
Interactive comment on “Temporal and spatial scale 
and positional effects on rain erosivity derived from 
contiguous rain data” by F. K. Fischer et al.  
 
Anonymous Referee #1   
Excellent paper on very interesting and actual topic. There is wide discussion about 
application of various rain data sources for determination of rain erosivity for application 
within USLE, but there are very few papers, dealing with this topic on relevant level. And 
even less information about possible corrections and expected errors and problems. What I 
appreciate a lot is data set size – number of stations, area included and duration of the study 
(number of events recorded and included). I have no comments or requests to change or add 
anything from scientific point of view – on this point I strongly recommend for publication.  
 
We appreciate the encouraging comments  
 
 
I only have several minor comments to formal presentation of the paper – to be possibly 
more clear to the readers or/and easily understandable – as such statistic studies are always 
difficult to interpret to someone, who did not study the certain problem deeply.  
 
Introduction: potential recent data sources are well discussed – (gauging stations networks 
and meteo-radars) also including their accuracy.  
 
To be fair, I would appreciate also short discussion of accuracy and potential errors occurring 
on gauging stations. There are for sure errors in records, especially during extreme stormy 
events given by tipping bucket, by capacity of drainage pipe (if this type of gauging station is 
used), etc. It also depends a lot on type of device used. Also, there is modern recent method 
now for rainfall parameters estimation using commercial microwave links. I fully understand 
that these data are not analyzed within this paper, but they should at least be mentioned in 
Introduction part.  
 
We added reference to commercial microwave links in the discussion (not in the 
introduction). 
 
“…The same is true for using data of commercial microwave links, which recently have been 
identified as additional source for retrieving precipitation (Chwala et al., 2012; Overeem et 
al., 2013) and which will require the method effect to be adapted for this particular approach. 
The approach is based on analysing the signal attenuation that depends on rain intensity. 
These data are especially valuable in regions with sparse coverage by conventional 
measurement devices like, e.g., in parts of the African continent, but may also improve high 
resolution precipitation estimates and forecasts in hydrometeorological applications (Chwala 
et al., 2016).” 
 
 
Regarding accuracy and potential errors at gauging stations we added to the new Chapter 
2.1 Data sets:  
 
“Precipitation measurements of the DWD station network were conducted with Pluvio Ott 
weighing rain gauges (OTT Hydromet GmbH, Kempten, Germany) with a collector area of 
200 cm2, a measurement range of 0-1800 mm/h, and a 1-minute resolution of 0.1 mm/h. The 
precipitation data passed a quality control system testing for completeness, carrying out 
climatological tests, checking consistency over time as well as internal and spatial 
consistency (Spengler, 2002; Kaspar, 2013). The data were neither corrected for wind drift 
effects nor homogenized. A thorough overview of the precision of rain gauge measurements 



is given in Monesi et al (2009). Information on the stations’ meta data can be found in the 
Climate Data Center (ftp://ftp-
cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/historical/) of DWD.” 
 
We also expanded the description of the radar data by adding: 
 
“The DWD radar network underwent several upgrades during the analysis period. In the 
beginning of the considered time period five single-polarization systems (DWSR-88C, 
AeroBase Group Inc., Manassas, USA) operated without Doppler filter the latter being added 
between 2001 and 2004. Between 2009 and today, DWD exchanged the network of C-band 
single-polarization systems of the next generation of type METEOR 360 AC (Gematronik, 
Neuss, Germany)  and DWSR-2501 (Enterprise Electronics Corporation, Enterprise, USA) by 
modern dual-polarization C-band systems of type DWSR-5001C/SDP-CE (Enterprise 
Electronics Corporation), all equipped with Doppler filter. During the time of exchange, a 
portable interim radar system of type DWSR-5001C was installed at some of sites. 
Radar data underwent an operational quality control system. They were adjusted to gauge 
data within a reprocessing suite applying a consistent software version (version 2017.002) 
and optimized quality control algorithms (Winterrath et al., 2017).”   
 
 
Hypothesis formulation are relevant and clear. They are relatively trivial – and expectable – 
therefore I would appreciate possibly to more clearly state if those are research questions, 
which shall be answered in Conclusions and Discussion.  
 
We added at the bottom of the Introduction:  
“We will quantify these effects and discuss their implications.” 
 
 
Chapter 2 – to be clearer, I would recommend to characterize at least briefly goal and basic 
scheme of analyses planned (done) of the research in the beginning of the chapter. It is then 
described later – but reader is a bit confused by overview of methodology, but not knowing, 
which data will then be used and why actually.  
 
We added at the beginning of chapter 2 a sup-chapter “2.1 Data sets” in which we describe 
the data and for which question we will use the data. We removed the respective information 
from the following chapters in order to avoid repetition and increase in manuscript length. 
 
 
Chapter 2.2, section 15 – there is a bit confusing for me discrepancy between 16 years 
(duration of whole experiment = data record ?) and four years for 12 rainfall gauging stations 
within 1 km2. Can be explained better ?  
 
Due to the rearrangement of information in a sub-chapter “2.1 Data sets” it should be clearer 
now that these are independent data sets. The long-term data were taken from a long-term 
observation network while the 4-yr data of high spatial resolution (12 recording rain gauges 
within 1 km²) stem from a research project that did not last longer. Globally, there are hardly 
any other rain gauge data of similar density available. 
 
 
Basic description of gauging stations (equipment) and analyzed data shall be performed to 
clarify number of rising associated questions – from both of gauging stations and from 
radars. Were rainfall data from gauging stations treated, corrected, filled gaps,…. ? Time 
resolution and other data characteristics, …basic statistics of the data set should be 
performed (really all the stations measured all the time for whole 16 years ?). Is there 
consistency in equipment ? (=all the stations had same equipment during whole period ?)  
 



We added an extensive description to the new Chapter 2.1 Data sets (see above)  
 
 
Figure 1 – relation between sections B and C is not really clearly described. Why Thiessen 
polygons were used and not some smooth interpolation polygons ?  
 
We added: 
“A previous geostatistical analysis of the spatial pattern had shown that erosive rains 
recorded by the dense network followed near-linear trends between neighboring rain gauges 
(Fiener and Auerswald 2009; see also Fig. 1b for an example). From this follows that the 
spatial pattern can be retrieved best by linear interpolation between the rain gauge sites. The 
spatial average of a linear interpolation is mathematically identical to the well-known 
Thiessen polygons. We thus used Thiessen polygons for calculation of the spatial average 
because they are mathematically simpler as they lead to a constant weighting for the 
different stations irrespective of the recorded amount of rain. They also can easily be 
illustrated (Fig. 1c).” 
 
Generally – all my recommendations are just minor in importance and formal to clarify the 
analyses performed and I appreciate the paper as a whole a lot.  



Reply to the Interactive comment on “Temporal and spatial scale and 

positional effects on rain erosivity derived from contiguous rain data” 

by Referee  #2. 

 

We thank Ref. #2 for his efforts in reviewing our manuscript. Our reply to his comments (in 

black) is given in blue. 

 

Anonymous Referee #2 

Received and published: 7 November 2018 

Due to unknown mechanism of cloud microphysics or cloud dynamics, it is supposed that 

rainfall prediction and radar rain calibration in detailed small space and time scale resolution 

such as certain 100 m2 is unreliable, even with the technology in the state of arts. Also, the 

space resolution is influenced by spatial fluctuation of soil surface property, topography, 

geology and geo-structure.  It can vary widely even in 10 m2 scale. As you know, only 

average values of rainfall or erosion in the limited resolution are available in real condition.  

In this situation, I recommend the research rather focused on the minimum threshold which 

time and space resolution is suitable for clarify the positional effects on rain erosivity.  

We fully agree with this comment that radar technology does not perfectly resolve 

precipitation on small temporal and spatial scales. Nevertheless it is important to close the gap 

between the point data at rain gauges and the spatial scale provided by radar (or the even 

larger scale by satellite data; see Vrieling et al., 2010, 2014). This is why we used a high-

density rain gauge field to include smaller scales.  

For the application neither the point scale nor the radar or satellite scale is usually of interest 

but this may be plots, fields, or catchments. This means that a user has to decide which data 

are closest to his scale of interest and he has to close the gap between both scales. Our 

analysis will guide this decision and provide relations to close the gap. Also the importance of 

the positional effect strongly depends on the research question and the study area. Importance 

increases the shorter the time span under focus becomes and the more convective rains prevail 

in the study area. 

 

Vrieling, A., Sterk, G., de Jong, S.M.: Satellite-based estimation of rainfall erosivity for 

Africa. J. Hydrol., 395, 235-241, 2010. 

Vrieling, A., Hoedjes, J.C.B., van der Velde, M.: Towards large-scale monitoring of soil 

erosion in Africa: Accounting for the dynamics of rainfall erosivity. Global Planetary Change, 

115, 33-43, 2014. 
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Abstract. Up until now, erosivity required for soil loss predictions has been mainly estimated from rain gauge data at point 

scale and then spatially interpolated to erosivity maps. Contiguous radar rain data from weather radar measurements, 

satellites, cellular communication networks and other sources are now available but they differ in temporal and spatial scale 

from the point scale. We determined how the intensity threshold has to be modified and which temporal and spatial scaling 

factors have to be applied to account for the differences in scale. Furthermore, a positional effect quantifies heterogeneity of 15 

erosivity within 1 km², which presently is the highest resolution of freely available gauge-adjusted radar rain data. A method 

effect accounts for differences in measuring peculiarities between rain gauges and weather radars. These effects were 

analysed using several large data sets with a total of approximately 2 x 10
6
 erosive events (e.g., records of 115 rain gauges 

for 16 years distributed across Germany and radar rain data for the same locations and events). With decreasing temporal 

resolution, peak intensities decreased and the intensity threshold of erosive rains was met less often. This became especially 20 

pronounced, when time increments became larger than 30 min. With decreasing spatial resolution, intensity peaks were also 

reduced but because additionally large areas without erosive rain were included within one pixel. This was due to the steep 

spatial gradients in erosivity. Erosivity of single events could be zero or more than twice the mean annual sum within a 

distance of less than 1 km. We conclude that the resulting large positional effect requires use of contiguous rain data, even 

over distances of less than 1 km, but at the same time contiguously measured radar data cannot be resolved to point scale. 25 

The temporal scale is easier to consider but time increments larger than 30 min should be avoided because the loss of 

information increases considerably. We provide functions to account for temporal scale (from 1 min to 120 min) and spatial 

scale (from rain gauge to pixels of 18 km width) that can be applied to rain gauge data of low temporal resolution and to 

contiguous radar rain data. 
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1 Introduction 

Prediction of rain-induced soil erosion using models like the Universal Soil Loss Equation (USLE) requires quantification of 

the potential of rain to cause soil detachment and transport. This potential is called rainfall erosivity and is typically obtained 

from point rainfall measurements using rain gauges. For the conversion of erosivities from point to spatial information, 

isolines, interpolation techniques and relations to parameters such as the mean summer rainfall depth were used (Rogler and 5 

Schwertmann, 1981; Wischmeier, 1959; Wischmeier and Smith, 1958, 1978). The characteristic relation between erosivity 

and rain depth of the same period was termed erosivity density and used in RUSLE2 (Dabney et al., 2012; USDA, 2013). It 

is recommended for areas with poor data availability (Nearing et al., 2017).  

Rainfall is now able to be measured contiguously by radars and adjusted by rain gauges so that information about the spatio-

temporal distribution of rain is combined with hyetographs measured at ground level. Several countries provide rain-gauge-10 

adjusted radar data products with spatial resolutions of, for example, 1 x 1 km² (Bartels et al., 2004; Fairman et al., 2015), 2 

x 2 km² (Koistinen and Michelson, 2002; Michelson et al., 2010), or 4 x 4 km² (Hardegree et al., 2008). Contiguous data of 

even coarser scale may result from other sources such as satellite data (Vrieling et al., 2010, 2014) or the output of regional 

climate models (e.g. Christensen et al., 2007; Flato et al., 2013).  

Despite the important advantage that radar rain data are contiguous and temporally resolved, they cannot easily be used in 15 

place of rain gauge data for erosivity estimations because the scales of measurement differ a lot between both techniques. 

While rain gauges measure the rain near ground level at point scale (in Germany the collection area is 200 cm²), radars 

usually deliver rain measurements with an azimuthal resolution of approx. 1° and a range of 125 m to 1000 m. The data are 

then typically aggregated in grids of square pixels 1 to 16 km² in size. Rain intensity may differ greatly between point and 

grid measurements due to reduction in peak intensities with decreasing temporal and spatial resolution. Furthermore, sources 20 

of error differ between both measurement techniques. For radar measurements, errors may result from shading of rain cells 

by objects such as buildings, orographic elevations, or hydrometeors and from the influence of the melting layer causing 

bright band effects (Wagner et al., 2012). Major limitations of rain gauges are caused by adhesion, evaporation, wind drift 

and splashing (Habib et al., 2001). Finally, strong gradients can, in particular, be expected for thunderstorm cells of limited 

spatial extent. Thus, heterogeneity within pixels will be especially be pronounced for erosive rains (Fiener and Auerswald, 25 

2009; Fischer et al., 2016; Krajewski et al., 2003; Pedersen et al., 2010, Peleg et al., 2016). This heterogeneity cannot be 

resolved but needs to be quantified because it is the uncertainty that can be expected for predictions at a resolution higher 

than the pixel size. This uncertainty also applies in cases where a point measurement of rain erosivity is within a certain 

distance (e.g. 1 km) from the target area for which erosion is to be calculated. The resulting deviation between point 

measurement and grid pixel average will be called positional effect in the following. This positional effect should level out in 30 

long-term measurements as long as grid pixels are small enough not to include a consistent orographic pattern. It has 

important implications also for the use of point measurements to predict erosivity and soil loss in the proximity of a 

measuring location because it determines the uncertainty, caused by the spatial variability of rain, of these predications. 
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By definition in the USLE, erosivity is the product of a rain’s maximum 30-min intensity and its total kinetic energy 

(Wischmeier and Smith, 1958). Both factors depend on rain intensity and thus, intensity is squared in erosivity. 

Consequently, a difference in rain intensity of 10% would already result in difference in erosivity of 21%. Therefore, larger 

effects of variation in rain intensity can be expected for erosivity than for rainfall. In particular, an average of squares, as 

obtained from several point measurements within an area of non-uniform rainfall, will always be higher than the square of 5 

the average calculated from the same measurements. This difference between both squares caused by the difference in spatial 

scale of the measurements is expected to be a robust factor in the long run. We will call this ‘spatial scale effect’. A spatial 

scale effect for erosivity, to the best of our knowledge, has not been studied. This is probably due to the novelty of 

operational radar measurements and the lack of long-term data sets required for erosivity estimations. Long-term and revised 

radar rain data now exist and can help to improve contiguous erosivity and soil loss estimations. Therefore, it is crucial to 10 

know to which extent erosivity, and subsequently also soil loss, are underestimated due to the spatial scale effect by gridded 

rain data as provided by radar measurements and also by climate models that employ an even coarser spatial resolution than 

typical radars (Chen and Knutson, 2008). Rain intensities from radar may additionally be smoothed by measuring and 

subsequent processing procedures. The contribution of erosivity underestimation due to these procedures is called ‘method 

effect’ in the following. Thus, the difference in erosivity from rain gauge data and from radar data is caused by spatial scale 15 

and method effects.  

Another effect is induced by the temporal scale of the data used for erosivity calculations. With decreasing temporal 

resolution, mainly maximum 30-min intensity, and hence erosivity, are increasingly underestimated. Therefore, temporal 

scaling factors are required to compensate for this underestimation (e.g. Auerswald et al., 2015; Agnese et al., 2006; Istok et 

al., 1986; Williams and Sheridan, 1991; Weiss, 1964; Yin et al., 2007). These are especially important for contiguous data, 20 

for which temporal resolution of rain data is decreased, often to 60 min, as a requirement for the adjustment to rain gauge 

data and to reduce the enormous amount of data caused by the high spatial resolution and wide spatial and temporal 

coverage.   

We therefore hypothesize that: 1) with decreasing temporal and spatial resolution of rain data, calculated erosivities decrease 

due to a smoothing of intensities; 2) radar measurements cause an additional underestimation of erosivities due to the 25 

measuring principle and the required calculation and correction steps; 3) large uncertainty of erosivity within 1 km² is due to 

the positional effect. The effects of hypotheses 1) and 2) have to be compensated by changes in the calculation of erosivity 

while the effect of hypothesis 3) quantifies uncertainty of erosivity of individual events at any location within an area of 1 

km² around a rain gauge. We will quantify these effects and discuss their implications. 
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2 Material and methods 

2.1 Data sets 

To cover a wide range of spatial and temporal resolutions, several large and overlapping data sets had to be combined (for an 

overview see Table 1). The spatial resolution from point scale to 1 km pixel width (with an intermediate pixel width of 0.5 

km) was covered by a high-density network of 12 rain gauges operated over four years within an area of 1 km² (taken from 5 

Fiener and Auerswald 2009; for location of the measuring site see Fig. 1a; for the spatial distribution of rain gauges see Fig. 

1c). It included 542 events at point scale. The spatially integrated hyetographs at 0.5 km or 1 km pixel width will be referred 

to as ‘pseudo-radar’ data.  

Point scale and 1 km pixel width were also compared for a much wider data set covering 16 years and the whole of 

Germany. Erosivities at 115 rain gauges were compared to erosivities obtained from radar data with 1 km resolution (for 10 

location of the rain gauges and the coverage of weather radars see Fig. 1a). Rain gauge data were taken from the Climate 

Data Center of the German Weather Service (ftp://ftp-cdc.dwd.de/pub/CDC/). The German Weather Service also provided 

the radar data, which were a revised version of the radar rain data product RADOLAN (Winterrath et al., 2012, 2017). This 

resulted in point-pixel pairs for >20,000 erosive rain events. For this data set also the effect of temporal resolution was 

evaluated. For spatial resolutions lower than 1 km pixel width (up to 18 km pixel width), a third data set was used. It 15 

comprised 1.9 x 10
6
 events at 1 km pixel width determined by radar measurements within an area of 800 x 600 km² (Table 

1). 

Precipitation measurements of the DWD station network were conducted with Pluvio Ott weighing rain gauges (OTT 

Hydromet GmbH, Kempten, Germany) with a collector area of 200 cm
2
, a measurement range of 0-1800 mm/h, and a 1-

minute resolution of 0.1 mm/h. The precipitation data passed a quality control system testing for completeness, carrying out 20 

climatological tests, checking consistency over time as well as internal and spatial consistency (Spengler, 2002; Kaspar, 

2013). The data were neither corrected for wind drift effects nor homogenized. A thorough overview of the precision of rain 

gauge measurements is given in Vuerich et al (2009). Information on the stations’ meta data can be found in the Climate 

Data Center (ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/historical/) of DWD. 

The DWD radar network underwent several upgrades during the analysis period. In the beginning of the considered time 25 

period five single-polarization systems (DWSR-88C, AeroBase Group Inc., Manassas, USA) operated without Doppler filter 

the latter being added between 2001 and 2004. Between 2009 and today, DWD exchanged the network of C-band single-

polarization systems of the next generation of type METEOR 360 AC (Gematronik, Neuss, Germany)  and DWSR-2501 

(Enterprise Electronics Corporation, Enterprise, USA) by modern dual-polarization C-band systems of type DWSR-

5001C/SDP-CE (Enterprise Electronics Corporation), all equipped with Doppler filter. During the time of exchange, a 30 

portable interim radar system of type DWSR-5001C was installed at some of sites. Radar data underwent an operational 

quality control system. They were adjusted to gauge data within a reprocessing suite applying a consistent software version 

ftp://ftp-cdc.dwd.de/pub/CDC/
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(version 2017.002) and optimized quality control algorithms with 5-min resolution (Winterrath et al., 2018a) and 1h 

resolution (Winterrath et al., 2018b). 

 

2.1 2 Erosivity calculation procedures 

Following Wischmeier (1959) and Wischmeier and Smith (1978) erosivity of a single rain event (Re) was calculated as the 5 

product of the maximum 30-min rain intensity (Imax30) and the kinetic energy (Ekin) (Eq. (1)). A rain event is erosive by 

definition if it has a total precipitation (P) of at least 12.7 mm or an Imax30 of 12.7 mm h
-1

 (min(Imax30)).  

𝑅𝑒 = 𝐼𝑚𝑎𝑥30 ∗  𝐸𝑘𝑖𝑛            (1) 

The Ekin,i per mm rain depth (in kJ m
-2

 mm
-1

) was calculated for intervals i of constant rain intensity I following Eqs. (2.1) – 

(2.3). For all intervals i, Ekin,i was multiplied with the rain amount of this interval and then summed up to yield Ekin for the 10 

entire event. 

𝐸𝑘𝑖𝑛,𝑖 = (11.89 + 8.73 ∗ 𝑙𝑜𝑔10𝐼) ∗ 10−3   for 0.05 mm h
-1 

≤ I < 76.2 mm h
-1

    (2.1) 

𝐸𝑘𝑖𝑛,𝑖 = 0      for I < 0.05 mm h
-1

     (2.2) 

𝐸𝑘𝑖𝑛,𝑖 =  28.33 ∗ 10−3      for I ≥ 76.2 mm h
-1

     (2.3) 

When Imax30 was derived from data with intervals longer than 30 min, Imax30 was determined as the maximum rain intensity of 15 

the event. Erosive events are separated from each other by rain breaks of at least 6 hours (Wischmeier and Smith, 1958, 

1978). For example, using 60 min rain data, we defined events as being separate when five subsequent 60-min intervals 

without rain occurred. This assumes that rain events stop and start on average in the middle of the first and the last non-zero 

rain interval. The same concept was used for all data sets with temporal resolutions > 60 min. 

The annual erosivity of a specific year (Ry) is the sum of Re of all n erosive events within this year. The long-term average 20 

annual erosivity (R) is then calculated as 

𝑅 =
1

𝑘
∑ (∑ 𝑅𝑒,𝑖

𝑛
𝑖 )𝑗

𝑘
𝑗 =

1

𝑘
∑ 𝑅𝑦,𝑗

𝑘
𝑗           (3) 

which is the average of Ry for a number of k years, in case of this study 16 years.  

While in the USA and other countries often the unit MJ mm ha
−1

 h
−1

 is used, we use N h
−1

 for Re, because it is the unit for R 

most often used in Europe and because of its simplicity. The units can be easily converted by multiplying the values in N h
−1

 25 

with a factor of 10 to yield MJ mm ha
−1

 h
−1

. 

2.2 3 Determination of scale effects 

The smoothing caused by decreasing resolution in time and space mainly decreases intensity, while the total amount of 

rainfall should, in principle, be unaffected. This decrease in intensity has two consequences. First, the intensity threshold 

min(Imax30) that defines an erosive event is less often met and thus has to be adjusted to arrive at the same number of erosive 30 

rains irrespective of resolution. Second, scaling factors for Re are required. A temporal scaling factor t,σ scales from 
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temporal resolution  to 1-min resolution at a certain spatial scale with pixel width σ. A spatial scaling factor sσ scales from 

spatial resolution  to point resolution (rain gauge). A method effect m may additionally occur, which quantifies the 

difference between erosivities obtained from rain gauges and from radar measurements at identical spatial and temporal 

scales. It is caused by the additional smoothing resulting from the radar technique and the adjustment and correction steps 

subsequently required. It may also include the errors of rain measurement that differ between the methods rain gauge and 5 

radar. The positional effect pRe describes the average relative deviation of erosivity of single events derived at 1 km 

resolution and at point scale from rain gauges located within the respective 1 km pixel including the spatial scale and method 

effects. The positional effect cannot be used for correction but it is a measure of variability within a certain pixel.  

Adjusting the intensity threshold to account for smoothing at low resolution is appropriate only for the temporal resolution. 

With decreasing spatial resolution some areas will be included within a pixel that actually received erosive rain, while other 10 

areas within the pixel did not. Without adjustment of the intensity threshold the entire pixel may be classified as non-erosive, 

while adjustment of the threshold would then indicate an erosive event also in those areas within a pixel where no erosive 

rain had occurred. Adjusting the intensity threshold with decreasing spatial resolution could not correct both errors 

simultaneously.  Even more important, the criterion of breaks that separate between events is biased for large areas. Any rain 

at some place within a large pixel abrogates an existing break even if it does not fall at a site that experienced an erosive rain. 15 

The loss of a break with increasing pixel size decreases the number of events even when all events are considered. Adjusting 

the number of events in this case would be a wrong correction. Hence for the spatial resolution the threshold effect was 

included in sσ, while for the temporal scale effect the intensity threshold could be adjusted. As a result the number of erosive 

events can correctly be estimated at low temporal resolution with this adjustment at point scale while for a spatial resolution 

lower than point scale the number of erosive events will be wrong compared to point scale. Only the sum of erosivities over 20 

a longer period of time (months, years, or longer) can then be corrected with the spatial scaling factor.  

To cover a wide range of spatial and temporal resolutions, several large and overlapping data sets had to be combined (for an 

overview see Table 1). The spatial resolution from point scale to 1 km pixel width (with an intermediate pixel width of 0.5 

km) was covered by aThe hyetographs of the high-density network of 12 rain gauges were spatially integrated to yield 

hyetographs at 0.5 km or 1 km pixel width. operated over four years within an area of 1 km² (taken from Fiener and 25 

Auerswald 2009; for location of the measuring site see Fig. 1a; for the spatial distribution of rain gauges see Fig. 1c). It 

included 542 events at point scale. The average deviation of annual erosivities calculated from hyetographs at point scale and 

from spatially integrated hyetographs at 0.5 km or 1 km pixel width width (here referred to as ‘pseudo-radar’ data) yielded 

the spatial scaling factors sσ=0.5 and sσ=1. The individual deviation of event erosivities at point scale from the average was due 

to the positional effect pRe (for an example see Fig. 1b). The average positional effect pRe was calculated as the geometric 30 

mean of the k ratios of Re derived from rain gauge ( = 0) and 1 km² pixel data ( = 1), for which neither rain gauge Re nor 

pixel Re was zero: 

𝑝𝑅𝑒  =  10^(∑ 𝑙𝑜𝑔10(𝑅𝑒,σ=0 /𝑅𝑒,σ=1)𝑘
𝑖=1 𝑖

/ 𝑘).        (4) 
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The positional effects were determined separately for events with Re,σ=1 larger and Re,σ=1 lower than Re,σ=0. Rains that were 

erosive at only one of both spatial scales were excluded from the calculation of the geometric mean and the percentages of 

these events were determined for both cases.  

Point scale and 1 km pixel width was also compared for a much wider data set covering the whole of Germany by comparing 

erosivities at 115 rain gauges with erosivities obtained from radar data with 1 km resolution (for location of the rain gauges 5 

and the coverage of weather radars see Fig. 1a). The 115 radar pixels in which the rain gauges were operated, were selected. 

Rain gauge data were taken from the Climate Data Center of the German Weather Service (ftp://ftp-cdc.dwd.de/pub/CDC/). 

The German Weather Service also provided the radar data, which were a revised version of the radar rain data product 

RADOLAN (Winterrath et al., 2012; Winterrath et al., 2017). This resulted in point-pixel pairs for >20,000 erosive rain 

events. Erosivity at point scale and at 1 km² pixel scale were also compared based on >20,000 erosive rain events at 115 10 

locations distributed over Germany, where a rain gauge was situated within a radar pixel. The long-term (16 years) average 

deviation of R between point and pixel scale was due to the smoothing effects of the spatial scale effect and the radar 

technique (method effect). The method effect was quantified by subtracting the spatial scale effect, as obtained from the 

dense rain gauge network, from the combined effect, as obtained by comparing erosivities from rain gauges with radar-

derived erosivities. The combined effects of spatial scale and method were also tested for seasonal variation. 15 

For spatial resolution lower than 1 km pixel width, radar data were aggregated to yield pixel widths of up to 18 km. 

Erosivities were calculated from the aggregated rain data and compared to the erosivities at 1 km pixel width, which were 

averaged for the pixel width being examined. This comparison was carried out for radar data covering an area of 800 x 600 

km² over 2 months (, which comprised 1.9 x 10
6
 events at 1 km pixel width; (Table 1). 

The temporal resolutions of the rain gauge data and the radar data differed (1 min, 5 min, 1 h). Erosivities derived from these 20 

data were adjusted to 1 min resolution with the appropriate temporal scaling factor. The temporal scaling factors were 

determined on two spatial scales, at point scale and at 1 km pixel width. To this end, 17 out of the 115 point-pixel pairs were 

selected randomly and rain data for the period 2001 to 2016 (16 years) with 1 min resolution from rain gauges and 5 min 

resolution from radar measurements were used. The rain gauge data yielded a total of 4,599 erosive events, for which rain 

data were aggregated to 2 min, 5 min, 10 min, 15 min, 30 min, 45 min, 60 min, 80 min, 100 min and 120 min intervals, and 25 

Re was determined as described in Sect. 2.1. The intensity threshold min(Imax30) was adjusted until the annual number of 

erosive rain events at the respective temporal resolution  was equal to that at  = 1 min. The temporal scaling factor (t=x,σ=y) 

for Re was then obtained at point scale ( = 0) from:  

𝑡=x,σ=0 = ∑ (𝑅𝑒,=1,σ=0)𝑖
𝑁
𝑖=1  /  ∑ (𝑅𝑒,=x,σ=0)𝑖 

𝑁
𝑖=1          (5) 

which is the ratio of the sums of Re derived from 1 min data and Re derived from data with  > 1 min at point scale. 30 

Additionally, for 1 km pixel width t=x,σ=1 was estimated by using an intermediate radar product of RADOLAN with a 

temporal resolution of 5 min that was recursively adjusted corresponding to the 60 min RADOLAN data (analogously to 

Fischer et al. 2016). This was done for the 17 grid pixels where the 17 rain gauges were located. The temporal scaling factors 
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were derived from RADOLAN data as described above (Eq. (5)) but relative to  = 5 min. The resulting factors were then 

multiplied by the scaling factor for  = 5 min obtained from the rain gauge data to yield scaling factors relative to a temporal 

resolution  = 1 min. 

The temporal scaling factors t=x,σ=0 were additionally determined for each month (Jan – Dec) and separately for rain gauges 

located in the northern and southern halves of Germany (7 and 10 rain gauges, respectively) to test for any seasonal or 5 

regional dependence of the factors.  

Finally, the combined procedure of an adjusted intensity threshold and a temporal scaling factor was validated by comparing 

annual Ry obtained from 60-min RADOLAN data to Ry derived from RADOLAN data with 5 min resolution. This was done 

for the remaining 98 (115 – 17) grid pixels and 16 years yielding a total of 1568 Ry.  

2.3 4 Statistics 10 

We mainly used arithmetic means even though most distributions were strongly skewed. Arithmetic means are less robust 

than other measures like geometric means but our huge sample size compensated for this. Using arithmetic means instead of 

robust measures is a requirement of the USLE, which sums up erosivities over one year or longer. The arithmetic mean 

provides an unbiased estimator of event erosivity that allows sums to be calculated over longer periods of time (e.g. one 

year). Otherwise different scaling factors would become necessary for individual events and for temporal sums depending on 15 

their temporal length.  

Statistical spread is quantified by the standard deviation (SD) or the root mean squared error (RMSE), and the uncertainty of 

the scaling factors is quantified by their 95% interval of confidence (CI). Validation included the calculation of the Nash–

Sutcliffe efficiency (Nash and Sutcliffe, 1970). 

3 Results 20 

3.1 Temporal scale effect 

With 17 rain gauges operating at 1 min resolution, 4599 erosive events were determined in 16 years. Re ranged from 0.1 N 

h
-1

 to 178.4 N h
-1

 with an average of 5.8 N h
-1

. The number of events with P ≥ 12.7 mm or Imax30 > 12.7 mm h
-1

 decreased 

pronouncedly when resolution decreased from 1 min down to 120 min (by 1%, 14% and 16% at a resolution of 2 min, 60 

min and 120 min, respectively). To avoid this loss of events, min(Imax30) was decreased continuously with decreasing 25 

temporal resolution (Fig. 2b). The decrease was less steep below a temporal resolution of 30 min than above:  

min (𝐼𝑚𝑎𝑥30) =  −0.59 0.5 + 13.23 for  ≤ 30 min       (6.1) 

min (𝐼𝑚𝑎𝑥30) =  147 −0.79  for  ≥ 30 min       (6.2) 

This change at a resolution of 30 min is because 30 min is the time interval in which the maximum is searched for. For 

resolutions higher than 30 min, there is a discrepancy between the true period of Imax30 and the period of Imax30 that is coerced 30 
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by the temporal resolution (see grey bars in Fig. 2a). The error caused by this discrepancy only results from the difference in 

intensity immediately before and after true Imax30. When the temporal resolution becomes less than 30 min, attenuation 

caused by the period exceeding the 30-min interval additionally decreases intensity (see 60-min resolution in Fig. 2a). This 

attenuation increases the lower the temporal resolution becomes, and caused Eq. (6.2) to be much steeper than Eq. (6.1).  

The decrease in min(Imax30) was identical for both, the rain gauge scale and the 1 km² scale (slope between both scales: 5 

1.0067, r² = 0.9858, n = 9). For both scales combined, RMSE was only 0.10 and 0.39 for Eqs. (6.1) and (6.2) respectively. 

Thus, both equations were valid for point scale and for a grid width of 1 km. 

 

Rain erosivity also decreased with decreasing temporal resolution and, in turn, the scaling factor t,σ increased (Fig. 2c; Eqs. 

(7.1) – (7.2b)). For intervals  ≤ 30 min, the increase was identical for rain gauge scale and for radar pixels of 1 km pixel 10 

width. The increase of t,σ was much steeper when  became longer than 30 min. This increase then depended on the spatial 

scale and was larger for rain gauge scale than for radar pixels of 1 km pixel width (Fig. 2c). The behaviour of t,σ was caused 

by underestimating Ekin and underestimating Imax30. The underestimation of Imax30 was the stronger effect (data not shown). It 

prevailed for time intervals greater than 30 min and caused the break at a temporal resolution of 30 min, as already shown 

for min(Imax30). The identical behaviour of intensity with decreasing temporal resolution at rain gauge scale and at 1 km² 15 

radar pixel scale that was already evident for min(Imax30) thus also led to identical t,σ for both spatial scales as long as  was 

less than 30 min. For  > 30 min the attenuation of intensity peaks came into play. This attenuation was less for the 1 km 

radar data than for the rain gauge data because the time a moving intensity peak remains in a 1 km² grid pixel is longer than 

the time it requires to pass a rain gauge. In consequence, three equations for t,σ (Eqs. (7.1) – (7.2b)) were necessary to adjust 

Re , Ry or R to 1 min resolution at the respective spatial scale.  20 

𝑡,σ =


100
+ 1     for  ≤ 30 min and point or 1 x 1 km² grid scale   (7.1) 

𝑡,σ=0 =


40
+ 0.55     for  ≥ 30 min and point scale or    (7.2a) 

𝑡,σ=1 =


50
+ 0.70     for  ≥ 30 min and 1 x 1 km² grid scale.    (7.2b) 

The RMSE of all three equations was less than 0.04. The validity of combining the effects of min(Imax30)=60 and t=60,σ=1 was 

supported by the close correlation of temporally scaled Ry derived from 5 min and 60 min RADOLAN data, for which the 25 

Nash-Sutcliffe efficiency was 0.9483 (n = 1568) while RMSE was 8.8 N h
-1

 yr
-1

.  

Variation among monthly t,σ=0 was small, especially for  ≤ 60 min. The coefficient of variation among monthly t,σ=0 was 

≤ 6% for  ≤ 60 min and 11% to 14% for  > 60 min. It was not clear if there was seasonality in this variation because for 

some temporal resolutions t,σ=0 was higher for summer than for winter months, while for other resolutions the opposite was 

the case.  30 

There was also a negligible regional variation for  >30 min, while no difference could be found for  ≤ 30 min. For intervals 

longer than 30 min the scaling factor t,σ=0 increased slightly more in northern Germany (+4%) than in southern Germany 
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(-2%), compared to the whole of Germany. This small difference will only become relevant if data of very low temporal 

resolution are used.  

3.2 Spatial scale effects 

Erosivities of all data of rain gauge-radar pixel pairs were calculated by application of appropriate min(Imax30) and temporal 

scaling factors to enable comparison. Annual erosivity Ry for the 0.5 x 0.5 km² pseudo-radar data set was 7.3% lower than 5 

the average of the rain gauges. This resulted in a factor sσ=0.5 of 1.08 (CI: 1.00 – 1.16). This factor increased to sσ=1 = 1.15 

(CI: 1.04 – 1.26) if Ry was calculated from 1 x 1 km² pseudo-radar data (Fig. 3).   

For the rain gauges of the 115 rain gauge-radar pixel pairs, long-term annual R varied between 42 and 223 N h
-1

 yr
-1

 over 16 

years and was on average 90.2 N h
-1

 yr
-1

. For the radar pixels, R varied between 26 and 146 N h
-1

 yr
-1

 but was on average 

only 62 N h
-1

 yr
-1

 (Fig. 4). In this case the deviation was equal to a factor of 1.48 (CI: 1.43 – 1.52), which was considerably 10 

larger than sσ=1 obtained from pseudo-radar data, for which no difference in measurement method occurred between point 

scale and pixel scale. This difference was hence assigned to a method effect (Fig. 3). 

The monthly comparison of the 115 rain gauge-radar pixel pairs over 16 years did not yield significant differences between 

months due to the large CI of the combined scale and method effects (CI between ±4% to ±9% for the individual months) 

but on average this combined effect was lower during the hydrological winter months (1.16; CI: 1.12 – 1.21) than during the 15 

hydrological summer months (1.42; CI: 1.30 – 1.53). This difference, despite being significant (p < 0.001), was unimportant 

because of the small contribution of winter months to annual erosivity.  

For the large and contiguous radar data set of 800 x 600 pixels, 1.9 x 10
6
 events were recorded at 1 x 1 km² scale. For these 

events, Re was on average 5.1 N h
-1

 and ranged from 0.5 to 1270 N h
-1

. Aggregating these pixels to larger square pixels 

decreased Re. At 18 x 18 km², Re was on average 4.4 N h
-1

 and ranged from 0.2 to 221.6 N h
-1

. In consequence, the spatial 20 

scaling factor sσ increased further (Fig. 3). The increase in scaling factors over the entire range from point scale to 18 km 

grid width could be described by a multiple regression (r² = 0.9995, n = 21) accounting for pixel width  (in km) and the 

method effect m depending on the method µ (which is 0 for rain gauges and 1 for radar data): 

𝑚 + 𝑠 = 1 + 0.35 𝜇 + 0.092 3/4          (8) 

The CI was  0.004 for the slope of  and  0.02 for the method effect.  25 

     

On average for the pseudo-radar pixel, rain was erosive for only 10 out of 12 rain gauges. Hence only 83% of the 1 km² pixel 

was covered by an erosive event. The fraction covered by the erosive event decreased further the larger the pixel size became 

(fraction = 83% - 10.3 × ln(pixel size (km²)), r² = 0.9974, n = 18). On average only about 50% of a 5 × 5 km² pixel and 25% 

of a 17 × 17 km² pixel received an erosive rain. This makes it increasingly difficult to detect erosive rains the larger pixel 30 

size becomes, which caused the strong increase in the spatial scaling factor and indicated a strong positional effect.  
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3.3 Positional effects 

The positional effect as defined here describes the variability of Re within 1 x 1 km². Using the pairs with the true radar data, 

29 610 erosive rain events were recorded during 16 years at the 115 rain gauges. On average, Re was 5.6 N h
-1

 and ranged 

from 0.1 to 547.2 N h
-1

. For the corresponding 115 radar pixels, 25 884 erosive events were recorded during the 16 years. 

Mean Re was 4.4 N h
-1

 and ranged from 0.2 to 318.9 N h
-1

.  5 

Combining all events of the 115 rain gauge-radar pixel pairs during 16 years that were at least erosive at rain gauge scale or 

at radar pixel scale resulted in 35 124 events. Only 57% of them were erosive at both scales, while the criteria for an erosive 

event were met exclusively at pixel scale for 16% of all events and exclusively for 27% of all events at rain gauge scale 

(Table 2). The gradients of erosivity within 1 km² were huge. The largest event that was recorded at a rain gauge while the 

radar pixel indicated no erosive event was 156 N h
-1

. The largest event for the opposite case, i.e. that radar recorded an 10 

erosive event while the rain gauge recorded no erosive event, was similarly high (180 N h
-1

). The mean Re of erosive events, 

which were recorded for the radar pixel while Re at the corresponding rain gauge was zero, was 2.9 N h
-1 

(SD: ± 4.9 N h
-1

). 

The mean Re of events, which were erosive at a rain gauge but not for the corresponding radar pixel, was also 2.9 N h
-1 

(SD: 

± 5.6 N h
-1

).  

The percentage of unpaired events was not significantly related to the geographical location, neither longitude (r = -0.02, p = 15 

0.23) nor latitude (r = -0.01, p = 0.83). It was also independent of the distance to the adjacent radar station (r = -0.02, p = 

0.79), which might be used as proxy for increasing noise in the radar data. The percentage was higher in winter (Oct – Mar) 

with 34% (SD: ± 2.4%) than in summer (Apr – Sept) with 25% (SD: ± 2.4%). The probability of remaining just below the 

threshold of an erosive event on one of both scales was higher in winter than in summer as in general winter events are less 

intensive than summer events. Mean Re in winter was only 35% of mean Re in summer.  20 

Rain gauge Re was larger than radar Re for 74% of those point-pixel pairs (points above the line of unity in Fig. 5) which 

were erosive on both scales (19 944 events). Mean pRe was 1.54 (CI: ± 0.01) for these events. This value quantifies the mean 

deviation of all locations within a 1 km² pixel that experience a higher erosivity than the mean. For individual locations, the 

deviation can be much larger, which was already evident from the magnitude of the largest events that were recorded only on 

one of both scales. For individual locations with an erosive event on both scales, pRe could be considerably higher than 10 25 

(see “outliers” in Fig. 5). Rain gauge Re was lower than radar Re for only 26% of all events (points below the line of unity in 

Fig. 5) and pRe was 0.72 (CI: ± 0.01). Again, the deviation of individual locations within 1 km² could be much larger. 

For the dense rain gauge field used to create pseudo-radar data, 579 point-pixel pairs of events were at least erosive at rain 

gauge scale or at pseudo-radar pixel scale. For these 579 events, Re derived from rain gauge data ranged from 0 to 45.5 N h
-1

 

(mean 3.9 N h
-1

) and Re derived from pseudo-radar data ranged from 0 to 28.1 N h
-1

 (mean 3.4 N h
-1

) (Fig. 6). For 9% of 30 

these events, the event was not erosive with pseudo-radar but at the rain gauge and for 6% the opposite was true (Table 3). 

For 67% of those events which were erosive at both scales, rain gauge Re was larger than pseudo-radar Re and pRe was 1.28 

(CI: 1.25 – 1.30). For 33% of these events, rain gauge Re was lower than pseudo-radar Re and pRe was 0.81 (CI: 0.77 – 0.85). 
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Also in this case, where measurement errors could be excluded because rain gauge Re and pseudo-radar Re were calculated 

from the same data, the variation within 1 km² was again huge. For the single days with erosive events, Re varied greatly 

between rain gauges. For an example see height of the rectangle in Fig. 6. Although this was the largest event in this data set, 

one rain gauge remained below the threshold and hence recorded no erosive event. This large variation was also reflected by 

the large coefficient of variation between rain gauge Re for the same day (mean 68%).  5 

4 Discussion 

Our analysis showed pronounced effects of temporal scale, spatial scale, position and measuring method. These effects were 

all caused by the sensitivity of erosivity calculation to intensity peaks and because thresholds were used for the definition of 

erosivity. These strong effects call for using temporally and spatially highly resolved rain gauge measurements, like those 

used in the development of the USLE and most subsequent studies. Our study, however, also showed strong gradients in 10 

erosivity that were also caused by the sensitivity to intensity peaks and by the thresholds, which earlier studies also showed 

(Fiener and Auerswald, 2009; Fischer et al., 2016; Krajewski et al, 2003; Pedersen et al., 2010, Peleg et al., 2016). Erosivity 

can thus reliably be recorded at the position of a rain gauge but this information cannot even be extrapolated over a distance 

of only 500 m (half of our radar pixel widths). This was illustrated by the fact that within this distance, Re could be zero or 

>150 N h
-1

, which is more than twice the annual erosivity in Germany (Auerswald 2006, Sauerborn 1994). It is also 15 

illustrated by the fact that the largest Re that was recorded within only two months was 1270 N h
-1

 when contiguous 

measurements were used, while the largest Re that occurred during 16 years when the same region was covered by 115 rain 

gauges was only 547 N h
-1

. Hence rain gauge measurements fail to record many erosive events that occur in their close 

vicinity (even < 500 m). Erosivity measured at a rain gauge cannot be extrapolated to a small watershed, to farms or even to 

fields. Discrepancies between model predictions and measurements of erosion that can be found in many studies (Govers 20 

1991, Liu et al. 1997, Risse et al. 1993, Rüttimann et al. 1995, Zhang et al. 1996) probably originate in part from this strong 

positional effect. Such strong discrepancies during individual events even exist between replicates of bare plots (Nearing et 

al. 1999) or between replicated vegetated plots and cannot be explained by plot characteristics for subsequent runoff and soil 

loss observations (Wendt et al. 1986). Erosion prediction and model development is thus strongly limited by the unexplained 

variability caused by short-range erosivity gradients. Hence, there is no alternative to using contiguous rain measurements. 25 

Radar technology provides, for the first time, measurements that fulfil this need.  

Contiguous measurements, on the other hand, suffer from the fact that they cannot be carried out at the same temporal and 

spatial scale as rain gauge measurements, and the method of measurement differs. Here we provide scaling factors that help 

to partly overcome this problem and which allow radar measurements to be used for erosivity calculations. These factors, 

however, do not solve the problem that contiguous measurements integrate over a certain space and time and thus the 30 

information about the variation within these domains is lost. In particular, the positional effect can only be used to quantify 

uncertainty within a radar pixel but it cannot be used to predict erosivity at specific locations within a pixel. This large 
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uncertainty is probably also one of the main reasons for the discrepancy between observed soil loss and predicted soil loss 

based on radar rain data for individual fields, whereas this discrepancy disappeared as soon as many fields were grouped, 

irrespective of how this grouping was done (Fischer et al., 2018, Auerswald et al., 2018). With future improvements in 

technology it may become possible to further improve temporal and spatial resolution of contiguous rain data and, thus, to 

reduce the uncertainty of event erosivities. 5 

Temporal scaling factors had already been developed (Auerswald et al., 2015; Agnese et al., 2006; Istok et al., 1986; 

Williams and Sheridan, 1991; Weiss, 1964; Yin et al., 2007) because they are also required for rain gauge measurements of 

low temporal resolution (in data storage). Our temporal scaling factors were of a similar order of magnitude to those in other 

studies. However, our data showed that using a scaling factor is not sufficient because the intensity threshold also has to be 

adjusted in order to identify the correct number of erosive events. The existence of an erosive event and long-term sums of 10 

erosivity will otherwise be incorrect, even with a temporal scaling factor. To our knowledge our study provides, for the first 

time, a function that enables the intensity threshold to be adjusted according to the temporal resolution of the rain data. 

Adjustment of the total rain depth threshold is not necessary because total rain depth should be independent of the temporal 

resolution, as long as it is still short enough to identify the rain breaks that separate individual events.  

Despite providing intensity thresholds and scaling factors for Re, Ry and R for different temporal resolutions, we advocate for 15 

using a high resolution in order to not lose information. All scaling factors can only represent average behaviour and cannot 

reflect the behaviour of an individual event. A high resolution is easier to achieve in the time domain than in the spatial 

domain. In particular, it is advantageous to have a temporal resolution that is higher than 30 min because scaling factors 

increased strongly for less resolved data. For shorter time increments, only compensation for the error that resulted from an 

imperfect identification of the period of Imax30 was necessary. Longer time increments than 30 min additionally attenuated 20 

Imax30 and thus blurred this information. 

The spatial scale was more difficult to consider than the temporal scale due to the large positional effect. In particular, large 

parts of a pixel remained below the thresholds of an erosive event even when measurement errors could be excluded, like in 

the case of the pseudo-radar pixel that used rain gauge measurements. On average, 17% of the rain gauges within a 1 km² 

pixel remained below the erosivity threshold while the other rain gauges recorded an erosive event. This percentage 25 

increased strongly with increasing pixel size. In consequence, the spatial scale effect cannot be corrected for individual 

events but only for the averages of many events. 

The spatial scaling factor is conceptually the inverse of the so-called areal reduction factors, which are used to reduce rain 

intensity from rain gauge measurements when scaled to catchment areas depending on the duration and return period of the 

rain event (Allen and DeGaetano, 2005; De Michele et al., 2001; Stewart, 1989). This conceptual difference is due to the 30 

difference in the intended purpose of contiguous rain data. While in catchment hydrology the average and the relative 

distribution of rain depth within a watershed is of interest (Asquith and Famiglietti, 2000), for erosion analysis, rain 

intensities are important at point and field-scale where erosion occurs. 
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The method effect combines all differences in measurement and measuring errors (e.g., the wind effect in the case of rain 

gauges). It is thus highly dependent on the specific configuration of rain gauge measurements and radar measurements, 

including all subsequent data manipulation steps. These configurations are usually fairly standardized within a country (e.g., 

rain gauge height and diameter are usually defined) but differ from country to country. Our method effect may thus only be 

valid for Germany and application to other countries, even if they use similar rain gauge and radar protocols (e.g., 5 

Goudenhoofdt and Delobbe, 2016; Koistinen and Michelson, 2002), should be done with care. The same is true for using 

data of commercial microwave links, which recently have been identified as additional source for retrieving precipitation 

(Chwala et al., 2012; Overeem et al., 2013) and which will require the method effect to be adapted for this particular 

approach. The approach is based on analysing the signal attenuation that depends on rain intensity. These data are especially 

valuable in regions with sparse coverage by conventional measurement devices like, e.g., in parts of the African continent, 10 

but may also improve high resolution precipitation estimates and forecasts in hydrometeorological applications (Chwala et 

al., 2016).  

As an example, for the new German RADOLAN product that soon will become publicly available (spatial resolution 1 km², 

temporal resolution 60 min) the Imax30 threshold would have to be lowered to 5.79 mm h
-1

 while the total precipitation 

threshold remains at 12.7 mm. The temporal scaling factor would be t = 1.9, the spatial scaling factor would be s = 1.13 to 15 

which the method effect of m = 0.35 has to be added. In total, the correction factor would be 2.81 ((1.13 + 0.35) × 1.9). 

Hence the change of the Imax30 threshold and the combined scaling factor are large and ignoring both would considerably 

underestimate erosivity. The large change of the Imax30 threshold and the large temporal scaling factor also show that much 

information is lost when using data of 60 min resolution.  

This loss of information can either be an advantage or a disadvantage. It would be a disadvantage in hindcasting when 20 

usually the true pattern of erosivity is wanted. In this case a better resolved product like 5-min data should be used. The Imax30 

threshold would then be 11.9 mm h
-1

 and the temporal scaling factor would only be t = 1.05, indicating a minor loss of 

information. The spatial scaling factor is already rather low and the method effect cannot be avoided.  

On the other hand the loss of information would be an advantage in forecasting, which aims at the likely regional pattern of 

erosivity. The loss of information removes the influence of randomly occurring local events of extraordinarily high 25 

magnitude that add noise to the regional pattern of erosivity. The finding that the largest Re within only two months was 

1270 N h
-1

 while the expected long-term average R was only about 70 N h
-1

 yr
-1

  (Sauerborn 1994) shows that this single 

event would add 64 N h
-1

 yr
-1

 to a 20-yr record of radar data. Even in a 100-yr record this single event would still be 

detectable. Using data of 60 min resolution thus reduces the need for smoothing the map statistically to remove the influence 

of such local events. 30 
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5. Conclusions 

Large gradients in event erosivity occur that can only be captured by contiguous rain data. Radar technology enables such 

contiguous rain data to be recorded but not at the same temporal and spatial scale as measurements from rain gauges. Using 

data of lower temporal and spatial resolution than rain gauges leads to a pronounced underestimation of erosivity. Here we 

provide a set of correction functions that enable this underestimation to be corrected. In particular, the intensity threshold has 5 

to be modified, a temporal scale factor, a spatial scale factor and a factor accounting for measurement peculiarities have to be 

considered. In combination with contiguous radar rain data this could be a major step forward in erosion modeling.  
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Figure 1: a) Locations of the 115 rain gauges (dots), the coverage (circles) of the 17 weather radars (crosses) and the location of the 

12 rain gauges used for the pseudo-radar data (square; size exaggerated) in Germany. b) One rain gauge (dot) within one 1 x 1 

km² pixel (bounding box) and isolines of rain depth (taken from Fiener and Auerswald, 2009) illustrating the variability of a single 

erosive rain event at 1 x 1 km² grid scale causing positional effects. c) Distribution of the 12 rain gauges (dots) within an area of 1 x 5 
1 km² (bounding box) and their corresponding Thiessen polygons. Dashed lines separate the area to a spatial scale of 0.5 x 0.5 km². 
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Figure 2: a) Time periods influencing the underestimation of Imax30 when temporal resolution is 30 min (or more) or when 

temporal resolution is 60 min (or any resolution >30 min). b) Minimum threshold for Imax30 (min(Imax30)) derived from rain gauge 

(solid circles) and radar data (open squares) required to obtain the same number of erosive events as with a temporal resolution of 

1 min; lines show Eq. (6.1) and Eq. (6.2) (RMSE is 0.10 and 0.39). c) Scaling factor t,σ to scale Re or R for temporal resolution  5 
when spatial resolution  is either rain gauge scale (solid circles) or 1 x 1 km² (open squares) respectively; lines show Eqs. (7.1), 

(7.2) and (7.3) (for all RMSE ≤ 0.04). The x-axes in b) and c) are square-root scaled. 
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Figure 3: Spatial scaling factors for R. Open circles result from rain gauges aggregated to pseudo-radar pixels. Open squares 

result from radar and aggregation of radar data. Error bars represent the 95% confidence interval. Lines denote a multiple 

regression (see text). The x-axis is square-root scaled to improve visibility at low pixel width. 

 5 

 

Figure 4: Annual erosivity Ry (grey points) and multi-annual mean erosivity R (black circles) derived from radar pixel and rain 

gauge data for 115 point-pixel pairs and 16 years. The difference in slope between the solid line and unity (dashed line) is due to 

the spatial scale and the method effects.  

 10 
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Figure 5: Comparison of event erosivity Re calculated from radar data and Re from rain gauge data for 115 radar pixels that 

enclose a rain gauge. Only events that were erosive at both scales (19 944 events) during the 16 year period are shown. The dashed 

line represents unity. Axes are log scaled. Note: no spatial scaling factor or method factor was applied because these factors also 

included the effect of incomplete coverage of the pixel by an erosive rain cell. 5 

 
Figure 6: Event erosivity Re at 12 rain gauges located within a 1 km² pixel versus Re based on pseudo-radar data calculated from 

the hyetographs of the 12 rain gauges (open grey circles). Filled black circles show the average Re of all 12 rain gauges vs the Re 

from pseudo-radar rainfall. Note that the average Re can be considerably larger than zero while the averaged rainfall of the 

pseudo-radar remains below the thresholds of erosivity (black circles along the y axis). Rectangular frame shows variation of Re 10 
for a single day. Axes are square-root scaled to improve resolution at low Re.  
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Table 1: Overview of the data used to determine the positional effect, the spatial scale effect, temporal scale effect and the method 

effect.  

Purpose Measurement 
Spatial  

scale 

Temporal  

scale 

Number of 

stations/ pixels 
Period 

Event 

number 

Positional and  

spatial scale  

Rain gauge Point 60 min 115 16 yr 29 610 

Radar 1 km² 60 min 115 16 yr 25 884 

Spatial scale and 

method effect 

Rain gauge Point 1 min 12 
4 yr,  

Apr - Oct 
542 

Radar 1 km² 60 min 480 x 10
3
 2 months 1.9 x 10

6
 

Temporal  

scale  

Rain gauge  Point 1 min 17 16 yr 4 599 

Radar 1 km² 5 min 17 16 yr 3 924 

 

 

Table 2: Percentage of cases that were erosive at point (115 rain gauges) or at pixel scale (115 radar pixel) relative to a total of 35 5 
124 point-pixel pairs of rain events that were erosive on at least one of both scales. 

Point scale Pixel scale Percentage 

Erosive Not erosive 27% 

Not erosive Erosive 16% 

Erosive Erosive 57% 

 

Table 3: Percentage of cases that were erosive at point (rain gauge) or at pixel scale, using the pseudo-radar data; in total 579 

point-pixel pairs of rain events were erosive on at least one of both scales. 

Point scale Pixel scale Percentage 

Erosive Not erosive 9% 

Not erosive Erosive 6% 

Erosive Erosive 85% 
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