
Final response

In the following, the specific Author Comments (ACs) previously provided to the
Short Comments (SCs) and Referee comments (RCs) are given again (questions are
in blue, authors’ responses are in black). In addition, it is now specified, if relevant,
where the modifications were implemented in the revised manuscript (version with no
apparent modifications).

Finally, the current Final response also includes the revised version of the manuscript
with apparent additions in blue and removals in red and crossed.
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Answer to the review comments by Dr Lieke Melsen

We would like to thank Dr Lieke Melsen for her detailed analysis of the article. It
helped us to clarify some points in the manuscript.

Major

• Page 6, line 3-4: “Furthermore, this result can be completed by making the same
plot for other transformations giving more weight on low flows. Figure 4 shows
that square rooted (Fig. 4 (a) and (b)) and inverse (Fig. 4 (c) and (d)) transfor-
mations do encounter the same problems as with the logarithm for catchments
that have an average log-transformed flow around zero.” This statement is incon-
sistent with the figures. The square root transformation does show a completely
different pattern. Please clarify

This statement is clearly inconsistent as we forgot a word. Instead of “do en-
counter”, we meant “do not encounter”. We apologize for this mistake that totally
change the meaning of the sentence.

However, we can discuss a little this point: Dr Lieke Melsen is right when saying
that the square rooted flows show a completely different pattern but, to a lesser
degree, it is also the case for the inverted flows. Indeed, if the KGE’ on inverted
values shows negative values for catchments that have an average log-transformed
flow around zero, it also shows negative values for a significant part of the other
catchments (Fig. 4 (c) and (d)). These negative values are more due to the differ-
ence between inverted flows and the untransformed flows than to some numerical
flaws in the KGE’.

Added/Modified: Sect. 5.1, p 6, lines 11-12 (of the revised manuscript) Figure 3
shows that square rooted (Fig. 3 (a) and (b)) and inverse (Fig. 3 (c) and (d))
transformations do not encounter the same problems as with the logarithm for
catchments that have an average log-transformed flow around zero.

• Related to that; table 1 states that square root transformation does not increase
low flow weight, but to me it seems that it diminishes the weight of high-flows,
thereby somehow increasing the weight of low flows. Please clarify.

The reviewer is right, by decreasing the high-flow weight, the square root trans-
formation indirectly increases the low-flow weight. We stated this for the square
root transformation in order to highlight the fact that this transformation in-
creases low-flow weights to a lesser extent compared to the inverse, Box-Cox or
logarithmic transformations.

Instead of using two columns, namely about low and high flows columns, we
propose to keep only one column named “Increases low-flow weight” and to use a
different number of + signs as an intensity representation (+ for square root, ++
for logarithm, Box-Cox and the inverted square root, added following Dr John
Ding comment and +++ for inverse).
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Added/Modified:We removed the column “Decrease high-flow weight” and used
different numbers of + in the column “Increase low-flow weight” in table 1 (Sect.
6.2, top of p 12).

• Page 8, line 3: I understand “optimistic” refers to a higher model performance for
KGE’ when evaluated in l/s compared to m3/s. However, I don’t really under-
stand how Eq. 5 automatically implies this. In Eq. 5 I see that log(1000) is always
added, but whether this leads to an improved or decreased model performance
seems to me dependent on the bias in the model. Please clarify.

To clarify the impact of the added log(1000) we can calculate the bias ratio of
log-transformed flows in l · s−1 regarding the average of log-transformed flows in
m3 · s−1. Using Eq. 5, the bias ratio is equal to:

βlog[l · s−1] =
log(1000) + µlog,s[m

3 · s−1]
log(1000) + µlog,o[m3 · s−1]

(1)

In the tested data set, µlog,s[m
3 · s−1] and µlog,o[m

3 · s−1] (the log-transformed
flows averages of respectively the simulated and observed flows in m3 · s−1) are in
majority between −4 and 4. Because log(1000) is higher than the flows averages
(≈ 6.9), it will have a greater impact on the ratio calculation than the average
flow itself which leads to a tendency to improve the ratio. As we use the KGE’,
the γ ratio is also affected and, because of the interaction between the average
and the standard deviation of flows it is even more complicated to predict the
ratio difference between m3 · s−1 and l · s−1.
To illustrate this on the data set used in the article we plotted the values of
the three KGE’ components for the log-transformed flows in m3 · s−1 and l · s−1
(Fig. 1 of this answer). Fig. 1 (c) shows that the bias ratio tends to be improved
in l · s−1 especially for the catchments that have a bad bias ratio in m3 · s−1.
The difference between the two flow units is more complicated in the case of the
coefficient of variation ratios (Fig. 1 (b)).

In a nutshell, the KGE’ value tends to be higher because of the artificial improve-
ment of the bias ratio but the coefficients of variation ratio can vary differently
and lead to a decrease of the KGE’ value.

In the manuscript, we will replace “optimistic” by “higher model performance” and
add some sentences to better explain the reasons of this apparent improvement
of performances.

Added/Modified: Sect. 5.2, p 8, lines 8-13 The higher model performance
when using l · s−1 than when using m3 · s−1 can be explained analytically. Con-
sidering Eq. 7, the formula of the bias ratio in l · s−1 regarding the averages in
m3 · s−1 is:

βlog[l · s−1] =
log(1000) + µlog,s[m

3 · s−1]
log(1000) + µlog,o[m3 · s−1]

Because log(1000) is not negligible compared to the averages, adding this constant
term would artificially improve β and, by extension, the KGE’ value. The γ ratio
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is also affected and, due to the interactions between the standard deviation and
the averages, modify differently the KGE’ value.

Minor

• Page 4, line 13 It would be good if the order of Box-Cox and adding a constant
is changed in order to be consistent with results.

It will be done.

Added/Modified: Done (see Sect. 3.3, p 4, lines 13-19)

• Figure 2 is relevant and insightful, but it takes some time to understand all
information. Perhaps, it can be stressed in the caption that left, simulated in
shown in red and right observed is shown in red (as is also done for a figure later
in the manuscript).

Regarding this remark, we propose to replace “ The red dots represent the catch-
ments where the average of the log-transformed simulated (a) or observed (b)
flows is around 0.” by “In plot (a), the axis values represents the observed log-
transformed flows averages and the color represents the simulated ones while in
the plot (b), it is the opposite.”

Added/Modified: We did this modification not only in Fig. 2 caption but also
in the captions of the three other figures that are similar to Fig. 2 (namely Fig.
3, 7 and 9).

• Page 6, line 7 “remain correct”. Correct seems a vague term in this context (what
is a correct objective function value?). Please consider rewording.

The reviewer is right, the word “correct” is not well chosen, particularly because
some of the NSE values in question are around zero which denotes a bad simula-
tion. It will be replaced by “positive or around zero”.

Added/Modified: Sect. 5.1, p 7, lines 1-2 This tends to confirm that the strongly
negative KGE’ values stem more from a numerical issue than an actual problem
in simulated values because the NSE values in these catchments remain positive
or around zero.

• Consider to include the original KGE equation in Section 2 as well, especially
because this information is relevant in the discussion of the modified Box-Cox.
E.g. p. 9 l. 20, it will not affect the KGE because µs is not in the denominator
in the original KGE (perhaps help the reader on this as well, e.g. on p. 10 just
above the section Summary).

It is a good suggestion, an equation will be added replacing the γ term of Eq.
1 by an α. The EKG in Eq. 1 will be denoted E ′KG and proper reference to the
KGE equation in page 9 and 10.

Added/Modified: Sect. 2, p 2, line 20 The KGE and KGE’ criteria (Gupta et
al., 2009; Kling et al., 2012, respectively denoted EKG and E ′KG in Eq. 1 and Eq.
2)

Sect. 2, p 2, lines 23-24

EKG = 1−
√
(r − 1)2 + (β − 1)2 + (α− 1)2
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E ′KG = 1−
√

(r − 1)2 + (β − 1)2 + (γ − 1)2

Sect. 2, p 3, lines 3-4 – α, the ratio between the simulated and observed standard
deviations evaluates the flows variability error:

α =
σs
σo

Sect. 5.4, p 10, lines 10-11 Because this instability is due to µs (which is only in
the denominator of the γ ratio in Eq. 6), it will only affect the KGE’. The KGE
is not affected because an α ratio is used instead of the γ ratio (Eq. 1 and 5)

• Page 3, line 19 conversation -> conversion

It will be fixed

Added/Modified: Sect. 3.2, p 3, lines 23-24 It can be easily demonstrated that
γ, β and r remain identical when flow is expressed in any of these two units, since
the division by 1000 necessary for the conversion is eliminated in the ratios.
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Figure 1: Values difference between cubic metres and litres per seconds of the three
components of the KGE’ calculated on log-transformed flows.
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Answer to the review comments by Dr Björn Guse

We would like to thank Dr Björn Guse for his review of the article.

Minor comments:

• Page 5, line 28: The modelling period is subdivided into a calibration (2003-
2008) and a validation period (2008-2013). Please make clear whether the year
2008 belongs to the calibration or validation period.

Actually we made a mistake in this description. To be exact, the calibration
period covers the period from July 2005 to June 2009 and the validation one
covers the period from July 2009 to July 2013. We apologize for this mistake and
will modify the article accordingly.

Added/Modified: Sect. 4.1, p 5, lines 1-2 The availability of data covers the
2005-2013 period.

Sect. 4.2, p 5, lines 6-8 The available records are split into a calibration (from
July 2005 to June 2009) and a validation (from July 2009 to July 2013)
period following a standard split-sample test procedure (Klemeš, 1986).

• Figs. 2-11: If possible, I recommend to add a header to the subplots. Since all
these figures have a similar layout, it would be good to differentiate them in a
clearer way. E.g. you may add “observations” and “simulations” as header to the
subplots of Fig. 3.

This is a good suggestion, it will help making the figures more understandable
and complements Dr Lieke Melsen’s minor comment number 2.

Added/Modified: We added these headers in Fig. 2, 3, 7 and 9.

• Fig. 2-3: Maybe you can merge both figures by adding the information that you
compare log-transformed and untransformed data.

This is also a good idea as Fig. 2 has more value when compared to Fig. 3. We
will do it.

Added/Modified: Done, we removed the former Fig.3 and added it to Fig.2 (c)
and (d).

Technical comments:

• I recommend to avoid paragraphs with only one or two sentences such as on P.4,
L.20-27.

We will try to aggregate the smallest paragraphs for a better understanding of
the manuscript.

Added/Modified: Following this advice, we aggregated 4 couples of paragraphs.
These aggregations are pictured by small red lines in the following marked-up
manuscript version.
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• Page 13, L. 4: Please remove “pp.” in the Coron et al.

It will be done

Added/Modified: Done
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Answer to the comments by S. Mylevaganam

We would like to thank S. Mylevaganam for his comments on the technical aspects of
our manuscript and the Associate Editor for framing our answer regarding the issues
which are out of the scope of the technical discussion.

• 1) From the reader’s point of view, considering the current discussion, the current
version of the manuscript needs to be reviewed by qualified referees who are
specialized in the subject that is presented in the manuscript. Since this is a
technical note, the need for more technical evaluation by the referees is required.
Moreover, the referees’ role should not be harbored to state whether or not the
referees “like/hate/love” the manuscript.

This comment is not about the paper content and we therefore refer to the Edi-
tor’s reply.

• 2) As per the authors [see P-2 LN-2], Gupta et al. (2009) clearly demonstrated
that discharge variability is not correctly taken into account for the evaluation.
Therefore, Gupta et al. (2009) proposed a new criterion, Kling-Gupta efficiency
(KGE), which provides direct assessment of four aspects of discharge time series,
namely shape and timing, water balance and variability[see P-2 LN-6]. As far as
I remember, in 2006, this piece of idea was introduced by a graduate student.
Therefore, respecting Mr. Donald Trump’s intention of preventing people from
stealing someone’s ideas/works/technologies, it would be more appropriate for
the authors to evaluate the originality of Gupta et al. (2009)’s work.

The objective of the paper was to discuss a specific application of a criterion
previously published in an international journal after peer-review (Journal of
Hydrology) and which has been widely used then. If there is a possible concern
about the KGE criterion, the reviewer should directly contact the authors or the
editors of Journal of Hydrology. We agree with the Editor that this discussion
and our article are not the right place to discuss this issue. We are not aware
of the graduate student work mentioned by the reviewer, for which no detail is
given and therefore we are not able to evaluate the originality of the work.

• 3) As per the authors, The KGE’ criterion (Kling et al., 2012, denoted EKG in
Eq. 1) is written as a sum of the distances to 1 (perfect value) of three components
of the modelling error [see P-2 LN-20]. What is meant by “sum” of the “distances”
to 1? What is the mathematical formula that is used to compute the distance?
If we consider a three dimensional space (i.e., x-axis=ratio-1, y-axis=ratio-2, z-
axis=ratio-3), isn’t the square root component merely the distance from the origin
(i.e., [1, 1, 1])?

These questions show that our sentence is not precise enough. Mathematically
speaking, the KGE’ is a linear transformation of the Euclidian distance from the
ideal point (i.e., [1, 1, 1]) in the three-dimensional space defined by the three
ratios (Eq. (2) to (4)). In Eq. (1), this Euclidian distance is represented by the
square root component and the computed linear transformation of this distance
is f : x 7→ 1− x. This function is used to allow the KGE’ to have the same range
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of values as for the NSE. We thank the reviewer for pointing out this and will
attempt to be more precise in the manuscript by modifying the page 2 line 20
sentence.

Added/Modified: Sect. 2, p 2, lines 20-22 The KGE and KGE’ criteria (Gupta
et al., 2009; Kling et al., 2012, respectively denoted EKG and E ′KG in Eq. 1 and
Eq. 2) are written as a linear transformation (f : x 7→ 1 − x) of the Euclidian
distance to an ideal value (i.e. [1,1,1]) in a three dimensional space defined by
three components of the modelling error:

• 4) What is the physical meaning of equation (1)? Let’s say that the right-hand side
of the equation (1) has two components. The first component is “1”. The second
component is the square root component that includes the ratios (e.g., beta). Why
would you subtract the second component (i.e., square root component) from the
first component (i.e., 1)? What is the physical meaning of the second component?
What is the physical meaning of the first component? If the second component of
the equation (1) represents the distance (see the definition), as per dimensional
theories, the first component needs to be a distance. Otherwise, the operator (i.e.,
negative sign) becomes meaningless. What is the distance represented by the first
component? What is the origin for the distance that is represented by the first
component?

First of all, regarding the dimensional theories, the KGE’ expression is right.
Indeed, a Euclidian distance in a space of dimensions without units (it is the
case of the three ratios that form the KGE’) is dimensionless. Thus, linearly
transforming this dimensionless Euclidian distance is not wrong mathematically
speaking.

However, the choice of the transformation f can be discussed. As said in the
answer of the reviewer comment 3), the distance is subtracted to 1 to have the
same range of values as the NSE criterion. This is clearly due to legacy because
a lot of rainfall-runoff modellers are used to the NSE and to analyse its values.
This subtraction can be discussed as the Euclidian distance stands for itself as
an evaluation criterion but, because the transformation of this distance in the
KGE’ is linear, the interpretation of the KGE’ values remains the same as for
the Euclidian distance. Consequently, it has no impact on the evaluation of the
performance of the model.

Regarding the physical meaning of the KGE’, we will answer in our response of
comment 6).

• 5) Does your equation (3) evaluate the water balance error? What is meant by
water balance? What is the range of your beta value? Assume that we have the
following monthly observed flow values :5,5,4,5,5,5,5,5,6,5,5,5. Assume that we
have the following monthly simulated flow values :5,5,6,5,5,5,5,5,5,5,5,4.As per
your equation(3), if we consider all the flow values, the beta value is 1.However,
if we consider the first six months, the value of the beta is not equal to 1. Is your
beta value time dependent?

The beta ratio represents the quantitative aspect of the simulation. If it is greater
than 1, the model overestimates the discharge and if it is lower than 1, the model
underestimate the discharge. We agree that the value of beta depends on the time
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as it is the case of all the other ratios. We used a split-sample test to limit the
impact of this time dependency.

To avoid misunderstanding we will replace “water balance” by “bias”.

Added/Modified: Sect.2, p 3, line 1 – β, the bias term, evaluates the bias
between observed and simulated flows:

• 6) Assume that the ratio-1=1 (i.e., equation (2)), ratio-2=1 (i.e., equation (3)),
and ratio-3=0.5 (i.e., equation (4)). As per your equation (1), the value of KGE is
0.5. Now, assume that the ratio-1=1 (i.e., equation (2)), ratio-2=0.5 (i.e., equation
(3)), and ratio-3=1 (i.e., equation (4)). As per your equation (1), the value of KGE
is 0.5. What is the physical meaning of the KGE values?

The physical meaning of the KGE value itself is not well defined. It is simply
an aggregated representation of the model error over the studied period. To un-
derstand its value, the modeller needs to have a look on the three components
of the criterion separately. This is stated in the Gupta et al. (2009) publication
and it is often done by the KGE users (for example in the work of Ficchí et al.,
2016, cited in the present manuscript). Moreover, depending of the modeller’s
objectives, Gupta et al. (2009) also proposed to weight each component of the
KGE.

• 7) As per your equation (4), the ratio-3 is a function of your beta value. In
other words, your ratio-3 is a function of ratio-2 (i.e., equation (3)). This gives
an indication that the ratio-3 that is accounted in your equation (1) repeats the
influence of ratio-2 in equation (1).

In the publication that introduces the KGE’, Kling et al. (2012) stated that:
“For the variability ratio γ we used CVs

CVo
instead of σs

σo
, which was proposed in the

original version of the KGE-statistic (Gupta et al., 2009). This ensures that the
bias and variability ratios are not cross-correlated, which otherwise may occur
when e.g. the precipitation inputs are biased.”. In other words if the bias ratio
is bad, the ratio of standard deviation will also be affected. To avoid the impact
of average discharge error on the variability component, the standard deviation
ratio is normalised by the bias ratio.

Added/Modified: Sect.2, p 3, line 6 These coefficients of variation are used to
avoid the impact of bias on the variability indicator (Kling et al., 2012):
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Answer to the comments by Dr John Ding

On Table 1: A fifth transformation of the low flow (comment
SC1)

A combination of the first two transformations, the square root and the inverse, leads
back in time to the 1960s to a RoSR (reciprocal of the square root) transformation
of the dry weather flow. This physics-based double transformation was arrived at in-
dependently by Chapman (1964) in Australia, Ishihara and Tagaki (1965) in Japan,
and this writer, Ding (1966) in Canada. All this, along with the fourth statistical one,
the 1-parameter Box-Cox (1964) transformation, appeared in a 3-year time span from
1964 to 1966. I’ll be interested in the authors’ view on this parametric-free RoSR
transformation.

A graphical illustration (comment SC2)

It’s most gratifying to read the positive response from the authors to my suggestion of
looking at a classical RoSR (i.e., ISR, the inverse square root) transformation. Their
discussion paper has appeared at a most opportune time, as I have ready a slide
presentation on the Budyko evapotranspiration framework. This happens to include
an illustration of the log- and RoSR-transformations of a dry weather flow hydrograph.
Two of these slides are shown here, Figure 9 and (Section) 7. In the latter, the storage
exponent N appears in a nonlinear storage-discharge relation, Q ≈ SN .

Addendum (comment SC3)

Unbeknown to me until now, Figure 9 hints at a new data transformation targeting
hydrographs. This is called the NISR, the negative inverse square-root transformation
of the flow Q : − 1√

Q
.

Re-ranking the transformations (comment SC5)

The NISR (negative inverse square-root) transformation can be generalized to a NIR
(negative inverse root) one defined below:

JN(Q) = −
1

N
√
Q

= −Q
−1
N (2)

J0(Q) = logQ (3)

Some may dismiss the J2 transformation as simply a sign change of the classical
ISR (inverse square-root) one. Indeed they are correct. But as Leonardo Da Vince
(1452-1519) once said, ”Simplicity is the ultimate sophistication.”

For example, J2 happens to be a subset of the 1-parameter Box-Cox (1964) trans-
formation (Eq. 6 in Santos et al. paper) when parameter λ = −1

2

f
λ=− 1

2
BC (Q) =

Qλ − 1

λ
= 2(1 + J2) (4)
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The difference between these two ISR-type transformed values is:

f
λ=− 1

2
BC − J2 = 2 + J2 = 2− 1√

Q
(5)

This has a maximum value of 2.
Figure 1 shows the modifications of the four transformation methods being con-

sidered in the authors’ Table 1. These are the original logarithmic, a fixed-parameter
Box-Cox, the inverse negated, and the square root both inverted and negated, and
labelled J0, f

λ=− 1
2

BC , J1 and J2, respectively. All four transformation curves share the
same inverted U-shape, being an advantage for comparison purposes. These show their
relative impact on the transformed flow values, most obviously on the lower ends.

Answer to Dr J. Ding comment SC1

We would like to thank Dr J. Ding for reading our manuscript and for his comment.
We had not heard before about this transformation which is, actually, very inter-

esting.
Regarding only Table 1, the inverted square root transformation shows exactly

the same pros and con as the inverse transformation. It allows to decrease high-flow
weight and increase low-flow weight in the KGE’ calculation. A KGE’ calculated on
this transformation is also dimensionless and shows no issue when the flow average is
around 1 (see Fig. 2 of this comment) and, as for inverse transformation, the inverted
square root one needs specific attention for zero flows.

However, if we only consider numerical characteristics, the inverted square root
transformation presents two advantages compared to invert transformation. The first
one is that, even if it is sensitive to the constant added to avoid zero flows, this sensi-
tivity is lower than the inverse transformation’s sensitivity (as shown in Fig. 3). The
second one is that the inverse transformation can be very extreme and totally erase the
weight of high flows. The inverted square root can be seen as “smoother” than inverse.

In a nutshell, we consider the inverted square root transformation as a good com-
promise to replace logarithm transformation. We are grateful to Dr J. Ding for his
suggestion and we propose to add this transformation in Table 1 and to add comments
in Sect. 6.2. Obviously, we will acknowledge his contribution in the text.

Answer to Dr J. Ding comments SC2, SC3 and SC5

First of all, we would like to thank again Dr J. Ding for his valuable contribution to
the discussion.

• Regarding John Ding’s SC3 comment and the use of negative or positive inverted
root we can argue that, in the context of this manuscript, the change of sign has
no impact. Indeed, following the example of the inverted flows (−J1 in comment
SC5), the mean and the standard deviation are linked to the ones of J1 by the
following relations, respectively:

µ−Q−1 = −µQ−1

σ−Q−1 = σQ−1
(6)
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Figure 2: Values of KGE’ on inverse square rooted transformed flows versus the mean
of the log-transformed observed (a) and simulated (b) flows. Each dot represents the
performance obtained in validation for one catchment after calibration with the KGE’
on untransformed flows as an objective function. The red dots represent the catchments
where the average of the log-transformed simulated (a) or observed (b) flows is around
0.
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Figure 3: Sensitivity of KGE’ to the fraction of average flows that is added to flows
to avoid zero flows in the inverted square root transformation for 240 catchments over
the validation period.

with µQ−1 and σQ−1 respectively the mean and the standard deviation of inverted
flows and µ−Q−1 and σ−Q−1 respectively the mean and the standard deviation of
negative inverted flows.

The consequence of Eq. 6 in this comment, using Eq. 2 to 4 in the manuscript is
that:

r−Q−1 = rQ−1

β−Q−1 = βQ−1

γ−Q−1 = γQ−1

(7)

and, using Eq.1 of the manuscript:

KGE ′(−Q−1) = KGE ′(Q−1) (8)

The sign of the transformation has, thus, no importance in the KGE’ (and also
KGE) calculation. For this reason we will keep positive transformations in our
manuscript.

We show the equivalence of KGE’ values for both aforementioned transformations
on our data set in Fig. 4 of this answer to Dr Ding’s comment.
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• The choice of N in the transformations JN proposed by Dr J. Ding can be in-
teresting. One may choose the N value according to the weight intended on low
flows. The higher N , the lower the weight on low flows. In addition, regarding Dr.
J. Ding comment SC2, the value of N can also be deduced from the observation
of recession curve in the simulated catchment.

• Regarding comment SC5, we will add this generic inverted root transformation
in table 1 of the manuscript instead of the inverted square root as we stated it in
comment AC1. We will also add a comment on its parametrization in the text.

• About the correspondence between the inverted root transformation and the Box-
Cox transformation, Dr J. Ding is right arguing that, if λ = − 1

N
, a linear relation

links the Box-Cox transformation and the inverted root transformation. However,
to obtain this linear relation, λ has to be negative and, as much as we know,
hydrologists who use the Box-Cox transformation always use a positive λ value
because it allows to avoid issues with zero flows. As a consequence, we will keep
the Box-Cox transformation in the table as it is.

PS: As an answer of SC2 comment sentence “For example, why the Box-Cox (1964)
transformation has gone mainstream in hydrology, but the ISR (1964-66) has not,
as if some of us hadn’t tried or hard enough.”, we can hypothesize that the greater
interest for Box-Cox is due to its property to avoid the zero-flow issue. However, it is
also possible that the use of Box-Cox is also due to legacy as it is the case for NSE
criterion.
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Figure 4: Equality of the KGE’ values of the GR4J simulations using inverse transfor-
mation and negative inverse transformation on the 240 tested catchments.

Added/Modified

Sect. 6.2, p 11, lines 3-7 The inverted root is an example of used transformation that
is not tested in the article but leads to increase the weight of low flows (Chapman,
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1964; Ishihara and Takagi, 1965; Ding 1966). It can be parametrised with the value of
the power in the root (Q−

1
N ). Depending on the value of N , there will be more or less

weight on low flows. The higher N is and the less the weight on low flows is. This N
value can also be determined with the recession curves of observed flows.

We add a line in Table 1 (top of p 12) to describe the pros and cons of the parametric
inverted root proposed by Dr Ding.
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Technical note: Pitfalls in using log-transformed flows within the
KGE criterion
Léonard Santos, Guillaume Thirel, and Charles Perrin
Irstea, HYCAR Research Unit, 1 rue Pierre-Gilles de Gennes, 92160 Antony, France

Correspondence to: Léonard Santos (leonard.santos@irstea.fr)

Abstract. Log-transformed discharge is often used to calculate performance criteria to better focus on low flows. This prior

transformation limits the heteroscedasticity of model residuals and was largely applied in criteria based on squared residuals,

like Nash-Sutcliffe efficiency (NSE). In the recent years, NSE has been shown to have mathematical limitations and Kling-

Gupta efficiency (KGE) was proposed as an alternative to provide more balance between the expected qualities of a model

(namely representing the water balance, flow variability and correlation). As in the case of NSE, several authors used the KGE5

criterion (or its improved version KGE’) with a prior logarithmic transformation on flows. However, we show that the use of this

transformation is not adapted to the case of the KGE (or KGE’) criterion and may lead to several numerical issues, potentially

resulting in a biased evaluation of model performance. We present the theoretical underpinning aspects of these issues and

concrete modelling examples, showing that KGE’ computed on log-transformed flows should be avoided. Alternatives are

discussed.10

1 Introduction

In the context of rainfall-runoff modelling, evaluating the quality of the models’ outputs is essential. Deterministic simulations

are commonly evaluated using efficiency criteria such as Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970). The choice

of the criteria obviously depends on the modeller’s objective. For example, one may wish to focus on the overall water balance

evaluation, or more specifically on the simulation of different flow ranges, typically high, intermediate or low flows. For these15

different objectives, given that the model residuals are generally not homoscedastic and often depend on the flow magnitude,

one common option
:
to

:
focus more closely on specific flow ranges is to apply various prior transformations on the simulated

and observed discharge time series to distort the range of errors, which consequently changes the relative weight of different

flow ranges in the criterion. This is commonly done within the NSE criterion, which has been one of the most popular criteria

used in hydrological modelling in the past few decades. NSE is the distance to 1 of the ratio between the mean square error20

of the model and the variance of observed flows. Compared to the basic criterion computed on untransformed flows, a prior

squared transformation on flows would put even more weight on high flows, a logarithmic or inverse transformation would put

more weight on low flows while a square root transformation would have an intermediate effect (Krause et al., 2005; Oudin

et al., 2006; De Vos and Rientjes, 2010; Pushpalatha et al., 2012).
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However, the Nash-Sutcliffe criterion was shown to have limitations. Indeed, using a decomposition of NSE based on the

correlation, bias and ratio of variances, Gupta et al. (2009) clearly demonstrated that discharge variability is not correctly taken

into account for the evaluation. Therefore, Gupta et al. (2009) proposed a new criterion, Kling-Gupta efficiency (KGE), which

was then improved into a modified criterion called KGE’ (Kling et al., 2012). KGE combines the previous components of NSE

(correlation, bias, ratio of variances or coefficients of variation) in a more balanced way. It corrects the underestimation of5

variability and provides direct assessment of four aspects of discharge time series, namely shape and timing, water balance and

variability.

Given that this criterion tends to be sensitive to large errors, some users chose to apply prior transformations on flows before

computing KGE, e.g. to put more weight on low flows, as done with NSE. For example, Pechlivanidis et al. (2014) applied

the logarithmic transformation to use it as a benchmark for fitting a model on low flows. Seeger and Weiler (2014) used it10

as an objective function. Beck et al. (2016) used the untransformed and log-transformed flows in NSE, R2 and KGE as an

evaluation of different global models, and Quesada-Montano et al. (2018) also used it as an evaluation criterion of the HBV

model outputs.

In this technical note we show that the use of a logarithmic transformation when computing KGE or KGE’, applied in a

similar way as with NSE, introduces numerical flaws and should be avoided. After reviewing the mathematical formulation15

of KGE’, we expose the theoretical aspects explaining these flaws and illustrate them with modelling examples. Then we

suggest alternatives to circumvent this issue. The tests will be carried out using KGE’ but they are also valid for the initial KGE

formulation.

2 The KGE
:::
and

:::::
KGE’ formulation

:::::::::::
formulations

The KGE ’ criterion (Kling et al., 2012, denoted EKG in Eq. 1) is
:::
and

:::::
KGE’

::::::
criteria20

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gupta et al., 2009; Kling et al., 2012, respectively denoted EKG and E′KG in Eq. 1 and Eq. 2) are

:
written as a sum of the distances

to
:::::
linear

::::::::::::
transformation

:::::::::::::
(f : x 7→ 1−x)

::
of

:::
the

:::::::::
Euclidian

:::::::
distance

::
to

::
an

:::::
ideal

:::::
value

::::
(i.e. [1(perfect value ) of

:::
,1,1])

:::
in

:
a
:::::
three

::::::::::
dimensional

:::::
space

::::::
defined

:::
by three components of the modelling error:

EKG = 1−
√
(r− 1)2 +(β− 1)2 +(γ− 1)2

√
(r− 1)2 +(β− 1)2 +(α− 1)2

::::::::::::::::::::::::::
(1)

E′KG = 1−
√
(r− 1)2 +(β− 1)2 +(γ− 1)2

::::::::::::::::::::::::::::::::::::
(2)25

in which:

– r, the Pearson correlation coefficient, evaluates the error on shape and timing between observed (Qo) and simulated (Qs)

flows:

r =
cov(Qo,Qs)

σ2
oσ

2
s

(3)

2



– β, the bias term, evaluates the water balance error
:::
bias

::::::::
between

:::::::
observed

::::
and

::::::::
simulated

:::::
flows:

β =
µs

µo
(4)

–
::
α,

:::
the

::::
ratio

:::::::
between

:::
the

::::::::
simulated

::::
and

:::::::
observed

::::::::
standard

::::::::
deviations

::::::::
evaluates

:::
the

:::::
flows

:::::::::
variability

::::
error:

:

α=
σs
σo

::::::

(5)

– γ, the ratio between the simulated and observed coefficients of variation (CV)
:::
also

:
evaluates the flows variability error

:
.5

:::::
These

:::::::::
coefficients

:::
of

:::::::
variation

:::
are

::::
used

::
to

:::::
avoid

:::
the

::::::
impact

::
of

::::
bias

::
on

:::
the

:::::::::
variability

::::::::
indicator

::::::::::::::::
(Kling et al., 2012) :

γ =
µoσs
σoµs

(6)

where cov is the covariance between observation and simulation, µ is the mean and σ is the standard deviation, with subscripts

o and s standing for observed and simulated, respectively.

The KGE’ values range between −∞ and 1, as for NSE, and it is positively oriented.10

3 Issues associated with the use of a prior logarithmic transformation

3.1 Instability when the moments of log-transformed flows become close to zero

Because the three terms, γ, β and r are ratios, they can become overly sensitive to the denominator values (here µo, µs, σo

or σs) if they become close to zero. In this case, a small absolute variation in the moments’ values can negatively impact the

related ratio and thus produce very negative KGE’ values. It is generally very unlikely to obtain values of σo, σs, µs, µo so close15

to zero to produce numerical instability when using untransformed flows. However, when a prior logarithmic transformation is

applied, the values of µlog,o or µlog,s (more rarely σlog,o or σlog,s) computed on transformed values can become equal or very

close to zero (because log(1) = 0). The corresponding ratios r, β or γ would therefore become very large, leading to strongly

negative KGE’ values. Thus a small relative difference can lead to very different conclusions. In this case, the score value does

not adequately represent the qualities of the model simulation.20

3.2 Dependence on the flow unit chosen

KGE’ and NSE criteria are dimensionless. This means that using discharge values expressed in litres per second or in cubic

metres per second has no impact on the criteria values. It can be easily demonstrated that γ, β and r remain identical when flow

is expressed in any of these two units, since the division by 1000 necessary for the conversation
:::::::::
conversion

:
is eliminated in the

ratios. When using a prior logarithmic transformation, the NSE criterion is not affected because the squared differences of25

flows eliminates the multiplicative conversion coefficients in the mean square error (numerator) or in the variance (denomina-
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tor). However, the KGE’ calculation is altered through the β ratio. Using the example of the average observed flow calculation,

the conversion from cubic metres per second to litres per second gives the following:

µlog,o[l · s−1] = log(1000)+µlog,o[m
3 · s−1] (7)

Consequently, because the conversion term becomes additive when applying the logarithmic transformation, the β ratio

value is modified. Similarly, the γ ratio is also altered. Therefore, if the logarithmic transformation is used, the KGE’ (and5

also the KGE) is no longer a dimensionless value. This can lead to interpretation problems.

3.3 Dependence on the constant added to avoid the zero-flow issue

When using a logarithmic (or an inverse) transformation, the case of null flows, which may exist in case of intermittent or

ephemeral streams, prevents proper calculation. To avoid this, different techniques may be set up in the case of NSE:

– discarding the zero-flow values from the series, i.e. considering them as gaps (see e.g. Nguyen and Dietrich, 2018).10

The drawback is that parts of the hydrographs become neglected, though they can bring important information on the

processes at play.

– using a Box-Cox transformation to reproduce the effects of the logarithmic transformation without the zero-flow issue

(Box and Cox, 1964; Hogue et al., 2000; Vázquez et al., 2008) . adding a small constant to all flow values (Pushpalatha

et al., 2012), typically a fraction of average flow. This option is widely used and Pushpalatha et al. (2012) showed that15

the NSE value has limited sensitivity to this constant with a logarithmic transformation as long as it is small enough

compared to flow values. These authors advise a constant equal to one-hundredth of the mean observed flows. But the

dependence of KGE’ on this constant has not been investigated so far.

–
::::
using

::
a
::::::::
Box-Cox

::::::::::::
transformation

::
to

::::::::
reproduce

:::
the

::::::
effects

::
of

:::
the

::::::::::
logarithmic

::::::::::::
transformation

:::::::
without

:::
the

::::::::
zero-flow

::::
issue

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Box and Cox, 1964; Hogue et al., 2000; Vázquez et al., 2008) .

:
20

4 Testing methodology

To illustrate these numerical issues and their potential impacts, several tests were made on a wide range of catchments, using

the GR4J rainfall-runoff model (Perrin et al., 2003).

4.1 Catchment set and data

A daily data set of 240 catchments across France (Fig. 1), set up by Ficchí et al. (2016), was used. The climate data of the25

SAFRAN daily reanalysis (Vidal et al., 2010) were used as input data. Precipitation and temperature were spatially aggregated

on each catchment since the GR4J model is lumped. Potential evapotranspiration was calculated using a temperature-based

4



Figure 1. Location of the 240 flow gauging stations in France used for the tests and their associated catchments.

formula (Oudin et al., 2005). Full details on this data set are available in Ficchí et al. (2016). Observed flows were retrieved

for each catchment outlet from the Banque HYDRO (http://www.hydro.eaufrance.fr/, Leleu et al., 2014). The availability of

data covers the 2003-2013 period.
::::::::
2005-2013

:::::::
period. The catchments were selected to have less than 10% of precipitation

falling as snow, to avoid requiring a snow model.

4.2 Model and calibration5

The tests were performed with the daily lumped conceptual GR4J model (Perrin et al., 2003). The four parameters of the model

are calibrated using the local search optimization algorithm used in Coron et al. (2017). The available records are split into a

calibration (2003-2008
::::
from

::::
July

::::
2005

::
to

::::
June

:::::
2009) and a validation (2008-2013

::::
from

::::
July

::::
2009

::
to

::::
July

::::
2013) period following

a standard split-sample test procedure (Klemeš, 1986). The calibration procedure was run using the KGE’ on untransformed

flows as an objective function. The performance of the model is then evaluated during the validation period using KGE’ on10

untransformed and log-transformed flows. The performance is also calculated using different transformations that can substitute

the logarithmic transformation, namely the square-rooted flows, the inverted flows and the Box-Cox transformed flows. The

NSE criterion is also calculated on log-transformed flows to be compared to KGE’ using the same transformation. The zero

flows were treated following the conclusions of Pushpalatha et al. (2012), i.e. by adding to flows a constant equal to one-

hundredth of the mean observed flows. The parameter of the Box-Cox transformation is fixed at the value of 0.25, as Vázquez15

et al. (2008) argue that it is an usual value in hydrological studies.

5

http://www.hydro.eaufrance.fr/
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Figure 2. Values of KGE’ on untransformed
:::::::::::
log-transformed

:
flows

::
((a)

::::
and

:::
(b))

:
versus the mean of the log-transformed observed (

:::
and

:::::::
simulated

::::
flows

:::::::::
compared.

::
As

:
a
:::::::::
benchmark,

::
the

:::::
same

::::
plots

:::
are

:::::
drawn

::::
with

:::::::::::
untransformed

::::
flows

:::
((c) and simulated (b

::
d))flows. Each dot

represents the performance obtained in validation for one catchment after calibrating
::::::::
calibration with the KGE’ on untransformed flows as

an objective function. The red dots represent the catchments where
:
In
::::
plots

:::
(a)

:::
and

:::
(c),

:
the average of

:::
axis

:::::
values

:::::::
represent the

:::::::
observed

log-transformed
:::
flow

:::::::
averages

:::
and

:::
the

::::
color

::::::::
represents

:::
the simulated

:::
ones

::::
while

::
in
::::

plots
:

(a
:
b) or observed

:::
and

:
(b

:
d) flows

:
it
:

is around 0.
::

the

:::::::
opposite.

5 Results

5.1 Instability when the moments of log-transformed flows become close to zero

Figure 2
::
(a)

:::
and

:::
(b)

:
analyses the stability of the KGE’ values with log-transformed flows obtained in the validation period.

The KGE’ values were plotted against the mean of the log-transformed observed (a) and simulated (b) flows. When any of

these means tends to be close to zero, the KGE’ criterion exhibits unusually low values. This plot illustrates the problem5

identified in section 3.1. These very negative values may alter model evaluation. When working on a large set of catchments,

they may also bias the calculation of the mean performance over the catchment set, by heavily weighting these outlier values.

Figure 3
:::::
Figure

::
2
:::
(c)

:::
and

:::
(d)

:
shows that the catchments with negative KGE’ values in Fig. 2

::
(a)

::::
and

:::
(b) do not seem to

exhibit any specific behaviour when evaluated with the KGE’ values on untransformed flows: the criterion values are not lower

in these catchments than in other catchments. Furthermore, this result can be completed by making the same plot for other10

transformations giving more weight on low flows. Figure 3 shows that square rooted (Fig. 3 (a) and (b)) and inverse (Fig. 3

(c) and (d)) transformations do
::
not

:
encounter the same problems as with the logarithm for catchments that have an average

log-transformed flow around zero.
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Figure 3. Values of KGE’ on square root ((a) and (b)) and inverse ((c) and (d)) transformed flows versus the mean of the log-transformed

observed and simulated flows. Each dot represents the performance obtained in validation for one catchment after calibration with the KGE’

on untransformed flows as an objective function. The red dots represent the catchments where the average of the log-transformed simulated

(
:
In

::::
plots

:
(a) and (c)) or

:
,
:::
the

:::
axis

:::::
values

:::::::
represent

:::
the observed (

:::::::::::
log-transformed

::::
flow

:::::::
averages

:::
and

:::
the

::::
color

::::::::
represents

::
the

::::::::
simulated

::::
ones

::::
while

::
in

::::
plots (b) and (d) ) flows

:
it is around 0.

::
the

:::::::
opposite.
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Figure 4. Comparison between KGE’ and NSE values on the validation period using a calibration with KGE’ on untransformed flows as an

objective function. The red dots represent the catchments where the average of log-transformed observed (a) or simulated (b) flows is around

0.

The KGE’ on log-transformed flows can also be compared to the NSE using the same transformation. Figure 4 shows that,

when KGE’ is significantly lower than NSE, the average of log-transformed flows (observed or simulated) is around zero (red

dots in the figure). This tends to confirm that the strongly negative KGE’ values stem more from a numerical issue than an

actual problem in simulated values because the NSE values in these catchments remain correct
::::::
positive

::
or

::::::
around

::::
zero.
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Figure 5. Dependence on flow units of the KGE’ using untransformed flows (a) and log-transformed flows (b) on the 240 catchments. The

parameters used for simulation evaluation were obtained by calibrating GR4J using KGE’ on untransformed flows.

In this technical note, the impact of a near-zero standard deviation of log-transformed flows is not presented because it is

rarer than near-zero mean values. The standard deviations of flows on the catchments studied are indeed all significantly higher

than zero.

5.2 Dependence on the flow unit chosen

The dependence of KGE’ on log-transformed flows on the chosen flow units can easily be shown by plotting the KGE’ on5

log-transformed flows in cubic metres per second versus the KGE’ on log-transformed flows in litres per second. Figure 5 (b)

shows that, for the catchments tested, the values of KGE’ on log-transformed flows clearly depend on the flow unit used. A

more optimistic evaluation of model performance will generally be obtained with the flows in l · s−1. As a comparison, Fig. 5

(a) shows that the KGE’ with untransformed flows is not affected by the flow unit change. This dimension dependence makes

the KGE’ values based on log-transformed flows very difficult to interpret.10

The more optimistic results
:::::
higher

::::::
model

::::::::::
performance

:::::
when

:
using l · s−1 than when using m3 · s−1 can be explained analyt-

ically. Considering Eq. 7, a value of log(1000) is added to the
:::
the

:::::::
formula

::
of

:::
the

::::
bias

::::
ratio

::
in l · s−1

:::::::
regarding

:::
the

::::::::
averages

::
in

m3 · s−1 average.
::
is:

:

βlog
:::

[l · s−1
::::

]=
log(1000)+µlog,s[m

3 · s−1]
log(1000)+µlog,o[m3 · s−1]

:::::::::::::::::::::::::

(8)

Because log(1000) is not negligible compared to the averages, adding it
:::
this

:::::::
constant

::::
term

:
would artificially improve β and15

γ and, by extension, the KGE’ value.
:::
The

::
γ

::::
ratio

::
is

::::
also

:::::::
affected

::::
and,

:::
due

::
to

:::
the

::::::::::
interactions

:::::::
between

:::
the

::::::::
standard

::::::::
deviation

:::
and

:::
the

::::::::
averages,

::::::
modify

:::::::::
differently

:::
the

:::::
KGE’

:::::
value.

:

5.3 Dependence on the value added to avoid the zero-flow issue

Pushpalatha et al. (2012) showed that the sensitivity of the NSE criterion on log-transformed flows to the small added constant

declines when this constant decreases (from one-tenth to one-hundredth of the mean observed flow) and becomes limited for20
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Figure 6. Sensitivity of NSE and KGE’ to the fraction of average flows that is added to flows to avoid zero flows in the logarithmic

transformation for 240 catchments over the validation period. This graph is inspired by Fig. 9 in Pushpalatha et al. (2012).

very small values (see Fig. 9 in Pushpalatha et al., 2012). We performed the same test with the KGE’ criterion and we obtained

a very different result (Fig. 6). The impact on performance is erratic for different values added to flows and does not show any

trend. This may be due to the numerical issues shown in Sec. 5.1. For these reasons, the impact of added values can be major

and may alter the model evaluation.

5.4 The case of the Box-Cox transformation5

As presented in Sect. 3.3, instead of adding a small value to flows, a Box-Cox transformation can be applied to flows to mimic

the logarithm transformation without the zero-flow problem. However, even though it removes the dependence of the KGE’

value to the value added to avoid zero flows, the other issues presented in the previous sections exist as for the logarithm.

For catchments in which the log-transformed flows’ average is close to zero, the Box-Cox transformed flows exhibit the same

behaviour as with the logarithm (Fig. 7). This result is logical because the Box-Cox transformation of 1 is equal to 0, as for the10

logarithmic transformation.

The Box-Cox transformation is also dependent on the units (Fig. 8 (a)). However, for this last issue, a slight modification of

the Box-Cox formula allows one to address this problem. The classical Box-Cox transformation can be written as:

fBC(Q) =
Qλ− 1

λ
(9)

in which λ is an exponent to be chosen by the user, Q is the flow value for any unit and fBC is the Box-Cox function.15

Using this equation, the KGE’ on transformed flows will be unit-dependent because of the additive term 1 in the numerator.

To avoid this, we can slightly modify the formula, by replacing the term 1 by a constant with a unit dependence (here we

propose the hundredth of the mean flow) and by putting it to the power λ:

f ′BC(Q) =
Qλ− (0.01µo)

λ

λ
(10)

Using Eq. 10, the KGE’ criterion remains dimensionless using the Box-Cox transformation (Fig. 8 (b)).20

Furthermore, because the zero of the modified Box-Cox function is not 1 any more, this transformation would reduce the

issue of strongly negative values when µlog,o or µlog,s are around zero. However, there still is an issue if the average of simulated

9



●
● ●●●● ●

●

●

●● ●
●

●

●

●
● ● ● ●●● ●● ● ●

●
●

● ●●
●

●●●●

●

●●

●

●● ●

●
●

● ● ● ●
● ●

●● ●●● ●

●

●

●

●● ●● ●

●
●

●

●
●

●

●

●●● ● ●●●
●

●● ●

●

● ●● ●

●

● ●

●

●

●●

●

●●

●

● ●
●

●

●

●
●●

●
● ●●

●
●

●●
●●●● ●

●

●●
●●
●

●
●

● ●
● ● ●●●

●
●

●● ●●●
●

●●●

●

●

●

●●
●●

●● ●
●

●●
● ● ●● ● ●● ●●

●
●●

●● ●
● ●

●

●● ● ●● ●

●

●●
● ●
●●

●● ●

●

●●●

●

● ●●
●

●●
●

●

●●
●

●●

●●

●

●
●

●

●

●
●

●
● ●

●●

●● ● ●

●

●
●

● ●●

−2 0 2 4

−
8

−
6

−
4

−
2

0

Observations

µlog,o [m
3.s−1]

K
G

E
' o

n 
f B

C
(Q

)

(a)

●

●

●

µlog,s [m
3.s−1]µlog,s [m
3.s−1]

−5 − −0.5
−0.5 − 0.5
0.5 − 5

●
● ●●●● ●

●

●

●● ●
●

●

●

●
● ● ● ●●● ●● ● ●

●
●

● ●●
●

●●●●

●

● ●

●

●● ●

●
●

● ●●●
● ●

●● ●●● ●

●

●

●

●● ●● ●

●
●

●

●
●

●

●

●●● ● ●●●
●

●● ●

●

● ●● ●

●

● ●

●

●

●●

●

●●

●

● ●
●

●

●

●
●●

●
● ●●

●
●

●●
●●●● ●

●

●●
●●

●

●
●

● ●
● ● ●●●

●
●
●● ● ●●

●
●●●

●

●

●

●●
●●

●● ●
●

●●
● ● ●● ● ●● ●●

●
●●

●● ●
● ●

●

●● ● ●● ●

●

●●
● ●
●●

●●●

●

●●●

●

● ●●
●

●●
●

●

●●
●

●●

● ●

●

●
●

●

●

●
●

●
● ●

●●

●● ● ●

●

●
●

●●●

−4 −2 0 2 4

−
8

−
6

−
4

−
2

0

Simulations

µlog,s [m
3.s−1]

K
G

E
' o

n 
f B

C
(Q

)

(b)

●

●

●

µlog,o [m
3.s−1]µlog,o [m
3.s−1]

−5 − −0.5
−0.5 − 0.5
0.5 − 5

Figure 7. Values of KGE’ on Box-Cox transformed flows versus the mean of the log-transformed observed (a) and simulated (b) flows.

Each dot represents the performance obtained in validation for one catchment after calibration with the KGE’ on untransformed flows as an

objective function. The red dots represent the catchments where the average of the log-transformed simulated
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Figure 8. Dependence on flow units of the KGE’ using Box-Cox transformed flows without adaptation ((a), Eq. 9) and with adaptation

((b), Eq. 10) on the 240 catchments. The parameters used for simulation evaluation were obtained by calibrating GR4J using KGE’ on

untransformed flows.

flows is around the zero of the modified Box-Cox function (i.e. if µs = (0.01 ∗µo)
λ
:::::::::::::
µs = (0.01µo)

λ, Fig. 9). This instability

occurs more rarely than for the logarithm transformation but can be more frequent if bigger percentage of the average of

observed flow or different λ value are used. Because this instability is due to µs :::::
(which

::
is
:::::

only
::
in

:::
the

:::::::::::
denominator

::
of

:::
the

::
γ

::::
ratio

::
in

:::
Eq.

::
6), it will only affect the KGE’(not the KGE

:
.
::::
The

::::
KGE

::
is

:::
not

:::::::
affected

:::::::
because

::
an

::
α
:::::
ratio

:
is
:::::
used

::::::
instead

::
of

:::
the

::
γ

::::
ratio

::::
(Eq.

:
1
:::
and

::
5).5

The modified Box-Cox transformation (Eq. 10) allows to avoid unit dependence and to reduce the instability issues due

to the values of average flows (especially when using the KGE). The behaviour of this modified transformation also remains

similar to the one of the initial Box-Cox transformation except when µlog,o or µlog,s are around zero (Fig. 10).
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Figure 9. Values of KGE’ on modified Box-Cox transformed flows (Eq. 10) versus the mean of this transformed observed (a) and simulated

(b) flows. Each dot represents the performance obtained in validation for one catchment after calibration with the KGE’ on untransformed

flows as an objective function. The red dots represent the catchments where the average of the transformed simulated
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Figure 10. Comparison between KGE’ values on Box-Cox and modified Box-Cox transformed flows on the validation period using a

calibration with KGE’ on untransformed flows as an objective function. The red dots represent the catchments where the average of log-

transformed observed (a) or simulated (b) flows is around 0.

6 Summary

6.1 Log transformation should not be used in the KGE or KGE’ criterion

Given the previous results, we can argue that using log-transformed flows to calculate the KGE or the KGE’ criterion can

lead to difficulties in the interpretation of criterion values. The criterion does not remain dimensionless like NSE with a prior

logarithmic transformation. It also becomes overly sensitive when the log-transformed flows’ average becomes close to zero,5

yielding potentially very negative values, or when a small constant is added to flows prior to logarithmic transformation to cope

with zero flows. Because of all these issues, logarithmic transformation should be avoided when using KGE’.
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Table 1. Pros (+) and cons (-) of different flow transformations to improve consideration of low flows in KGE’.
::
In
:::

the
::::::
second

::::::
column,

:::
the

:::::
number

:::
of

::
(+)

::::::::
represents

:::
the

:::::::
intensity

::
of

:::::::
low-flow

:::::
weight

:::::::
increase.

:::::
There

::
are

:::::::::
parentheses

::::::
around

::
the

::::
last

:
+
:::
for

::::::
inverted

:::
root

::::
and

:::::::
Box-Cox

:::::::::::
transformations

::::::
because

:::
the

:::::::
low-flow

:::::
weight

:::::::
depends

::
on

:::::::::
parameters.

Flow transformation

Decrease

high-flow

weight

Increase low

flow weight

No issue with

zero flows
Dimensionless

No issue when

flows average

around 1

Square root + -
:
+ + +

Inverse + +
::
++ - + +

::::::
Inverted

:::
root

::::
++(+)

:
-

:
+

:
+

Logarithm + +
:
+ - - -

Box-Cox + +
:::
(+) +

+ (if using

Eq. 10)
+ (if using Eq. 10)

6.2 Alternatives

Instead of KGE’ on log-transformed flows, several transformations can be used to calculate KGE’. The pros and cons for

several transformations are summarised in Table 1.
:::
The

:::::::
inverted

::::
root

::
is

::
an

::::::::
example

::
of

::::
used

:::::::::::::
transformation

:::
that

::
is
:::
not

::::::
tested

::
in

:::
the

:::::
article

::::
but

::::
leads

:::
to

:::::::
increase

:::
the

::::::
weight

::
of

::::
low

:::::
flows

:::::::::::::::::::::::::::::::::::::::::::::::
(Chapman, 1964; Ishihara and Takagi, 1965; Ding, 1966) .

::
It
::::
can

::
be

:::::::::::
parametrised

::::
with

:::
the

:::::
value

:::
of

:::
the

::::::
power

::
in

:::
the

::::
root

:::::::
(Q−

1
N ).

:::::::::
Depending

:::
on

:::
the

:::::
value

:::
of

:::
N ,

::::
there

::::
will

:::
be

:::::
more

::
or

::::
less5

:::::
weight

:::
on

::::
low

:::::
flows.

::::
The

:::::
higher

:::
N

::
is

:::
and

:::
the

::::
less

:::
the

::::::
weight

::
on

::::
low

:::::
flows

::
is.

::::
This

:::
N

::::
value

::::
can

::::
also

::
be

::::::::::
determined

::::
with

:::
the

:::::::
recession

::::::
curves

::
of

::::::::
observed

::::::
flows. Regarding this table, the modified Box-Cox transformation (Eq. 10) seems to be the best

solution but it still faces instabilities for some flow average values (for the KGE’). Thus, there is no ideal solution to avoid all

problems. Modellers have to make a choice depending on their specific applications.
:::::::::
According

::
to

:::
the

::::::::
intensity

::
of

::::::::
low-flow

:::::
weight

::::::::
increase

:::
that

::
is

:::::::
needed,

:::
the

::::::
choice

::
of

::::::::::::
transformation

:::
has

::
to
:::

be
:::::::
adapted. Garcia et al. (2016), for example, recommend10

averaging two KGE’ criteria computed on untransformed and inverted flows, into a composite criterion.

Note that many studies use NSE on log-transformed flows (see for example Lyon et al., 2017; Nguyen and Dietrich, 2018).

Fortunately, the mathematical formulation of NSE avoids all the problematic aspects identified for KGE with the logarithmic

transformation. However, this may not be a sufficient argument to continue to use NSE given the issues presented by Gupta

et al. (2009) and Schaefli and Gupta (2007):15

– the underestimation of variability,

– the low weight of water balance errors for catchments with highly variable flows,

– the poor benchmark represented by the mean flows for catchments with highly variable flows.
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6.3 Final remarks

Two additional remarks should be taken into account on this topic. First, as noted by H. Kling in a personal communication,

prior transformations on flows in KGE (or in NSE) lead to a misinterpretation in the estimation of the water balance. The other

components of the KGE also lose their initial physical meaning. KGE on transformed flows can give more information on low

flows, but the physical interpretation of the criterion is not as simple as in the case of untransformed flows.5

Secondly, even if it did not occur in our experiment, the issue described in this technical note may lead to problems during the

calibration process. Indeed, it can create a strongly negative zone in the objective function hyperspace, which may negatively

impact the performance of local calibration algorithms.
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