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Abstract. In-stream water residence time (WRT) in river networks is a crucial driver for biogeochemical processes in riverine 

ecosystems. Dynamics of the WRT are critical for understanding and modelling nutrient retention in lakes and rivers, in 10 

particular during flood events when riparian areas are inundated. This study illustrates the potential utility of integrating spatial 

landscape analysis with machine learning statistics to understand the effects of hydrology and geomorphology on WRT in 

river networks, especially at large scales. We applied the Boosted Regression Trees (BRT) approach to estimate water 

residence, a promising multi-regression spatial distribution model with consistent cross-validation procedure, and identified 

the crucial factors of influence. Reach-average WRTs were estimated for the annual mean hydrologic conditions as well as the 15 

flood and drought month, respectively. Results showed that the three most contributing factors in shaping the WRT distribution 

are river discharge (57%), longitudinal slope (21%), and the drainage area (15%). This study enables the identification of key 

controlling factors of the reach-average WRT and estimation of WRT under varying hydrological conditions. The resulting 

distribution model of WRT is an easy to apply and sound approach helping to improve water quality modelling at larger scales 

and water management approaches aiming to estimate nutrient fluxes in river systems. 20 

Keywords: Water residence time; river networks; spatial distribution model; Boosted Regression Trees (BRT). 

1 Introduction 

Water residence time (WRT) (also known as in-stream water residence time, Worral et al., 2014) refers to the average time 

that a certain amount of water travels through a defined river reach. Reach-average WRT represents one of the most important 

determinants for in-stream biogeochemistry recycling processes (Catalán et al., 2016; Drummond et al., 2016; Ensign and 25 

Doyle, 2006; Gibson, 2000; Hrachowitz et al., 2016; Stanley and Doyle, 2002). The response of river flow to precipitation is 

highly nonlinear, and so are the in-stream processes of water retention (Heidbüchel et al., 2012). Water residence time in river 

networks differs due to the variability of inflow rates, river topologic and geomorphologic parameters such as slope (Doyle et 

al., 2005; Wang et al., 2015). Residence time studies especially for extreme hydrologic conditions (i.e. flood and drought 

events) are of particular importance for water management practice as here significant share of annual fluxes can be transported 30 

or retained during a short period of time.  
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Studies on WRT are often based on process-based, deterministic models for hydrological processes including groundwater, 

precipitation and surface runoff in a river basin (i.e. SWAT (Grizzetti et al., 2003), SPARROW (Preston Seitzinger et al., 

2011)). However, these deterministic models are data demanding and time consuming when applying to networks of large 

river systems. Besides modelling, another widely applied way of measuring water residence time is by introducing solutes and 35 

measured residence time and flow velocity within specific river reach. WRT can be estimated based on the travel time of 

dissolved solute tracers that are experimentally added to the river, which have been used to analyze retention efficiency and 

up-take length of dissolved nutrients may be retained by bio-chemical processes (Drummond et al., 2016; Nieuwenhuyse, 

2005; Soulsby et al., 2006). Further improvements of the process-based models will require addressing spatial heterogeneities 

within basins (Mayorga et al., 2010) and a better understanding of river network retention and the driving factors controlled 40 

by runoff within watershed (Arora et al., 2016; Dumont et al., 2005). 

Computational and empirical methods (e.g. MONERIS, Venohr et al., 2011) offer diversified options in combining them to 

statistical and process-based models at different scales (Gottschalk et al., 2006; Nieuwenhuyse, 2005; Soulsby et al., 2006). 

The one-dimensional hydraulic Manning-Strickler formula, which calculates flow velocity in dependence of channel slope and 

cross-section variations, has been widely used to estimate flow velocity and thus water residence time (Verzano et al., 2012; 45 

Worrall et al., 2014). However, distributed data to model the WRT in river networks, especially at larger scales, is often lacking 

or only available in insufficient spatial resolution. Consequently, any modelling approach addressing WRT or related in-stream 

processed at larger scales is limited by the quality of observed or alternatively on estimated data on geomorphological 

(roughness, slope, sediment) parameters. The estimation of hydrological regimes in complex river systems still remain 

controversial between detailed process-based models on one side, and over simplified empirical methods on the other side. 50 

This gap appears to be even larger when it comes to the application of large-scale river basins. 

To improve the understanding of WRT as carrier and as driving force for instream processes, while considering impacts hydro-

morphological of river channels characteristics (Poole, 2010), Behrendt and Opitz (1999) discussed the dependence of nutrient 

retention on specific runoff and hydraulic load in river systems. Gücker and Boëchat (2004) investigated the ammonium 

retention in tropical headwater streams with differing channel morphology and hydraulic characteristics such as riffles and 55 

pools. Doyle and Stanley (2003) highlighted the controlling position of hydro-geomorphological factors in nutrient cycling 

processes. Helton et al. (2018) reemphasized the importance of structures of the whole stream network in nitrogen 

transformation and removal with varied but integrated spatial distribution from headwaters to downstream. To determine how 

differences in geomorphologic settings influence spatial heterogeneity in transport and retention of nutrients, a hierarchical 

network perspective is needed, comprising connectivity, residence times, and reactivity interactions (Lin et al., 2016; Stewart 60 

et al., 2011).  

Beyond the traditional insights of nonlinear processes using 1-D, 2-D or 3-D hydrodynamic equations, other nonlinear 

statistical approach such as the Boosted Regression Trees (BRT) is becoming to play a part in hydrodynamic studies 

(Ouedraogo and Vanclooster, 2016; Toprak et al., 2014; Toprak and Cigizoglu, 2008). The BRT model, which combines 

advantages of regression trees and boosted adaptive method, has recently been applied in studies on ecological traits and 65 
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species distributions (Elith and Leathwick, 2017; Wyse and Dickie, 2017; Zimmermann et al., 2010), as well as in other 

environmental research fields, such as natural flow regimes, groundwater and hydraulic conductivity (Jorda et al., 2015; 

Mousavi et al., 2017; Naghibi et al., 2016; Snelder et al., 2009), soil science (Martin et al., 2009; Jalabert et al., 2009), air 

pollution (Carslaw et al., 2009), energy (Kusiak et al., 2010), or climate change (Shabani et al., 2016) and so on. With consistent 

cross-validation procedure and the feature of easy application, the BRT model provides a strong potential for applying large-70 

scale WRT analysis while considering multiple hydro-geomorphological parameters.  

In this study, we investigate the spatial distribution of water residence time across a wide range of hydro-geomorphologic 

settings by applying the machine-learning approach known as boosted regression trees (BRT). The selection of leading 

indicators for predicting the reach-average WRT in 82 river networks in Germany are analyzed.  

2 Methods and Materials 75 

2.1 Study area and dataset 

We collected discharge data for the years 2008-2014 from 132 gauging stations in Germany that are recorded with a temporal 

resolution of 15 minutes (Bavarian State Office for the Environment, and the ITZ Bund www.pegelonline.wsv.de). Using these 

stations, 82 river reaches were identified (Figure 1), which are delimited at both (upstream and downstream) ends by gauging 

stations. These reaches are geographically widely distributed across Germany, although underrepresenting northern low lands, 80 

and represent the hydro-morphological conditions of 13 stream types that differ in their biogeochemical conditions, too. To be 

noted, discontinuities in the river systems, as lakes and impoundments (produced by weirs or dams) are not explicitly 

considered in this paper, as water residence time is much longer and is controlled by other aditional mechanisms such as the 

features of stratification, water body internal currents and volume changes by input-output controls (Heidbüchel et al., 2012; 

Ji, 2008; Rueda et al., 2006).  85 

2.2 Sources for factors assumed to affect water residence time 

In this paper we evaluate the average discharge, drainage area, mean river width, length, and slope, along with sediment 

composition as hydro-geomorphologic factors for predicting WRT in the selected river reaches. Geomorphologic parameters 

are averaged over the reach between the upstream and downstream stations to represent the mean situation of the selected river 

reach (Table 1). Substrate class of the sediment type for each river reach is represented in percentage (100% all classes in sum) 90 

according to their length that falls into each class. According to the German soil classification system (Working Group on Soil 

Classification of the German Soil Science Society, 1997), six substrate classes are derived as Sand (S), Clay (C), Silt (U), 

Loam (L), Peat bog (HM), Fen (NM), respectively. Furthermore, classifications of stream types with integrated geomorphic 

features (Table 2) are applied as an indicator for specific landscape characteristics. The stream types are aligned with the 

official German stream and river type classification systems based on physio-chemical parameters and geological 95 

classifications of ecological zones that contain similar environmental characteristics, such as stream size, stream order, altitude, 
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flow velocity, streambed substrates, water temperature, or stream width etc. (Pottgiesser and Sommerhäuser, 2004; Arle et al., 

2014). All geographic analyses and calculations were performed in ArcGIS Desktop (Version 10.0, Environmental Systems 

Research Institute (ESRI). Redlands, CA, USA).  

2.3 Spatial distributions of water residence time  100 

We introduced the nonmetric multidimensional scaling (NMDS) plots (Agarwal et al., 2007) to obtain insight into the patterns 

of hydro-morphological conditions as well as WRT distributions for the studied river reaches. NMDS allows integrating 

different data formats, such as continuous monitoring data, discrete parameters, binary data or binomial category datasets. We 

used the Gower’s generalized coefficient of dissimilarity approach (Gower and Legendre, 1986) to standardize the continuous 

variables against the discrete ones and got the standardized Euclidean distance for the NMDS plots. 105 

Water residence time for studied river reaches are estimated for the average discharge conditions during 2008-2013. The spatial 

distribution of water residence time has been estimated by applying the nonlinear model of Boosted Regression Trees (BRT). 

The feature of nonlinearity in controlling WRT, and interactions among multiple predictive factors are analyzed via the BRT 

model (Elith and Leathwick, 2016). In the first place, the fitted model is generated by the known average values of predictive 

datasets for the complete river networks. Furthermore, the generated model is applied to estimate the distribution of WRT 110 

under different environmental scenarios such as flood or drought hydrologic conditions. A measurement of relative importance 

(in percentage) is calculated by the model to facilitate the comparisons of term-wise contributions. In addition, partial 

dependence plots and fitted link functions for each variable were produced. Fitted BRT models were obtained by the sum of 

all trees multiplied by the learning rate (Elith et al., 2008): 

f(x)=g[∑i Ti(x)]                                                                                                                                                                  (1) 115 

where f is the fitted model, x is the independent variable, Ti are the individual learners, and g is the link function that grows 

optimum trees. All calculations and modelling were performed in R (R Core Team, 2016) by using the package ‘dismo’ 

(Hijmans et al., 2016) and ‘gbm’ (Greg Ridgeway with contributions from others, 2015). 

2.4 Model validation 

We here applied the empirical equation of previous studies 𝑡 =𝑎𝑄−𝑏𝑥𝑐 proposed by Graf (1986), in which t represents the 120 

water residence time, Q is the discharge, x is the traveled distance in downstream direction, and a, b, c are the coefficients.  

To compare the results of WRT estimated by the BRT model (WRTpred) against those of the empirical equations and observed 

values, the error of the prediction is calculated using the Root Mean Squared Errors (RMSE): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑊𝑅𝑇𝑝𝑟𝑒𝑑−𝑊𝑅𝑇𝑜𝑏𝑠)

2𝑛
𝑖=1

𝑛
                                                                                                                                   (2) 
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where WRTpred is the predicted water residence time (h/km) and WRTobs is the original calculated value according to observation 125 

at the river reach of i, and n is the number of studied river reaches. 

3. Results  

The elaboration of the results is structured in a) the spatial dissimilarity of geomorphology and hydrological factors for the 

studied river reaches, followed by b) the results of relative importance of variables calculated by the BRT model. Furthermore, 

we discussed the spatial distribution of estimated WRT under long-term annual average discharge conditions as well as during 130 

the extreme hydrological month of flood and drought. 

3.1 Governing factors for water residence time 

The multidimensional Euclidean distance between the studied river reaches derived from varying hydro-geomorphology 

channel characteristics is shown in the Nonmetric Multi-Dimensional Scaling (NMDS) plot (Figure 2). River reaches are 

grouped and colored according to their stream type classification and revealed clustering patterns in agreement with the river 135 

size. The river type classification of ecoregion independent streams include lake outlets (type 21) and small organic substrate-

dominated rivers (type 11). 

Fitted BRT models were obtained by the sum of all trees multiplied by the learning rate of each predictive variables. The fitted 

model accounted for 54.5% of the mean total deviance of the monitored dataset (1-mean residual deviance / mean total 

deviance). The optimal fit was achieved with the following variable setting: interaction depth = 10, tree complexity = 10, 140 

learning rate = 0.001, bag fraction = 0.5 and cross-validation = 10-folds, optimal number of trees = 1680. For this fit, the 

training data correlation coefficient was 0.668, and cross-validation correlation coefficient was 0.614. 

The predictive variable of mean discharge represented the most influential variable (57.4%) in the BRT model, followed by 

slope (21.5%) and the sum of drainage area (15.6%). Mean river width and river types together only explained less than 4% 

to the model variance. Similarly, substrate classes did not significantly influence water residence time (< 2%). In particular, 145 

the substrates of clay, peat bog and fen showed zero statistical contribution (Table 3). Although the latter predictive variables 

have little or no importance in our study, we did not exclude them from the set of the predictive variables while remaining the 

complete dataset for further analyses of any other scenarios. 

After accounting for the average effects of the predictive variables for all river reaches using the BRT model, we used partial 

dependence plots to identify the relative influence of the dominant eight variables on WRTpred in the individual reaches (Figure 150 

3). The y-axis shows the fitted WRTpred, optimized on basis of link function Eq. (1).  At low values, mean discharge, drainage 

area and width (statistically not significant) has a strong negative impact on WRT. The influence of these three predictive 

variable decrease with increasing respective values and only cause smaller changes in WRT. Longitudinal slope of riverbed is 

found to have a positive relationship with WRT. One possible reason for this is, that with slope also turbulence increases, but 
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not the mean flow velocity. This is revealed by the less dominant position of slope in comparison with discharge, area and 155 

river width. The effects of river topography and sediment composition appear to be largely mediated by their implemented 

correlation with hydrological characteristics and geographic distribution. 

3.2 WRT distribution  

3.2.1 WRT distribution under annual average hydrologic conditions 

River reaches categorize as large rivers (type 9.2, 10, 15, 20) usually have high levels of the average discharge and area as 160 

well as low slope values, which consequently show a synchronized distributions in the NMDS plot (Figure 4). Water residence 

time at smaller rivers is in turn stronger impacted by distinct topologic features, resulting in a less uniform pattern than the 

group of large river. 

Scattered from the Euclidian distance to the spatial dimension, water residence time distribution under the mean discharge 

conditions during 2008-2013 are displayed Figure 5. River discharge above 300 m3/s results in WRT of less than 4 h/km, 165 

which equals to flow velocity of more than 0.07 m/s. Comparing the results of BRT model (WRTpred) with that of the observed 

values (WRTobs) showed 46% of the mean squared errors are less than 0.1 h/km (Figure 6). Poor model performance under 

low flows demonstrates the increased impact of individual predictive variables and the need for further testing and data 

collection to support the inclusion of additional biogeochemistry processes. Site-specific uncertainties might arise from 

unknown flow paths and mixing dynamics that significantly affect management strategies.  170 

Through comparing the results of predicted WRT (WRTpred) with that of Graf’s empirical equation (WRTemp), the calculated 

flow velocity by BRT model showed a less correlated linear relationship with discharge (Figure 7). WRTpred and WRTemp 

delivered water residence times in the same magnitude of order, but with different gradients in their variability and dependence 

with changing Qmean. A lower tendency of a linear relationship for smaller discharge levels below 500 m3/s indicates a 

potential geomorphological influence manifested at small rivers and non-bankfull conditions. Possible explanations for the 175 

described differences between WRTpred and WRTemp could be that in this study, the BRT model is built to explain variables 

through multiple boosted regressions by including the nonlinear interactional effects among predictive variables. This 

interpretation is in accordance with the partial dependency analysis of each variable that an overall consideration of all 

predictive variables at varied levels are needed by applying the systematic or network approach (Dumont et al., 2005). 

3.2.2 WRT distribution under hydrologic extremes  180 

The response of water residence time on changing and in particular extreme discharge is complex, especially for distinct 

geomorphic sites. In order to facilitate more intuitive understanding, we did parallel studies for the extreme flood event in June 

2013 and the driest month of November 2011 in Germany. The May/June 2013 flood was the most severe large-scale flood 

events in Germany during the last 6 decades (Merz et al., 2014). Compared with the flood events in June 2013, the median 

discharge in November 2011 is 80.2% lower with the estimated water residence time is 20.7% (0.17 hours) longer per kilometer 185 
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(Figure 8). Spatial variation is shown through the bivariate map of mean discharge and water residence times. The contrasting 

effect is more clearly observed in the Elbe river basin where the most severe floods occurred (Figure 9).   

4. Discussions 

4.1 Interactional effects of predictive variables 

Getting to know the interactional effects among predictive variables would facilitate the empirical estimation of WRT in a 190 

river reach on basis of generally available information. Among all the predictive variables, river hydrology ranks the first place 

of relative importance together with slope in shaping the variation of water residence time. Therefore, hydrological variations 

in the river reach have to be the paramount element of discussion.  

The 2-dimensional partial dependence plot in Figure 10 shows the interactional effects between river discharge and drainage 

area. Another important geomorphological factor is the river width that has great contribution to the distribution of WRT. 195 

Furthermore, the river type classification, which implements generalized geomorphologic and geographic attributes, could act 

as a substitute, helping to simplify the process of WRT estimation especially under limited data availability. The interactional 

effect between river type and mean discharge is expressed in Figure 11. For a river reach with known substrate class and river 

topology, water residence time under different discharge levels can be estimated. 

4.2 Impacts of groyne fields on water residence time 200 

As mentioned earlier in methodology part, the discontinuities in the river systems, potentially impacting water residence time, 

such as lakes, impoundments or river groyne fields were not included in the original dataset for model generation. River 

groynes (also called wing dams) usually made from rocks or woods are constructed from the riverbank, transversely to the 

main flow direction to prevent from lateral bank erosion by reducing flow velocity (Yossef, 2002). Due to simple construction, 

long-term durability and major functions, groyne fields (GF) are very widely applied in the lowland rivers of Germany. At 205 

present there are approximately 6900 groynes, covering 92% of the banks along the Middle Elbe River section (Schwartz, 

2006). Because of the considerable reduction of water depth and flow velocity relative to the main stream, the prolonged 

retention time of water in the GF has important impact on the nutrient uptake dynamics and phytoplankton growth (Engelhardt 

et al., 2004; Guhr et al., 2000; Ockenfeld and Guhr, 2003). Hydraulic waves attenuation and increasing water residence time 

are two main effects of groyne fields and potentially have strong impacts on nutrients retention and phytoplankton growth. 210 

Describing the specific hydraulic characteristics of flow velocity and residence time patterns in GF is the key for understanding 

the ecological significance of these retention zones. 

At 14 out of 82 studied river reaches groyne fields are installed. Distribution of water residence time at groyne fields are linked 

to the variables and factors as discussed above, however, the shapes of the hydrograph reveal the different attributes of 

attenuation, which indicate the potential for nutrient retention. In order to exclude the influence of distinct scales, river reaches 215 
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from the alpine stream and central highlands in Bavaria (in total 39 reaches) are not considered for the comparison. Among 

the rest 43 river reaches of comparable discharge level, two groups of 14 river reaches with groyne fields and 29 free-flowing 

rivers are compared. 

We plot the cumulative distribution functions of the mean hydro-width (in hours) for the two groups (Figure 12). The cdf plot 

shows that the probability level of hydro-width less than 90% are up to 44.4 hours at groyne fields, compared with that of only 220 

21.4 hours at free-flowing rivers. There is very little chance (< 2.5 %) that the probability of hydro-width in free-flowing rivers 

will be less than one hour and there is also small chance (< 5%) that it could be as high as 33.7 hours. The groyne fields show 

pronounced wider hydro-width than the free-flowing rivers: with 59.4% (87.6 hours) larger maximum value and more than 2 

folds’ (4.7 hours) at the median level. Not surprisingly, the estimated water residence time for groyne fields show higher 

probabilities for WRT less than 1.5 h/km in comparison with the free flow rivers (Figure 13). 225 

4.3 Hydraulic residence time as a lens for nutrient retention time 

It should be noted of the existing differences between flow velocities in the system (that set the velocity of conservative solutes) 

and the celerity (or speed with which hydraulic perturbations are conveyed, which control the hydrograph), are to be the 

velocity of conservative solutes, expected since they are controlled by different mechanisms. The nutrient transportation 

velocity in streams is always slower than the kinematic flow celerity of gravity-driven hydraulic waves. Studies on the 230 

differentiation and translation of these two velocities under varying flow conditions have been thoroughly discussed by 

McDonnell and Beven (2014). The water residence time discussed in this paper is coherently referred to flow velocity. 

However, the biogeochemical functioning of a river ecosystem is largely dependent on the transportation processes of water 

and dissolved substances within the geomorphic context of river networks (Benettin et al., 2015; Withers and Jarvie, 2008). 

Nutrient dynamics are controlled by the interaction of several key parameters, i.e. river discharge, channel geometry and 235 

vertical exchanges of water (Maazouzi et al., 2013). The amount of biologically labile dissolved nutrient effectively taken up 

by primary producers depends, next to other limiting factors, such as light availability or water temperature, on the WRT in a 

river section during which processes may take place (Drummond et al., 2016; Ensign and Doyle, 2006; Nieuwenhuyse, 2005; 

Soulsby et al., 2006). 

Water flow velocity in a river reach controls the time during which bio-chemical processes can reduce or transform contained 240 

nutrients. Nutrient transport and transformation in streams involves both physical dynamics and biological uptake processes 

along the longitudinal course of rivers (Kronvang et al., 1999; Runkel, 2007). The transport mechanisms are mainly shaped by 

hydro-morphological parameters such as river discharge, water depth and velocity, and by other related physical ones such as 

sediment composition. River hydro-morphological shapes those processes and plays a major role in structuring the 

hydrological, ecological and biogeochemical dynamics in streams and rivers that are essential to ecosystem functioning (Doyle 245 

et al., 2003). 
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Traditional insights into the processes of nutrient spiraling process by experiments are sometimes biased and conditional 

dependent due to the fact that nutrient addition often brings much higher concentration than the background level, which results 

with overestimated nutrient uptake length (Mulholland et al., 2002). Modelling studies on nutrient export are mostly based on 

steady state hydrologic conditions assuming variations in pressure from pollution sources (Ingestad and Ågren, 1988; Powers 250 

et al., 2009; Runkel, 2007; Runkel and Bencala, 1995). This assumes that the hydraulic gradients that drive the transports are 

maintained the whole time the stream water remains in the water body, which is unrealistic (McCallum and Shanafield, 2016). 

Therefore, the current study adds to improve our understanding on the impact of water residence time on nutrient retention 

time and transportation processes on medium to large scales. This is in particular required to tackle the challenge in quantifying 

changes of hydro-morphological parameters in space and time (Ambrosetti et al., 2003; Bouwman et al., 2013; Tong and Chen, 255 

2002). 

5. Conclusions 

Understanding the dynamics of instream water residence time does not only assist water quality and instream nutrient retention 

modelling, but also water management practices especially under extreme hydrologic conditions. Through application of the 

BRT model for estimating WRT in river networks, we identified that river discharge weights the most compared with river 260 

topologic and geomorphic attributes. At the scale of river networks, water residence time is primarily affected by river 

discharge, followed by river width and river channel slope. Geomorphological attributes are more influential on small rivers 

in the Alpine mountainous areas. By taking the example of river discharge during flood and drought events, the BRT modelling 

is useful for water residence time estimation under extreme hydrological scenarios. 

We conclude that the BRT approach has the potential to be used for addressing how timescales of the hydrological cycle 265 

change at different scales. The spatial distribution model contributes to an advanced methodology in WRT estimation in 

between of complex deterministic process models and empirical statistical models, and can be applied to study areas of 

diversified scales. The research element of water residence time is elaborated on the temporal scale of multi decades, though 

it is based on reach-scale information. It has the foremost implications on river ecology by linking nutrient retention time in 

streams at larger spatial and temporal scales. While applied to few representative catchments. It can set the basis for analyses 270 

of large spatial scales and can be relevant at longer time scales associated with climate variability.  

The results underline the relative importance of hydro-geomorphological features, which has clear implications to optimize 

the efficiency of river restoration effects on runoff processes. In combination with developed nonlinear spatial statistics it 

could be a novel approach in solving hydro-geophysical or even social economic distribution related questions. A further 

investigation of retention time maxima could help identifying thresholds at which potential restoration measures, land use 275 

changes, drought or floods, and climatic stressors affect physical water body conditions and bio-chemical responses. 
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 430 

Figure 1: Map of river networks in Germany, with selected river reaches (orange) and corresponding upstream-downstream gauging 

stations (circles).  
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 435 

Figure 2: Dissimilarities of the studied river reach in the Nonmetric Multi-Dimensional Scaling (NMDS) ordination space according 

to hydro-geomorphic attributes.  
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Figure 3: Partial dependence plots showing the dependence of water residence time on hydro-geomorphologic variables after 440 
accounting for the average effects of all the other predictors in boosted regression tree analysis. Each point represents an observed 

value with rug plots at the bottom of each panel. Y-axes are predicted values of the fitted functions (WRTpred). All panels are 

plotted on the same scale for comparison.  
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Figure 4: Dissimilarities of the calculated WRT (h/km) in the Nonmetric Multi-Dimensional Scaling (NMDS) ordination space. 445 

 

 

Figure 5: Spatial distribution of annual mean discharge conditions during 2008-2013 (A), and predicted water residence time (h/km) 

for studied river reaches.  
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 450 

 

Figure 6: Frequency distribution of RMSE of predicted length weighted water residence time (h/km) against observed values across 

all sites. 

 

 455 

Figure 7: Comparison of the fitted linear relationship between the average discharge (x-axis) and predicted flow velocity (km/h) by 

equation of Graf (1986), and the BRT model, respectively. 
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Figure 8: Statistical comparison of the mean discharge (in cubic meters per second) and corresponding water residence time (in 460 
hour per kilometer) in June 2013 (left), November 2011 (middle), and the difference between them (right), respectively. 
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Figure 9: Bivariate map of predicted water residence time (h/km) for (a) floods in June 2013 with Qmax scenarios and (b) drought 

with Qmin conditions during November 2011.  
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Figure 10: Two-dimensional interaction effects between the mean discharge (x-axis) and drainage area (y-axis). Colored scales are 

the estimated water residence time (h/km) accordingly. 
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Figure 11: Two-dimensional interaction effects between the mean discharge (x-axis) and river types (y-axis). Colored scales are the 

estimated water residence time (h/km) accordingly. 475 
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 485 

Figure 12: Cumulative probability plots of the average hydraulic waves half-prominence widths (in hours) at river reaches with 

groyne fields and the free-flowing ones. 
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Figure 13: Cumulative probability plots of the estimated water residence time (h/km) for river reaches with groyne fields and the 490 
free-flowing ones. 
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Table 1: Hydrologic and geographic variables of studied river reaches.  

Continuous variables Mean Range Std dev  

Length (km) 30.8  1.01 - 145.4 30.34  

Slope (m/m) 0.00379  0.00005, 0.04104 0.00776  

Width (m) 88.40 1.73 - 408.42 105.91  

Drainage area (km2) 25115.28  11.15 - 159427.5 41625.53 

Mean discharge (m3/s) 327.86  0.253 - 2259.32 610.45 

 510 

 

Table 2: Stream types covered by our study reaches (Pottgiesser and Sommerhäuser, 2004).   

Main category Sub-category 

Alps and Alpine foothills 

1.1 = Small and mid-sized rivers 

2.1 = Small rivers in the alpine foothills 

2.2 = Mid-sized rivers in the alpine foothills 

3.1 = Small rivers in the Pleistocene sediments of the alpine foothills 

4 = Large rivers in the alpine foothills 

Central highlands 

5 = Small coarse substrate dominated siliceous 

7 = Small coarse substrate dominated calareous highland rivers 

9 = Mid-sized fine to coarse substrate dominated siliceous highland rivers 

9.1 = Mid-sized fine to coarse substrate dominated calcareous highland rivers 

9.2 = Large highland rivers 

10 = Very large gravel-dominated rivers 

Central plains 

15 = Mid-sized and large sand and loam-dominated lowland rivers 

20 = Very large sand-dominated rivers 
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Ecoregion independent streams 

11 = Small organic substrate-dominated rivers 

21 = Lake outflows 

Catchment size class:   

Small river: 10 - 100 km2 

Mid-sized river: 100 - 1,000 km2 

Large river: 1000 - 10,000 km2 

Very large river: > 10,000 km2 

 

 

Table 3: The relative influence of predictive variables of river hydro-geomorphology as computed from the fitted BRT model on 515 
water retention time. 

Variable Short name Relative importance (%) 

Mean discharge (m3/s) Qmean 57.42 

Slope (m/m) Slope 21.54 

Drainage area (km2) Area 15.64 

Mean river width (m) Width 2.41 

River type RType 1.25 

Substrate_Sand (%) Sand 0.70 

Substrate_Loam (%) Loam 0.69 

Substrate_Silt (%) Silt  0.34 

Substrate_Clay (%) Clay 0 

Substrate_Peat bog (%) Peat bog 0 

Substrate_Fen (%) Fen 0 
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