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Abstract. Agrosystems heterogeneity, in terms of hydric conditions, crop types and states, and meteorological forcing, is

difficult to characterize precisely at the field scale over an agricultural landscape. This study aims to perform a sensitivity study

to uncertain model inputs of two classical approaches used to map evapotranspiration of agrosystems: (1) a Surface Energy

Balance (SEB) model, the Two Source Energy Balance (TSEB), forced with TIR data as a proxy of the crop hydric conditions,

and (2) a Soil-Vegetation-Atmosphere Transfer (SVAT) model, the SEtHyS model, where hydric conditions are computed5

from a soil water budget. To this objective, models skills are compared thanks to a large and unique in situ database covering

different crops and climate conditions, acquired over three experimental sites in southern France and Morocco. On average,

models provide half-hourly estimations of latent heat flux (LE) with a RMSE of around 55 Wm−2 for TSEB and 47 Wm−2

for SEtHyS, and estimations of sensible heat flux (H) with a RMSE of around 29Wm−2 for TSEB and 38Wm−2 for SEtHyS.

A sensitivity analysis based on realistic errors aimed to estimate the potential loss of performance induced by spatialization10

process. For the SVAT model, the MCIP methodology is used to determine and test different sets of parameters. TSEB is

run with only one set of parameters and provides acceptable performances for all crop stages apart from the early beginning

of the growing season (LAI < 0.2 m2 m−2) and when water stress occurred. An in-depth study on the Priestley-Taylor key

parameter highlights its marked diurnal cycle and the need to adjust its value to improve flux partition between sensible and

latent heat fluxes (1.5 and 1.25 for France and Morocco, respectively). Optimal values of 1.8 to 2 were highlighted under cloudy15

conditions, which is of particular interest with the emergence of low altitude drone acquisition. Under developed vegetation

(LAI > 0.8 m2 m−2) and unstressed conditions, using sets of parameters that only differentiate crop types is a valuable

tradeoff for SEtHyS. This study provides some scientific elements for a joint use of both approaches and TIR imagery, via the

development of new data assimilation and calibration strategies.

1 Introduction20

Exchange of water at the soil-vegetation-atmosphere interface is of prime importance for weather forecasting and for climate

studies (Shukla and Mintz, 1982); it is also a key component for hydrology, and therefore catchment water balance (Milly,
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1994), and for agronomy in order to improve irrigation scheduling (Allen et al., 1998). Despite the abundant literature on the

subject, there is no consensual approach for its spatialized estimation, and the contribution of evapotranspiration (ET) to the

global hydrologic cycle remains uncertain (Jasechko et al., 2013). There are several in situ techniques available to measure ET

(Allen et al., 2011) but most suffer from a lack of spatial representativeness. This prevents their use as a sustainable solution

for regional applications, especially for agricultural landscape where spatial heterogeneity –in terms of farming and technical5

itineraries including the resulting pattern of moisture conditions– is high. By contrast, remote sensing offers an attractive alter-

native through the synoptic and repeated data acquisition it provides. Indeed, even if ET is not directly observable from space,

remote sensing data in different parts of the electromagnetic spectrum are related to the characteristics of the land surface

governing the evapotranspiration process.

Within this context, several approaches combining remote sensing data and land surface models of various complexity were10

proposed for the regional monitoring of ET (Courault et al., 2005), from the most conceptual approaches modulating the

evaporative demand by an empirical coefficient (the so called “crop coefficient”, Allen et al., 1998), to the complex and

mechanistically-based Soil-Vegetation-Atmosphere Transfer (SVAT) models that require a large number of inputs. In-between,

the surface energy balance (SEB) models, constrained by thermal-infrared radiative temperature observations, have been gain-

ing influence over the last decade (Choi et al., 2009; Diarra et al., 2017). Several authors intercompared the different SEB-based15

approaches for mapping ET with noticeable discrepancies (see Zhan et al., 1996; French et al., 2005; Timmermans et al., 2007,

2011; Chirouze et al., 2014). Among the different SEB models, the two-source-energy balance (TSEB Norman et al., 1995)

emerged as a robust and accurate model for evapotranspiration mapping over semi-arid crops (Anderson et al., 2007; Chirouze

et al., 2014; Diarra et al., 2017). This model is now extensively used in the scientific community and has been the subject of

numerous refinements since the original version of Norman (Kustas and Norman, 1999, 2000; Anderson et al., 2008; Colaizzi20

et al., 2012, 2014, etc...). Nevertheless, both approaches were rarely compared while the joint use, through data assimilation

technics, of snapshot evapotranspiration maps from SEB approaches and dynamic SVAT predictions appears promising (Crow

et al., 2005, 2008). This is certainly to be attributed to the different underlying diagnostic or prognostic equations of the models

with respect to the distinct purposes of the approaches in terms of temporal and/or spatial resolutions of evapotranspiration

estimates.25

Either based on SVAT or SEB models, the estimation of surface evapotranspiration implies dealing with the method-model

complexity issue (Carlson, 2007; Kalma et al., 2008), and with the always incomplete knowledge to document or to constrain

them. For instance, with regards to remotely sensed TIR data, McCabe and Wood (2006) have shown how spatial resolution

of TIR data used as input in SEB method impacted the spatial variation of flux estimates. For the higher resolution, another

source of uncertainty is coming from to the surface temperature fluctuations in relation with atmospheric turbulence (Lagouarde30

et al., 2013). The lack of knowledge on scaling effects when fluxes are intercompared at the same scales using aggregation or

disaggregation methods was also pointed out by several authors as a scientific issue for evapotranspiration mapping (Kustas

et al., 2003, 2004; Norman et al., 2003). Although limited in time and focused on semi-arid and sparse grasses and crops, several

studies were also dedicated to the sensitivity analysis of the TSEB model to uncertain inputs including radiative temperature,

meteorological forcings or vegetation descriptors (Zhan et al., 1996; Anderson et al., 1997; Kustas and Norman, 1997; Li et al.,35
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2005; Timmermans et al., 2007; Kustas et al., 2012). Likewise, others were focused on the sensitivity of SVATs (Franks et al.,

1997; Calvet et al., 1998; Wood et al., 1998; Pitman et al., 1999; Olioso et al., 1999; Robock et al., 2003; Petropoulos et al.,

2009). Within this context, the comparative study of Crow et al. (2008) between a SVAT model and the TSEB approach is a

founding study of our work. Indeed, as a preliminary step to the joint use of both approaches through data assimilation, the

purpose of this study is the comparison of the TSEB model (Norman et al., 1995) and the SEtHyS SVAT model (described5

in Coudert et al., 2006), in terms of overall performances, errors and domains of validity when model inputs and parameters

are uncertain. This is done here thanks to large and unique in situ database covering several crops and seasons in relatively

well-watered conditions and limited advection environment.

This paper is organized as follows. After briefly introducing data sets and both models (Sect. 2), the analysis of the models

performances is presented (Sect. 3.1). Then, we focus on sensitivity analysis results (Sect. 3.2) and on discussions related to10

parameters and inputs (Sect. 4). Finally, conclusions and perspectives are drawn in Sect. 5.

2 Data and methods

2.1 Models description

The two-source energy balance budget, which is similar for both models is firstly described. Then, differences in the solving

method and associated assumptions, together with differences in flux parameterization, are briefly reminded.15

2.1.1 The two-source energy budget

In the two-source energy balance, total sensible (H) and total latent heat (LE) fluxes arise from the soil and vegetation heat and

vapor sources. Applying energy conservation and continuity principles, the energy budget can be described with the following

set of equations:

H =H[soil] +H[veg] (1)20

LE = LE[soil] +LE[veg] (2)

Rn =Rn[soil] +Rn[veg] (3)

Rn[soil] =H[soil] +LE[soil] +G (4)

Rn =H +LE+G, (5)

where G is the ground heat flux and Rn is the net radiation. All fluxes are expressed in Wm−2. The H and LE fluxes25

expressions are given in Shuttleworth and Wallace (1985, Eq. 6 and 7, p. 843) for a resistive scheme (following analogy with

Ohm’s law) of a one-dimensional description of energy partition for sparse crops assuming horizontal uniformity. H and LE

expressions for the complete canopy between the level of mean canopy fow and reference height can then be written as:
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H =−ρcp
raa

(Tx−T0) (6)

LE =− ρcp
raaγ

(ex− e0) (7)

Where γ is the psychrometric constant (mb K−1), raa the aerodynamic resistance between canopy source height and refer-

ence level (s m−1), ex and e0 vapor pressure (mb) at canopy source height and reference height and Tx and T0 temperature

(C) at canopy source height and at reference height. The components elements from soil and vegetation (LE[soil], LE[veg],5

H[soil], and H[veg]) are expressed in the same way according to the associated resistances. Afterwards, the vapor pressure

deficit at the canopy source height is introduced. The system now becomes a set of five equations with six unknowns, namely:

vegetation temperature T[veg], soil temperature T[soil], canopy-space temperature T[canopy] and the corresponding water vapour

pressure e[veg], e[soil] and e[canopy]. The next steps of the classical solving of a two-source energy balance system are to express

T[canopy] as a function of T[veg] and T[soil] thanks to the continuity equation in H and T[veg] as a function of T[soil] using the10

energy budget of vegetation. In addition, the heat conduction flux in soilG is either estimated from net radiation (TSEB model)

or residual of the energy budget (SEtHyS model) as detailed in the appendix. The solving method consists in the linearization

of the equations of the previous system. The basic differences between approaches is that for SVATs models, soil temperatures

at different depths are prognostic variables tightly linked to water mass balance, whilst radiative temperature is a forcing input

for the SEB models used to infer T[veg] and T[soil] as detailed below.15

2.1.2 TSEB

The TSEB model has been first described in Norman et al. (1995) and has been the subject of several refinements. The solving

principle is briefly described below, and the version of TSEB used is described in section 2.4. TSEB is forced by a radiomet-

ric surface temperature Trad so that soil and vegetation temperatures contribute to Trad in proportion to the fraction of the

radiometer field of view (fθ) that is occupied by each component, thus adding a sixth equation to the system above:20

Trad(θ) = [fθ ×Tn[veg] + (1− fθ)×Tn[soil]]
1/n, (8)

where the factor n is usually fixed to 4 (Becker and Li, 1990). The available energy at the soil surface is computed considering

an exponential extinction of net radiation (i.e. Beer’s Law):

Rn[soil] =Rn× exp
−κ×LAI√

2cosθ
, (9)
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where the factor κ is set to 0.45 for spherical distribution of leaves following Roos (1991), and Rn is estimated from

measured shortwave and longwave components. The conduction flux in the soil is expressed as a fraction of the available

energy at the soil surface :

G= Γ×Rn[soil], (10)

with Γ an empirical coefficient usually equal to 0.35 (Choudhury et al., 1987). Finally, the resolution of this set of equations5

relies on the (strong) assumption that, most of the time, vegetation transpires at a potential rate. The Priestley Taylor equation

gives a first estimation of canopy transpiration (Norman et al., 1995, Eq. 12):

LE[veg] = αPT × fg ×
∆

∆ + γ
×Rn[veg], (11)

where αPT is the Priestley Taylor parameter, fg the green vegetation fraction cover, ∆ the slope of the saturation vapor

pressure versus temperature curve and γ the psychrometric constant. αPT values ranges between 0.5 and 2.0 (Hssaine et al.,10

2018) according to meteorological conditions including advections, green fraction of vegetation and soil water availability with

an average value around 1.3.

In the “series” resistance network used in this study (see justification below) described in Norman et al. (1995, Fig. 11), the

sensitive heat fluxes are expressed as:

H[soil] = ρcp
T[soil]−T[canopy]

rs
(12)15

between the soil surface and the canopy air space,

H[veg] = ρcp
T[veg]−T[canopy]

rx
(13)

between vegetation and canopy air space,

H = ρcp
T[canopy]−Ta

ra
(14)

between canopy air space and reference height for atmospherical measurements. Where rs, rx and ra are the associated20

resistances given respectively in (Norman et al., 1995, Eq. B.1, Eq. A.8, Eq. 6). H[veg] is then computed as the residual of

the vegetation energy balance (eq. 1). T[veg] is derived from H[veg]; T[soil] from Eq. (8); H[soil] is computed from T[soil] and

LE[soil] as a residual of the soil energy balance (Eq. 1). Should LE[soil] be found negative, meaning that there is condensation

on the soil surface, which is very unlikely during the day, then the initial value of the Priestley-Taylor coefficient αPT is

iteratively reduced until LE[soil] = 0 following Anderson et al. (2005) and Li et al. (2005).25
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Table 1. TSEB parameters (9) with reference values and optimal values obtained from sensitivity analyses.

Category Parameter Description [unit] Litterature Reference Optimal

range value value

Optical Asoil Soil albedo 0.05 – 0.35 0.15 0.14

properties Avegetation Vegetation albedo 0.10 – 0.30 0.3 0.3

Esoil Soil emissivity 0.94 – 0.97 - 0.94

Evegetation Vegetation emissivity 0.90 – 0.99 - 0.97

ε Surface emissivity, involved in CNR1 Ts conversion 0.96 – 0.99 - 0.96

Vegetation S Leaf size [m], involved in computing surface resistance - 0.01 0.01

characteristics αPT Priestley-Taylor coefficient, involved in estimating canopy

transpiration (Eq. 11)

1 – 2 1.26 1.3 – 1.5

Surface Γ Soil energy partition coefficient :G= Γ×Rn[soil] (Eq. 10) - 0.35 0.35

properties κ Coefficient of the exponential extinction of net radiation to

compute available energy at the soil surface (Eq. 9)

0.3 – 0.6 0.45 0.4

In agreement with (Li et al., 2005), the “series” layout of resistance (Norman et al., 1995) was found to provide overall more

accurate results (not shown) and also less sensitivity to vegetation cover estimate. Furthermore, for model comparison, it was

also relevant that both resistance network were similar in TSEB and SEtHyS model.

2.1.3 SEtHyS

The SEtHyS –French acronym for Suivi de l’Etat Hydrique des Sols or monitoring of the hydric condition of the soils– SVAT5

model physics and the main parameterizations are described in Coudert et al. (2006). The main equations of SEtHyS are

summarized in appendix A. The model belongs to the “two sources, two layers” SVAT model category. Actually, the coupled

water and energy budget is solved for the vegetation and soil sources and the soil description for water and heat transfers

is based on the force-restore Deardorff formalism (Deardorff, 1978). The model requires atmospheric and radiative forcing

and surface biophysical parameters as inputs. It calculates the energy and water fluxes between surface and atmosphere and10

simulates the evolution of soil and canopy temperatures, air temperature and specific humidity within the canopy, as well as

the surface and the root zone soil water content. The heat and water transfer calculation within the continuum soil-vegetation-

atmosphere is based on a resistance concept. The resistance network is made of four nodes: the reference height for the low

atmospheric weather forcing; inside the vegetation at the displacement height plus the roughness length; just above ground

at the soil roughness length; and, at ground level. The aerodynamic resistances –above and inside vegetation canopy– are15
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Figure 1. Experimental sites localization in France (left) and Morocco (right).

determined with the wind speed profile description inside the canopy from Shuttleworth and Wallace (1985) and Lafleur and

Rouse (1990). The evapotranspiration calculation takes into account partition between free water in the canopy and the rest of

the leaves (Monteith, 1965; Deardorff, 1978) and is based on the stomatal resistance for “big leaf” model from Collatz et al.

(1991). The vegetation photosynthesis and stomatal resistance parameterizations are the same as those used by the SiB model

(Sellers et al., 1996). The soil hydrodynamic properties to calculate water transfer processes within the soil porous network5

are given by Genuchten (1980). Ground heat flux conduction is obtained as the residual of the soil energy budget. Finally, the

radiative transfer model included in the model for TIR domain (François, 2002) allows simulating brightness temperature and

radiative temperature, and thus gives the possibility of constraining the model with TIR data (Coudert and Ottlé, 2007; Coudert

et al., 2008). The SEtHyS model requires a set of about 22 parameters presented in Table 2.

2.2 Sites description and data10

The experimental data set has been gathered in South West of France (Béziat et al., 2009) and South East of Morocco

(Chehbouni et al., 2008; Jarlan et al., 2015) as shown in Fig. 1. As presented in Table 3, all necessary data to run, calibrate and

evaluate models were collected over 3 agricultural sites, spanning a total of 7 cultures cycles from seeding to harvest: 3 wheat

(Triticum aestivum L.) crops, 1 sunflower (Helianthus annuus L.) crop and 2 corn (Zea mays L.) crops. Experimentals sites

differ by different management practices (culture rotation and irrigation), soil properties, topography and climates (6 temperate15

crop cycles and 1 semi-arid crop cycle). Auradé (43.55°N, 1.11°E) and Lamasquère (43.50°N, 1.24°E) experimental sites are

located near Toulouse in south-western France and are part of the “SudOuest” project (Dedieu et al., 2001; Béziat et al., 2009).

Both experimental sites are under influence of temperate climate. A rotation of wheat and sunflower is cultivated in Auradé,

while a rotation of wheat and irrigated corn is cultivated in Lamasquère. Complete description of site features and data sets

are presented in Béziat et al. (2009). Sidi Rahal (31.67°N, 7.60°W) experimental site is located in the Haouz plain in central20

Morocco and is part of the “Sud-Med” project (Chehbouni et al., 2008; Jarlan et al., 2015). It is part of an irrigated agricultural
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Table 2. SetHyS parameters (22) with initial uncertainty ranges used for MCIP calibration.

Category Parameter Description [unit] Initial uncertainty range

Optical Eg Bare soil emissivity 0.94 – 0.99

properties Asec Dry soil albedo 0.225 – 0.35

Ahum Wet soil albedo 0.1 – 0.22

Winf Moisture parameter for albedo calculation 0.15 – 0.29

Wsup Moisture parameter for albedo calculation 0.291 – 0.5

Asv Vegetation albedo 0.16 – 0.32

Vegetation Vmax0 Leaf photosynthetic capacity (Rubisco) [µmol m−2 s−1] 30 – 200

characteristics lgf Dimension of the leaf along the wind direction [m] 0.01 – 0.08

kwstr Empirical parameter for water stress calculation 0.01 – 0.1

Ground phc “Half critic” hydrologic potential [m] -200 – 100

properties Wmax Saturated soil water content [m3 m−3] 0.3 – 0.5

Wresid Residual soil water content [m3 m−3] 0.05 – 0.15

hV G Scale factor in the Van Genuchten retention curve model [m] -1.161 – 0.251

nV G Shape parameter in the Van Genuchten retention curve model 1.168 – 1.331

Ksat Saturated hydraulic conductivity [m s−1] 2.4× 10−8 – 2.7× 10−6

aElim Empirical parameter for limit evaporation 1 – 50

bElim Empirical parameter for limit evaporation 1 – 50

Ftherm Correction coefficient of the volumetric soil heat capacity [J m−3 K−1] 0.5 – 2

dp2 Root zone depth [mm] 200 – 2000

Initialization wg0 Initial soil surface water content [m3 m−3] -

variables w2 Initial root zone water content [m3 m−3] -

biasT2 Error in deep soil temperature [K] -2 – 2

area under influence of a semi-arid climate, where wheat is the most widely grown crop. More information about site and data

set is given in Duchemin et al. (2006).
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Each experimental station collected standard meteorological data at a half-hourly time step intervals: Global incoming

shortwave and longwave radiation (Rg and Ra), wind speed (Ua), air temperature (Ta), atmospheric pressure (Pa), relative

humidity (Rh) and rainfall. The four components of the net radiation (Rn) were measured using a CNR1 radiometer (Kipp

and Zonen, Delft, NL). Land surface temperature (LST) was computed from measured upward and downward long wave

components of the net radiation, using Stefan-Boltzmann’s law and an estimation of surface emissivity (Becker and Li, 1995).5

Sensible (H) and latent (LE) heat fluxes were measured continuously using Eddy-Covariance (EC) systems (Moncrieff et al.,

1997; Aubinet et al., 2000). Fluxes were processed with classical EC filters and corrections (Béziat et al., 2009). Accuracy on

flux estimates is expected to range between 5 % and 30 % (Eugster et al., 1997; Wilson et al., 2002). Soil heat flux (G) was

sampled using heat flux plates located at depths ranging from 5 cm to 1 m. Automatic measurements were then complemented

by vegetation sample. Vegetation height (hc) and green Leaf Area Index (LAI) were collected periodically along crop cycles10

and interpolated using Piecewise cubic Hermite algorithm. Green LAI was determined from destructive measurements with

a LiCor planimeter (LI3100, LiCor, Lincoln, NE, USA). In order to obtain estimation of fraction of green (fg), total LAI

(LAIgreen + LAIyellow) was extrapolated from green LAI data, applying a linear decrease starting at the LAI maximum and

ending at harvest with a value of LAItotal = 0.8×LAImax. In order to assess the potential loss of accuracy of meteorological

inputs at the landscape scale and impact on model simulations, SAFRAN reanalysis data (Quintana-Seguí et al., 2008) are15

used within this study. SAFRAN is based on an optimal interpolation between a background estimate obtained from Météo

France’s Numerical Weather Prediction Model (ALADIN) and weather station observations, except for precipitation relying on

the ground station network only and for the incoming radiation fluxes (downwelling surface shortwave and longwave) which

are computed from Ritter and Geleyn’s radiation scheme (1992) from the outputs of a numerical weather forecast model and

the solar constant at the top of the atmosphere (for shortwave incoming radiation). Data was kindly provided by Météo-France.20

2.3 Assessing the model skills

Keeping in mind that we plan to spatialize a SVAT model, whose parameters are highly dependent on growth stage of veg-

etation, we must be able to determine sets of parameters representing specific phenological stages and hydric conditions

(stressed/non-stressed). For this reason evaluation is not performed continuously over the whole crop cycles, but specific

periods of interests were identified to assess the model skills. These periods were chosen to be ten days long in order to catch25

synoptic scale variability of the weather, as shown by Eugster et al. (1997) with the help of spectral analysis. This duration is

also short enough to remain representative of a specific phenological stage, and long enough to gather a sufficient amount of

data. For each crop cycle, four specific study periods were chosen, each corresponding to the following phenological stages:

rising/emergence stage (0.1< LAI < 0.3), growth stage (rapid increase of LAI and LAI ≈ 1), maximum development stage

(around LAI maximum value) and senescence stage (LAI decreases). Starting days of periods were adjusted to optimize the30

quality of available data, as the data sets are subject to sporadic measurements issues and energy closure inconsistencies (fil-

tered to a minimum of 80 %).
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In order to better assess the differences of model skills during stress periods, water stress is quantified along the whole crop

cycles using two indicators:

– the Evaporation Stress (SE, Boulet et al., 2007) related to the ratio between real and potential evapotranspirations:

SE = 1− LE

LEpot
, (15)

where LEpot was computed using the Penman-Monteith equation (Canopy resistance was estimated following Jarvis5

(1976) formulation with a minimum value of 90 s.m−1).

– the Soil Wetness Index (SWI, Douville, 1998, among others) of the root zone ranging from 0 at wilting point to 1 at

field capacity:

SWI =
W2−Wwilt

Wfc−Wwilt
, (16)

with W2 the root zone water content, Wfc the water content at field capacity, and Wwilt the water content at wilting10

point.

As cultures from our data set are irrigated or in temperate areas, most stress periods are found during senescence phases, when

water resources are low or irrigation is stopped. The model skills are assessed through classical statistical metrics including

Root Mean Square Error (RMSE), Mean Absolute Percentage Deviation (MAPD), bias and determination coefficient r2.

2.4 Implementation of the models15

Considering our objective to compare a complex SVAT model with the TSEB tool taken as an example of a simple and robust

approach, a different strategy has been applied for the implementation of the two models. The 22 parameters of the SEtHyS

model were finely tuned for each crops and each phenological stages. The objective of this calibration was not to fit the data

at best but rather to evaluate the sensitivity of model outputs to potentially poorly calibrated parameters when the model is

to be applied to an heterogeneous agricultural landscape at the field or intra-field scale. To this objective, four different cases20

corresponding to four different sets of parameters are considered to quantify the potential loss of performances due to wrong

parameter values. The four cases are listed below from the “best” conditions when the parameters are calibrated for each site,

each crop and each phenological stage to the worst when generic values are used:

1. Site and period specific parameters sets (hereafter named “optimal”) for each site, crop class (i.e. type of culture) and

phenological stages. Note that the analysis of the model skills (Sect. 3.1) is performed using this parameters set.25

2. More generic parameters sets depending on crop class and phenological stages only (named hereafter “pheno+cult”).

3. If no information is available for characterizing phenology, a calibrated set of parameters for the whole cultural crop

cycle is computed (hereafter named “culture only”).
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4. The last case corresponds to the “optimal” parameters set but applied to another crop class in order to take into account

potential errors that are likely to occur when working with a land-use map (named “unadapted”).

What we consider the “best” case is very unlikely for a spatialized application of the tool because the largest the available

database, it will never cover all the conditions encountered at the scale of an heterogeneous agricultural landscape where each

plot has its specific soil, technical itinerary, hydric status, etc... Our objective is thus to get different parameters sets with values5

close to what is expected for each type of conditions (crops, climate, sites, phenological stages...) but without giving too much

importance to the values themselves. To help perform the calibration, a stochastical multi-objective calibration method (Multi-

Objective Calibration Iterative Procedure or MCIP; Demarty et al., 2004, 2005) has been implemented in order to minimize

RMSE between simulations and measurements at half-hourly time intervals. Five objective functions are identified: RMSE of

H and LE fluxes, surface brightness temperature (Tb), net global radiation (Rn), and root zone soil water content (SWC). An10

ensemble of simulations based on a monte-carlo sampling of the parameter space is carried out, and the objective functions

are optimized jointly following a Pareto ranking. The basic principle is that a simulation is classified “better” than the others

if all the objective functions have lower values. For more details, the MCIP methodology is described in Demarty et al. (2004,

2005).

For TSEB, the most robust configuration of the model is sought. To this objective, as a first step, the most sensitive parameters15

(Diarra et al., 2017) for convection fluxes prediction are calibrated on the whole database at once. These parameters are the

Priestley Taylor coefficient (αPT ), the coefficient of net radiation extinction (κ), and the empirical coefficient (Γ) relating

Rn[soil] to G. The objective functions are the RMSE of H and LE. Those calibrated values are reported at table 1. They are

almost the same as those proposed by Norman et al. (1995) and will be kept for the TSEB runs in the next section of the paper.

A more optimal calibration by crops, site and phenological stages has also been carried out (not shown). Main finding can be20

summarized as follows:

1. The RMSE difference between Norman et al. (1995) values and the optimal one calibrated for each crop and stage didn’t

exceed 10Wm−2 on LE. In addition, most of optimal κ values range between 0.38 and 0.58; the only notable exceptions

are fully covering wheat with lower interception (κ value around 0.3) that may be attributed to the erectophile distribution

of wheat leaves and fully covering maize and sunflower characterized by a higher interception (κ values reaching 0.7).25

2. Likewise, the RMSE difference between initial Norman et al. (1995) and the optimal ones for the αPT parameter remain

below 6 Wm−2 except during the senescence stages where they can reach more than 35 Wm−2. Errors by taking the

literature value of 1.3 are thus very limited. Finally, the range of optimal values is relatively narrow (1.05 to 1.6).

3. For the Γ parameter, differences of RMSE between the optimal values and 0.35 proposed by Norman et al. (1995) are

below 8 Wm−2 apart from the rising stage where we observed errors up to 79 Wm−2 on the sunflower site. Values30

range between 0.05 and 0.7.

Still with the goal of identifying the most robust configuration of the TSEB model, several refinements proposed by different

authors to improve models prediction for specific crop and climate conditions were also tested with our database. The Priestley-
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Taylor formulation yet relatively simple provides accurate potential transpiration in a wide range of conditions but neglect the

aerodynamic resistance. Colaizzi et al. (2014) proposed to replace the Priestley-Taylor expression by the Penman-Monteith

equation (Monteith, 1965) in particular for advective conditions thus avoiding to increase the value of the αPT parameters

as proposed by Kustas and Norman (2000) for such conditions. Unfortunately, the Penman-Monteith version worsened the

results of about 6.3% on average on the whole data base and was not retained in this study. Several parameterizations aiming to5

represent the diurnal course of Γ have also been proposed. Those of Santanello et al. (2003) and of Chávez et al. (2005) have

been tested. The overall performance of the model to predict convective fluxes were slightly worsened on average apart for

some very specific conditions. Interestingly enough, a multiplicative factor to κ lower than 1 has been proposed by Campbell

and Norman (1998) in the divergence equation (eq. 9) to take into account the clumping of some crops that may intercept a

lower part of the incoming radiation than if leaves were randomly distributed (Kustas and Norman, 1999). The calibrated values10

of κ for sunflower and maize are above 0.45 proposed by Norman et al. (1995) (cf. point (1) above). This tends to show that

a higher fraction is intercepted probably because of a dominantly planophile distribution of leaves for both crops rather than a

clumping effect. Finally, the simple radiative transfer model of Kustas and Norman (1999) has been tested as an alternative to

Beer law proposed by Norman et al. (1995). Although close on average (RMSE differences on Rn < 17 Wm−2), significantly

worse RMSE were obtained during the rising stage on wheat and sunflower.15

3 Results

3.1 Models skills by crops and phenological stages

Model simulations of heat fluxes are compared to tower fluxes measurements at half-hourly and daily time steps, with a focus

on performance by crops and by growth stage. RMSE’s for LE, H and Rn are displayed in Table 4 and MAPD’s for H and

LE are displayed in Fig. 2. Biases (not shown) are very limited and ranged between -23 Wm−2 and +10 Wm−2 for both20

models, except during the rising phase where they reach -47 Wm−2 and +43 Wm−2 for SEtHyS and TSEB, respectively

(see discussion below). Available energy is well simulated for both models with daily averaged RMSEs of 43 Wm−2 and 19

Wm−2 for TSEB and SEtHyS, respectively.

Regarding heat fluxes, Table 4 points out good performances of the TSEB model on daily averaged values despite the

relative simplicity of the approach compared to SEtHyS, which relies on a systematic parameter calibration. Both models25

exhibit close statistics concerning LE estimations (RMSEs of 35.5 vs 38.9 Wm−2 for SEtHyS and TSEB, respectively) while

TSEB behaves slightly better regarding H estimations (21.2 vs 28.7 Wm−2). These values are close to errors found in the

literature for TSEB (Norman et al., 1995; Zhan et al., 1996; Anderson et al., 1997; Kustas and Norman, 1999; French et al.,

2005; Kalma et al., 2008; Diarra et al., 2013, 2017) and also within the range of expected errors from EC towers measurements

(Eugster et al., 1997; Wilson et al., 2002). Half-hourly values lead to similar conclusions, except that the drop in retrieved LE’s30

performance associated to this change of reference time interval is stronger for TSEB than for SEtHyS. Interestingly enough,

this first analysis hilights important disparities in terms of LE prediction skills between the various growth stages. Indeed, Fig.

2 highlights some regularity in the SEtHyS skills regardless of growth stages and crops, as evidenced by the narrow group
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of parameters (see Sect. 2.4). MAPD stands for Mean Absolute Percentage Deviation.

formed by the SEtHyS points. By contrast, the range of MAPD values for TSEB is much wider. In particular, limitations of

the model are clearly emphasized during rising and senescence stages. During the senescence phase, these discrepancies may

both be attributed to stress (see discussion below) but could be related also to a poor partition of available energy between soil

and vegetation. Indeed, the change in the radiative features of the canopy, including albedo, which occurs on senescent plants,

is not taken into account by the model. However, regarding irrigation practices, it should be noted that assessing accurate ET5

during senescence is not as important as during the growth season.

The poor performance during the rising stage is due to excessive limitation of the soil sensible heat flux, induced by the

parameterization of the roughness length for momentum (Z0m= hc/8) at the denominator of the expression of the aerody-

namic resistance ra, leading to very high resistance when canopy height is very low. Since, during that stage, the vegetation

net radiation is very limited, vegetation sensible heat is also close to 0. The soil resistance rs also plays an important role on10

bare and sparsely vegetated surfaces, and recent studies (Li et al., 2019; Kustas et al., 2016) showed that adapted formulation
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or modeling improved TSEB performances in arid or semi-arid conditions. The observed high MAPD of LE during the rising

phase shall thus be attributed to significant bias of TSEB estimates. To a lesser extent, SEtHyS skills are also mitigated during

the rising phase. Generally, when evaporation is predominant over transpiration, more weight is given to soil transfer processes

which are harder to characterize, considering the high heterogeneity of soil characteristics and the limited soil measurements

available for calibration. The poor performances are more conspicuous with TSEB leading to estimation of H with a MAPD5

of 85 %. By contrast, both models tend to have better performance when vegetation is fully-developed (MAPD less than 23

% for LE). The model performance by crop and growth stage is detailed in Fig. 3 (a) and (b), respectively, as normalized

Taylor diagrams (Taylor, 2001). This diagram is a concise way to display the ratio between the variances of the model outputs

and the observed data, the correlation coefficient r and the RMSE between model estimates and observations normalized by

the variance of the observed data set. The further from the point marked “observed reference” on the abscissa axis, the higher10

the normalized RMSE; likewise, dots on the right (left) side of the circle cutting the ordinate axis at “observed reference”

overestimates (underestimates) the observation variance. Figures 3 (a) and (b) point out higher normalized standard deviations

for TSEB LE estimations. These noisier outputs are likely due to the instantaneous (“snapshot”) computing architecture of

the model, while SEtHyS is better constrained by its continuous evolution of the soil water content which lead to smoother

predictions of the daily cycle. This explains the drastic drops of TSEB RMSE on LE when going from daily to half-hourly15

observations already underlined above. Finally, no significant skill differences are observed between crops, which seems to in-

dicate that (1) the set of parameters used in TSEB describes well vegetation characteristics and that (2) the SEtHyS formalism

can be adapted to various crops, provided that parameters are properly calibrated. More focus on the selected sets of param-

eters is given in the discussion section. Models performs well in both climate: SEtHyS showed slightly better performances

for flux estimates in France (MAPD for LE of 23 % in France and 30 % in Morocco), whereas TSEB showed slightly better20

performances for flux estimates in Morocco (MAPD for LE of 26 % in France and 18 % in Morocco). However, differences

in crop management between France and Morocco and the availability of only one crop cycle in Morocco does not allows to

draw final conclusions about climate impact on model skills. TSEB has lower performances on senescence periods (including

hydric stress) for LE estimation (MAPD of 45 %). This is partly due to Priestley-Taylor approximation which is suitable for

unstressed vegetation in potential conditions (Priestley and Taylor, 1972), and to the fact that it does not have a water budget25

description. Increased LST resulting from water stress does not allow limiting LE significantly enough in the TSEB scheme

(see Sect. 3.2.7). Several authors have already pointed out that TSEB do not faithfully reproduce periods of senescence and

water stress (Kustas et al., 2003; Crow et al., 2008; Boulet et al., 2015). SEtHyS includes description of soil water transfers

and leaf processes –in particular stomatal resistance– and can better reproduce hydric stress impact on LE flux (MAPD of 28

%).30
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3.2 Sensitivity analyses to inputs

3.2.1 Overview

Given the overall purpose of our research dedicated to the spatialized estimation of evapotranspiration at various scales, quan-

tifying the decrease of model performance due to deterioration of input data quality combined with change of spatial scale

from the field to a heterogeneous agricultural landscape is a prerequisite. Applying the models at the landscape scale is not5

performed the same way for both approaches: TSEB is designed to be driven by remote sensing data with ET computed directly

at the resolution of the TIR pixel, while SEtHyS is spatially distributed by computing fluxes at the crop scale for each homo-

geneous entities separately. As a consequence, both models’ performances are expected to exhibit sensitivity to the quality

of auxiliary spatialised meteorological and vegetation forcing variables, TSEB’s performances are expected to depend on the

quality of the TIR data, and SEtHyS’s performances are expected to depend on the quality of the description of the state of10

each homogeneous entity (i.e. soil water content initialization, and sets of parameters describing soil properties and vegetation

behavior).

The specific purpose of this section is twofold: (1) identify the most sensitive inputs and (2) quantify the expected model perfor-

mances when realistic input errors are introduced. Expected uncertainties on input variables have been evaluated by comparing

available in situ data to the spatialized data sets (SAFRAN meteorological reanalysis and ASTER, LANDSAT, FORMOSAT215

satellite imagery and products). Results are presented in Table 5 and details are given in the following sections.

3.2.2 Intercomparison of SAFRAN and in situ meteorological data

Comparison results between the two available meteorological stations in the South-West France and the closest SAFRAN

8-kms grid points (inverse interpolated distance) are reported in Table 5 in terms of RMSE and biases (2006–2008 period).

On average, SAFRAN provides consistent results for air temperature and relative humidity, with reasonable RMSE and biases20

close to 0. To a lesser extent, wind speed is also well reproduced although slightly biased. The SAFRAN ability to predict

incoming radiation is less convincing: bias is low but RMSE reaches 90 Wm−2 (about 20 % on average). This comparison

corroborates the conclusions of Quintana-Seguí et al. (2008) who also highlight a strong weakness of SAFRAN in terms of

incoming radiation predictions. Er-Raki et al. (2010) used a forecast model (ALADIN from Météo-France) over the Tensift

basin of Morocco. The results showed that the ALADIN forecasts are in good agreement with the station measurements in25

terms of solar radiation (Rg) and air temperature (Ta). However, the comparison of the station and the forecasted values of

relative humidity (Rh) and wind speed (Ua) are much more scattered. Besides the RMSE and biases representing time averaged

statistical characteristics of the difference between SAFRAN and the two ground stations, it is also interesting to consider more

extreme error values. To do so, the 1st and 9th deciles of the difference distribution are shown in Table 5 in absolute values

and in percentage. The probability of occurrence of such errors is far from insignificant as 20 % of the data are involved. These30

“extreme” errors are considered for the sensitivity study regarding (1) the instantaneous estimates provided by the TSEB model

depending on satellite overpass time, leading to potential instantaneous errors much higher than the average; (2) the poorest

quality of re-analysis data in the semi-arid areas because the meteorological station network may be scarcer.
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3.2.3 Sensitivity analysis to meteorological inputs

Impact of realistic and more extreme errors on convection fluxes simulations are shown in Fig. 4 and Fig. 5, respectively.

Focusing on noise (Fig. 4) is of interest since biases are often limited on re-analysis systems thanks to bias reduction procedures.

On average, SEtHyS simulations are less sensitive to noisy inputs forLE than forH , whereas reverse conclusions can be drawn

for TSEB. Adding white noise to meteorological inputs with the objective of scaling up to agricultural landscape with realistic5

error has almost no impact on RMSE for SEtHyS when compared to the reference simulation for latent heat predictions.

Nevertheless, wind speed has the greater impact on LE with an increase of 10 % on LE RMSE. As a difference, a realistic

level of white noise added to incoming radiation and, to a lesser extent, air temperature, deteriorates TSEB predictions with

RMSE of LE simulations lowering from reference value of 55 Wm−2 to nearly 60 Wm−2. Indeed, whereas the partition

between latent and sensible fluxes is moderated by the slow-varying soil moisture content in SEtHyS, TSEB partition relies10

on measured available energy and surface temperature inputs only. By contrast, noisier wind speed, air temperature and, to a

lesser extent, solar radiation, deteriorate significantly sensible heat for SEtHyS. TSEB appears, on average, less sensitive to

noisy meteorological inputs for H . When considering extreme errors (Fig. 5) on meteorological forcing, the same variables

are identified as the most sensitive ones: Ra, Rg and Ta for TSEB and Ra, Rg and Rh for SEtHyS. However, whilst SEtHyS

performance remains acceptable despite these high errors on forcing, TSEB performance for both LE and H collapse in15

response to incoming radiation errors in particular. Interestingly enough, incoming solar radiation can also be retrieved from

satellite measurements such as MSG. In particular, Carrer et al. (2012) points out a significant improvement of MSG derived

short wave and long wave downwelling surface radiation with regards to the SAFRAN analysis system, which could represent

a valuable alternative for regional assessment of evapotranspiration. To limit the sensitivity to Ta and absolute surface-air

temperature differences, time differencing modeling schemes were developped (Anderson et al., 1997; Norman et al., 2000)20

with particular interest for large scale applications, provided early morning atmospheric soundings and/or at least two near

acquisitions of Trad are available.

3.2.4 Sensitivity analysis to vegetation forcing inputs

Focus here is put on evaluating the bias effect on SEtHyS and TSEB flux predictions. Indeed, on one hand, errors on vegetation

characteristics are much more difficult to evaluate as in situ measurements are time-consuming and therefore not always25

available at a small time interval. On the other hand, biases on satellite estimates are more likely to occur than white errors

because of a detection limit of visible sensors in the case of sparse vegetation and a possible saturation effect when Leaf Area

Index is above 3 m2 m−2. On average, Claverie et al. (2011, 2012) highlight a potential bias of 20 % for LAI estimated from

FORMOSAT data. Canopy height (hc) is not available directly from remote sensing data but can be estimated from LAI .

Canopy height (hc) was deduced from LAI = f(hc) relations, applying linear regression to each culture and phenological30

stage available in our in situ data. This methodology provides estimations of hc with a MAPD of 30 %, and “extreme” bias up

to 100 % (Bigeard, 2014). The results shown in Fig. 5 demonstrate that TSEB and SEtHyS sensitivity to bias on LAI remains

limited. By contrast, TSEB and, to a lesser extent SEtHyS, exhibit a much higher sensitivity to bias on canopy height (hc)
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due to erratic transfer resistances when hc is too close to the height of the micrometeorological measurements, or when soil is

considered bare (hc = 0). As LE is computed from the residual of the energy budget in TSEB, a problem is observed on both

H and LE fluxes, while LE is less affected in SEtHyS (not shown).
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3.2.5 Sensitivity analysis to radiative temperature for TSEB

The comparison between in situ LST measurements and retrieval from the LANDSAT7 and ASTER images yielded a maximum

absolute difference of 2.2 K (4 points) in agreement with values reported in the literature ranging from 1 to 3°C (Hall et al.,

1992; Gillespie et al., 1998; Schmetz et al., 2002; Peres and DaCamara, 2004; Li, 2004; Liu et al., 2006; Wan, 2008, among

others). As LST is expected to be a determining input of TSEB, an in-depth sensitivity analysis to this variable was carried out5

considering white noise and biases of 1, 2 and 3°C. Indeed, the spatial scale mismatch between the spatial sensor operating,

at best, at 90m resolution and the SVAT model operating at the scale of an “agricultural unit” (potentially lower than a parcel)

is likely to be important. Regarding the strong heterogeneity of agricultural landscape (in terms of crops, development stage,

irrigation, hydric stress, etc.), bias is also likely to be important and quite impossible to correct. The results of adding errors to

measured radiative temperature on TSEB fluxes prediction are shown in Fig. 6. For limited white noise up to 2 K, the drop of10

TSEB skills is small on both H and LE. By contrast, biases are much more impacting. In particular, a negative bias of 3 K

could deteriorate LE RMSE from 58 Wm−2 to 78 Wm−2. Interestingly enough, a negative bias, that is likely to occur when

the observed pixel is partly irrigated (i.e. cold), while the agricultural unit studied lay under stress (i.e. hot) for instance, has a

stronger effect than a positive bias. This is likely to occur in many cases in practice: a mixed pixel including forest and stressed

field, irrigation heterogeneity within a pixel (for instance in progress irrigation within a field including gravity or center pivot15

system or the use of a localized sprinkler).

3.2.6 Sensitivity analysis to water inputs and soil water content for SEtHyS

Water inputs, i.e. rainfall and irrigation, are difficult to assess accurately over an agricultural landscape as long as the considered

spatial scale exceeds one km2. Even in this case, a good knowledge of irrigation input at the field level requires costly field

surveys, since farmers’ associations or regional offices responsible for irrigation water often work at a larger scale made20

of several plots. In addition to this potential uncertainty, the initial condition of soil water content (SWC) should also be

considered uncertain as a result, for instance, from errors piling up from previous inputs. Figure 7 shows results of sensitivity
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analysis to these three factors: uncertainty on irrigation amount and timing and on SWC initial condition. Unsurprisingly, all

factors had a significant impact on LE predictions. Even if input timing was correct, a bias of 1 mm with correct initial SWC

deteriorated the SEtHyS skill by 5 %. If the bias on input reaches 10 mm and the initial SWC is negatively biased with the

same level, the loss of model performance is above 25 %. Considering that the total amount of an irrigation round can reach

100 mm, a 10 mm uncertainty is very likely to occur in practice. In addition, a negative bias on SWC impacts significantly5

more LE predictions than a positive bias. Indeed, going towards drier conditions may lead to stress and, as a consequence, to

a drastic drop of predicted LE compared to reference, whereas increasing SWC when the surface is already close to potential

conditions won’t have any effect on LE. Within this context, data assimilation of surface soil moisture retrieved from spatial

sensors could provide an interesting solution to improve accuracy of SWC initial conditions (Prevot et al., 1984; Demarty

et al., 2005; Li et al., 2006). By contrast, the timing, although important, has a secondary influence on model skills. Even when10

water input is applied 3 days before or after the actual date, the loss of LE predictions skills remain limited at around 15

%. Indeed, considering that agricultural landscape is often well-watered in order to maximize production, vegetation is able,

through transpiration processes, to maintain high levels of LE during long periods. The resulting dynamics of LE is relatively

smooth compared to bare soil that is dominated by evaporation processes. Finally, the main conclusion is that emphasis should

be laid on a water amount prescription whilst timing appears of secondary importance.15

3.2.7 Cross sensitivity analyses of models through linkage of radiative temperature and SWC

Sensitivity of the TSEB and SEtHyS models to surface water status has to be detailed in order to compare how the models

respond to a change in water conditions. The difficulty lies in the conceptual difference between both models: surface water

status is an explicit variable state for SEtHyS while, in the TSEB model, surface radiative temperature is an indirect proxy of the

surface hydric conditions. For the set of simulation periods considered in this study, initial soil water contents (for surface and20

root zone) were biased in SEtHyS inputs with +/-10, +/-30 or +/-50 % levels. As a consequence, the simulated radiative surface

temperature by SEtHyS diverges from reference and the differences between both temperatures simulations time-series are

added to the TSEB model input radiative temperature as an equivalent water bias converted in temperature. It is assumed that

the SEtHyS model, used with a calibrated set of parameters, is able to simulate a realistic temperature equivalent to the water

status biases (Coudert et al., 2006; Coudert and Ottlé, 2007). Figure 8 shows the average variation of the temperature bias as a25

function of the SWC bias. As expected, temperature increases with water content deficit. Beyond the [-10 % – +10 %] interval,

temperature and water contents biases evolve quasi linearly with a greater increment for dry conditions. On the contrary, one

can expect a more rapid limitation in temperature decrease with wet conditions, when soil reaches field capacity or saturation.

The consequence on evapotranspiration deviation from reference clearly shows that beyond the [-10 % – +10 %] interval for

water content biases, the error increases also linearly with a greater increment for dry conditions. Under -20 % bias, the impact30

on LE flux exceeds 50 Wm−2. This result is important for our purpose to spatialize models for evapotranspiration estimates,

because accurate root zone and surface water content retrievals from thermal and microwave remote sensing are a real challenge

over heterogeneous landscapes (Barrett and Renzullo, 2009; Hain et al., 2011). The shift in temperature simulated by SEtHyS

for -50 to +50 % water contents biases does not exceed 2 K and lay therefore within the typical remotely sensed surface
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temperature uncertainty range. For such a temperature bias, the TSEB model evapotranspiration divergence is lower than 40

Wm−2. As a consequence, compared to the SEtHyS model, TSEB is less “reactive” to soil water contents variation. The result

is critical for dry or stress conditions as previously pointed out. Actually, water status is only taken into account in the TSEB

model through the surface temperature which is not sufficient and no additional limitation of surface evapotranspiration is done

by modulating for instance the Priestley Taylor parameter.5

4 Discussion

4.1 Influence of the parameters sets for model spatialization

The four calibration cases for the SEtHyS model going from site and period specific to more generic parameters from the

literature are considered in order to evaluate the potential loss of model performance when specific calibration is not possible

21



-50% -30% -10% +10% +30% +50%REF
0

0.5

1

1.5

2

2.5

3

40

50

60

70

80

90

100

110

Soil Water Content BIAS [%]

Ts
 e

rr
or

 [K
]

L
E

 R
M

S
E

 [W
/m

²]

drier wetter

from SEtHyS (RMSE)

from SEtHyS (RMSE)

from TSEB    (RMSE)

{Ts

{LE

from SEtHyS (BIAS)

Figure 8. Error of Ts simulated by SEtHyS for increased and decreased SWC, and impact on models LE estimates. TSEB is forced with Ts

estimates from SEtHyS.

by lack of data. Figure 6 shows the impact of the parameters set used on the SEtHyS performance to predict LE fluxes. Global

results (for all crop classes and the whole cultural cycles) corresponding to the label “overview” in Fig. 6 give a MAPD of 30

% for the generic “culture only” set of parameters. This result does not differ much from the performance obtained with more

specific sets of parameters “pheno+cult” or “optimal” giving 25 % and 23 % of MAPD, respectively. However, when a set of

parameters from another crop class is used, MAPD reaches 58 %. A finest analysis by phenological stages indicates an overall5

stability of the results with the “pheno+cult” parameters set with regards to “culture only”. There are actually two exceptions:

one for the vegetation senescence periods which require specifics parameters sets. A mean set of parameters for the crop class

increases MAPD from 30 % to 40 %. The second relates to crop rising periods. A generic one based only on the crop class

(“culture only”) increases MAPD up to 50 % compared to 45 % for “pheno+cult” when taking into account the phenology.

As a conclusion, a mean parameters set associated to a specific crop without considering phenology implies only a slight10

decrease of the performance for growth or maximum vegetation development. By contrast, the relevance of the parameters sets

becomes noticeable when specific information is not available for rising and senescence periods (including potentially water

stress phases). With the same purpose, a specific analysis is dedicated to the Priestley-Taylor αPT key parameter of the TSEB

model in the next section.

4.2 A deeper look at the αPT parameter for spatialization15

A first estimation of LEvegetation canopy transpiration flux is obtained from the Priestley-Taylor approximation and depends

on the fraction of green fg and on the αPT parameter. Most studies (Norman et al., 1995; Kustas and Norman, 1999; French

et al., 2003; Anderson et al., 1997, 2008; Li et al., 2006, 2008, among others) have usually used a αPT value of about 1.3 for
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semiarid or sub-humid agricultural areas. However, this value may vary with vegetation type as mentioned in Norman et al.

(1995), low values of LAI , atmospheric demand (Anderson et al., 2008; Agam et al., 2010; Colaizzi et al., 2014) or dry air

advection conditions (Kustas and Norman, 1999). As a first step, the calibration is performed for midday time interval series

over various surface and atmospheric conditions in order to be compared with previous studies using TSEB instantaneously

for water flux mapping purpose when thermal imagery is available. Figure 10 shows the influence of αPT values on H and5

LE fluxes for wheat, corn and sunflower crops over the sites in both the South West of France and Morocco. Optimal values
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for irrigated wheat in Morocco (semi-arid climate) and sunflower in the South-West of France (temperate climate) are close to

the 1.3 bibliographical value. For wheat and irrigated corn in South-West of France, mean optimal values are higher and reach

1.6 for wheat. Mean optimal value of 1.5 is obtained for temperate climate, while a lower value of 1.25 is obtained for semi-

arid climate. In a second step, the half-hourly data are used for the calibration in order to study the diurnal cycle of the αPT

parameter. The αPT parameter shows a U-shape diurnal cycle evolution as displayed in Fig. 11 with smaller values around5

midday time, and higher values in both morning and evening when stability conditions are changing, enhancing LEvegetation

transpiration canopy flux. This is particularly outlined under clear sky conditions, when TIR data from space is most likely to

be collected. The original αPT parameter is defined for a system at equilibrium with constant temperature, a condition which is

particularly not met in the morning and in the evening when temperature temporal gradients are the highest. As a consequence,

such variations integrated over the diurnal cycle lead to slightly higher αPT fixed optimal values for daily half-hourly time10

interval simulations. Moreover, results indicate a decrease of RMSE by about 10 % on both H and LE fluxes when optimal

values at the original time interval are used instead of a fixed daily average. Nevertheless, as more error on fluxes estimation

is likely to occur around midday time, when turbulent fluxes are maximal, optimal daily value of αPT tends towards its value

around midday and is not much affected by increased morning and evening values. Despite thermal imagery from space is not

available with the presence of clouds, the emergence of drone acquisition (Hoffmann et al., 2016) makes the characterization15

of αPT under those conditions of special interest. On cloudy days, Fig. 11 hilights that fixed daily optimal values of 1.8 to 2

(higher instantaneously) are required for optimizing H and LE fluxes enhancing again the LEvegetation transpiration flux for

such reduced atmospheric demand. Hence, for simulation under cloudy conditions, αPT value can be raised by +0.4 in a view

to interpolate time series between satellite overpass or to run TSEB model with in situ or low altitude aircraft remotely sensed

surface temperature. An improvement of about 10 % on LE flux simulation is likely to be expected when taking into account20

the above-mentioned impact of vegetation and cloudy conditions considerations on αPT parameter retrieval. However, Colaizzi

et al. (2014) remembered that larger αPT values did not mitigate the discrepancies on the evaporation (E) and transpiration (T)

components of the total latent heat flux (ET). These authors have proposed a revised version of TSEB replacing the Priestley-

Taylor formulation with the Penman-Monteith equation in order to better account for large variations of vapor water pressure

deficits and correct the evaporation, transpiration and total LE simulations. Boulet et al. (2015), thus built the SPARSE model25

based on Penman-Monteith with satisfying performances with the Morocco wheat site data set, above those of TSEB with

default parameter values.

5 Summary and conclusions

Monitoring evapotranspiration at field scale over a large agricultural landscape is a challenge as it requires detailed information

about surface state and meteorological forcing, which is prone to uncertainties and unavailability. This study aimed at evaluating30

the ability of a SVAT model (SEtHyS, described in Coudert et al., 2006) and an instantaneous energy balance model (TSEB,

described in Norman et al., 1995) for mapping evapotranspiration over agricultural landscapes as a preliminary step to a

joint use of both approaches through data assimilation as first proposed by Crow et al. (2005, 2008). Within this context, our
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specific objectives were: (1) to assess the skills and domains of validity of both modelling approaches at field scale for various

crop conditions, (2) to characterize model errors resulting from realistic uncertainties on inputs that can be expected from an

application at the landscape scale. To this objective, this study takes advantage of a large and unique in situ database spanning

two climates and seven different crop cycles. Main results drawn from this study can be summarized as follows:

– On average on the entire database, both models provide close statistical metrics on daily average values of LE (RMSEs5

of 36 Wm−2 for SEtHyS vs 39 Wm−2 for TSEB) while TSEB is slightly better on H predictions (21 vs 29 Wm−2).

This points out the remarkable performance of the TSEB model compared to the relative simplicity of the approach, all

the more given that SEtHyS parameters are calibrated for each crop, each phenological stage and each site.

– SEtHyS skills appear more stable regardless of growth stages and crops whilst limitations of the TSEB model are clearly

emphasized during rising and senescence stages.10

– SEtHyS simulations of LE are less sensitive to noisy meteorological inputs than TSEB, for which performances are

significantly deteriorated particularly when incoming radiation inputs are uncertain. Indeed, the partition between latent

and sensible fluxes is moderated by the slow-varying soil moisture content in SEtHyS, while the TSEB partition relies

on instantaneous measurement of available energy and surface temperature input only.

– The sensitivity analysis of surface temperature which is one of the more important inputs for TSEB shows that for a15

limited white noise up to 2 K, the drop of TSEB skills is small on both H and LE. By contrast, biases are much more

impacting as a negative bias of 3 K could deteriorate LE RMSE from 58 Wm−2 to 78 Wm−2.

– Similarly, the sensitivity of SEtHyS skills to uncertain water inputs and initial soil water content has also been analyzed

and showed that emphasis should be put on water amount retrieval whilst timing of water supply appears of secondary
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importance; in particular a 10 mm negative bias on input coupled to a negatively biased initial SWC of 10 % with the

same level, lead to a the loss of model performance above 25 %.

– A cross sensitivity analysis of the TSEB and SEtHyS models to surface water status was carried out by simulating several

surface temperature time series with SEtHyS and biased soil water contents (+/-10, +/-30 or +/-50 %). The difference

of surface temperature compared to a reference simulation is added as input to the TSEB model as an equivalent water5

bias converted in temperature. The shift in temperature simulated by SEtHyS for -50 to 50 % water contents biases does

not exceed 2 K and is therefore within the typical remotely sensed surface temperature uncertainty range. For such a

temperature bias, the TSEB model evapotranspiration divergence is lower than 20 Wm−2 while it reaches 50 Wm−2

for SEtHyS, which indicates that TSEB is less “reactive” to soil water contents variations than the SEtHyS model.

– Still with the scope to anticipate uncertainties induced by spatial distribution, SEtHyS was run with various sets of pa-10

rameters of decreasing accuracies regarding the phenological stage and type of culture. This showed that when no precise

information is known about surface condition, a valuable tradeoff is to consider a set of parameter only representative

of the type of crop, provided vegetation is sufficiently developped. By contrast, the relevance of the parameters sets

becomes noticeable when specific information is not available for rising and senescence periods (including potentially

water stress periods).15

– For TSEB, an in-depth study of the Priestley-Taylor parameter αPT hilighted optimal values of 1.8 to 2 under cloudy

conditions, which is of particular interest with the emergence of low altitude drone acquisition, while most studies focus

on clear-sky conditons when TIR aquisition from space is possible.

In addition to the characterization of the model and background errors, this study provided some insights to guide the

implementation of a data assimilation algorithm at the scale of an agricultural landscape for the joint use of both approaches by20

highlighting deficiencies in specific conditions. Nevertheless, our current database suffer from a lack of hydric stress conditions

and doesn’t allow to characterise precisely this crucial aspect. A new experiment in Morocco (seasons 2017-2018 and 2018-

2019) focusing on water stress on wheat field is currently being carried out. Our perspectives will focus on the exploitation of

TIR data, by using TSEB as a proxy to be assimilated in SEtHyS following Crow et al. (2008), but also by taking advantage

of the MCIP methodology to tune parameters to better fit surface temperature measurements following Coudert et al. (2008).25

Special consideration will be given to diurnal dynamics and to exploitation of relative differences inside plots and inter-plots.

Data availability. Data access from the French and the Moroccan sites must be requested to the head of the Sud-Ouest observatory (Tiphaine

Tallec, CESBIO, France) and to the head of the TENSIFT observatory (Jamal Ezzahar, UCAM, Morocco). The SAFRAN data should be

directly requested to the head of Météo-France (Toulouse, France).
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Appendix A: SEtHyS main equations

This section presents the governing equations for the SEtHyS SVAT model variables.

A1 Basical set of equations for the SEtHyS model

The mass and energy budget is solved jointly for both soil and vegetation sources from the following system:


Rn[soil] =H[soil] +LE[soil] +G

Rn[veg] =H[veg] +LE[veg]

H =H[veg] +H[soil]

E = E[veg] +E[soil],

(A1)15

where Rn[soil] and Rn[veg] are net radiations at soil and vegetation levels and G is the soil heat flux. Parameterization of the

soil behavior is based on Deardorff’s formalism (1978). The soil surface temperature T[soil], the vegetation temperature T[veg],

the air temperature inside the canopy T[canopy] and the air humidity inside the canopy q[canopy] are determined by a first order

linearization of the previous equations system.

The soil surface temperature method prediction is namely the force restore method (Bhumralkar, 1975; Blackadar, 1976) and20

requires deep soil temperature T2. T2 can be estimated from the mean air temperature over the 24 previous hours for short-

range studies (Blackadar, 1976). The heat capacity is prescribed by de Vries’s model (1963) and hydrodynamic properties result

from pedotransfer functions (retention curve, hydraulic conductivity) based on Genuchten’s approach (1980) under Mualem

hypothesis (1976).

Prognostic equation for ground surface temperature is written as:25

∂T[soil]

∂t
=

2
√
π

Ce
(Rn−H −LE)− 2π

τ

(
T[soil]−T2

)
. (A2)
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The factor Ce is an equivalent heat capacity related to the diurnal thermal wave damping layer. In SEtHyS, the parameteri-

zation of the equivalent heat capacity has been weighted by introducing an empirical factor (Ftherm in parameters list, Table

2) compared to Deardorff (1978).

Deardorff (1978) proposed a similar approach of ground soil moisture, leading to the following equations:

∂wg
∂t

= −
Eg + 0.2Ev

(
wg

wmax

)
−P

dp1
5

−C (wg,w2)(wg −w2) (A3)
∂w2

∂t
= −Eg +Ev −P

dp2
, (A4)

where wmax is the soil moisture at soil saturation, wg and w2 are surface and root zone water contents, P is the precipitation

rate, dp1 and dp2 are the surface and root zone layers depths.

10

A2 Radiative budget

Incoming radiation partition for optical (VIS) and infrared (IR) wavelength is performed through a shielding factor σf tighly

linked to vegetation density. Its expression is as follows by considering a spherical distribution of leaves (François, 2002) with

the hypothesis of diffuse radiation for longwave domain and direct vertical radiation in shortwave domain:

 σf = 1− e−0.825LAI for longwave domain

σf = 1− e−0.5LAI for shortwave domain
(A5)15

Radiative budget is then solved jointly at the soil and at the vegetation level for short and long wavelengths. Concerning short

wavelengths, soil albedo αsoil is linearly linked to surface soil moisture. Vegetation albedo αveg is a model parameter. The net

radiation for the soil Rn[soil],SW and for the vegetation Rn[veg],SW are as follow (“Mod3” parameterization as proposed in

François, 2002):

Rn[soil],SW = S↓
(1−σf )(1−αsoil)

1−σfαvegαsoil
, (A6)20

and at canopy level:

Rn[veg],SW = S↓(1−αveg)σf
[
1 +αsoil

(1−σf )

1−σfαsoilαveg

]
(A7)

where S↓ is the incoming shortwave radiation.

Concerning long wavelengths, the net radiation for soil Rn[soil],LW and vegetation Rn[veg],LW are given by:
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Rn[soil],LW = (1−σf )
εg(R

↓
a−σT 4

[soil])

1−σf (1− εf )(1− εg)

−
εgεfσfσ(T 4

[soil]−T
4
[veg])

1−σf (1− εf )(1− εg)
(A8)

Rn[veg],LW = σf

[
εf (R↓a−σT 4

f ) +
εgεfσ(T 4

[soil]−T
4
[veg])

1−σf (1− εf )(1− εg)

]

+σf
(1− εf )(1− εg)εf (R↓a−σT 4

[veg])

1−σf (1− εf )(1− εg)
(A9)

Direct solar shortwave radiation S↓ and atmospheric longwave radiation R↓ are input model data.5

The thermal infrared surface temperature TB (observed above the canopy) results from the partitioning of the surface and the

radiative interaction between soil (whose temperature is T[soil]) and the vegetation above (whose temperature is T[veg]).

A3 Heat fluxes expressions

The mass and energy transfers in equilibrium with net surface radiation are momentum, sensible and latent heat fluxes. A

conductance formalism allows expressing them by considering the canopy as a single vegetation layer (at some height Zaf )10

above ground (Thom, 1972). Thus, following the electrical (Ohm’s law) analogy, soil surface, leaves surface, air canopy space

and atmosphere above canopy are the levels between which differences of potential (temperature and humidity gradients) and

transfer coefficients i.e. aerodynamic conductances can be calculated.

Heat fluxes H and LE (sensible and latent heat fluxes respectively) are then determined at three levels:

at atmospheric reference level,15

H = ρcpCh
(
T[canopy]−Ta

)
(A10)

LE =
ρcp
γ
Ch
(
q[canopy]− qa

)
(A11)

at vegetation level,

H[veg] = ρcpCh[veg]
(
T[veg]−T[canopy]

)
(A12)

LE[veg] =
ρcp
γ
Ch[veg]R

′ (qsat(T[veg])− q[canopy]) (A13)20
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and at ground level,

H[soil] = ρcpCh[soil]
(
T[soil]−T[canopy]

)
(A14)

LE[soil] =
ρcp
γ
Ch[soil]Cs

(
qsat(T[soil])− q[canopy]

)
(A15)

with

LE = LE[soil] +LE[veg] (A16)5

H =H[soil] +H[veg] (A17)

and G conduction heat flux in soil is residual of the energy budget :

G=Rn[soil],LW +Rn[soil],SW −H[soil]˘LE[soil] (A18)

where Cp is the specific heat at constant pressure, γ is the psychrometric constant, T , q are temperature and water vapor

pressure and a, g, canopy are indices relative to air, ground, and canopy air space.10

Ch, Ch[veg] and Ch[soil] are respectively aerodynamic conductances between canopy air space and the overlaying atmosphere,

leaves surface and canopy air space, ground and canopy air space, R
′

factor is defined below. These variables are derived

from the eddy fluxes theory between two atmospheric levels. In SEtHyS model, the formulation follows the parameterization

proposed by Shuttleworth and Wallace (1985) with a constant extinction coefficient in the exponential wind speed profile.

Cs is the ground evaporation conductance; it depends on soil moisture conditions and potential evaporation Epot[soil] (Bernard15

et al., 1986; Wetzel and Chang, 1988; Soares et al., 1988):

Cs = min

(
1,

Elim

Epot[soil]

)
, (A19)

where Elim depends on soil properties (composition and moisture), Soares et al. (1988) gives the expression:

Elim = aElim
(
exp(bElim(wg −wresid)2)− 1

)
(A20)
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aElim and bElim are model parameters related to soil evaporation response.

R
′

factor in Eq.(A13) accounts for stomatal resistance and to the fact that only the fraction of the canopy area which is not

covered by water will contribute to evapotranspiration. Deardorff (1978) proposed the expression:

R
′
=

(
dew

dmax

)2/3

+

[
1−

(
dew

dmax

)2/3
]

1

(β+CfhRST )
, (A21)

R
′
= 1 for condensation,5

where "dew" (resp. "dmax") is the fraction (resp. the maximal one) of free water on the foliage. RST is the stomatal resistance,

this factor governs the canopy participation to the energy budget and is responsible for partition between sensible and latent

heat fluxes.

In the model, calculation of RST is based on Collatz et al. (1991, 1992) and is the same as in SiB models (Sellers et al.,

1992, 1996). Biophysical and environmental variables manage photosynthesis processes giving CO2 assimilation rate and10

then stomatal conductance of the foliage.

Ball (1988) gives the following leaf stomatal conductance expression:

gs =m
An
cs
hsp+ b (A22)

where An is net assimilation rate calculated by the model of Farquhar et al. (1980), cs and hs are CO2 partial pressure and

relative humidity at leaf surface, p is atmospheric pressure, m and b are empirical factors from observations depending on15

vegetation type (C3 or C4).

Assimilation rate is determined by means of three factors, a photosynthetic enzyme (Rubisco) limiting rate, a light limiting

rate and a limiting rate owing to the leaf capacity to export or utilize the photosynthesis products (Collatz et al., 1991). In the

model, the iterative solution method for the photosynthesis-stomatal conductance calculation proposed by Collatz et al. (1991)

has been implemented. Indeed, canopy is considered as a "big leaf" assuming bulk or integral values over canopy depth used in20

the integrated form of Eq.(A22) (see Sellers et al., 1992). Stomatal conductance and net assimilation rate are then determined

for the canopy.
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Table 3. Sites characteristics and overview of available cultures and crop cycles.

Site Auradé Lamasquère Sidi Rahal

Location France France Morocco

Latitude 43.54984444 °N 43.49737222 °N 31.665852 °N

Longitude 1.10563611 °E 1.23721944 °E 7.597873 °W

Climate temperate temperate semi-arid

Soil type Clay loam Clay Clay

sand[%] silt[%] clay[%] 21 47 32 12 34 54 20 34 46

Depth [m] 0.6 1 1

Slope [%] 2 0 1

2004 Culture - - Wheat *

Growth cycle length [days] - - 133

Maximum LAI [m2 m−2] - - 3.76

Cumulated rain [mm] - - 135

Cumulated irrigation [mm] - - 120

2006 Culture Wheat Corn * -

Growth cycle length [days] 246 123 -

Maximum LAI [m2 m−2] 3.13 3.33 -

Cumulated rain [mm] 397 132 -

Cumulated irrigation [mm] 0 148 -

2007 Culture Sunflower Wheat -

Growth cycle length [days] 157 271 -

Maximum LAI [m2 m−2] 1.74 4.47 -

Cumulated rain [mm] 456 531 -

Cumulated irrigation [mm] 0 0 -

2008 Culture Wheat Corn * -

Growth cycle length [days] 248 175 -

Maximum LAI [m2 m−2] 2.39 3.28 -

Cumulated rain [mm] 491 397 -

Cumulated irrigation [mm] 0 50 -

* irrigated cultures.
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Table 4. Intercomparison of TSEB and SEtHyS performances (RMSE), with influence of time resolution, phenological stage, culture and

climate.

RMSE [W m−2]

Rn H LE

TSEB SEtHyS TSEB SEtHyS TSEB SEtHyS

Time resolution Overall (time step) 46.5 25.7 28.9 38.0 54.7 47.1

Overall (daily average) 42.7 18.9 21.2 28.7 38.9 35.5

Phenology Rising 22.1 15.3 110.2 44.1 88.3 44.0

Growth 30.9 24.5 21.7 28.3 51.6 43.4

Max of vegetation 51.1 20.2 24.6 40.8 55.5 48.1

Senescence 55.0 29.4 43.5 47.3 54.0 42.1

Hydric stress 53.2 21.6 44.9 49.3 49.6 30.6

Culture Wheat 49.7 29.5 32.9 37.6 49.2 45.6

Corn 46.0 18.1 22.9 40.2 64.4 52.6

Sunflower 39.1 27.2 27.1 35.1 49.0 39.5

Climate France (wheat) 35.1 32.6 35.1 36.4 52.5 42.9

Morocco (wheat) 25.6 15.2 25.6 40.8 36.3 53.4
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Table 5. Comparison of in situ data and spatial data (SAFRAN, ASTER, and inversed NDVI)

Forcing Source Variables [unit] Description
Mean error "Extreme" error

RMSE BIAS 1st decile 9th decile

Meteo SAFRAN Ta [◦C] Air temperature 1.5 0.7 -1.5 (-10 %) 1.3 (+10 %)

Ua [m s−1] Wind speed 1.4 -0.7 -0.65 (-30 %) 2.3 (+90 %)

Rh [%] Relative humidity 7 8 -12 (-15 %) 5(+8 %)

Rg [W m−2] Global radiation 90 35 -186 (-40 %) 125 (+60 %)

Ra [W m−2] Atmospheric radiation 30 14 -51 (-15 %) 20 (+7 %)

Vegetation FORMOSAT LAI [m2 m−2] Leaf Area Index - 20 % -50 % +50 %

hc [m] Canopy height - 20 % -100 % +100 %

LST ASTER Ts [K] Surface temperature 2 - - -
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