 0.5 m below the surface. The slurry collected was subsequently filtered (0.45 μ m) to separate the liquid and solid components. The water filtered from samples collected from the EMS or catch basin is hereafter referred to as manure filtrate.

2.23 Laboratory analysis

For groundwater samples from wells and manure filtrate, concentrations of Cl⁻ were determined using potentiometric titration of H_2O , with a detection limit of 5.0 mg L⁻¹ and accuracy of 5% (APHA 4500-Cl⁻ D). Concentrations of NH₃ as N (NH₃-N), NO₃⁻ as N (NO₃-N), and NO₂⁻ as N (NO₂-N) in groundwater samples from wells and manure filtrate were measured by air-segmented continuous flow analysis (APHA 4500-NH3 G, APHA 4500-NO3- F). Total nitrogen (TN) was determined by high temperature catalytic combustion and chemiluminescence detection using a Shimadzu TOC-V with attached TN unit (ASTM D8083-16). Total

NO₂-N from TN. Bicarbonate (HCO₃⁻) was analyzed by titration (APHA 2320 B). Dissolved organic carbon 35 (DOC) was analyzed by a combustion infrared method (APHA 5310 B) using a Shimadzu TOC-V system.

Kjeldahlorganic nitrogen (TKNTON) was then calculated by subtracting the concentrations of NH₃-N, NO₃-N and

Pore-water samples squeezed from continuous core were analyzed for Cl⁻, NO₃-N, and NO₂-N using a Dionex IC25 ion chromatograph (IC) coupled to a Dionex As50 autosampler (EPA Method 300.1, accuracy and precision of 5.0%) (Hautman and Munch, 1997). Ammonia as N (NH₃-N) was measured by Exova Laboratories using the automated phenate method (APHA Standard 4500-NH3 G, detection limit of 0.025 mg L⁻¹, accuracy of 2% of the

- 5 measured concentration, and a precision of 5% of the measured concentration). $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$ in groundwater samples (from wells and pore water from continuous core) and manure filtrate were measured at the University of Calgary (Calgary, Alberta) using the denitrifier method (Sigman et al., 2001) with an accuracy and precision of 0.3% for $\delta^{15}N_{NO3}$ and 0.3% for $\delta^{18}O_{NO3}$. Groundwater samples collected for NO₃⁻ isotope analysis in January 2013 were also analyzed for NO₃-N by the University of Calgary (denitrifier technique, Delta+XL).
- 10

2.34 Modelling approach

2.34.1 Quantification of denitrification based on δ^{15} NNO3 and δ^{18} ONO3

GroundwaterNitrate in groundwater that has undergone denitrification can be scommonly reported as being identified by enrichment of $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$ with a characteristic slope of about 0.5 on a cross-plot (Clark and 15 Fritz, 1997). However, published studies of denitrification in groundwater report slopes of up to 0.77 (Mengis et al., 1999; Fukada et al., 2003; Singleton et al., 2007). The relationship between isotopic enrichment of $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$ and the fraction of NO₃-N remaining during denitrification can be described by a Rayleigh equation: $R = R_0 f_d^{(\frac{1}{\beta} - 1)}$ (1)

where R_0 is the initial isotope ratio of the NO₃⁻ ($\delta^{18}O_{NO3}$ or $\delta^{15}N_{NO3}$), R is the isotopic ratio when fraction f_d of 20 NO₃⁻ remains, and β is the kinetic fractionation factor (> 1) (<u>Böttcher et al., 1990;</u> Clark and Fritz, 1997; <u>Otero et</u> al., 2009; Xue et al., 2009). Kinetic fraction effects are commonly also expressed as the enrichment factor, $\varepsilon =$ 1000(β -1). In the case of a constant enrichment factor, f_d can be calculated from:

$$f_{\rm d} = \exp\left(\frac{R-R_0}{\varepsilon}\right)_{\tau_2} \tag{2}$$

The extent of denitrification, as indicated by and the fraction of NO₃-N remaining (removed from groundwater 25 through denitrification is given by $(1-f_d)_{\overline{2}}$. The concentration of NO₃-N that would have been measured if mixing was quantified in athe only attenuation mechanism (NO_3 - N_{mix}) can also be calculated by dividing the measured concentration by $f_{d.}$

A sub-set of 20 samples with isotopic values of NO_3^- indicative of denitrification. For were identified, and for each sample, of these samples f_d (mean and standard deviation) was calculated from Eq. (2) using a Monte Carlo

- 30 approach with 500 realizations. The value of R was given by the measured isotopic ratio for each sample ($\delta^{18}O_{NO3}$) or $\delta^{15}N_{NO3}$). R_0 was allowed to vary randomly within a range of values determined from measured data and literature values. If the initial $\delta^{15}N_{NO3}$ is known, ε for $\delta^{15}N_{NO3}$ (ε_{15N}) can be determined from the slope of the linear regression line on a plot of $ln(f_d)$ vs. $\delta^{15}N_{NO3}$ (Böttcher et al., 1990). If the initial $\delta^{15}N_{NO3}$ and f_d are not known, as is the case here, ε_{15N} can be determined from the slope of the regression line on a plot of $ln(NO_3-N)$ vs. $\delta^{15}N_{NO3}$, 35 which will be the same as on a plot of $ln(f_d)$ vs. $\delta^{15}N_{NO3}$. In-situ variations in temperature and reaction rates may affect the enrichment factor (Kendall and Aravena, 2000) and this was accounted for by allowing for variation in
 - <u> ε_{15N} within the Monte Carlo analysis.</u> The enrichment factor for $\delta^{18}O_{NO3}$ (ε_{180}) was calculated by multiplying the $\delta^{15}N_{NO3}$ by a linear coefficient of proportionality determined for each CFO from the slope of the denitrification

trend on an isotope cross-plot (see Section 3.2). This approach neglects the effect of mixing of groundwater with differing isotopic values, and is valid if the concentration of NO_3^- in the source is much greater than background concentrations such that the isotopic composition of NO_3^- is dominated by the agriculturally derived end-member.

2.34.2 Quantification of mixing and initial concentrations of Cl⁻ and NO₃-N

5 A binary mixing model that also accounts for decreasing NO₃-N concentrations in response to denitrification was used to quantify NO₃⁻ attenuation by mixing and estimate the initial concentrations of Cl⁻ and NO₃-N. The measured concentration of Cl⁻ was assumed to be a function of two end-member mixing, described by $Cl = f_m Cl_i + (1 - f_m)Cl_b$, (3)

where Cl is the measured concentration of Cl^{-} in the groundwater sample, Cl_i is the concentration of Cl^{-} at the

10 initial point of entry of the agriculturally derived NO_3^- to the groundwater system, Cl_b is the concentration of Cl⁻ in the background ambient groundwater, and f_m is the fraction of water in the sample from the source of agriculturally derived Cl⁻ (and NO_3^-) remaining in the mixture.

The concentration of NO₃-N was also assumed to be a function of two end-member mixing but with an additional coefficient, f_d (the fraction of NO₃-N remaining after denitrification), applied to account for denitrification. The measured NO₃-N concentration was thus described by

$$NO_3 - N = f_d(f_m NO_3 - N_i + (1 - f_m)NO_3 - N_b),$$
(4)

where NO_3 -N is the concentration of NO₃-N measured in the groundwater sample, NO_3 -N_i is the concentration of NO₃-N in the source of agriculturally derived NO₃⁻ at the initial point of entry to the groundwater system, and NO_3 -N_b is the concentration of NO₃-N in the background ambient groundwater. This mixing calculation was only conducted on samples for which NO₃⁻ dominated total-N (NH₃-N <10% of NO₃-N) so that nitrification of NH₃

<u>could be neglected.</u> If Cl_i is much greater than Cl_b and NO_3 - N_i is much greater than NO_3 - N_b , then f_m is insensitive to background concentrations and these terms can be neglected (see Section 4 for further discussion of this assumption). In this

$25 \qquad Cl = f_{\rm m} Cl_{\rm i} \,, \tag{5}$

$$NO_3 - N = f_d(f_m NO_3 - N_i).$$
(6)

Solving Eq. (6) for f_m and substituting into Eq. (5) yields

case, Eqs. (3) and (4) reduce to

15

$$\frac{NO_3 - N_i}{Cl_i} = \frac{1}{f_d} \frac{NO_3 - N}{Cl}.$$
(7)

- Thus, for each groundwater sample, the ratio of NO₃-N/Cl⁻ at the initial point of entry of the agriculturally derived NO_3^- to the groundwater system $\left(\frac{NO_3-N_i}{Cl_i}\right)$ can be simply calculated using measured concentrations, and f_d estimated from NO₃⁻ isotope data. This provides a relatively simple method to identify agriculturally derived NO₃⁻ from different sources (e.g., EMS vs. manure piles) if they have different NO₃-N/Cl⁻ ratios. Estimated *Cl_i* and NO_3-N_i are reported as the mid-range value with uncertainty described by the minimum and maximum values. These initial concentrations are at the water table for top-down inputs, or at the saturated point of contact between
- 35 the EMS and the aquifer for leakage from the EMS. This analysis assumes that a sampled water parcel consists of water with agriculturally derived NO_3^- that entered the aquifer from one source at one point in time and space and has since mixed with natural ambient groundwater. Any NO_3^- produced during nitrification after the anthropogenic

source water enters the aquifer is implicitly included in NO_3 - N_i . The error in $\frac{NO_3-N_i}{Cl_i^-}$ was assumed to be dominated by error in the estimated f_d , with the measurement error in NO₃-N and Cl⁻ considered negligible.

The amount of mixing is indicated by the fraction of source remaining (f_m) and, therefore, the <u>The</u> initial concentrations of the agriculturally derived NO₃⁻ source $(NO_3-N_i \text{ and } Cl_i)$ were estimated by simultaneously solving Eqs. (5) and (6) using Excel Solver (GRG nonlinear). The absolute minimum values of NO_3-N_i and Cl_i were defined by measured concentrations (e.g., if $Cl_i=Cl, f_m=1$). Maximum values of NO_3-N_i and Cl_i were defined based on measured concentrations of NO₃-N and Cl⁻ in groundwater and manure filtrate (NO₃-N \leq 150 mg L⁻¹ and Cl⁻ \leq 1300 mg L⁻¹; see Section 3.2). These maximum values of NO_3-N_i and Cl_i correspond to the minimum f_m . The value of f_d was assumed to be the mean f_d estimated from NO₃⁻ isotopes using Eq. (2), and $\frac{NO_3-N_i}{Cl_i}$ was

- 10 required to be within one standard deviation of the estimate from Eq. (7). The resulting estimates of f_m are reported as the mid-range, with uncertainty described by the minimum and maximum values. Larger values of f_m indicate less mixing (a shorter path for advection-dispersion) and suggest a source close to the well. Smaller values of f_m indicate extensive mixing (a longer path for advection-dispersion) and suggest a source further away from the well. The relative contributions of mixing and denitrification to NO₃⁻
- 15 attenuation at each site were evaluated by comparing f_m and f_d for each sample. This analysis was conducted using isotope values from the samples collected on 1 May 2013 at CFO1, which were combined with the Cl⁻ and NO₃-N data from 6 June 2013. At CFO4, results from stable isotopes collected on 27 October 2014 were combined with Cl⁻ and NO₃-N data collected on 7 October 2014.

3. Results

5

20 **3.1 Site hydrogeology**

3.1.1 CFO1

25

The geology at CFO1 consists of clay and clay-till interspersed with sand layers of varying thickness to the maximum depth of investigation (20 m BG, bedrock not encountered). Hydraulic conductivities (*K*) calculated from slug tests on wells ranged from 1.2×10^{-7} to 4.2×10^{-5} m-s⁻¹ (n=10) for sand, 1.1×10^{-8} to 2.8×10^{-8} m s⁻¹ (n=2) for clay-till, and 1.6×10^{-9} to 3.0×10^{-7} m s⁻¹ (n=8) for clay. Depth to the water table throughout the study site ranged

- from 0.5 m at DMW14 to 3.8 m at DMW11. Seasonal water table variations were about 0.5 m with no obvious change in the annual average during the 6-year measurement period. Water table elevation was highest at DMW10 and DMW1 on the west side of the site and lowest at DMW11 on the northeast side of the site (see Supplementary Material). Measured heads indicate groundwater flow from the vicinity of the EMS to the northeast and southeast.
- 30 Mean horizontal hydraulic gradients at the water table ranged from 4.4×10^{-3} to 1.4×10^{-2} m m⁻¹. Vertical gradients were predominantly downward in the upper 20 m of the profile (mean gradients ranging from 1.8×10^{-3} to 0.18 m m⁻¹), with the exception of DMW11 where the vertical gradient was upward (mean gradient -2.8×10^{-2} m m⁻¹). Using the geometric mean *K* for the sand (5.0 x 10^{-6} m s⁻¹) and a lateral head gradient of 1.4×10^{-2} m m⁻¹ yields a specific discharge (Darcy flux, *q*) of 2.2 m y⁻¹. Assuming an effective porosity of 0.3 (Rodvang et al., 1998), the
- 35 average linear velocity (\bar{v}) is 7.4 m y⁻¹. This suggests that, in the absence of attenuation by mixing or denitrification, agriculturally derived NO₃⁻ could have been transported through the groundwater system by advection about 400 m from the EMS since 1960 and 630 m since 1930.

3.1.2 CFO4

The geology at CFO4 consists of about 5 m of clay (with minor till) underlain by sandstone, to the maximum depth investigated (20 m BG). Hydraulic conductivities measured using slug tests on wells were 1.0×10^{-8} to 1.0×10^{-5} m s⁻¹ (n=12) for the clay and sandstone (many shallow wells were screened across the clay-till and into

- 5 the sandstone) and 1.0×10⁻⁵ to 2.9×10⁻⁵ m s⁻¹ (n=4) for the sandstone. The depth to water table ranged from 1.0 to 3.4 m, increasing from west to east across the study site. Seasonal water table variations were on the order of 1.5 m with water table declines on the order of 0.3 m y⁻¹. The horizontal hydraulic gradient was consistently from west to east, with a mean gradient at the water table of 3.9×10⁻³ m m⁻¹ between BC2 and BMW2 and 4.3×10⁻³ m m⁻¹ between BMW2 and BMW7. Vertical hydraulic gradients were 4.2×10⁻² to 4.6×10⁻² m m⁻¹ downward. Using
- 10 the geometric mean *K* for the site $(2.9 \times 10^{-5} \text{ m s}^{-1})$ and a lateral head gradient of $4.3 \times 10^{-3} \text{ m m}^{-1}$ yields a *q* of 0.4 m y⁻¹. Assuming an effective porosity of 0.3 yields a \bar{v} of 1.3 m y⁻¹. These values suggest that, in the absence of attenuation by mixing or denitrification, anthropogenic NO₃⁻ could have been transported through the groundwater systems about 10 m by advection between 1995 and the time of sampling.

3.2 Values and evolution of stable isotopes of nitrate

- Manure filtrate from the EMS at CFO1 had δ¹⁵N_{NO3} ranging from 0.4 to 5.0‰ and δ¹⁸O_{NO3} ranging from 7.1 to 19.0‰. The evolution of δ¹⁵N_{NO3} during nitrification can be modelled as a Rayleigh distillation process if the fraction factor is constant (Kendall and Aravena, 2000). A curve showing the co-evolution of δ¹⁸O_{NO3} (mixing of atmospheric δ¹⁸O with groundwater-derived δ¹⁸O) and δ¹⁵N_{NO3} (Rayleigh distillation, β = 1.005) during nitrification is shown in Fig. 2. Isotopic values in DMW3, where direct leakage from the EMS was evident, are consistent with partial nitrification following this trend of isotopic evolution (δ¹⁸O_{NO3} of -1.2‰ and δ¹⁵N_{NO3} of
- 20 consistent with partial nitrification following this trend of isotopic evolution ($\delta^{10}O_{NO3}$ of -1.2‰ and $\delta^{11}N_{NO3}$ of 7.8‰).

The range of isotopic values of NO₃⁻ in groundwater is similar at both sites (Fig. 2). At CFO1, $\delta^{18}O_{NO3}$ ranged from -5.9 to 20.1‰ and $\delta^{15}N_{NO3}$ from -5.2 to 61.0‰. At CFO4, $\delta^{18}O_{NO3}$ ranged from -1.9 to 31.6‰ and $\delta^{15}N_{NO3}$ from -1.3 to 70.5‰. The isotopic values of $\delta^{18}O_{NO3}$ in groundwater are commonly assumed to be derived from a

25 mix of a 1/3 atmospheric-derived oxygen (+23.5‰) and 2/3 water-derived oxygen (Xue et al., 2009). Given the average $\delta^{18}O_{H2O}$ for both sites (-16‰, see Supplementary Material), a 1/3 atmospheric 2/3 groundwater mix would result in a $\delta^{18}O_{NO3}$ of -3.7‰.

At both sites, co-enrichment of $\delta^{18}O_{NO3}$ and $\delta^{15}N_{NO3}$ characteristic of denitrification was evident in some samples (slopes of 0.42 and 0.72 in Fig. 2a). At CFO1, this includes samples from DP10-2, DMW5, DMW11, DMW12,

- 30 DP11-12b, and DMW13 (and associated core) and some pore water from cores DC15-22 and DC15-23. These samples had NO₃-N concentrations of 0.6 to 23.7 mg L⁻¹, δ¹⁸O_{NO3} ranging from 4.8 to 20.6‰, and δ¹⁵N_{NO3} ranging from 22.9 to 61.3‰. At CFO4, samples exhibiting evidence of denitrification were from BMW2, BMW5, BMW6, BMW7, and BC4. These samples had NO₃-N concentrations ranging from 0.4 to 35.1 mg L⁻¹, δ¹⁸O_{NO3} ranging from 1.6 to 22.1‰, and δ¹⁵N_{NO3} ranging from 20.9 to 70.1‰. Although the isotopic values of DMW5 suggest
- are enrichment by denitrification, the data plot away from the rest of the CFO1 data and close to the denitrification trend at CFO4 (Fig. 2), suggesting these samples were affected by some other process (possibly mixing or nitrification); therefore, the fraction of NO₃-N remaining in this well was not calculated. Also, well DMW3, which clearly receives leakage from the EMS, did not contain substantial NO₃-N and so f_d was not calculated.

The potential range of original isotopic values of the NO₃⁻ source prior to denitrification (R_0) varied from 5 to 27‰ for $\delta^{15}N_{NO3}$ and from -2 to 7‰ for $\delta^{18}O_{NO3}$ based on isotopic values measured during this study (Fig. 2a). These values are consistent with literature values for manure-sourced NO₃⁻, which report $\delta^{15}N_{NO3}$ ranging from 5 to 25‰ and $\delta^{18}O_{NO3}$ ranging from -5 to 5‰ (Wassenaar, 1995; Wassenaar et al., 2006; Singleton et al., 2007; McCallum et al., 2008; Baily et al., 2011).

The enrichment factor of $\delta^{15}N_{NO3}$ was defined by a normal distribution with a mean of -10‰ and standard deviation of 2.5‰. At CFO1, the coefficient of proportionality between the enrichment factor of $\delta^{15}N_{NO3}$ and $\delta^{18}O_{NO3}$ was described by a normal distribution with mean of 0.72 and standard deviation of 0.05. At CFO4, the coefficient of proportionality was also described by a normal distribution with a mean of 0.42 and standard

10 deviation of 0.035 (see Fig. 2a). These enrichment factors are consistent with values from denitrification studies that report ε_{15N} ranging from -4.0 to -30.0‰ and ε_{180} ranging from -1.9 to -8.9‰ (Vogel et al., 1981; Mariotti et al., 1988; Böttcher et al., 1990; Spalding and Parrott, 1994; Mengis et al., 1999; Pauwels et al., 2000; Otero et al., 2009).

3.3 Distribution and sources of agricultural nitrate in groundwater

At both sites TN concentrations in filtrate from the EMS and catch-basin were generally an order of magnitude larger than concentrations in groundwater (Table 2). The one exception is well DMW3 at CFO1 which intercepted direct leakage from the EMS (see 3.3.1 for further discussion of this well), In the EMS filtrate, N was predominately organic-N (TON up to 71%) or NH₃-N (up to 90%), with NO_x-N <0.1% of TN. In the catch-basin TON was >99% of TN. In groundwater TN concentrations ranged from <0.25 to 84.6 mg L⁻¹, and this N was predominantly NO₃⁻ (again, with the exception of DMW3).

3.3.1 CFO1

25

5

Agriculturally derived NO₃⁻ was predominantly restricted to the upper 20 m (or less) at CFO1 (NO₃-N \leq 0.2 mg L⁻¹ and Cl⁻ \leq 57 mg L⁻¹ in seven wells screened at 20 m). The one exception was DP11-12b, which had up to 4.1 mg L⁻¹ of NO₃-N. The southeast portion of the site also does not appear to have been significantly contaminated by agriculturally derived NO₃⁻, with NO₃-N concentrations < 1 mg L⁻¹ in five water table wells (DMW4, DMW6, DMW14, DMW15, DMW16). In DMW6, Cl⁻ and TKNTN concentrations were elevated (see Supplementary Material) but NO₃-N concentrations were < 2 mg L⁻¹. Collectively, these data suggest the catch basin is not a significant source of NO₃⁻ to the groundwater at this site.

- Leakage of manure slurry from the EMS at CFO1 is clearly indicated by the data from DMW3, which feature the 30 highest concentrations of TN in groundwater (up to 548 mg L⁻¹) and elevated Cl⁻, HCO₃⁻, and DOC in concentrations similar to EMS manure filtrate (see Supplementary Material). Nevertheless, NO₃-N concentrations in this well were consistently low ($1.1 \pm 2.7 \text{ mg L}^{-1}$, n=22). The potential for nitrification in the vicinity of this well is indicated by NO₂-N production ($2.7 \pm 8.3 \text{ mg L}^{-1}$, n=22). However, the data demonstrate that only a small proportion of the NH₃-N in DMW3 ($373.4 \pm 79.4 \text{ mg L}^{-1}$, n=22) could have been converted to NO₃⁻ within the
- 35 subsurface (NO₃-N in groundwater ≤ 66 mg L⁻¹) (NO₃-N/Cl⁻ ratio of 0.95). The maximum NO₃-N concentration in groundwater was measured in core sample DC15-23 (clay at 2 m bgl, 7 m hydraulically downgradient of DMW3). The NO₃-N in this core sample was most likely introduced into the groundwater system by vertical infiltration or diffusion from above. Pore water extracted from the unsaturated

zone (sand) at the top of this core profile contained 865 mg L^{-1} of NO₃-N and had a NO₃-N/Cl⁻ ratio of 1.04, consistent with the ratio of 0.95 in the core sample.

Contamination by agricultural NO_3^- that exceeds the drinking water guidelines ($NO_3-N > 10 \text{ mg } L^{-1}$) was observed in wells up to 40 m hydraulically downgradient of the EMS (DMW13, DP10-2) and in well DMW11 situated 470

EMS was assumed to be best represented by DP10-2, which is located directly downgradient of the EMS. Data

- from the EMS (Fig. 3). DMW1, located upgradient of the EMS, also had concentrations of NO₃-N > 10 mg L⁻¹ with an increasing trend, but the source of this NO₃⁻ is not clear. DMW2 and DMW12 also had NO₃-N concentrations that were elevated but did not exceed the drinking water guideline (\leq 3.7 mg L⁻¹). Given the evidence of incomplete partial nitrification in DMW3, the NO₃-N/Cl⁻ ratio of contamination from the
- for this well indicate values of NO₃-N/Cl⁻ predominantly ranging from 0.1 to 0.3 with NO₃-N_i/Cl_i estimated at 0.3 ± 0.13 (Fig. 4). Advective transport from DMW3 is also the likely source of NO₃-N (up to 21.1 mg L⁻¹) within the sand between 6 and 12 m depth in DC15-23. NO₃-N/Cl⁻ ratios in these samples ranged from 0.07 to 0.31, consistent with DP10-2. Stable isotope values in pore water from this sand layer do not indicate substantial denitrification (δ¹⁸O ≤ 5.9‰, δ¹⁵N ≤ 16.7‰), suggesting these ratios will be similar to the initial ratios at the point of entry to the groundwater system.
- of entry to the groundwater system.
 In contrast, the ratio of *NO₃-N_i/Cl_i* in DMW13 (33 m downgradient from DP10-2) was 0.75 ± 0.29, which is more similar to the NO₃-N/Cl⁻ ratio in DC15-23 at 2 m (0.95), which is interpreted as reflecting a top-down source. The NO₃⁻ in DMW13 is therefore unlikely to be sourced solely from leakage from the EMS, and could be sourced from the adjacent dairy pens or a temporary manure pile that was observed adjacent to this well during core
- 20 collection in 2015 (or a combination of EMS and top-down sources). The NO_3-N_i/Cl_i ratio in DMW12 is not inconsistent with an EMS source, but the hydraulic gradient between DMW2 and DMW12 is negligible, indicating a lack of driving force for advective transport from the EMS towards DMW12. This is also the case for well DMW1, which is upgradient of the EMS but had elevated NO₃-N concentrations (6.5 ± 3.6, n=18). The source of nitrate in these wells is therefore unlikely to be related to leakage
- from the EMS, but alternative sources (i.e., nearby temporary manure piles) are not known. Well DMW11 had consistently low NO₃-N/Cl⁻ ratios (< 0.05). The NO_3 - N_i / Cl_i ratio indicated by DMW11 was similar to DP10-2, but estimates of Cl_i indicate Cl⁻ sourced from inputs with three-fold higher Cl⁻ concentrations than the source to DP10-2 (Fig. 4b). Well DMW11 is located hydraulically downgradient of feedlot pens and adjacent to a solid manure storage area. Well DMW11 is also in a local topographic low and is likely receiving
- 30 NO₃-N and Cl⁻ from surface runoff and infiltration in addition to subsurface groundwater flow. Well DMW11 had high NO_3 - N_i and Cl_i consistent with measured values in that well, indicating a local top-down source that is likely the nearby solid manure pile.

3.3.2 CFO4

35

At CFO4, measured data indicate that effects from agricultural operations on NO₃⁻ concentrations in groundwater are restricted to the upper 15 m of the subsurface. NO₃-N concentrations in wells screened at 15 m depth were $< 0.5 \text{ mg L}^{-1}$, with the exception of one sample from BP10-15w (May 2012) with 4.3 mg L⁻¹ of NO₃-N. Water table wells in the west and north of the study site (BC1, BC2, and BC3) also indicate negligible impacts of agricultural operations, with Cl⁻ $< 10 \text{ mg L}^{-1}$ and NO₃-N $< 0.1 \text{ mg L}^{-1}$. Concentrations of NO₃-N > 10 mg L⁻¹ were measured in three water table wells (BMW2, BMW3, BMW4) installed adjacent to the EMS (Fig. 5). Of these, BMW2 had much higher Cl⁻ concentrations (502 \pm 97 mg L⁻¹, n=22), and therefore lower NO₃-N/Cl⁻ ratios (< 0.05). Given the elevated Cl⁻ concentrations in this well were consistent with concentrations in the EMS, direct leakage from the EMS was assumed to be the source. Stable

- 5 isotopes of NO₃⁻ indicate substantial denitrification in BMW2, with estimated NO_3 - $N_i \ge 127$ mg L⁻¹ and an NO_3 - N_i/Cl_i ratio of 0.1 to 0.3 (Fig. 6). This ratio is consistent with data from well BMW4, which is immediately adjacent to the EMS (on the upgradient side) and likely reflects leakage from the EMS without denitrification (based on stable isotopes of NO₃⁻). NO₃-N/Cl⁻ ratios measured in BMW4 were predominantly 0.1 to 0.3, consistent with the reconstructed NO_3 - N_i/Cl_i ratio in BMW2.
- 10 Agriculturally derived NO₃⁻ in other wells not immediately adjacent to the EMS is unlikely to be related to leakage from the EMS. Wells BMW5 and BMW7 are 60 and 140 m hydraulically downgradient from the EMS, respectively. NO_3 - N_i/Cl_i ratios in these wells were not inconsistent with BMW2 (i.e., the range of values overlap), but advective transport is only likely to have transported solutes around 10 m since the EMS was installed (see Section 3.1.2). As such, the source of NO₃-N in these wells is likely the dairy pens rather than the EMS.
- 15 Concentrations of NO₃-N > 10 mg L⁻¹ were also measured in BC4, which is located 95 m hydraulically upgradient of the EMS. The ratio of NO_3 - N_i/Cl_i at BC4 was the highest at CFO4 (0.6) and did not overlap with BMW2. This indicates that the NO₃⁻ in this well was sourced from an adjacent manure pile, which was observed during the study.

3.4 Mechanisms of attenuation of agriculturally derived NO3⁻

- 20 Attenuation of agriculturally derived NO₃⁻ in groundwater is dominated by denitrification at CFO1 and CFO4, with estimates of f_m consistently higher than estimates of f_d (Table 23, Fig. 7, Table S10). Calculated f_d values suggest that at least half of the NO₃-N present at the initial point of entry to the groundwater system has been removed by denitrification. The substantial uncertainty in f_m is related to the range of NO_3 - N_i and Cl_i , with the largest uncertainty corresponding to the lowest measured concentrations (i.e., furthest from the upper limit).
- 25 Comparison of *NO*₃-*N*_{mix} (the concentration of NO₃-N that would be measured if mixing was the only attenuation mechanism) with measured concentrations (which reflect attenuation by both mixing and denitrification) suggests that the sample from 20 m depth (DP11-12b) is the only sample that would be below the drinking water guideline if mixing was the only attenuation mechanism (Fig. 8).

At both sites, the stable isotope values of NO₃⁻ indicate that denitrification proceeds within metres of the source.

- 30 At CFO1, calculated f_d in well DP10-2 (2 m from the EMS) is 0.52 ± 0.22 ; at CFO4, f_d in well BMW2 (3 m from the EMS) is 0.13 ± 0.06 . Denitrification also substantially attenuated NO₃-N concentrations in wells where the source is not the EMS but instead is adjacent solid manure piles (e.g., DMW11 at CFO1, BC4 at CFO4). In BMW6 at CFO4, denitrification completely attenuated the agriculturally derived NO₃⁻. This well had negligible NO₃-N ($0.4 \pm 0.2 \text{ mg L}^{-1}$, n=8) and the lowest f_d of 0.01. Measured DOC in this well was consistent with other wells at
- both sites $(6.9 \pm 1.7 \text{ mg L}^{-1}, \text{ n}=3)$, suggesting DOC depletion does not limit denitrification at these CFO operations. Calculated f_d and f_m should decrease with increasing subsurface residence time and distance from source. Data from wells support the source identification based on concentrations of NO₃-N and Cl⁻ and NO₃-N/Cl⁻ ratios (see Section 3.3). Well DMW11 (470 m from the EMS) had the highest f_m at CFO1 (0.83), indicating less mixing and suggesting the anthropogenic source of NO₃⁻ in this well is relatively close, which is consistent with the adjacent

the solid manure pile being the source of NO₃⁻ to this well. At CFO4, well BMW2, which is adjacent to the EMS, had the highest f_m (0.92), indicating the least attenuation of NO₃ by mixing and consistent with the EMS being the source of NO₃⁻ to this well.

5 4. Discussion

Agriculturally derived NO₃⁻ at these two sites with varying lithology is generally restricted to depths < 20 m, consistent with previous studies at CFOs (Robertson et al., 1996; Rodvang and Simpkins, 2001; Rodvang et al., 2004; Kohn et al., 2016). Attenuation of agriculturally derived NO₃⁻ in groundwater is a spatially varying combination of mixing and denitrification, with denitrification playing a greater role than mixing at both sites. In the samples for which f_d could be determined, denitrification reduced NO₃⁻ concentrations by at least half and, in

- 10 the samples for which f_d could be determined, denitrification reduced NO₃⁻ concentrations by at least half and, in some cases, back to background concentrations. Given that the range of source isotopic composition was allowed to vary to its maximum justifiable extent, these quantitative estimates of denitrification based on stable isotopes of NO₃⁻ are likely to be conservative. Denitrification appears to proceed within metres of the NO₃⁻ source, suggesting relatively short residence times and redox conditions at the water table may be conducive to
- 15 denitrification reactions (Critchley et al., 2014; Clague et al., 2015). The combination of the approach outlined here with measurement of groundwater age indicators would allow for better constraints on groundwater flow velocities and determination of denitrification rates (Böhlke and Denver, 1995; Katz et al., 2004; McMahon et al., 2004; Clague et al., 2015).

The substantial role of denitrification within the saturated glacial sediments at these study sites indicates the 20 potential for significant attenuation of agriculturally derived NO_3^- by denitrification in similar groundwater systems across the North American interior and Europe (Ernstsen et al., 2015; Zirkle et al., 2016). Denitrification in the unsaturated zone is limited by low water contents and oxic conditions, resulting in substantial stores of $NO_3^$ in vadose zones (Turkeltaub et al., 2016; Ascott et al., 2017). NO_3^- in water that is removed rapidly from site is also unlikely to be substantially attenuated by denitrification due to oxic conditions and rapid transit times

- 25 (Ernstsen et al., 2015). Therefore, water management focussed on reducing the effects of NO₃⁻ contamination in similar hydrogeological settings to this study should aim to maximize infiltration into the saturated zone where NO₃⁻ concentrations can be naturally attenuated₇, provided that local groundwater isn't used for potable water supply.
- Infiltration of NO₃⁻ rich water that has passed through temporary solid manure piles and dairy pens has resulted in groundwater NO₃-N concentrations as high as those associated with leakage from the EMS (e.g., DMW11, DMW13, BC4). At CFO4, this is in spite of the presence of clay at surface, which is attributable to secondary porosity in the upper part of the profile that has led to hydraulic conductivities comparable to sand. This-result is consistent with the findings of Showers et al. (2008), who investigated sources of NO₃⁻ at an urbanized dairy farm in North Carolina, USA. The limited impact<u>Construction</u> of <u>EMS facilities in Alberta has been regulated under</u>
- 35 the Agriculture Operation Practices Act since 2002, which requires them to be lined with clay to minimise leakage (Lorenz et al., 2014). The results of this study suggest that on-farm waste management should increasingly focus on minimising temporary manure piles that are in direct contact with the soil to reduce NO₃⁻ contamination associated with dairy farms and feedlots.

<u>The absence of direct</u> leakage from the EMS on NO₃⁻ concentrations in groundwater at these sites may be partly due to the relatively shallow water table and <u>CFO4</u> suggests that saturation within the clay lining of the EMS may have has limited the development of extensive secondary porosity that would allow rapid water percolation (Baram et al., 2012). Elevated NH₃-N concentrations in the water table well at the southeast corner of the EMS at CFO1

- 5 (DMW3) do indicate direct leakage from the EMS, but because nitrification within the EMS is minimal, this has not resulted in elevated NO₃-N in this well. Two possibilities for the fate of NH₃-N in DMW3 are attenuation by cation exchange and oxidation to NO₃-N within the groundwater system. Measured NO₃-N concentrations in groundwater represent only a small fraction (≤ 10%) of NH₃-N within the EMS (or DMW3), suggesting oxidation to NO₃⁻ within the aquifer may be limited. Further work is required to assess the importance of cation exchange as an attenuation mechanism for direct leakage from the EMS at this site.
- The sources of manure-derived NO₃⁻ (manure piles vs. EMS) are distinguishable based on NO_3 - N_i/Cl_i ratios, provided there is also an understanding of the history of each site, local hydrogeology, and potential sources. Estimation of NO_3 - N_i/Cl_i assumes that background concentrations could be neglected in the mixing calculation. The error associated with this assumption increases as source concentrations and measured concentrations
- 15 approach background concentrations. At these study sites, background concentrations are likely to be $< 20 \text{ mg L}^{-1}$ for Cl⁻ and $< 1 \text{ mg L}^{-1}$ for NO₃-N. Based on these values, estimated *NO*₃-*N*_i values are at least 20 times background NO₃-N concentrations, and over 100 times background concentrations in some wells. The estimated *Cl*_i values are at least three times background concentrations at CFO1 and at least 10 times background concentrations at CFO4. Measured-In this study we applied a two-end member mixing model and assumed that background concentrations
- 20 can be neglected. The error introduced by neglecting background concentrations was assessed by comparing $f_{\rm m}$ calculated with and without background concentrations included, using the full range of values in this study (Fig. 9). Neglecting background concentrations results in overestimation of $f_{\rm m}$ (i.e. underestimation of the amount of attenuation mixing) with the largest errors when measured concentrations are eloserclose to background concentrations, but neglecting background concentrations. For Cl⁻ the maximum
- 25 <u>difference of 0.13</u> is still likely to be a small source of error relative the in the mid-range of f_m values. For NO₃-N, the difference is consistently < 0.1 with the largest errors at the lowest values of f_m . The uncertainty in maximum concentrations. For example, well DMW13 had the lowest measured Cl⁻ concentration (57 mg L⁻¹); if we assume a *Cl*_b of 10 mg L⁻¹ and a *Cl*_i of 100 mg L⁻¹, the error in f_m introduced by neglecting *Cl*_b is 9%; if *Cl*_b f_m is 20 mg L⁻¹, the error is 23%. The accuracy of *NO*₃-*N*_i/*Cl*_i is determined by the accuracy of f_{d_1} and the primarily related to
- 30 uncertainty is independent of the measured concentrations of NO_3^- and Cl^- . Uncertainty in the initial concentrations (Cl_i and NO_3-N_i), which depends on measured Cl⁻ and $NO_3-N_{\overline{7}}$. The largest uncertainties in NO_{3-} . $N_{\overline{1}}$ and $Cl_{\overline{1}}$ correspond to the lowest measured concentrations (i.e., furthest from the upper limit), with less uncertainty at higher measured concentrations as they approach the maximum values. Temporal variability in NO_3-N_i/Cl_i for each source could not be determined based on the snapshot isotope sampling conducted, but this
- 35 could be investigated by measuring NO₃⁻ isotopes in conjunction with NO₃-N and Cl⁻ at multiple times. Although applicable at these sites, this approach may not be valid at other sites if additional sources of NO₃ in groundwater (e.g. fertilizer or nitrification) are significant, or if NO₃ concentrations in groundwater are naturally elevated (Hendry et al., 1984). The combination of the approach outlined here with measurement of groundwater age indicators would allow for better constraints on groundwater flow velocities and determination of
- 40 <u>denitrification rates (Böhlke and Denver, 1995; Katz et al., 2004; McMahon et al., 2004; Clague et al., 2015).</u>

Nitrate isotope values in groundwater at the two CFOs studied are generally consistent with previous studies reporting denitrification of manure-derived NO₃⁻ at dairy farms (Wassenaar, 1995; Wassenaar et al., 2006; Singleton et al., 2007; McCallum et al., 2008; Baily et al., 2011). However, a number of groundwater samples collected for the present study had relatively enriched $\delta^{18}O_{NO3}$ (> 15 ‰) with depleted $\delta^{15}N_{NO3}$ (< 15‰). Some of

- 5 these isotopic values are within the range previously reported for NO_3^- derived from inorganic fertilizer ($\delta^{15}N_{NO3}$ from -3 to 3‰ and $\delta^{18}O_{NO3}$ from -5 to 25‰), with the $\delta^{18}O_{NO3}$ depending on whether the NO_3^- is from NH_4^+ or NO_3^- in the fertilizer (Mengis et al., 2001; Wassenaar et al., 2006; Xue et al., 2009). To the best of our knowledge, however, no inorganic fertilizers have been applied at these study sites. Another potential source is NO_3^- derived from soil organic N, but this should have $\delta^{15}N_{NO3}$ values of 0 to 10‰ and $\delta^{18}O_{NO3}$ values of -10 to 15‰ (Durka
- 10 et al., 1994; Mayer et al., 2001; Mengis et al., 2001; Xue et al., 2009; Baily et al., 2011). Incomplete nitrification of NH_4^+ can result in $\delta^{15}N_{NO3}$ lower than the manure source (Choi et al., 2003), but as there was no measurable NH_3 -N in these samples this is also unlikely. These isotope values may reflect the influence of NO_3^- from precipitation, which usually has values ranging from -5 to 5‰ for $\delta^{15}N_{NO3}$ and 40 to 60‰ for $\delta^{18}O_{NO3}$, and has been reported to dominate NO_3^- isotope values of groundwater under forested landscapes (Durka et al., 1994).
- 15 Alternatively, they may be affected by microbial immobilization and subsequent mineralization and nitrification, which can mask the source $\delta^{18}O_{NO3}$ in aquifers with long residence times (Mengis et al., 2001; Rivett et al., 2008). The isotopic values of NO₃⁻ in the manure filtrate from the EMS at CFO1, were generally inconsistent with values for manure-sourced NO₃⁻ reported in other groundwater studies (Wassenaar, 1995; Wassenaar et al., 2006; Singleton et al., 2007; McCallum et al., 2008a; Baily et al., 2011). This is likely to be because nitrification within
- 20 the EMS was negligible (NO₃-N <0.7 mg L⁻¹), such that the isotopic values of NO₃-N in the manure filtrate reflect volatilization of NH₃ and partial nitrification within the EMS. $\delta^{18}O_{NO3}$ values may also have been affected by evaporative enrichment of the $\delta^{18}O_{H2O}$ being incorporated into NO₃- (Showers et al., 2008).

5. Conclusions

- Quantitative<u>A</u> mixing model constrained by quantitative estimates of denitrification based on the stable isotopic
 value of NO₃⁻ in groundwater were used to constrain a binary mixing model based on Cl⁻ and NO₃- N.from isotopes substantially improved our understanding of nitrate contamination at these sites. This novel approach allowed the identification has the potential to be widely applied as a tool for monitoring and assessment of NO₃- N sources and quantification of mixing and denitrification as mechanisms of NO₃⁻ attenuation in groundwater at two dairy farms overlyinggroundwater in complex agricultural settings. Even though these sites are dominated by clay-rich glacial
- 30 sediments. Relative to leakage from the EMS, the input of NO₃⁻ to groundwater from temporary manure piles and pens resulted in comparable (or greater) NO₃-N concentrations in groundwater at these sites. than leakage from the EMS. On-farm management of manure waste should increasingly focus on limiting manure piles that are in direct contact with the soil to limit NO₃⁻ contamination of groundwater. Nitrate attenuation at both sites is dominated by denitrification, which is evident even in wells directly adjacent to the NO₃⁻ source. On-site denitrification reduced agriculturally derived NO₃⁻ concentrations by at least half and, in some wells, completely.
- These results indicate that infiltration to groundwater systems in glacial sediments where NO_3^- can be naturally attenuated is likely to be preferable to off-farm export via runoff or drainage networks-, provided that local groundwater isn't a potable water source.

Acknowledgements

This research was supported by Alberta Agriculture and Forestry (AAF) and the Natural Resources Conservation Board (NRCB), who provided assistance with field work and laboratory analysis. Funding was also provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Industrial Research Chair (IRC)

5

20

(184573) awarded to MJH. The authors thank Barry Olson at AAF for reviewing the manuscript. Our thanks also to the local producers, whose cooperation made this research possible.

References

Arauzo, M.: Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones, Sci. Total Environ., 575, 799-812, 10.1016/j.scitotenv.2016.09.139, 2017.

Aravena, R., Evans, M., and Cherry, J. A.: Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems, Groundwater, 31, 180-186, 1993.
 Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., and Binley, A. M.: Global patterns of nitrate storage in the vadose zone, Nat. Commun., 8, 1416, 10.1038/s41467-017-01321-w, 2017.

Baily, A., Rock, L., Watson, C., and Fenton, O.: Spatial and temporal variations in groundwater nitrate at an
intensive dairy farm in south-east Ireland: Insights from stable isotope data, Agric. Ecosyst. Environ., 144, 308-318, 2011.

Baram, S., Kurtzman, D., and Dahan, O.: Water percolation through a clayey vadose zone, J. Hydrol., 424-425, 165-171, https://doi.org/10.1016/j.jhydrol.2011.12.040, 2012.

Böhlke, J. K., and Denver, J. M.: Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic Coastal Plain, Maryland, Water Resour. Res., 31, 2319-2339, 10.1029/95WR01584, 1995.

Böttcher, J., Strebel, O., Voerkelius, S., and Schmidt, H. L.: Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hydrol., 114, 413-424, 10.1016/0022-1694(90)90068-9, 1990.

- Bourke, S. A., Cook, P. G., Dogramaci, S., and Kipfer, R.: Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12, J. Hydrol., 525, 418-428, 2015a.
 Bourke, S. A., Turchenek, J., Schmeling, E. E., Mahmood, F. N., Olson, B. M., and Hendry, M. J.: Comparison of continuous core profiles and monitoring wells for assessing groundwater contamination by agricultural nitrate, Ground Water Monit. Remediat., 35, 110-117, 2015b.
- Choi, W.-J., Lee, S.-M., and Ro, H.-M.: Evaluation of contamination sources of groundwater NO₃⁻ using nitrogen isotope data: A review, Geosci. J., 7, 81-87, 2003.
 Clague, J. C., Stenger, R., and Clough, T. J.: Evaluation of the stable isotope signatures of nitrate to detect denitrification in a shallow groundwater system in New Zealand, Agric. Ecosyst. Environ., 202, 188-197, 10.1016/j.agee.2015.01.011, 2015.
- Clark, I. D., and Fritz, P.: Environmental Isotopes in Hydrogeology, CRC Press, 1997.
 Critchley, K., Rudolph, D., Devlin, J., and Schillig, P.: Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer, J. Contam. Hydrol., 171, 66-80, 2014.

Deutsch, B., Mewes, M., Liskow, I., and Voss, M.: Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate, Org. Geochem., 37, 1333-1342, 10.1016/j.orggeochem.2006.04.012, 2006.

Dogramaci, S., Skrzypek, G., Dodson, W., Grierson, P.F.: Stable isotope and hydrochemical evolution of

5 groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia, J. Hydrol., 475, 281-293, 10.1016/j.jhydrol.2012.10.004, 2012.

Durka, W., Schulze, E.-D., Gebauer, G., and Voerkeliust, S.: Effects of forest decline on uptake and leaching of deposited nitrate determined from ¹⁵N and ¹⁸O measurements, Nature, 372, 765-767, 1994.

Ernstsen, V., Olsen, P., and Rosenbom, A. E.: Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields, Hydrol. Earth Syst. Sci., 19, 3475-3488, 10.5194/hess-19-3475-2015, 2015.

Fan, A. M., and Steinberg, V. E.: Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity, Regul. Toxicol. Pharmacol., 23, 35-43, 10.1006/rtph.1996.0006, 1996.

10

Fukada, T., Kisock, K.M., Dennis, P.F., Grischek, T.: A dual isotope approach to identify denitrification in

- 15 groundwater at a river-bank infiltration site, Water Res., 37, 3070-3078, 2003. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions, Science, 320, 889-892, 10.1126/science.1136674, 2008.
- Granger, J., Sigman, D. M., Lehmann, M. F., and Tortell, P. D.: Nitrogen and oxygen isotope fractionation during
 dissimilatory nitrate reduction by denitrifying bacteria, Limnol. Oceanogr., 53, 2533-2545, 10.4319/lo.2008.53.6.2533, 2008.
 Grang, C. T., Böhlka, J. K., Bakina, P. A. and Phillina, S. P.: Mining offects on experient maction rates and isotope

Green, C. T., Böhlke, J. K., Bekins, B. A., and Phillips, S. P.: Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer, Water Resour. Res., 46, 10.1029/2009WR008903, 2010.

- Gulis, G., Czompolyova, M., and Cerhan, J. R.: An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia, Environ. Res., 88, 182-187, 10.1006/enrs.2002.4331, 2002.
 Hautman, D. P., and Munch, D. J.: Method 300.1 Determination of inorganic anions in drinking water by ion chromatography, US Environmental Protection Agency, Cincinnati, OH, 1997.
- Hendry, M. J., Barbour, S. L., Novakowski, K., and Wassenaar, L. I.: Paleohydrogeology of the Cretaceous
 sediments of the Williston Basin using stable isotopes of water, Water Resour. Res., 49, 4580-4592, 2013.
 - Hendry, M. J., McReady, R.G., Gould, W.D.: Distribution and evolution of nitrate in a glacial till of sourther Alberta, Canada, J. Hydrol., 70, 177-198, 1984.

Ji, X., Runtin, X., Hao, Y., Lu, J., Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed, Environ. Pollution, 229, 586-594, 2017.

- Joerin, C., Beven, K. J., Iorgulescu, I., and Musy, A.: Uncertainty in hydrograph separations based on geochemical mixing models, J. Hydrol., 255, 90-106, 2002.
 Katz, B. G., Chelette, A. R., and Pratt, T. R.: Use of chemical and isotopic tracers to assess nitrate contamination
 - and ground-water age, Woodville Karst Plain, USA, J. Hydrol., 289, 36-61, 10.1016/j.jhydrol.2003.11.001, 2004.

Kaushal, S. S., Groffman, P. M., Band, L. E., Elliott, E. M., Shields, C. A., and Kendall, C.: Tracking nonpoint source nitrogen pollution in human-impacted watersheds, Environ. Sci. Technol., 45, 8225-8232, 10.1021/es200779e, 2011.

Kendall, C., and Aravena, R.: Nitrate isotopes in groundwater systems, in: Environmental Tracers in Subsurface

- Hydrology, edited by: Cook, P., and Herczeg, A., Springer US, 261-297, 2000.
 Kimble, J. M., Bartlett, R. J., McIntosh, J. L., and Varney, K. E.: Fate of nitrate from manure and inorganic nitrogen in a clay soil cropped to continuous corn, J. Environ. Qual., 1 (4), 1972.
 Kohn, J., Soto, D. X., Iwanyshyn, M., Olson, B., Kalischuk, A., Lorenz, K., and Hendry, M. J.: Groundwater nitrate and chloride trends in an agriculture-intensive area in southern Alberta, Canada, Water Qual. Res. J., 51,
- 47-59, 10.2166/wqrjc.2015.132, 2016.
 Komor, S. C., and Anderson, H. W.: Nitrogen isotopes as indicators of nitrate sources in Minnesota sand-plain aquifers, Ground Water, 31, 260-270, 1993.
 Lentz, R.D., Lehrsch, G.A., Temporal changes in δ¹⁵N-and δ¹⁸O of nitrate nitrogen and H₂O in shallow

groundwater: Transit time and nitrate-source implications for an irrigated tract in southern Idaho, Agric. Water Man., 212, 126-135, 2019.

15

25

Liu, C.-Q., Li, S.-L., Lang, Y.-C., and Xiao, H.-Y.: Using δ15N-and δ18O-values to identify nitrate sources in karst ground water, Guiyang, Southwest China, Environ. Sci. Technol., 40, 6928-6933, 2006.

 Lorenz, K., Iwanyshyn, M., Olson, B., Kalischuk, A., and Pentland, J. (Eds.): Livestock Manure Impacts on Groundwater Quality in Alberta Project 2008 to 2015: 2008 to 2011 Progress Report. Alberta Agriculture and
 Rural Development, Lethbridge, Alberta, Canada. 316 pp., 2014.

Mariotti, A., Landreau, A., and Simon, B.: ¹⁵N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France, Geochim. Cosmochim. Acta, 52, 1869-1878, 1988.

Mayer, B., Bollwerk, S. M., Mansfeldt, T., Hütter, B., and Veizer, J.: The oxygen isotope composition of nitrate generated by nitrification in acid forest floors, Geochim. Cosmochim. Acta, 65, 2743-2756, 2001.

McCallum, J. E., Ryan, M. C., Mayer, B., and Rodvang, S. J.: Mixing-induced groundwater denitrification beneath a manured field in southern Alberta, Canada, Appl. Geochem., 23, 2146-2155, 2008.

McMahon, P. B., Böhlke, J. K., and Christenson, S. C.: Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA, Appl. Geochem., 19, 1655-1686, 2004.

Menció, A., Mas-Pla, J., Otero, N., Regàs, O., Boy-Roura, M., Puig, R., Bach, J., Domènech, C., Zamorano, M., Brusi, D., and Folch, A.: Nitrate pollution of groundwater; all right..., but nothing else?, Sci. Total Environ., 539, 241-251, 2016.

Mengis, M., Schif, S. L., Harris, M., English, M. C., Aravena, R., Elgood, R. J., and MacLean, A.: Multiple
geochemical and isotopic approaches for assessing ground water NO^{3–} elimination in a riparian zone, Ground Water, 37, 448-457, 1999.

Mengis, M., Walther, U., Bernasconi, S. M., and Wehrli, B.: Limitations of using δ^{18} O for the source identification of nitrate in agricultural soils, Environ. Sci. Technol., 35, 1840-1844, 2001.

Otero, N., Torrentó, C., Soler, A., Menció, A., and Mas-Pla, J.: Monitoring groundwater nitrate attenuation in a regional system coupling hydrogeology with multi-isotopic methods: The case of Plana de Vic (Osona, Spain), Agric. Ecosyst. Environ., 133, 103-113, 2009.

Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I., and Mahlknecht, J.: Assessment of sources and

5 fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach, Sci. Total Environ., 470-471, 855-864, 2014.

Pauwels, H., Foucher, J.-C., and Kloppmann, W.: Denitrification and mixing in a schist aquifer: Influence on water chemistry and isotopes, Chem. Geol., 168, 307-324, 2000.

Power, J. F., and Schepers, J. S.: Nitrate contamination of groundwater in North America, Agric., Ecosyst. Environ., 26, 165-187, 1989.

10

Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W., and Bemment, C. D.: Nitrate attenuation in groundwater: A review of biogeochemical controlling processes, Water Res., 42, 4215-4232, 2008.

Robertson, W., Russell, B., and Cherry, J.: Attenuation of nitrate in aquitard sediments of southern Ontario, J. Hydrol., 180, 267-281, 1996.

15 Rodvang, S., and Simpkins, W.: Agricultural contaminants in Quaternary aquitards: A review of occurrence and fate in North America, Hydrogeol. J., 9, 44-59, 2001.

Rodvang, S., Mikalson, D., and Ryan, M.: Changes in ground water quality in an irrigated area of southern Alberta, J., Environ. Qual., 33, 476-487, 2004.

<u>Rodvang, S.</u>, Schmidt-Bellach, R., and Wassenaar, L. <u>I.:</u> Nitrate in groundwater below irrigated fields, Alberta
 Agriculture, Food and Rural Development, 1998.

Rodvang, S., Mikalson, D., and Ryan, M.: Changes in ground water quality in an irrigated area of southern Alberta, J. Environ. Qual., 33, 476–487, 2004.

Saffigna, P. G., and Keeney, D. R.: Nitrate and chloride in ground water under irrigated agriculture in central Wisconsin, Ground Water, 15, 170-177, 1977.

- Showers, W. J., Genna, B., McDade, T., Bolich, R., and Fountain, J. C.: Nitrate contamination in groundwater on an urbanized dairy farm, Environ. Sci. Technol., 42, 4683-4688, 10.1021/es071551t, 2008.
 Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Anal. Chem., 73, 4145-4153, 10.1021/ac010088e, 2001.
- 30 Singleton, M., Esser, B., Moran, J., Hudson, G., McNab, W., and Harter, T.: Saturated zone denitrification: Potential for natural attenuation of nitrate contamination in shallow groundwater under dairy operations, Environ. Sci. Technol., 41, 759-765, 2007.

Smith, R. L., Garabedian, S. P., and Brooks, M. H.: Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests, Environ. Sci. Technol., 30, 3448-3456, 1996.

35 Spalding, R. F., and Exner, M. E.: Occurrence of nitrate in groundwater—A review, J. Environ. Qual., 22, 392-402, 1993.

Spalding, R. F., and Parrott, J. D.: Shallow groundwater denitrification, Sci. Total Environ., 141, 17-25, 1994. Tesoriero, A. J., Liebscher, H., and Cox, S. E.: Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths, Water Resour. Res., 36, 1545-1559, 2000. Turkeltaub, T., Kurtzman, D., and Dahan, O.: Real-time monitoring of nitrate transport in the deep vadose zone under a crop field – Implications for groundwater protection, Hydrol. Earth Syst. Sci., 20, 3099-3108, 10.5194/hess-20-3099-2016, 2016.

Vavilin, V. A., and Rytov, S. V.: Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures, Chemosphere, 134, 417-426, 2015.

Vitòria, L., Soler, A., Canals, À., and Otero, N.: Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: Example of Osona (NE Spain), Appl. Geochem., 23, 3597-3611, 2008.

Vogel, J. C., Talma, A. S., and Heaton, T. H. E.: Gaseous nitrogen as evidence for denitrification in groundwater, J. Hydrol., 50, 191-200, 1981.

Wassenaar, L. I., Hendry, M. J., and Harrington, N.: Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices, Environ. Sci. Technol.,

15 40, 4626-4632, 2006.

5

10

Weil, R. R., Weismiller, R. A., and Turner, R. S.: Nitrate contamination of groundwater under irrigated coastal plain soils, J. Environ. Qual., 19, 1990.

Xu, S., Kang, P., and Sun, Y.: A stable isotope approach and its application for identifying nitrate source and transformation process in water, Environ. Sci. Pollut. Res., 23, 1133-1148, 2015.

 Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., and Boeckx,
 P.: Present limitations and future prospects of stable isotope methods for nitrate source identification in surfaceand groundwater, Water Res., 43, 1159-1170, 2009.

Yang, C.-Y., Wu, D.-C., and Chang, C.-C.: Nitrate in drinking water and risk of death from colon cancer in Taiwan, Environ. Int., 33, 649-653, 10.1016/j.envint.2007.01.009, 2007.

25 Zirkle, K. W., Nolan, B. T., Jones, R. R., Weyer, P. J., Ward, M. H., and Wheeler, D. C.: Assessing the relationship between groundwater nitrate and animal feeding operations in Iowa (USA), Sci. Total Environ., 566–567, 1062-1068, 2016.

Wassenaar, L. I.: Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of ¹⁵N and ¹⁸O in NO₃⁻, Appl. Geochem., 10, 391-405, 1995.

			Lateral	Cround	Total	Samoan		
	Well/Core		from	elevation	depth (m below	length	Lithology of	
Site	hole ID	Type [†]	EMS* (m)	(m asl)	ground)	(m)	screened interval	<i>K</i> (m s ⁻¹)
CFO1	DMW1	WTW	60	869.7	5.0	4.0	Sand	
	DMW2	WTW	10	867.2	6.0	4.0	Sand	$1.2 imes 10^{-7}$
	DMW3	WTW	2	867.5	3.7	2.0	Sand	
	DMW4	WTW	160		4.2	4	Sand	$1.3 imes10^{-6}$
	DMW5	WTW	270	866.4	6.8	4.0	Clayey sand	$1.7 imes 10^{-5}$
	DMW6	WTW	310		6.7	4		
	DP10-1	Piezo	2	867.8	18.6	0.5	Clay	$1.6 imes 10^{-9}$
	DP10-2	Piezo	2	867.9	8.0	1.5	Sand	$3.6 imes 10^{-5}$
	DMW10	WTW	340	868.0	7.2	3.0	Clay	$3.0 imes 10^{-7}$
	DP11-10b	Piezo	340	868.0	20	0.5	Clay	$2.2 imes 10^{-8}$
	DMW11	WTW	470	864.8	7.0	3.0	Sand and clay	$4.2 imes 10^{-5}$
	DP11-11b	Piezo	470		20	0.5	Clay	$6.3 imes 10^{-9}$
	DMW12	WTW	50	867.6	7.0	3.0	Sand and clay	$7.4 imes10^{-6}$
	DP11-12b	Piezo	50	867.6	20.1	1.0	Clay	$1.1 imes 10^{-8}$
	DMW13	WTW	35	867.1	7.0	3.0	Sand	$8.9 imes10^{-6}$
	DP11-13b	Piezo + core	35	867.1	20.0	0.5	Clay	
	DMW14	WTW	105	865.7	7.0	3.0	Clay	$5.7 imes10^{-6}$
	DP11-14b	Piezo	105	865.7	20.0	0.5	Sand	$1.1 imes10^{-6}$
	DMW15	WTW	185		7.0	3	Clay	$2.4 imes 10^{-8}$
	DP11-15b	Piezo	185		20.0	0.5	Clay	1.4×10^{-7}
	DMW16	WTW	320	866.0	6.0	3.0	Sand and clay	-
	DP11-16b	Piezo	320		20.0	0.5	Clay	3.2×10^{-9}
	DC15-20	Core	76		15			
	DC15-21	Core	45		10.5			
	DC15-22	Core	22		12			
	DC15-23	Core	9		15			
CFO4	BC1	WTW	110	857.0	6.9	3.1	Clay and sandstone	
	BC2	WTW	365	859.4	7.0	3.1	Clay and sandstone	2.2×10^{-7}
	BC3	WTW	145	858.6	6.8	3.1	Clay and sandstone	$1.3 imes 10^{-6}$
	BC4	WTW	95	858.8	5.9	3.0	Clay and sandstone	$3.4 imes10^{-6}$
	BC5	WTW	105	859.5	7.5	4.5	Clay and sandstone	
	BMW1	WTW	4	858.6	7.1	3.1	Clay and sandstone	$4.3 imes 10^{-6}$
	BMW2	WTW	3	857.9	7.5	4 5	Clay and sandstone	$8.5 imes 10^{-7}$
	BMW3	WTW	8	858.6	6.0	3.0	Clay and sandstone	
	BMW4	WTW	14	858.0	7.5	4.8	Clay and sandstone	$1.0 imes 10^{-5}$
	BMW5	WTW	60	858.0	7.5	4 5	Clay and sandstone	
	BP5-15	Piezo	60	858.1	15.3	1.5	Sandstone	$1.0 imes 10^{-7}$
	BMW6	WTW	150	856.9	7.5	4 5	Clay and sandstone	$4.0 imes 10^{-6}$
	BP6-15	Piezo	150	856.8	15.2	1.5	Sandstone	$3.0 imes 10^{-6}$
	BMW7	WTW	140	856.7	7.5	4.5	Clay and sandstone	$1.0 imes10^{-6}$
	BP10-15e	Piezo	4	858.2	14.9	1.5	Sandstone	$2.9 imes 10^{-5}$
	BP10-15w	Piezo	10	858.0	15.0	1.5	Sandstone	$1.0 imes 10^{-5}$

Table 1. Details of groundwater monitoring wells and continuous core collection at CFO1 and CFO4 (all screens installed at bottom of the well).

*EMS=Earthen manure storage [†]WTW=water table well, Piezo = piezometer, Core = continuous core

Table 2. Measured Cl⁻ and NO₃⁻ concentrations and stable isotopic values of NO₃, and estimated f_d, f_mRange of measured concentrations of TN, NH₃-N, NO_x-N (NO₂-N + NO₃-N) and TON at each study site. At CFO1 results from monitoring well DMW3 are presented separately because values in this well differed substantially from all other wells.

_ <u>Site</u>	- <u>N-pool</u>	<u>TN</u> (mg L ⁻¹)	<u>NH₃-N</u> (mg L ⁻¹)	<u>NO_x-N</u> (mg L ⁻¹)	<u>TON</u> (mg L ⁻¹)
<u>CFO1</u>	EMS	<u>550 - 1820</u>	<u>275 – 747</u>	$\leq 0.1 - 0.4$	<u>73 – 1301</u>
	Catch-basin	<u>200 - 1440</u>	<u>2.5 – 7.3</u>	<u><0.1</u>	<u> 196 – 1437</u>
	DMW3	<u>278 - 548</u>	<u>219 - 479</u>	$<0.1-50^{*}$	<u>31.3 – 73.9</u>
-	Other monitoring wells	<u><0.25 - 33.4</u>	<u><0.05 - 2.9</u>	<0.1 - 31.4**	<u><0.2 – 3.7</u>
<u>CF04</u>	<u>EMS</u> ^	<u>1000 - 1240</u>	724 - 747	0.25 - 0.29	<u>275 – 492</u>
_	Monitoring wells	<u><0.25 - 84.6</u>	<u><0.05 - 0.23</u>	<u><0.1 - 80.4</u>	<u><0.2 –13.9</u>

<u>* NO_x-N of 50 mg L⁻¹ in DMW3 consisted of 12.6 mg L⁻¹ as NO₃-N and 37.4 mg L⁻¹ as NO₂-N.</u> <u>**NO_x-N max in groundwater measured in core (NO₃-N = 66.4 mg L⁻¹, NO_x-N = 67.8 mg L⁻¹)</u> <u>^Range across three replicates measured on 25 August 2011</u>

Table 3. Calculated fd and fm based on measured Cl⁻ and NO₃-N concentrations and stable isotope values of NO₃.

		Cl-	NO3-N	$\delta^{15}N_{NO3}$	δ ¹⁸ Ono3	fd	$f_{ m m}^{**}$
Study area	Sample ID*	(mg L ⁻¹)	(mg L ⁻¹)	(‰)	(‰)	(mean ± stdev)	(mid- range)
CFO1	DP11-13_4.3m	28.5	7.0	30.3	9.8	0.30 ± 0.15	0.58
	DP11-13_5.2m	25.0	7.8	31.0	10.8	0.34 ± 0.13	0.58
	DP11-13_7m	72.3	12.0	31.6	10.2	0.27 ± 0.13	0.65
	DP11-13_7.9m	70.8	9.1	36.4	14.0	0.17 ± 0.09	0.68
	DP11-13_8.8m	81.7	10.9	29.6	9.9	0.32 ± 0.15	0.63
	DC15-22_6.5m	99.2	4.7	30.8	16.8	0.19 ± 0.08	0.58
	DC15-22_10m	73.0	11.0	26.1	7.4	0.47 ± 0.21	0.63
	DP10-2	74.5	11.8	24.2	4.8	0.52 ± 0.22	0.63
	DMW11	436.1	17.1	33.3	10.9	0.17 ± 0.07	0.83
	DMW12	78.0	2.57	29.8	14.3	0.23 ± 0.10	0.54
	DMW13	56.7	23.7	23.0	6.8	0.56 ± 0.22	0.65
	DP11-12b	95.7	0.6	35.9	17.0	0.15 ± 0.08	0.54
CFO4	BC4	163.1	35.1	30.6	1.6	0.37 ± 0.13	0.82
	BMW2	595.6	16.5	41.6	8.3	0.13 ± 0.06	0.92
	BMW5	131.2	12.9	28.9	6.5	0.34 ± 0.16	0.63
	BMW6	156.0	0.4	70.5	22.1	0.01 ± 0.01	0.56
	BMW7	134.7	11.6	34.0	5.9	0.21 ± 0.11	0.68

*central depth of core samples, x, indicated as SampleID_xm. ** maximum f_m is 1 for all samples, which implies no mixing.

Figure 1: Map of study sites CFO1 and CFO4, showing locations of groundwater monitoring wells, core collection, earthen manure storages (EMS), dairy and feedlot pens, manure piles, and irrigated land. Blue rectangle indicates extent of CFO1 inset.

Figure 2 (a) Cross-plot of stable isotopes of nitrate at CFO1 and CFO4 showing hypothetical nitrification trend, boundary of manure-sourced NO₃⁻ values and linear enrichment trends associated with denitrification, (b) enrichment of $\delta^{15}N_{NO3}$ during denitrification (only samples within source region and with evidence of denitrification are shown). dashed lines represent ±1 std. dev. of enrichment factor ($\epsilon = -10$) estimated from measured data.

5

Figure 3 Temporal variations in (a) NO₃-N, (b) Cl⁻, and (c) NO₃-N/Cl⁻ at CFO1. Only wells with NO₃-N > 10 mg L⁻¹ are shown.

Figure 4 (a) Estimated (a) NO_3 - N_i/Cl_i ratios (mean and st. dev.) in water table wells with evidence of denitrification at CFO1, plotted with distance from earthen manure storage (EMS), where dashed lines are the upper and lower bounds of DP10-2 (EMS source), and (b) and values are maximum measured NO₃-N (mg L⁻¹). (b) Estimated concentrations of NO_3 - N_i and Cl_i at CFO1 (mid-range, error bars are max. and min. values).

Figure 5 Temporal variations in (a) NO₃-N, (b) Cl⁻, and (c) NO₃-N/Cl⁻ at CFO4. Only wells with NO₃-N > 10 mg L⁻¹ are shown.

Figure 6 (a) Estimated (a) NO_3 - N_i/Cl_i ratios (mean and st. dev.) in water table wells with evidence of denitrification at CFO4, plotted with distance from earthen manure storage (EMS), where dashed lines are upper and lower bounds of BMW2 (EMS source);) and values are maximum measured NO₃-N (mg L⁻¹). (b) estimated Estimated concentrations of NO_3 - N_i and Cl_i at CFO1 (mid-range, error bars are max. and min. values).

5

10

Figure 7 Relative contributions to NO₃⁻ attenuation by mixing and denitrification, as indicated by estimated f_m and f_d at (a) CFO1 and (b) CFO4, for groundwater samples with denitrification indicated by stable isotope values of NO₃⁻.

Figure 8 Measured concentrations of NO₃-N (blue circles - attenuation by mixing and denitrification) and NO₃-N_{mix} (red triangles - attenuation by mixing only) vs mid-range estimate of NO₃-N_i at a) CFO1 and b) CFO4. Dashed lines are drinking water guideline (10 mg L⁻¹ of NO₃-N).

Figure 9 Effect of neglecting background concentrations (Cl_b or NO_3 - N_b) in the mixing model on calculated f_m over the range of values in this study.

Supplementary Material

Measured hydraulic heads and gradients

Figure S1. Time series of hydraulic heads measured in water table monitoring wells at CFO1

Figure S2. Time series of hydraulic heads measured in water table monitoring wells at CFO4

5 Table S1. Horizontal hydraulic gradients at CFO1 at the water table.

Well IDs	Horizontal hydraulic gradient
DMW1 and DP10-2	4.63×10 ⁻³
DMW2 and DMW-16	6.06×10 ⁻³
DP10-2 and DMW5	4.39×10 ⁻³
DP10-2 and DMW11	9.74×10 ⁻³
DMW10 and DMW11	1.38×10 ⁻²

Table S2. Mean vertical gradients between nested water table wells and piezometers at CFO1

Well IDs	Vertical hydraulic gradient
DMW10 and DP11-10b	3.34×10 ⁻³
DMW11 and DP11-11b	-2.79×10 ⁻²
DMW12 and DP11-12b	2.20×10-3
DMW13 and DP11-13b	1.36×10 ⁻²
DMW14 and DP11-14b	1.80×10 ⁻³
DMW15 and DP11-15b	3.37×10 ⁻²
DMW16 and DP11-16b	2.86×10 ⁻²
DP10-2 and DP10-1	1.78×10 ⁻¹

Table S3. Horizontal hydraulic gradients at CFO4 at the water table.

	Horizontal hydraulic
Well IDs	gradient
BC2 and BMW2	3.94×10 ⁻³
BMW2 and BMW7	4.32×10-3
BC2 and BMW7	3.79×10 ⁻³

5

Table S4. Mean vertical hydraulic gradients in nested water table wells and piezometers at CFO4

Well IDs	Vertical hydraulic gradient
BMW2 and BM10-15e	4.61×10 ⁻²
BMW4 and BP10-15w	4.22×10 ⁻²
BMW5 and BP5-15	4.46×10 ⁻²
BMW6 and BP6-15	4.16×10 ⁻²

Measured hydrochemistry data

Table S5. Measured concentrations of chloride (Cl⁻), bicarbonate (HCO₃⁻), dissolved organic carbon (DOC), and Nspecies (total nitrogen (TN), NH₃-N, NO₃-N, NO₂-N, and TKNtotal organic nitrogen (TON) in groundwater wells and water filtered from the EMS and catch basin at CFO1 (mean \pm standard deviation).

Somple ID	Cŀ	HCO3	DOC	NH ₃ -N	NO ₃ -N*	NO ₂ -N	TKN TON	$\frac{TN}{(mg I^{-1})}$	Inserted Cells
Sample ID	(mg L ⁻¹)	(mg L ⁻¹)	(mg L ⁻¹)	(mg L ⁻¹)	(mg L ⁻¹)	(mg L ⁻¹)	(mg L ⁻¹)	(IIIg L)	 Formatted Table
EMS filtrate	$719 \pm 272552 \pm 63 (n=610)$	$ \frac{5498 \pm}{6802575 \pm} \frac{457}{(n=610)} $	$\frac{1781 \pm 1026}{\underline{1377 \pm 948}}$ (n=3 <u>10</u>)	$\frac{806 \pm 303}{512 \pm 181}$ (n=610)	<0.7- <u>31 ±</u> <u>0.12</u> (n=5 <u>10</u>)	-	$-\frac{834 \pm 408}{(n=7)}$	<u>1444 ± 364</u> <u>(n=7)</u>	
Catch basin filtrate	4 39 ± 322 <u>592 ±</u> 309 (n= 5 9)	979 ± 9 37<u>833 ±</u> 615 (n=59)	576 ± 408362 (n=39)	$\frac{4.5.9 \pm 3 \pm}{2.1 \text{ (n=59)}}$	<0. <u>51</u> (n= <u>59</u>)	-	$-\frac{1023 \pm}{433}$ (n=6)	$\frac{1027 \pm 433}{(n=6)}$	
DMW1	50 ± 40 (n=18)	453 ± 82 (n=18)	6.4 ± 1.4 (n=4)	<0.1 (n=18)	6.5 ± 3.6 (n=18)	<0.1 (n=18)	0.6 ± 0.2 (n=18)	$\frac{7.2 \pm 3.8}{(n=18)}$	
DMW2	404 ± 186 (n=20)	339 ± 61 (n=20)	$\begin{array}{c} 3.5\pm0.5\\(n{=}5)\end{array}$	0.1 ± 0 (n=20)	1.2 ± 1.3 (n=20)	<0.1 (n=20)	$\frac{2.9 \pm 0.5 \pm}{0.62}$ (n=2017)	$\frac{3.2 \pm 0.2}{(n=17)}$	
DMW3	871 ± 146 (n=22)	$\begin{array}{c} 4362\pm476\\(n{=}22)\end{array}$	$\begin{array}{c} 282.1\pm30\\ (n{=}5) \end{array}$	373.4 ± 79.4 (n=22)	1.1 ± 2.7 (n=22)	2.7 ± 8.3 (n=22)	$\begin{array}{r} 424.\underline{1.4}\pm 0\\ \pm 73.6.\underline{7}\\ (n=\underline{2216}) \end{array}$	$\frac{20.2 \pm 3.2}{(n=16)}$	
DMW4	$\begin{array}{c} 50\pm24\\ (n{=}21) \end{array}$	$\begin{array}{c} 448 \pm 57 \\ (n{=}21) \end{array}$	$\begin{array}{c} 4.5\pm0.8\\(n{=}5)\end{array}$	$\begin{array}{c} 0.2\pm0.7\\(n{=}21)\end{array}$	0.1 ± 0.2 (n=21)	<0.1 (n=21)	$0.5 \pm 1.3 \pm 0.1 $ (n=2116)	$\frac{3.2 \pm 0.5}{(n=16)}$	
DMW5	35 ± 11 (n=22)	534 ± 30 (n=22)	6.6 ± 1.0 (n=5)	0.1 ± 0.1 (n=22)	1.0 ± 0.5 (n=22)	<0.1 (n=22)	0.49 ± 0.17 (n=2216)	$\frac{21.2 \pm 9.0}{(n=16)}$	
DMW6	394 ± 25 (n=21)	778 ± 67 (n=21)	25.8 ± 5.4 (n=5)	4.0 ± 1.0 (n=21)	0.2 ± 0.2 (n=21)	<0.1 (n=21)	$6.6 \pm \le 0.91$ (n=24 <u>15</u>)	$\frac{0.4 \pm 0.2}{(n=15)}$	
DMW10	234 ± 7 (n=17)	712 ± 15 (n=17)	58.5 ± 1.0 (n=5)	0.2 ± 0.1 (n=17)	0.1 ± 0.2 (n=17)	0.1 ± 0 (n=17)	< <u><0.1</u> (n=16)	$\frac{3.1 \pm < 0.13}{(n=1716)}$	Inserted Cells
DMW11	437 ± 121 (n=16)	771 ± 38	18.0 ± 1.7	0.3 ± 0.2	18.5 ± 2.7	0.1 ± 0.3	$\frac{1.6 \pm 0.83 \pm}{0.1 (n - 16)}$	0.5 ± 0.2 (n=16)	Inserted Cells
DMW12	75 ± 11 (n=16)	405 ± 24 (n=16)	3.9 ± 0.6 (n=5)	(n=10) 0.1 ± 0.1 (n=16)	(n=10) 2.8 ± 0.5 (n=16)	0.1 ± 0 (n=16)	0.34 ± 0.26 (n=1620)	$\frac{(n=10)}{1.7 \pm 1.6}$ (n=20)	
DMW13	70 ± 19 (n=16)	767 ± 119 (n=16)	7.7 ± 1.7 (n=5)	0.9 ± 1.0 (n=16)	19.2 ± 8.7 (n=16)	0.2 ± 0.2 (n=16)	$\frac{50.6 \pm 17.2}{(n=22)}$	$\frac{427.8 \pm}{1.469.2}$	Inserted Cells
DMW14	7 ± 5 (n=15)	$\begin{array}{c} 445\pm 66\\ (n{=}15) \end{array}$	3.7 ± 0.6 (n=5)	0.3 ± 0.1 (n=15)	<0.1 (n=15)	<0.1 (n=15)	0.3 ± 0.26 (n=1521)	(n=1022) 0.6 ± 1.5 (n=21)	Inserted Cells
DMW15	14 ± 1 (n=16)	$\begin{array}{c} 670\pm32\\(n{=}16)\end{array}$	$\begin{array}{c} 3.8\pm0.9\\(n{=}5)\end{array}$	0.1 ± 0 (n=16)	<0.1 (n=16)	<0.1 (n=16)	<0.2 3 ± 0.1 (n=1622)	$\frac{1.5 \pm 0.4}{(n=22)}$	
DMW16	65 ± 7 (n=16)	604 ± 18 (n=16)	$\begin{array}{c} 7.3 \pm 0.5 \\ (n{=}5) \end{array}$	<0.1 (n=16)	0.1 ± 0.1 (n=16)	<0.1 (n=16)	$\frac{2.6 \pm 0.3 \pm 0.18}{0.18}$ (n=1621)	$\frac{6.9 \pm 0.9}{(n=21)}$	
DP10-1	<5 (n=23)	467 ± 19 (n=23)	3.7 ± 0.5 (n=5)	0.7 ± 0.1 (n=23)	<0.1 (n=23)	<0.1 (n=23)	$\frac{1.0.3 \pm 0.5}{(n=23)}$	$\frac{1.2 \pm 0.5}{(n=23)}$	
DP10-2	68 ± 16 (n=22)	701 ± 36 (n=22)	6.3 ± 1.1 (n=5)	1.2 ± 0.9 (n=22)	12.6 ± 4.5 (n=22)	0.1 ± 0.1 (n=22)	$\frac{2.1 \pm 0.9 \pm}{0.5 (n=22)}$	$\frac{14.8 \pm 4.2}{(n=22)}$	
DP11-10b	22 ± 14 (n=17)	689 ± 102 (n=17)	30.3 ± 24.9 (n=5)	0.5 ± 0.1 (n=17)	0.5 ± 1.7 (n=17)	<0.1 (n=17)	0.72 ± 0.2 (n=17)	$\frac{1.3 \pm 1.6}{(n=17)}$	
DP11-11b	16±3 (n=16)	604 ± 67 (n=16)	8.9 ± 2.2 (n=5)	1.2 ± 0 (n=16)	<0.1 (n=16)	<0.1 (n=16)	$\frac{1.3 \pm < 0.1}{(n=16)}$	$\frac{1.4 \pm 0.1}{(n=16)}$	

DP11-12b	98 ± 20 (n=15)	492 ± 23 (n=15)	6.5 ± 0.6 (n=5)	0.1 ± 0.1 (n=15)	1.4 ± 1.3 (n=15)	<0.1 (n=15)	0.54 ± 0.1 (n=15)	$\frac{1.9 \pm 1.3}{(n=15)}$
DP11-13b	15 ± 3 (n=16)	436 ± 26 (n=16)	11.7 ± 4.2 (n=5)	0.7 ± 0 (n=16)	<0.1 (n=16)	<0.1 (n=16)	0.92 ± 0.1 (n=16)	$\frac{1.0 \pm 0.1}{(n=16)}$
DP11-14b	6±3 (n=16)	461 ± 47 (n=16)	$\begin{array}{c} 7.3 \pm 1.1 \\ (n{=}5) \end{array}$	$\begin{array}{c} 0.9 \pm 0.1 \\ (n{=}16) \end{array}$	<0.1 (n=16)	<0.1 (n=16)	$\frac{<0.1}{.0 \pm 0.1}$ (n=16)	$\frac{1.1 \pm 0.1}{(n=16)}$
DP11-15b	6±2 (n=17)	$\begin{array}{c} 442\pm91\\(n{=}17)\end{array}$	6.4 ± 2.6 (n=6)	$\begin{array}{c} 0.7\pm0.1\\(n{=}17)\end{array}$	<0.1 (n=17)	<0.1 (n=17)	$\leq 0.8 \pm 0.2$ $\frac{1}{(n=17)}$	$\frac{0.9 \pm 0.2}{(n=17)}$
DP11-16b	33 ± 3 (n=17)	531 ± 55 (n=17)	9.0 ± 8.4 (n=5)	0.8 ± 0.1 (n=17)	<0.1 (n=17)	<u>≤</u> 0.1 ±0 (n=17)	$\frac{0.9 \pm \leq 0.1}{(n=17)}$	$\frac{1.0 \pm 0.1}{(n=17)}$
*Eon EMC filtnot	a and aatah he	ain filtuata tha	aa walwaa ayo M(N INO N				

*For EMS filtrate and catch basin filtrate, these values are $NO_3-N + NO_2-N$

Table S6. Measured concentrations of chloride (Cl⁻), bicarbonate (HCO₃⁻), dissolved organic carbon (DOC), and Nspecies (total nitrogen (TN), NH₃-N, NO₃-N, NO₂-N, and TKNtotal organic nitrogen (TON) in groundwater wells and water filtered from the EMS at CFO4 (mean ± standard deviation).

Sample ID	Cl ⁻ (mg L ⁻¹)	HCO3 ⁻ (mg L ⁻¹)	DOC (mg L ⁻¹)	NH3-N (mg L ⁻¹)	NO3-N* (mg L ⁻¹)	NO ₂ -N (mg L ⁻¹)	TKN TON (mg L ⁻¹)	$\frac{TN}{(mg L^{\cdot 1})} \blacktriangleleft$
EMS filtrate	$\frac{1074 \pm}{379806 \pm}$ <u>17</u> (n=23)	$\frac{5795 \pm}{15442353 \pm}$ <u>89</u> (n=23)	3367 <u>± 115</u> (n=4 <u>3</u>)	865 ± 182<u>736 ±</u> <u>12</u> (n=<u>23</u>)	$<0.7-27 \pm 0.02$ (n=23)	-	$-\frac{407 \pm 118}{(n=3)}$	$\frac{1143 \pm 127}{(n=3)}$
BC1	<10 (n=11)	494 ± 13 (n=11)	5.0 ± 0.8 (n=4)	<0.1 (n=11)	<0.1 (n=11)	<0.1 (n=11)	<0.2 <u>1</u> (n=11)	<u><0.3</u> (n=11)
BC2	6±3 (n=12)	516 ± 33 (n=12)	6.0 ± 3.0 (n=4)	<0.1 (n=12)	1.1 ± 2.7 (n=12)	<0.1 (n=12)	0.32 ± 0.2 (n=12)	$\frac{1.4 \pm 2.8}{(n=12)}$
BC3	<5 (n=13)	504 ± 21 (n=13)	6.9 ± 2.9 (n=4)	<0.1 (n=13)	$\begin{array}{c} 0.1 \pm 0.1 \\ (n=13) \end{array}$	<0.1 (n=13)	$\begin{array}{c} 0.\underline{\textbf{21}} \pm 0.1 \\ (n = 13) \end{array}$	<u><0.3</u> (n=13)
BC4	$\begin{array}{c} 58\pm 64\\ (n{=}24) \end{array}$	576 ± 110 (n=24)	9.2 ± 3.5 (n=9)	<0.1 (n=24)	$\begin{array}{c} 8.8 \pm 13.2 \\ (n{=}24) \end{array}$	<0.1 (n=24)	$\begin{array}{c} 0.\underline{87} \pm 0.8 \\ (n{=}24) \end{array}$	$\frac{9.6 \pm 14.0}{(n=24)}$
BC5	26 ± 6 (n=8)	498 ± 51 (n=8)	6.8 ± 3.1 (n=3)	<0.1 (n=8)	5.7 ± 1.5 (n=8)	<0.1 (n=8)	0.6 ± 0.4 (n=8)	$\frac{6.3 \pm 1.5}{(n=8)}$
BMW1	$\begin{array}{c} 305\pm251\\(n{=}28)\end{array}$	926 ± 190 (n=28)	21.5 ± 12.4 (n=11)	<0.1 (n=28)	$\begin{array}{c} 2.2\pm2.5\\(n{=}28)\end{array}$	<0.1 (n=28)	1.1 ± 0.9 (n=28)	$\frac{3.3 \pm 3.2}{(n=28)}$
BMW2	$\begin{array}{c} 502\pm97\\(n{=}22)\end{array}$	1186 ± 87 (n=22)	20.2 ± 4.9 (n=9)	<0.1 (n=22)	$\begin{array}{c} 6.0 \pm 7.4 \\ (n{=}22) \end{array}$	0.1 ± 0.1 (n=22)	$1.\frac{76}{1} \pm 0.4$ (n=22)	$\frac{7.8 \pm 7.6}{(n=22)}$
BMW3	$\begin{array}{c} 182\pm81\\ (n{=}25) \end{array}$	881 ± 146 (n=25)	15.6 ± 3.3 (n=9)	<0.1 (n=25)	$\begin{array}{c} 17.4 \pm 10.3 \\ (n{=}25) \end{array}$	0.1 ± 0.1 (n=25)	$\begin{array}{c} 1.6\pm0.8\\(n{=}25)\end{array}$	$\frac{19.1 \pm 10.8}{(n=25)}$
BMW4	188 ± 74 (n=24)	666 ± 55 (n=24)	12.0 ± 3.3 (n=11)	<0.1 (n=24)	$\begin{array}{c} 33.6\pm21.1\\(n{=}24) \end{array}$	0.2 ± 0.3 (n=24)	2.65 ± 2.9 (n=24)	$\frac{36.3 \pm 21.9}{(n=24)}$
BMW5	106 ± 23 (n=8)	975 ± 163 (n=8)	8.6 ± 1.3 (n=3)	<0.1 (n=8)	6.5 ± 4.8 (n=8)	0.1 ± 0 (n=8)	0.7 ± 0.3 (n=8)	$\frac{7.3 \pm 4.9}{(n=8)}$
BMW6	156 ± 18 (n=8)	538 ± 27 (n=8)	6.9 ± 1.7 (n=3)	<0.1 (n=8)	0.4 ± 0.2 (n=8)	$0.1 \pm 0 \ (n=8)$	$\begin{array}{c} 0.5\pm0.1\\(n{=}8)\end{array}$	$\frac{1.0 \pm 0.2}{(n=8)}$
BMW7	$\begin{array}{c} 127 \pm 15 \\ (n{=}8) \end{array}$	699 ± 65 (n=8)	8.1 ± 2.8 (n=3)	<0.1 (n=8)	$\begin{array}{c} 9.2\pm3.0\\(n{=}8)\end{array}$	$0.1 \pm 0 \ (n=8)$	0.7 ± 0.4 (n=8)	$\frac{10.0 \pm 3.2}{(n=8)}$
BP10-15e	7 ± 4 (n=19)	493 ± 33 (n=19)	3.4 ± 0.4 (n=7)	0.1 ± 0.1 (n=19)	0.1 ± 0.1 (n=19)	<0.1 (n=19)	<mark>0.2 ± ≤</mark> 0.1 (n=19)	$\frac{0.4 \pm 0.2}{(n=19)}$

Inserted Cells
Formatted Table

BP10-15w	<5 (n=17)	507 ± 11 (n=17)	3.5 ± 0.6 (n=4)	<0.2 (n=17)	0.3 ± 1.0 (n=17)	<0.1 (n=17)	0.2 ±≤0.1 (n=17)	$\frac{0.6 \pm 1.1}{(n=17)}$
BP5-15	<5 (n=8)	509 ± 12 (n=8)	5.0 ± 1.1 (n=3)	<0.1 (n=8)	<0.1 (n=8)	<0.1 (n=8)	<0. 2 <u>1</u> (n=8)	<u><0.3</u> (n=8)
BP6-15	<5 (n=7)	487 ± 7 (n=7)	$\begin{array}{c} 3.3 \pm 1.1 \\ (n{=}3) \end{array}$	<0.2 (n=7)	<0.1 (n=7)	<0.1 (n=7)	<0.2 <u>1</u> (n=7)	<u><0.3</u> (n=7)
WE ENGCLOY		INO NUMO	A.T.					

*For EMS filtrate, this value is NO₃-N + NO₂-N

Formatted: Font: 10 pt, Not Bold, Font color: Auto

Table S7. Hydrochemistry of water from continuous core samples

Core ID	Depth (m BG)	Lithology	Cl- (mg L ⁻¹)	NH3-N (mg L ⁻¹)	NO3-N (mg L ⁻¹)	NO2-N (mg L ⁻¹)	NO ₃ -N/Cl-
DC15-20	2	Sand	76.4	4.27	0.64	4.99	0.008
	3	Sand	47.2	2.02	2.42	3.75	0.051
	4	Sand	22.3	2.45	1.76	0.12	0.079
	5	Sand	21.0	1.88	0.96	0.07	0.046
	6	Sand	28.2	2.12	1.16	0.14	0.041
	7	Sand	27.2	2.19	0.89	0.33	0.033
	8	Sand	28.5	2.85	14.39	0.32	0.505
	9	Sand	12.9	1.29	0.68	1.39	0.053
	10	Sand	35.7	1.95	2.05	0.81	0.057
	10.5	Sand	33.0	0.00	4.10	0.00	0.124
	11	Sand	64.1	2.17	1.38	1.23	0.022
	12	Sand	112.4	2.17	2.12	0.03	0.019
	13	Sand	119.8	1.70	2.77	0.30	0.023
	14	Sand	75.6	1.06	0.85	2.20	0.011
	15	Sand	56.3	2.30	2.04	0.00	0.036
DC15-21	2	Sand	147.6	1.37	0.14	1.83	0.001
	2.5	Sand	23.7	0.82	0.90	0.29	0.038
	3.5	Sand	18.0	1.29	3.72	1.78	0.207
	4.5	Sand	20.5	1.91	4.74	0.26	0.232
	5	Sand	29.7	1.24	3.59	0.00	0.121
	6	Sand	22.8	2.00	0.95	0.04	0.042
	7	Sand	33.6	2.98	1.93	0.25	0.058
	8	Sand	24.4	1.67	4.07	0.16	0.167
	9	Sand	25.6	3.26	3.65	0.08	0.142
	10	Sand	21.5	0.82	1.28	0.21	0.060
DC15-22	2	Sand	72.9	1.19	13.44	0.00	0.184
	2.5	Clay	72.8	0.84	17.52	3.73	0.241
	3	Sand	79.8	0.76	16.66	0.12	0.209
	4	Sand	109.8	1.94	22.88	1.28	0.208
	5	Sand	60.8	2.59	12.82	2.17	0.211
	6.5	Sand	99.2	3.20	4.68	4.04	0.047
	7	Sand	88.4	2.40	9.90	0.00	0.112
	7	Sand	95.0	0.00	6.08	2.80	0.064
	8	Sand	75.8	1.92	12.89	0.00	0.170
	9.5	Sandy clay	157.7	1.54	39.50	2.04	0.251
	10	Sandy clay	73.0	1.55	10.99	0.29	0.151
	11	Sand	107.7	3.32	12.10	0.82	0.112
	12	Sand	91.4	1.14	15.60	1.45	0.171
DC15-23	2	Clay	70.0	0.94	66.40	1.35	0.948
	3	Clay	122.2	0.76	9.48	1.87	0.078
	4	Clay	48.8	5.87	8.90	0.86	0.182
	5	Clay	56.1	4.62	10.53	0.63	0.188
	6	Sand	98.2	8.59	7.05	1.87	0.072

6.5	Sand	61.2	1.86	9.76	2.93	0.160
7	Sand	84.9	1.57	10.17	0.25	0.120
7.5	Sand	57.5	2.60	10.51	0.06	0.183
8	Sand	67.8	2.24	9.88	1.13	0.146
8.5	Clay	106.1	9.82	7.47	0.31	0.070
9	Sand	85.5	11.70	12.69	0.92	0.148
9.5	Sand	72.4	9.75	17.27	1.85	0.238
11	Sand	82.6	9.20	21.05	0.07	0.255
11.5	Sand	68.5	2.99	20.88	1.02	0.305
12	Clay	87.9	0.69	1.52	2.06	0.017
13	Clay	22.9	5.07	1.01	0.00	0.044
14	Clay	17.9	1.80	1.16	0.34	0.065
 15	Clay	12.6	1.47	1.01	0.32	0.080

Figure S3. Concentrations of Cl⁻, total-N, and NH₃-N in water filtered from the EMS slurry at CFO1 and CFO4.

Stable isotopes of water and nitrate

Samples for the stable isotopes of water (δ^{2} H and $\delta^{18}O_{H2O}$) were collected from wells at CFO1 quarterly between February 2011 and August 2013. Samples for stable isotopes of water were collected from wells at CFO4 on 16 October 2013. Wells were purged prior to sample collection (1–3 casing volumes) in 20 mL HDPE bottles. Core

- 5 samples for analysis of stable isotopes of water were stored in ZiplocTM bags and kept cool until analysis. Stable isotopes of water (δ²H and δ¹⁸O_{H2O}) in groundwater samples from wells and pore water squeezed from continuous core were analyzed using a Los Gatos LGR model 908-0008 liquid water isotope analyzer (off-axis integrated cavity output spectroscopy) (Lis et al., 2008). The accuracy of this method is ± 0.8‰ for δ²H and ± 0.1‰ for δ¹⁸O_{H2O}. Pore water from continuous core collected in 2015 was analyzed for δ²H and δ¹⁸O_{H2O} using the
- 10 vapour equilibration method (Wassenaar et al. (2008). The Ziploc bag containing the core sample was filled with dry air to equilibrate with the pore water vapour for 3 days at room temperature. The isotopic values of this equilibrated vapour was then analyzed using a Picarro L1102-*i* water isotope analyzer. The precision of this analysis is ±2.0‰ for δ²H and ±4.0‰ for δ¹⁸O_{H2O}. Stable isotopic values of ground water were predominantly close to Calgary meteoric water line (Peng et al., 2004) with δ²H_{H2O} ranging from -175.9 to 117.2‰ and δ¹⁸O_{H2O}
- 15 ranging from -22.5 to -12.9‰.

Site	Well ID*	δ ¹⁸ O _{H20}	δ ² H _{H2O}	$\delta^{18}O_{NO3}$	$\delta^{15}N_{NO3}$		
CFO1 [†]	DMW1	-16.7 ± 1.3 (n=4)	-136.2 ± 10.3 (n=4)	-0.5 ± (n=1)	$12.6 \pm (n=1)$		
	DMW2	$-15.5 \pm 0.6 (n=7)$	$-126.9 \pm 4.4 (n=7)$	$6.0 \pm 2.0 (n=2)$	$20.6 \pm 0.3 (n=2)$		
	DMW3	$-13.8 \pm 0.5 (n=9)$	-118.2 ± 0.8 (n=9)	-1.2 (n=1)	7.8 (n=1)		
	DMW4	-14.2 ± 0.4 (n=7)	-119.9 ± 0.9 (n=7)	-	-		
	DMW5	-14.9 ± 0.5 (n=7)	-124.1 ± 1.8 (n=7)	19.7 ± 0.1 (n=2)	$61.3 \pm 0.1 (n=2)$		
	DMW6	-15.2 ± 0.2 (n=7)	-126.8 ± 0.9 (n=7)	-	-		
	DMW10	-17.8 ± 0.2 (n=8)	-143.6 ± 0.9 (n=8)	-	-		
	DMW11	-16.6 ± 0.2 (n=7)	-134.6 ± 1.1 (n=7)	$10.6 \pm 0.4 (n=2)$	33.2 ± 0.1 (n=2)		
	DMW12	-15.7 ± 0.3 (n=7)	-127.7 ± 0.5 (n=7)	$13.0 \pm 1.9 (n=2)$	28.4 ± 2.1 (n=2)		
	DMW13	-16.1 ± 0.6 (n=7)	-127.7 ± 3.4 (n=7)	5.8 ± 1.4 (n=2)	23.0 ± 0.1 (n=2)		
	DMW14	-14.5 ± 0.6 (n=7)	-121.7 ± 2.4 (n=7)	-	-		
	DMW15	-15.0 ± 0.2 (n=8)	-125.5 ± 1.1 (n=8)	-	-		
	DMW16	-15.4 ± 0.3 (n=7)	-128.5 ± 1.2 (n=7)	-	-		
	DP10-1	-18.0 ± 0.7 (n=9)	-145.8 ± 2.4 (n=9)	11.5 (n=1)	$1.6 \pm (n=1)$		
	DP10-2	-16.8 ± 0.3 (n=9)	-131.8 ± 2.6 (n=9)	3.6 ± 1.8 (n=2)	22.0 ± 3.2 (n=2)		
	DP11-10b	-19.1 ± 0.3 (n=8)	-152.9 ± 0.7 (n=8)	- ` ´	- ` ´		
	DP11-11b	-21.6 ± 0.3 (n=7)	-171.0 ± 0.8 (n=7)	-	-		
	DP11-12b	-15.4 ± 0.5 (n=7)	-126.0 ± 1.3 (n=7)	$18.8 \pm 2.5 (n=2)$	39.7 ± 5.4 (n=2)		
	DP11-13b	-18.3 ± 0.2 (n=7)	-146.7 ± 1.2 (n=7)	- ` ´	- ``		
	DP11-14b	-21.1 ± 0.4 (n=9)	-165.7 ± 2.2 (n=9)	-	-		
	DP11-15b	-22.2 ± 0.3 (n=8)	-174.0 ± 1.0 (n=8)	-	-		
	DP11-16b	-20.8 ± 0.4 (n=7)	-163.6 ± 0.7 (n=7)	-	-		
	EMS filtrate			13.1 ± 6.5 (n=4)	2.6 ± 2.1 (n=4)		
	DP11-13 4m			9.8	30.3		
	DP11-13_5m			10.8	31.0		
	DP11-13_6m			5.2	24.5		
	DP11-13_7m			10.2	31.6		
	DP11-13_8m			14.0	36.4		
	DP11-13_9m			9.9	29.6		
	C15-20_3m	-116.0	-12.8	9.7	-0.9		
	C15-20_8m	-117.2	-13.0	-1.2	-5.2		
	C15-20_0II	-118.4	-13.9	-1.2	1.3		
	C15-20_15III	-116.1	-13.0	2.6	22.2		
	C15-21_2III C15-21_8m	-113.0	-13.5	-4.9	23.3		
	C15-22_0m	-130.0	-16.1	4.7	22.2		
	C15-22_2III	-130.0	-10.1	4.7	22.2		
	C15-22_4III	-120.3	-13.2	2.0	15.7		
	C15-22_5111	-134.5	-10.8	16.9	20.9		
	C15-22_0.5III	-134.0	-10.4	10.0	21.1		
	C15-22_8III	-155.5	-17.5	5.0	21.1		
	C15-22_10m	-132.0	-10.9	7.4	20.1		
	C15-22_12m	-133.2	-1/.0	5.5 1.7	18.5		
	C15-23_2m	-134./	-10.8	1./	22.1		
	C15-23_5m	-13/.0	-1/.8	5.9	15.0		
	C15-23_/m	-132.5	-16.2	4.0	14.8		
	C15-23_8m	-132.3	-10.0	1.40	14.5		
	C15-23_9m	-132.7	-16.3	4.9	16.7		
	C15-23_11m	-131.8	-15.9	1.3	13.7		
	C15-23 13m	-139.4	-16.2	15.7	15.6		

Table S8. Stable isotope values of water and nitrate at CFO1

[†] For all continuous core samples n=1. *central depth of core samples, x, indicated as SampleID_xm

Site	Well ID	δ ¹⁸ O _{H20}	δ ² H _{H2O}	δ ¹⁸ O _{NO3}	$\delta^{15}N_{NO3}$
$CFO4^{\dagger}$	BC1	-16.7	-142.3	29.5	0.3
	BC2	-18.6	-138.6	15.8	9.4
	BC3	-17.5	-144.6	31.6	5.0
	BC4	-18.5	-148.8	1.6	30.6
	BC5	-18.5	-137.6	-1.9	12.6
	BMW1	-17.6	-144.1	-	-
	BMW2	-17.4	-136.5	8.3	41.6
	BMW3	-	-	2.1	22.8
	BMW4	-18.0	-145.6	-0.3	22.2
	BMW5	-18.0	-137.5	6.5	28.9
	BMW6	-18.9	-152.4	22.1	70.5
	BMW7	-	-	5.9	34.0 16.4
	BP10-15e	-18.1	-146.5	18.3	
	BP10-15w	-	-	18.9	-1.3
	BP5-15	-17.7	-137.3	-	-
	BP6-15	-17.9	-145.1	-	-

Table S9. Stable isotope values of water and nitrate at CFO4

† For all samples at CFO4 n=1.

5

Figure S4. Cross-plot of stable isotopic values of groundwater wells at CFO1 and CFO4 and continuous core samples collected at CFO1 during 2015, relative to the Calgary meteoric water line ($\delta^2 H = 7.68 \ \delta^{18}O_{H20} \cdot 0.21$).

Sample ID	<u>CI</u>	<u>NO₃-N</u>	<u>f</u> e	<u>NO₃-N_i/Cl_i</u>	<u><i>Cl</i>i (mg L⁻¹)</u>		<u>NO₃-N_i (mg L⁻¹)</u>		<u>f</u> _	
	<u>(mg L⁻¹)</u>	<u>(mg L⁻¹)</u>	<u>(mean ± stdev)</u>	(mean ± stdev)	min	max	min	max	min	<u>max</u>
CFO1										
DMW11	436.1	<u>17.1</u>	<u>0.17 ± 0.07</u>	<u>0.23 ± 0.10</u>	<u>436</u>	<u>667</u>	<u>98</u>	<u>150</u>	0.65	<u>1</u>
DMW12	<u>78.0</u>	<u>2.6</u>	<u>0.23 ± 0.10</u>	<u>0.14 ± 0.06</u>	<u>78</u>	<u>1047</u>	<u>11</u>	<u>150</u>	<u>0.07</u>	1
DMW13	<u>56.7</u>	23.7	<u>0.56 ± 0.22</u>	<u>0.75 ± 0.29</u>	<u>57</u>	<u>189</u>	<u>42</u>	<u>141</u>	0.30	<u>1</u>
<u>DP10-2</u>	74.5	<u>11.8</u>	<u>0.52 ± 0.22</u>	<u>0.30 ± 0.13</u>	<u>74</u>	<u>277</u>	<u>23</u>	<u>84</u>	0.27	<u>1</u>
DP11-12b	<u>95.7</u>	<u>0.6</u>	<u>0.15 ± 0.08</u>	<u>0.04 ± 0.02</u>	<u>96</u>	<u>1300</u>	<u>4.2</u>	<u>90</u>	0.07	<u>1</u>
DC15-22 10m	<u>73.0</u>	<u>11.0</u>	<u>0.47 ± 0.21</u>	<u>0.32 ± 0.14</u>	<u>73</u>	<u>289</u>	<u>23</u>	<u>93</u>	0.25	<u>1</u>
DP11-13_4.3m	<u>28.5</u>	<u>7.0</u>	<u>0.30 ± 0.15</u>	<u>0.82 ± 0.41</u>	<u>29</u>	<u>184</u>	<u>23</u>	<u>150</u>	<u>0.15</u>	1
DP11-13 5.2m	<u>25.0</u>	<u>7.8</u>	0.34 ± 0.13	<u>0.91 ± 0.35</u>	<u>25</u>	<u>160</u>	<u>23</u>	<u>146</u>	<u>0.16</u>	<u>1</u>
DP11-13 7m	<u>72.3</u>	<u>12.0</u>	<u>0.27 ± 0.13</u>	<u>0.62 ± 0.30</u>	<u>72</u>	<u>244</u>	<u>45</u>	<u>150</u>	<u>0.30</u>	<u>1</u>
DP11-13 7.9m	<u>70.8</u>	<u>9.1</u>	<u>0.17 ± 0.09</u>	<u>0.76 ± 0.40</u>	<u>71</u>	<u>199</u>	<u>54</u>	<u>150</u>	<u>0.36</u>	<u>1</u>
DP11-13 8.8m	<u>81.7</u>	<u>11.0</u>	<u>0.32 ± 0.15</u>	<u>0.89 ± 0.42</u>	<u>82</u>	<u>323</u>	<u>39</u>	<u>150</u>	<u>0.25</u>	1
<u>CFO4</u>										
BC4	<u>163.1</u>	<u>35.1</u>	0.37 ± 0.13	0.58 ± 0.20	<u>163</u>	258	<u>95</u>	<u>150</u>	0.63	1
BMW2	<u>595.6</u>	<u>16.5</u>	<u>0.13 ± 0.06</u>	<u>0.21 ± 0.10</u>	<u>596</u>	<u>707</u>	<u>127</u>	<u>150</u>	0.84	1
BMW5	<u>131.2</u>	<u>12.9</u>	<u>0.34 ± 0.16</u>	<u>0.29 ± 0.14</u>	<u>131</u>	<u>520</u>	<u>38</u>	<u>150</u>	0.25	1
BMW6	<u>156.0</u>	<u>0.4</u>	<u>0.01 ± 0.01</u>	<u>0.26 ± 0.26</u>	<u>156</u>	<u>1300</u>	<u>0.4</u>	<u>150</u>	<u>0.12</u>	1
BMW7	<u>134.7</u>	<u>11.6</u>	<u>0.21 ± 0.11</u>	<u>0.41 ± 0.22</u>	<u>135</u>	<u>365</u>	<u>55</u>	<u>150</u>	0.37	1

Table S10 Constraining values and results of mixing model calculations

References

Lis, G., Wassenaar, L. I., and Hendry, M. J.: High-precision laser spectroscopy D/H and ¹⁸O/¹⁶O measurements of microliter natural water samples, Anal. Chem., 80, 287-293, 10.1021/ac701716q, 2008.

5 Peng, H., Mayer, B., Harris, S., and Roy Krouse, H.: A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada, Tellus B, 56, 147-159, 2004. Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High resolution pore water δ^2 H and δ^{18} O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy, Environ. Sci. Technol., 42, 9262-

10 9267, 10.1021/es802065s, 2008.