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Abstract. Multivariate hydrologic design under stationary conditions is traditionally performed through 

the use of the design criterion of the return period, which is theoretically equal to the average inter-arrival 

time of flood events divided by the exceedance probability of the design flood event. Under nonstationary 

conditions, the exceedance probability of a given multivariate flood event varies over time. This suggests 15 

that the traditional return-period concept cannot apply to engineering practice under nonstationary 

conditions since by such a definition a given multivariate flood event would correspond to a time-varying 

return period. In this paper, average annual reliability (AAR) was employed as the criterion for 

multivariate design rather than the return period to ensure that a given multivariate flood event 

corresponded to a unique design level under nonstationary conditions. The multivariate hydrologic design 20 

conditioned on the given ARR was estimated from the nonstationary multivariate flood distribution 

constructed by a dynamic C-vine copula, allowing for time-varying marginal distributions and a 

dependence structure. Both the most-likely design event and confidence interval for the multivariate 

hydrologic design conditioned on the given AAR were identified to provide supporting information for 

designer. The multivariate flood series from the Xijiang River, China were chosen as a case study. The 25 

results indicated that both the marginal distributions and dependence structure of the multivariate flood 

series were nonstationary due to the driving forces of urbanization and reservoir regulation. The 
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nonstationarities of both the marginal distributions and dependence structure was found to affect the 

outcome of the multivariate hydrologic design. 

 30 
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1. Introduction 

A complete flood event or a flood hydrograph contain multiple feature variables, such as flood peak 35 

and flood volume, which can be associated with the safety of hydraulic structures (Salvadori et al., 2004, 

2007, 2011; Xiao et al., 2009; Xiong et al., 2015; Loveridge et al., 2017). For example, the water level of 

a reservoir is controlled by not only flood peak flow, but also flood volume (Salvadori et al., 2011). 

Therefore, multivariate hydrologic design, which takes into account multiple flood characteristics as well 

as their dependencies, provides a more rational design strategy for hydraulic structures compared to 40 

univariate hydrologic design (Zheng et al., 2013, 2014; Balistrocchi and Bacchi, 2017).  

Multivariate hydrologic design under stationary conditions has been widely investigated, and the 

design criterion is usually quantified by the return period, similar to univariate hydrologic design. Under 

the definition of the average recurrence interval between flood events equaling or exceeding a given 

threshold (Chow, 1964), the return period of a given flood event under stationary conditions theoretically 45 

equals the average inter-arrival time between flood events divided by the exceedance probability 

(Salvadori et al., 2011). On the other hand, the exceedance probability of a univariate flood event is 

usually uniquely defined without ambiguity, whereas the exceedance probability of a multivariate flood 

event could have multiple definitions (Salvadori and De Michele, 2004; Salvadori et al., 2011; 

Vandenberghe et al., 2011). To date, at least five kinds of different exceedance probabilities for a 50 

multivariate flood event have been defined: 1) the OR case in which at least one of the flood features 

exceeds the prescribed threshold; 2) the AND case in which all flood features exceed the prescribed 

thresholds; 3) the Kendall case in which the univariate representation transformed from the Kendall’s 

distribution function exceeds the prescribed threshold; 4) the Survival Kendall case in which the 

univariate representation transformed from the Survival Kendall’s distribution function exceeds the 55 

prescribed threshold and; 5) the structural case in which the univariate representation transformed from a 

structure function exceeds the prescribed threshold (Favre et al., 2004; Salvadori and De Michele, 2004, 

2010; Salvadori et al., 2007, 2013, 2015, 2016; Vandenberghe et al., 2011; Requena et al., 2013; Zheng 

et al., 2014). 

Due to climate change as well as certain anthropogenic driving forces (Milly et al., 2008), such as 60 

land use changes and river regulation, the nonstationarities of both univariate and multivariate flood series 
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have been widely reported (Xiong and Guo, 2004; Villarini et al., 2009; Vogel et al., 2011; López and 

Francés, 2013; Bender et al., 2014; Xiong et al., 2015; Blöschl et al., 2017; Kundzewicz et al., 2018). The 

multivariate flood distribution exhibits more complex nonstationarity behaviors than the univariate 

distribution, including nonstationarities of individual margins and the dependence structure between the 65 

margins (Quessy et al., 2013; Bender et al., 2014; Xiong et al., 2015; Kwon et al., 2016; Sarhadi et al., 

2016; Qi and Liu, 2017; Vezzoli et al., 2017; Bracken et al., 2018; Salvadori et al., 2018). Both 

nonstationarities of the margins and dependence structure could impact the multivariate hydrologic 

designs. Under nonstationary conditions, the exceedance probability p of a given flood event varies from 

year to year; thus, the return period, calculated as the average inter-arrival time between two successive 70 

flood events divided by p, is no longer a constant (Salas and Obeysekera, 2014; Jiang et al., 2015a; Kwon 

et al., 2016; Sarhadi et al., 2016; Yan et al., 2017). As a result, a given flood event would correspond to a 

time-varying and non-unique return period. Consequently, the traditional return period-based method for 

estimating hydrologic design may no longer be applicable to engineering practice under nonstationary 

conditions (Salas and Obeysekera, 2014). 75 

Although increasing attention has been focused on hydrologic design under nonstationary conditions 

in recent years, the focus has mainly been on univariate designs (Obeysekera and Salas, 2014; Obeysekera 

and Salas, 2016; Read and Vogel, 2016). To overcome the limitation of the traditional return period under 

nonstationary conditions, the concept of the return period has been revisited. Salas and Obeysekera (2014) 

extended two concepts of the return period into a nonstationary framework, defined as the expected 80 

waiting time (EWT) for an exceedance to occur (Olsen et al., 1998), and the time period that results in 

the expected number of exceedances (ENE) equal to one over this period (Parey et al., 2010).  

Risk and reliability are both important measurements for assessing hydrologic designs (Vogel, 1987; 

Read and Vogel, 2015). Besides redefinitions of the return period, some risk-based or reliability-based 

metrics have been introduced as the hydrologic design criteria under nonstationary conditions (Rosner et 85 

al., 2014). Rootzén and Katz (2013) proposed the concept of design life level (DLL) to quantify 

hydrologic risk in a nonstationary climate during the entire design life period of hydraulic structures. Read 

and Vogel (2015) introduced the concept of average annual reliability (AAR) to estimate the hydrologic 

design under nonstationary conditions. Liang et al. (2016) defined the equivalent reliability (ER) to 
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estimate the design flood under nonstationary conditions by linking DLL to return period. Salvadori et al. 90 

(2018) associated hydrologic designs with both given life times and failure probabilities to calculate 

bivariate design values under nonstationarity. These design criteria assess the risk or reliability of 

hydraulic structures associated with the flood distribution during the entire design life period, rather than 

for a single year. For a given design life period, these criteria can always yield a unique risk or reliability; 

therefore, they are applicable to the hydrologic designs under both stationary and nonstationary conditions. 95 

Under the multivariate framework, a given design level would correspond to an infinite number of 

possible hydrologic design events (Hawkes, 2008; Kew et al., 2013; Fu et al., 2014; Zheng et al., 2015, 

2017); however, these design events are generally not equivalent because their joint probability density 

values (i.e. likelihood) usually differ (Salvadori et al., 2011; Volpi and Fiori, 2012; Li et al., 2017; Yin et 

al., 2017). In engineering practice, it should be necessary to determine a typical design event as 100 

representative for a specific design level. For example, in Chinese engineering practice, a unique design 

flood hydrograph corresponding to a given design level is usually required to determine the scale of 

hydraulic structures (Yin et al., 2017). The most-likely design event, which theoretically has the largest 

joint probability density (likelihood) among all possible design events (Salvadori et al., 2011), appears to 

be the best representative candidate. Besides the most-likely design event, it is also necessary to identify 105 

the confidence interval for an infinite possible design events to provide a finite design range for designers 

(Volpi and Fiori, 2012; Yin et al., 2017). The most-likely design event and confidence interval for the 

bivariate hydrologic design under stationary conditions have been identified (Salvadori et al., 2011; Volpi 

and Fiori, 2012; Li et al., 2017; Yin et al., 2017; Salvadori et al., 2018); however, very few studies have 

focused on hydrologic designs with higher dimensions under nonstationary conditions. 110 

Therefore, the objective of the present study was to address the issue of multivariate hydrologic design 

applying to the engineering practice under nonstationary conditions, which is achieved through the 

following steps. First, the nonstationary multivariate flood distribution was constructed using a dynamic 

canonical vine (C-vine) copula (Aas et al., 2009), which was able to capture the nonstationarities of both 

marginal distributions and the dependence structure. The design criterion for the multivariate flood event 115 

was then quantified according to average annual reliability (AAR) rather than the traditional return period, 

since a given multivariate flood event would correspond to a unique AAR under both stationary and 
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nonstationary conditions (Read and Vogel, 2015; Yan et al., 2017). The multivariate hydrologic design for 

any given AAR was estimated from the nonstationary multivariate flood distribution. 

The aforementioned methods for the multivariate hydrologic design under nonstationary conditions 120 

were applied to the Xijiang River, China. The four-dimensional (4-D) multivariate flood series, including 

the annual maximum daily discharge, annual maximum 3-day flood volume, annual maximum 7-day 

flood volume and annual maximum 15-day flood volume of the Xijiang River were chosen as the case 

study data because they constitute the variables used for deriving the design flood hydrograph for 

hydraulic structures. It has been found that the natural flood processes of this river have been significantly 125 

altered by urbanization and reservoir regulation (Xu et al., 2014), but these two factors have not yet been 

taken into account in multivariate hydrologic design. 

The next section of the present paper describes the study area and data. Section 3 presents the methods 

developed in this paper. The results of the case study are provided in section 4. Finally, the conclusion 

and discussion are provided in section 5. 130 

2. Study area and data 

The multivariate flood series of the Xijiang River, South China (see Figure 1) were selected as a case 

study to illustrate the multivariate hydrologic design methods under nonstationary conditions. The 

drainage area of the Xijiang River basin (XRB) is 353,120 km2 with a river length of 2,214 km. The basin 

falls within a humid subtropical monsoon climate region, with the flood season extending from May to 135 

October; therefore, floods have always been a serious natural hazard within the basin. 

The calculation of design floods in China involving the derivation of flood hydrographs for hydraulic 

structures requires not only the flood peak, but also flood volumes of different durations, such as 3 days, 

7 days and 15 days (Ministry of Water Resources of People’s Republic of China, 1996; Xiao et al., 2009; 

Xiong et al., 2015; Li et al., 2017). Therefore, the annual maximum daily discharge ( 1Q ), annual maximum 140 

3-day flood volume ( 3V ), annual maximum 7-day flood volume ( 7V ) and annual maximum 15-day flood 

volume ( 15V ) of the Xijiang River were defined as the multivariate flood series  1 3 7 15, , ,Q V V V . The study 

data were from 1951 to 2012, and observed at the Dahuangjiangkou gauge located at the main stream of 

the Xijiang River and draining a total catchment area of 294,669 km2, approximately 83% of the total 
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area of the XRB.  145 

Rapid urbanization over recent decades has resulted in increasing river regulation projects built in the 

XRB, such as artificial levees for protecting urban areas from river flooding. As a result, flood flow has 

become increasingly constrained to the channel rather than overflow to the floodplain, resulting in an 

increase in the observed river flood flow (Xu et al., 2014). For the purpose of flood control and 

hydropower generation, it is hard to find a river which is not impacted by reservoirs, particularly in a 150 

rapidly developing China. Reservoir regulation has become an increasingly significant factor affecting 

flood processes of the XRB, and should be seriously considered within downstream flood risk analysis 

and hydrologic design, particularly since 2007 when two reservoirs with considerable flood control 

capacities were put into operation. These are the Longtan and Baise reservoirs with flood control 

capacities of 5 × 109 m3 and 1.64 × 109 m3 and catchment areas of 98,500 km2 and 9,600 km2, respectively. 155 

Climate change will likely result in flood nonstationarity by altering climatic conditions of the basin. 

Climatic conditions dominating flood processes in the XRB, such as extreme precipitation, appear to have 

been stationary over the past decades (Yang et al., 2010). Therefore, the current study introduced only 

urbanization and reservoir regulation as potential driving forces of nonstationarity of the flood series, and 

ignored the effect of climate change. 160 

The effect of urbanization on flood processes was quantified using the urban population ( Pop ). Given 

the unavailability of urban population data at the basin scale and the fact that the vast majority of cities 

in the XRB are distributed in Guangxi province, we used urban population data for Guangxi province to 

represent those of the XRB basin. The annual urban population data for Guangxi province during the 

observation period were obtained from the China Compendium of Statistics 1949–2008 (Department of 165 

Comprehensive Statistics of National Bureau of Statistics, 2010) and the website of the National Bureau 

of Statistics of PRC (http://www.stats.gov.cn/tjsj/ndsj/). The present study assumed the design life period 

for hydraulic structures to be from 2013 to 2100. The urban population over the design life period was 

estimated based on the predicted growth rate of China’s urban population reported by He (2014). The 

reservoir index (RI), which depends on the catchment area and flood controlling capacities of reservoirs, 170 

was used to quantify the effects of reservoir regulation on flood processes (López and Francés, 2013). As 

shown in Table 1, two reservoirs with flood control functions have been completed during the observation 
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period from 1951 to 2012, and a further two are planned for operation during the design life period. Figure 

2 illustrates the evolution of the urban population and reservoir index during both the observation and 

design life periods. 175 

3. Methods 

The present study included the following methods: 1) a nonstationary multivariate flood distribution 

based on a dynamic C-vine copula, allowing for both time-varying marginal distributions and a time-

varying dependence structure and; 2) estimation of the multivariate hydrologic design associated with 

average annual reliability (AAR) under nonstationary conditions. To correspond to the case study in this 180 

paper, the multivariate flood series consisting of the annual maximum daily discharge ( 1Q  ), annual 

maximum 3-day flood volume ( 3V ), annual maximum 7-day flood volume ( 7V ) and annual maximum 15-

day flood volume ( 15V ) were chosen to illustrate the multivariate design methods under nonstationary 

conditions. It must be noted that the proposed methods can be extended to other multivariate flood series 

such as consisting of flood peak, flood volume and flood duration. 185 

3.1.  Probability distribution of the nonstationary multivariate flood series 

According to Sklar’s Theorem (Sklar, 1959), the probability distribution of the 4-D flood series 

 1 3 7 15, , ,Q V V V   at time t measured by years ( 1,2,...,t n  , and n   is the length of the flood series) is 

formulated through a copula  C   as follows: 

 
       

1, 3, 7, 15,

1 1, 1, 3 3, 3, 7 7, 7, 15 15, 15, ,

1, 3, 7, 15, ,

, , ,

| , | , | , | |

, , , |

t t t t t

t t t t t t t t c t

t t t t c t

F q v v v

C F q F v F v F v

C u u u u

   
   

θ

θ θ θ θ θ

θ

                (1) 190 

where  1 1, 1,|t tF q θ ,  3 3, 3,|t tF v θ ,  7 7, 7,|t tF v θ  and  15 15, 15,|t tF v θ  denote the marginal distributions for 

1Q , 3V , 7V  and 15V , respectively; 
1,tu , 

3,tu , 
7,tu  and 

15,tu  are the marginal probabilities of 1Q , 3V , 7V  and 

15V , respectively; 
1,tθ , 

3,tθ , 
7,tθ  and 

15,tθ  are the corresponding distribution parameters; and 
,c tθ  stands 

for the copula parameter vector, which describes the strength of the dependence structure. 

 1, 3, 7, 15, ,, , , ,t t t t t c tθ θ θ θ θ θ  is the parameter vector of the entire multivariate distribution, including the 195 
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marginal distribution parameters as well as the copula parameters.  

According to the multivariate distribution of  1 3 7 15, , ,Q V V V  defined by Eq. (1), the corresponding 

density function can be written as: 
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1 1, 1, 3 3, 3, 7 7, 7, 15 15, 15, ,
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| | | |

, , , | | | |
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t t t t t t t t

t t t t c t t t t t t
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c F q F v F v F v

f q f v f v f v

c u u u u f q f v f v

   
  

   

θ

θ θ θ θ θ

    θ θ θ θ

θ θ θ θ   , 15 15, 15,|t t tf v θ

            (2) 

where  1 1, 1,|t tf q θ  ,  3 3, 3,|t tf v θ  ,  7 7, 7,|t tf v θ   and  15 15, 15,|t tf v θ   are the density functions of the 200 

marginal distributions for 1Q  , 3V  , 7V   and 15V  , respectively and  c    denotes the density function of 

copula  C  . As shown by Eq. (2), the multivariate distribution of  1 3 7 15, , ,Q V V V  can be separated into 

two modules, including the marginal distributions, i.e.,  1 1, 1,|t tf q θ  ,  3 3, 3,|t tf v θ  ,  7 7, 7,|t tf v θ   and 

 15 15, 15,|t tf v θ , as well as the dependence structure expressed by the copula density function 

 1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ . Under nonstationary conditions, both the margins and dependence structure of 205 

 1 3 7 15, , ,Q V V V  are able to vary with time t.  

3.1.1. Nonstationary marginal distributions based on the time-varying moments model 

The time-varying moments model expresses the distribution parameters or moments as functions of 

time or some other explanatory variable(s), and has been widely employed to capture the nonstationarity 

of univariate flood series (Strupczewski et al., 2001; Villarini et al., 2009). In this study, the nonstationary 210 

marginal distributions of the multivariate flood series  1 3 7 15, , ,Q V V V   were constructed by the time-

varying moments model.  

In reality, all parameters of the flood distribution can be nonstationary, but this paper only considered 

nonstationarity of the location parameter   (referring to the first moment or mean of the flood series). 

Given the limited length of the flood series used in this study, the higher-order distribution parameters 215 

such as scale and shape parameters were fixed to avoid possible large uncertainty. Based on cause-effect 
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analysis, the flood processes of the XRB were found to mainly be impacted by urbanization and reservoir 

operation. The reservoir index RI and urban population Pop were therefore used as candidate 

nonstationary indicators for the marginal distributions. Since the domain of location parameter    is 

generally (0, ) ,   was expressed as an exponential function of the covariates of Pop and RI to ensure 220 

a strictly positive mean of the flood series. A large number of studies used the exponential function to 

describe a nonstationary flow series (Vogel et al., 2011; Jiang et al., 2015; Read and Vogel, 2016; Yan et 

al., 2017). The four candidate models of the time-varying margins are formulated as follows: 

 
 
 
 

0 1 2

0 1

0 1

0

exp

exp

exp

exp

t t t

t t

t t

t

Pop RI

Pop

RI

   

  

  

 

  

 

 



     (3) 

where 0 , 1 and 2  are model parameters estimated using the maximum likelihood estimate (MLE) 225 

method (Strupczewski et al., 2001). As above, the first equation defines the most complex nonstationary 

model where it is assumed that both RI and Pop are the driving factors of marginal distributions; the 

second and third equations illustrate that the marginal nonstationarity is linked only to RI and Pop, 

respectively and; the final equations represent the simplest model and stationary model.  

Five probability distributions widely used in flood frequency analysis, namely Pearson type III (PIII), 230 

Generalized Extreme Value (GEV), Gamma, Weibull and Lognormal distributions were employed for as 

the candidate distributions for margins (Villarini et al., 2009; Yan et al., 2017). The goodness of fit (GoF) 

of the probability distributions was examined by the Kolmogorov-Smirnov (KS) test with significance 

level set to 0.05 (Frank and Massey, 1951). The p-value of the KS test was simulated using the Monte 

Carlo method. The relative fitting qualities of the time-varying moments models were assessed by the 235 

Akaike Information Criterion (AIC; Akaike, 1974). The best model featured with the smallest AIC value 

was chosen to describe the marginal distributions, derived from the nonstationary models expressed by 

Eq. (3).  

3.1.2. Nonstationary dependence structure based on the dynamic C-vine copula 

After estimating the marginal distributions, the nonstationary dependence structure of  1 3 7 15, , ,Q V V V  240 
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as formulated by the copula density function  1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ  was constructed. Given that most 

applied copula functions are for bivariate random variables,  1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ  cannot be directly 

expressed as a specific copula function. The pair copula method has been proven powerful for the 

construction of the distribution of multivariate random variables through the decomposition of the 

multivariate probability density into a series of bivariate copulas (Aas et al., 2009; Xiong et al., 2015). 245 

Therefore this study constructed the dependence structure of  1 3 7 15, , ,Q V V V  using the pair copula method. 

Numerous pair-copula decomposition forms for a multivariate distribution are available, among which 

two kinds of decompositions with regular vine structures prevail in practice, namely the canonical vine 

(C-vine) and the drawable vine (D-vine) (Aas et al., 2009). It is known that flood peak (e.g., 1Q ) is the 

dominant feature quantifying a flood event as well as the key factor in hydrologic design (Ministry of 250 

Water Resources of People’s Republic of China, 1996). The C-vine is more suitable when there is a key 

variable governing multivariate dependence (Aas et al., 2009). In this case, the C-vine was employed to 

construct the joint distribution of  1 3 7 15, , ,Q V V V  with 1Q  elected as the key variable. Thus, the density 

function  1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ  can be decomposed into six bivariate pair copulas as follows: 
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                    (4) 255 

where  , 13, 17, 115, 37|1, 315|1, 715|13,, , , , ,     θc t t t t t t t  is the parameter vector in the C-vine copula, and:  
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   (5) 

Figure 3 shows the schematic decomposition of the 4-D C-vine copula as expressed by Eq. (4). It is 

evident that the hierarchical structure of the 4-D C-vine copula contains three trees and six edges. The 

first tree (T1) includes three bivariate pair copulas, i.e.,  13 13,tc  ,  17 17,tc   and  115 115,tc  , which 260 

directly act on the marginal probabilities and describe the bivariate dependencies between the key variable 

1Q  and the other three variables, i.e., 3V , 7V  and 15V . The second tree (T2) includes two bivariate pair 

copulas  37|1 37|1,tc   and  315|1 315|1,tc  , which act on the conditional distribution functions with 
1,tu  as the 

conditioning variable. Finally, the third tree (T3) includes only one bivariate pair copula  715|13 715|13,tc   

acting on conditional distribution functions with both 
1,tu  and 

3,tu  as the conditioning variables. 265 

Similar to the nonstationary marginal distributions, the nonstationarity of the dependence structure of 

 1 3 7 15, , ,Q V V V  is characterized by the variations in the copula parameter over time. The present study, 

considered only the nonstationarities of the copula parameters in T1, i.e., 
13,t , 

17,t  and 
115,t , which  

measure the bivariate dependencies of  1 3,Q V ,  1 7,Q V  and  1 15,Q V , respectively. Theoretically, the 

copula parameters 
37|1,t  and 

315|1,t  in T2 and as well as 
715|13,t  in T3 could be nonstationary. However, 270 

the estimations of 
37|1,t  , 

315|1,t   and 
715|13,t   depend on the estimated parameters in T1, and contain 

additional sources of uncertainty, particularly when the length of the observed flood series is limited. 

Therefore the present study kept the copula parameters in T2 and T3 constant to facilitate reliable 
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parameter estimation. 

In flood frequency analysis, the upper tail of the flood distribution deserves more attention because it 275 

allows the quantification of risks of the more serious flood events. The Gumbel-Hougaard copula, an 

extreme-value copula widely used in hydrology, accounts for the upper tail dependence, and is well-suited 

to the dependence structure of a multivariate flood distribution (Salvadori et al., 2007; Zhang and Singh, 

2007; Xiong et al., 2015). Consequently, the present study employed the bivariate Gumbel-Hougaard 

copula to construct the dynamic C-vine copula formulated by Eq. (4). The bivariate Gumbel-Hougaard 280 

copula is expressed as follows: 

      
1/

, exp ln ln
      

 

c
c cC u v u v , [1, )c      (6) 

where u   and v   are the bivariate marginal probabilities and c   is the single parameter measuring the 

dependence strength. To satisfy the domain range of the copula parameter under any condition, the copula 

parameter c  was written as the sum of one and an exponential function of the covariates. Similar to the 285 

marginal distributions, the four candidate models of time-varying dependence were formulated as follows: 
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where 0 , 1  and 2  are model parameters estimated using the MLE method (Aas et al., 2009). The 

remaining copula parameters 
37|1,t , 

315|1,t  and 
715|13,t  in T2 and T3 were then estimated in sequence, also 

using the MLE method. The available GoF tests for vine copulas are very limited, with the Probability 290 

Integral Transform (PIT) test (Rosenblatt, 1952) appearing to be reliable (Aas et al., 2009). Under a null 

hypothesis of the multivariate flood variables  1 3 7 15, , ,Q V V V  following a given C-vine copula, the PIT 

converts the dependent flood variables into a new set of variables that are independent and uniformly 

distributed on [0,1]4. The GoF of vine copulas can be obtained through determining whether the resulting 

variables are independent and uniform in [0,1]. For more details of the PIT test, readers are referred to 295 

Aas et al. (2009). The best nonstationary model for each pair copula in T1 was chosen from the 

nonstationary models generally expressed by Eq. (7) in terms of the AIC value (Akaike, 1974). 
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3.2.Multivariate hydrologic design under nonstationary conditions 

3.2.1. Average annual reliability for multivariate flood events 

The AAR introduced by Read and Vogel (2015) was calculated using the arithmetic average method, 300 

thereby taking into account the annual nonstationary reliability of each year with the same weighting 

factor. A safer design strategy should pay more attention to worse (i.e. lower) annual reliability; however, 

the arithmetic-average AAR is not capable of this function. The present study employed the geometric 

average method to calculate AAR, which is dominated more by the minimum than arithmetic average, 

and is theoretically able to yield safer design values. The geometric-average AAR is also equivalent to 305 

the metrics of DLL (Rootzén and Katz, 2013) and ER (Liang et al., 2016; Yan et al., 2017). 

Denoting  1 3 7 15, , ,q v v v  as a given multivariate flood event, its exceedance probability tp , which is 

the occurrence probability of a more dangerous multivariate event than  1 3 7 15, , ,q v v v  in a specific hazard 

scenario, would vary from year to year under nonstationary conditions. AAR for  1 3 7 15, , ,q v v v   was 

calculated by the geometric average method as follows: 310 

   
2 2 1

1

1

1

1 3 7 15, , , 1
T T T

t

t T

AAR q v v v p
 



 
  
 
     (8) 

where 1T  and 2T  stand for the beginning year and ending year of the operation of an assumed hydraulic 

structure, respectively; 2 1 1 T T  is the length of the design life period of the assumed hydraulic structure 

and; 1 tp  measures the annual reliability of the given multivariate flood event  1 3 7 15, , ,q v v v  at time t . 

3.2.2. Exceedance probabilities of multivariate flood events 315 

The present study characterized AAR by considering three widely used definitions of the exceedance 

probabilities of the multivariate flood event  1 3 7 15, , ,q v v v , i.e., the OR, AND and Kendall cases (Favre 

et al., 2004; Salvadori et al., 2007; Salvadori and De Michele, 2010; Vandenberghe et al., 2011; Salvadori 

et al., 2016). The OR case for  1 3 7 15, , ,q v v v  defines the case under which at least one of the flood features 

exceeds the prescribed threshold. The exceedance probability in the OR case at time t  is denoted as or

tp , 320 

and is calculated by: 
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   1, 1 3, 3 7, 7 15, 15 1 3 7 151 , , ,or

t t t t t tp P Q q V v V v V v F q v v v          θ   (9) 

where ‘ ’ stands for the OR operator and  tF  θ  is defined in Eq. (1). 

The AND case for  1 3 7 15, , ,q v v v  defines the case under which all of the flood features exceed the 

prescribed thresholds, and the corresponding exceedance probability and

tp  at time t  is:  325 

 
 

1, 1 3, 3 7, 7 15, 15

1, 3, 7, 15, 1, 3, 7, 15,

1 1, 3 3, 7 7, 15 15,

, , ,

: , , ,

and

and

t t t t t

t t t t t t t t t

and

t t t t

p P Q q V v V v V v

f Q V V V dQ dV dV dV

q Q v V v V v V


       

   

            

         θ   (10) 

where ‘ ’ is the AND operator and  tf  θ  is defined in Eq. (2).  

Under the Kendall case, the multivariate flood event  1 3 7 15, , ,q v v v   is first transformed into a 

univariate representation via the Kendall’s distribution function  CK   as follows: 

     1, 3, 7, 15, , 1, 3, 7, 15,, , , , , ,C t t t t t c t t t t t t t tK P C U U U U P F Q V V V          
θ θ   (11) 330 

where  1 3 7 15, , ,  θt tF q v v v   is the probability level corresponding to the given flood event 

 1 3 7 15, , ,q v v v . For the general multivariate case, the Kendall’s distribution function cannot be analytically 

formulated as a specific expression, but can be numerically estimated through the Monte Carlo method 

(Niederreiter, 1978; Salvadori et al., 2011). The corresponding exceedance probability ken

tp   in the 

Kendall case at time t  is given as follows: 335 

 1  ken

t C tp K       (12) 

The average annual reliabilities in the OR, AND and Kendall cases can be calculated by replacing the 

exceedance probability tp  in Eq. (8) by or

tp , and

tp  and ken

tp , respectively. 

3.2.3. Most-likely design event and confidence interval for multivariate hydrologic design 

The methods identifying the most-like design event, denoted by  
1 3 7 15

* * * *, , ,Q V V Vz z z z , and the confidence 340 

interval for the multivariate hydrologic design  
1 3 7 15
, , ,Q V V Vz z z z   corresponding to the given AAR 
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(denoted by  ) are introduced below. The average annual probability density, denoted by  g  , of the 

multivariate hydrologic design  
1 3 7 15
, , ,Q V V Vz z z z   over the entire design life period from 1T   to 2T  , is 

expressed as follows: 

   
2

1 3 7 15 1 3 7 15

12 1

1
, , , , , ,

1 


 

 θ
T

Q V V V Q V V V t

t T

g z z z z f z z z z
T T

    (13) 345 

The probability distribution function for AAR   can be written as: 

 
 

 
1 3 7 15

1 3 7 15 1 3 7 15

: , , ,

, , ,  
AAR q v v v

g q v v v dq dv dv dv



 

          (14) 

By denoting the density function of     as     , the probability density of  
1 3 7 15
, , ,Q V V Vz z z z  

conditioned on AAR   can be expressed as:  

 
 

 
1 3 7 15

1 3 7 15|

, , ,
, , ,

Q V V V

AAR Q V V V

g z z z z
g z z z z

 
       (15) 350 

The most-likely design event conditioned on AAR   is theoretically given as: 

   
1 3 7 15 1 3 7 15

* * * *

|, , , arg max , , ,Q V V V AAR Q V V Vz z z z g z z z z     (16) 

Unfortunately, the analytical solutions of both the most-likely design event  
1 3 7 15

* * * *, , ,Q V V Vz z z z   and 

confidence interval are unavailable, but can be approximately estimated through the Monte Carlo 

simulation method. First, the design events with sample size N  conditioned on AAR   are generated. 355 

These design events are then sorted in descending order of their multivariate probability densities, denoted 

by:  

       
1 3 7 15 1 3 7 15 1 3 7 15 1 3 7 15

1 1 1 1 2 2 2 2, , , , , , , , , , , , , , ,Nc Nc Nc Nc N N N N

Q V V V Q V V V Q V V V Q V V Vz z z z z z z z z z z z z z z z , ，  (17) 

where cNc N p   , and cp   is the critical probability level for the confidence interval. Thus, the 

approximate solution for  
1 3 7 15

* * * *, , ,Q V V Vz z z z  is  
1 3 7 15

1 1 1 1, , ,Q V V Vz z z z . The lower boundary for the confidence 360 

interval is given as: 
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The upper boundary for the confidence interval is estimated by: 
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3.2.4. Derivation of the design flood hydrograph 365 

In China, the design flood hydrographs for hydraulic structures are usually derived from the design 

flood events set against a benchmark flood hydrograph, which are chosen from the observed flood 

processes (Ministry of Water Resources of People’s Republic of China, 1996; Xiao et al., 2009, Yin et al., 

2017). As an example, suppose that a flood hydrograph consists of the features of annual maximum daily 

discharge, 3-day flood volume, 7-day flood volume and 15-day flood volume. The four features of the 370 

benchmark flood hydrograph are denoted by 
1

BQ , 
3

BV , 
7

BV  and 
15

BV , respectively. The design flood hydrograph 

corresponding to the multivariate hydrologic design realization  
1 3 7 15
, , ,Q V V Vz z z z   can be derived by 

multiplying the benchmark flood hydrograph by different amplifiers, given as described below. 

The amplifier 1K  for the annual maximum daily discharge is calculated by:  

1

1

1

Q

B

z
K

Q
                                             (20) 375 

The amplifier 3 1K    for the 3-day flood volume except for the annual maximum daily discharge is 

calculated by: 

 
 

3 1

3 1

3 1

V Q

T B

z V z
K

V V Q






      (21) 
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where  V  is the operator transforming daily discharge into flood volume. The amplifier 7 3K  for the 7-

day flood volume except for the 3-day flood volume is calculated by: 380 

7 3

7 3

7 3

V V

T B

z z
K

V V






      (22) 

Finally, the amplifier 15 7K  for the 15-day flood volume except for the 7-day flood volume is calculated 

by: 

15 7

15 7

15 7

V V

T B

z z
K

V V






       (23) 

4. Results 385 

4.1. Nonstationary analysis for marginal distributions 

The time-varying moments model was employed to perform nonstationary analysis for each marginal 

distribution of the multivariate flood series  1 3 7 15, , ,Q V V V  for the XRB. In general, all candidate marginal 

distributions passed the GoF test at the 0.05 significance level. The AIC values for the chosen model for 

each margin were shown in Table 2. The results indicated that the GEV distribution provided the best fit 390 

for the annual maximum daily discharge series 1Q , whereas the Gamma distribution was chosen as the 

theoretical distribution for the flood volume series 3V , 7V  and 15V . All estimated model parameters were 

found to be statistically significant at the 0.05 level. The 95% uncertainty intervals for the estimated 

parameters are were calculated by the parametric bootstrap method (Kyselý, 2009). According to the 

regression functions of the location parameter  , the means of the flood series were generally positively 395 

related to the urban population Pop , whereas they were negatively related to the reservoir index RI . It 

can be concluded that the values of   (referring to the means of the flood series) for all margins were 

nonstationary. This finding also reveals the opposite roles played by urbanization and reservoir regulation 

on the flood processes of the XRB. In particular, more artificial levees are required to protect urban areas 

from flooding by constraining the flood flow to river channels, which results in increased the river channel 400 

flood flow. The reservoir played an active role in flood control by reducing the flood discharge 

downstream. 
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More specific to each margin of  1 3 7 15, , ,Q V V V , the location parameters   of the three short-duration 

flood series, i.e., 1Q  , 3V   and 7V  , were positively linked to Pop  , whereas RI   was the driving factor 

reducing the location parameters    of all flood series, including 1Q  , 3V  , 7V   and 15V  . Owing to the 405 

difference in covariate selections, the short-duration flood series, including 1Q  , 3V   and 7V  , displayed 

asynchronous nonstationary behaviors with the long-duration flood series 15V   occurring in the 

observation period of 1951–2012. As shown in Figure 4, 1Q , 3V  and 7V  presented significantly increasing 

trends during 1951–2005, particularly since the 1980s, marking the beginning of a period of rapid 

urbanization in China. 15V  tended to follow a stationary process during 1951–2005. After the two flood 410 

control reservoirs were put into operation in 2006, all flood series, including 1Q , 3V , 7V  and 15V , exhibited 

a sharp decline.  

The predicted marginal distributions for  1 3 7 15, , ,Q V V V  during the design life period from 2013 to 

2100 were estimated using the time-varying moments model by replacing the observed covariates for   

with those predicted. Figure 4 also shows that the mean values of 1Q , 3V  and 7V  during the design life 415 

period increased with the growth of the urban population, following which they decreased sharply in 2023 

after a larger reservoir, Datengxia is expected to be put into operation. After 2023, with no more reservoirs 

planned, the predicted mean values of 1Q , 3V  and 7V  would be expected to reach their peaks in the mid-

21th century followed by a slight declining trend because of a shrinking urban population. Since 15V  was 

only related to RI , 15V  would show an abrupt decline in 2023 due to the regulation of the Datengxia 420 

Reservoir. In general, the predicted nonstationary marginal distributions for 1Q  and 3V  during 2013–2100 

was roughly approximate to the marginal distributions under the assumption of stationarity, whereas the 

predicted nonstationary marginal distributions for 7V  and 15V  exhibited smaller mean values than those 

of the stationary distributions.  

4.2. Nonstationary dependence structure for  1 3 7 15, , ,Q V V V  425 

After estimating the nonstationary marginal distributions for  1 3 7 15, , ,Q V V V  , the multivariate 
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dependence structure was constructed by the dynamic C-vine copula with 1Q  elected as the key variable. 

Table 3 shows the estimation results of the dynamic C-vine copula. The PIT test for the nonstationary 

dependence structure of  1 3 7 15, , ,Q V V V   suggested a satisfactory fitting effect, and all estimated 

parameters were found to be statistically significant. The results indicated that the bivariate pairs  1 3,Q V  430 

and  1 7,Q V  exhibited stationary dependence, whereas the copula parameter 115  for pair  1 15,Q V  was 

found to be nonstationary and linked to both the urban population Pop  and reservoir index RI. It was 

found that the margin of 1Q  displayed asynchronous nonstationarity behaviors with 15V  (see Table 2 and 

Figure 4). Therefore, the dependence nonstationarity of the pair  1 15,Q V  could possibly be attributed to 

the asynchronous marginal nonstationarities.  435 

According to the regression function, 115  was negatively related to Pop  whereas it was positively 

related to RI. In other words, growing urbanization weakened the multivariate flood dependence, whereas 

reservoir regulation played an opposite role and enhanced the dependence. This finding indicated that 

human activities, including urbanization and reservoir regulation, not only changed the statistical 

characteristics of the individual flood series of  1 3 7 15, , ,Q V V V  , but also affected the dependence of 440 

 1 3 7 15, , ,Q V V V . Figure 5 shows variations of 115θ  over time for 1951–2012 as well as during the design 

life period of 2013–2100. 115θ  showed a significant upward change point in both 2007 and 2023 due to 

reservoir regulation. 115θ  also exhibited an obvious decreasing trend with urban population growth from 

1951 to the mid-21th century, followed by a slight increasing trend due to shrinking urban population. 

During the design life period, the predicted nonstationary 115θ   suggests a weaker dependence for 445 

 1 3 7 15, , ,Q V V V  than the dependence under the stationary assumption, since it is usually smaller than the 

stationary estimation. 

In addition, the change-point detection method based on the Cramér-von Mises statistic (Bücher et al., 

2014) was employed to detect possible nonstationarities in both the marginal distributions and dependence 

of the multivariate flood series  1 3 7 15, , ,Q V V V  . Readers are referred to Bücher et al. (2014) and 450 

Kojadinovic (2017) for specific steps to implement change-point detection. The results indicated that 
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neither the marginal distributions nor dependence displayed change points at the 0.05 significance level, 

whereas the previous analysis suggested nonstationary margins and dependence due to the joint effects of 

urbanization and reservoir regulation. These aforementioned inconsistencies could be attributed to the 

opposite roles of urbanization and reservoir regulation on shifting of the multivariate flood distribution, 455 

with urbanization generally enlarging the mean values of the flood series and weakening their dependence, 

and reservoir regulation decreasing the mean values and strengthening the dependence. In other words, 

the nonstationarities induced by these two factors may have offset each other. As a result, the 

nonstationarities of  1 3 7 15, , ,Q V V V  might have not been captured by the statistical method based on the 

Cramér-von Mises statistic. This finding highlights the significance of cause-effect analysis in judging 460 

the nonstationarity of hydrologic series (Serinaldi and Kilsby, 2015; Xiong et al., 2015). 

4.3. Multivariate hydrologic design characterized by average annual reliability 

The multivariate hydrologic designs, characterized by average annual reliability (AAR) associated 

with the OR, AND and Kendall exceedance probabilities, were estimated from the predicted nonstationary 

multivariate distribution for  1 3 7 15, , ,Q V V V  during the design life period from 2013 to 2100. Figures 6–9 465 

(see the left columns) show the most-likely design events and the 90% confidence intervals conditioned 

on the AAR varying from 0.01 to 0.99. The multivariate hydrologic design events associated with both 

the OR and Kendall exceedance probabilities exhibited the lower boundaries, whereas the design events 

associated with the AND exceedance probability exhibited the upper boundaries.  

The design flood hydrographs were derived from the multivariate hydrologic designs against the 470 

benchmark flood hydrograph observed in 1988. Figure 10 shows the design flood hydrographs by setting 

AAR equal to 0.90, 0.95 and 0.99. For any given multivariate flood event, the corresponding OR 

exceedance probability was larger than that of AND, with the Kendall exceedance probability somewhere 

in between (Vandenberghe et al., 2011). These differences among the OR, AND and Kendall exceedance 

probabilities indicate the different design strategies. It must be noted that the choice of design strategy in 475 

engineering practice is usually priori and is dependent on the specific design requirements and 

mechanisms of failure for hydraulic structures (Serinaldi, 2015; Salvadori et al., 2016). 

We calculated the univariate hydrologic design events from the predicted marginal distributions to 
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compare the design strategies under the multivariate framework with those under the univariate 

framework. Figures 6–9 show that the univariate hydrologic design events exactly constituted the lower 480 

boundaries of the multivariate hydrologic design events associated with the OR exceedance probability, 

as well as the upper boundaries of the design events associated with the AND exceedance probability. 

Under a given AAR, the hydrologic designs under the univariate framework were generally smaller than 

the most-likely design events associated with the OR exceedance probability, whereas they were larger 

than those associated with the AND exceedance probability, and they were most approximate to those 485 

associated with the Kendall exceedance probability. The comparisons of the flood hydrographs displayed 

in Figure 10 reinforced these findings. 

4.4. Impacts of multivariate nonstationarity behaviors on hydrologic design values 

Sections 4.1 and 4.2 show the marginal distribution and dependence structure of the multivariate flood 

distribution of  1 3 7 15, , ,Q V V V   to be nonstationary. We estimated the multivariate hydrologic design 490 

events under an assumption of stationarity to illustrate how these nonstationarities act on the multivariate 

hydrologic designs, i.e., both marginal distributions and the dependence structure were treated as 

stationary (see the right columns in Figures 6–9). Figure 4 suggests that both the predicted nonstationary 

marginal distributions for 1Q   and 3V   during the design life period were approximate to the stationary 

marginal distributions. Therefore, the nonstationary and stationary marginal distributions yielded similar 495 

design values for 
1Qz  and 

3Vz  (see Figures 6 and 7). The predicted nonstationary distributions for both 

7V  and 15V  indicated smaller mean values compared to those of the stationary distributions (see Figure 

4); therefore, the corresponding hydrologic design values estimated from the nonstationary marginal 

distributions were generally smaller than those estimated from the stationary marginal distributions (see 

Figures 8 and 9). 500 

The nonstationary multivariate flood distribution during the design life period was also predicted to 

exhibit a weaker dependence structure than that of the stationary distribution (see Figure 5). The 

dependence nonstationarity is expected to have a much subtler effect on the multivariate hydrologic 

design compared to the marginal nonstationarities (Xiong et al., 2015). To illustrate the individual role of 

the dependence of nonstationarity on multivariate hydrologic design, an artificial nonstationary condition 505 
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for the multivariate flood distribution was set that only the marginal nonstationarities were considered, 

whereas the dependence structure was treated as stationary. The results of the multivariate hydrologic 

design events are shown in the middle columns in Figures 6–9. In general, the dependence nonstationarity 

had less effect on the multivariate hydrologic designs compared the marginal nonstationarities; however, 

some visible differences in both the 90% confidence intervals were still identified. The nonstationary and 510 

weaker dependence structure generally suggested wider confidence intervals for the multivariate 

hydrologic design values.  

5. Conclusion and discussion 

The statistical characteristics of both the marginal distributions and the dependence structure of 

multivariate flood variables can vary with time under nonstationary conditions. It is possible that the 515 

multivariate flood distribution estimated from the historical information will not reflect the statistical 

characteristics of flooding in the future. As a result, the stationary-based hydrologic design would not be 

able to deal with potential hydrologic risks of hydraulic structures. It is necessary for hydrologic designers 

to take into account the physical driving forces (such as human activates and climate change) responsible 

for the nonstationarity of multivariate flood variables. 520 

The present study introduced possible methods for addressing multivariate hydrologic design for 

application in engineering practice under nonstationary conditions. A dynamic C-vine copula allowing 

for both time-varying marginal distributions and time-varying dependence structure was developed to 

capture the nonstationarities of a multivariate flood distribution. The multivariate hydrologic design under 

nonstationary conditions was estimated by specifying the design criterion by average annual reliability. 525 

The most-likely design event and confidence interval were identified as the outcome of the multivariate 

hydrologic design. Multivariate flood series  1 3 7 15, , ,Q V V V  from the XRB, South China, were chosen as 

a case study, with the main findings given below. 

Within the multivariate flood series  1 3 7 15, , ,Q V V V   of the XRB, both urbanization and reservoir 

regulation were found to be the driving forces of nonstationarities of both the marginal distributions and 530 

dependence structure. The growth of the urban population generally resulted in an increased mean value 

of the individual flood series, whereas it weakened the dependence of  1 3 7 15, , ,Q V V V . The increasing 
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reservoir index had the opposite effects on the individual flood series as well as their dependence. Under 

a given average annual reliability, the OR exceedance probability yielded the largest design values, 

followed by the Kendall and the AND exceedance probabilities. Nonstationarities in both marginal 535 

distributions and dependence structure affected the outcome of the multivariate hydrologic design. The 

marginal nonstationarities of  1 3 7 15, , ,Q V V V   played a dominant role in affecting the multivariate 

hydrologic design.  

There are two remarks that can be made related to the practical implications of the hydrologic design 

methods developed in the current study that are detailed below.  540 

The first remark relates to the length of observed flood data required for multivariate and 

nonstationary hydrologic design. In theory, sufficiently long observed flood data (or other extreme-value 

data) are required to derive robust estimations of the distribution parameters and the correct hydrologic 

design values. However, in reality, most data series are limited in length, thus forcing us to use what we 

have at hands to do research or design works without fulfilling the theoretical assumptions or requirements. 545 

Some recent studies suggested that univariate flood frequency analysis under stationary conditions usually 

requires flood data with a continuous period of at least 30 years (Ministry of Water Resources of People’s 

Republic of China, 1996; Engeland et al., 2018; Kobierska et al., 2018). However, determining a definitive 

answer to what length of observed flood data is required for flood frequency analysis under multivariate 

and/or nonstationary settings poses a challenge since this issue has not yet been fully addressed. However, 550 

it is certain that multivariate and nonstationary hydrologic designs naturally require dataset of longer 

length, since they usually contain more parameters to be estimated. 

The second remark related to the tradeoff between reducing estimation bias and increasing model 

uncertainty. Nonstationary models generally improve performance in fitting observation data by reducing 

estimation bias (Jiang et al., 2015b), but this is usually achieved at the expense of increasing model 555 

complexity, such as adding more model parameters and introducing more nonstationary covariates, which 

might induce additional sources of model uncertainty (Serinaldi and Kilsby, 2015; Read and Vogel, 2016). 

The nonstationarities in the present study for both higher-order marginal distribution parameters and 

copula parameters in roots T2 and T3 were ignored to avoid possible larger uncertainty in parameter 

estimation considering the limited length of the flood series. It is also important to note that keeping these 560 
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parameters constant could be unrealistic and could result in biased estimates. A careful balance between 

the model fitting effect and the model complexity should be maintained in practice when employing 

multivariate and nonstationary hydrologic design by keeping in mind the following two points: 1) the 

multivariate and nonstationary models should remain effective but should also be kept as simple as 

possible to avoid over-fitting and; 2) to ensure a robust relationship between the distribution parameters 565 

and the explanatory covariates, the chosen covariates should be physically-related to the flood processes 

and supported by a well-defined cause-effect analysis.  
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Appendix 

1. Calculating multivariate exceedance probabilities 

1.1 OR exceedance probability (formulated by Eq. (9) in the paper) 585 

Since the multivariate cumulative function  1 3 7 15, , , tF q v v v θ  has no analytical expression, the OR 

exceedance probability or

tp  at time t is calculated by the Monte Carlo method as follows: 

(1) Calculate the marginal probabilities  1 3 7 15, , ,u u u u  of  1 3 7 15, , ,q v v v ; 

(2) Generate m samples  1, 3, 7, 15,, , ,i i i iu u u u  ( 1,2,...,i m ) from the C-vine copula; 

(3) Calculate    1 3 7 15 1, 1 3, 3 7, 7 15, 151

1
, , , , , ,

1

m

t i i i ii
F q v v v u u u u u u u u

m 
   


θ = 1 ; 590 

(4) Calculate  1 3 7 151 , , ,or

t tp F q v v v  θ . 

1.2 AND exceedance probability (formulated by Eq. (10) in the paper) 

The AND exceedance probability and

tp  at time t is calculated by the Monte Carlo method as follows: 

(1) Calculate the marginal probabilities  1 3 7 15, , ,u u u u  of  1 3 7 15, , ,q v v v ; 

(2) Generate m samples  1, 3, 7, 15,, , ,i i i iu u u u  ( 1,2,...,i m ) from the C-vine copula; 595 

(3) Calculate  1, 1 3, 3 7, 7 15, 151

1
, , ,

1

mand

t i i i ii
p u u u u u u u u

m 
   


= 1 . 

1.3 The Kendall exceedance probability (formulated by Eq. (11) and Eq. (12) in the paper) 

The Kendall exceedance probability ken

tp  at time t is calculated by the Monte Carlo method as follows: 

(1) Calculate the marginal probabilities  1 3 7 15, , ,u u u u  of  1 3 7 15, , ,q v v v ; 

(2) Calculate  1 3 7 15, , ,t tF q v v v  θ  (see calculation steps 2–3 for OR exceedance probability); 600 

(3) Generate m samples  1, 3, 7, 15,, , ,i i i iu u u u  ( 1,2,...,i m ) from the C-vine copula; 

(4) For 1,2,...,j m , calculate  1, 1, 3, 3, 7, 7, 15, 15,1

1
, , ,

1

m

j i j i j i j i ji
v u u u u u u u u

m 
   


= 1 ; 

(5) Calculate    
1

1 m

C t i ti
K v

m
 


  1 ; 
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(6) Calculate  1ken

t C tp K   . 

2. Generating the multivariate design event sample (formulated by Eq. (17) in the paper) 605 

To calculate the most-likely design event and confidence interval conditioned on AAR  , we need 

to generate the numerous multivariate design event samples  
1 3 7 15
, , ,Q V V Vz z z z  by using the Monte Carlo 

method. Here, we give the details of generating the design event samples as follows: 

(1) Define the total number of design event samples N and the initial number of the design event sample 

0i  ;  610 

(2) Generate a random integer (denoted by tr) among (T1, T1+1,…, T2); 

(3) Generate a random sample  
1 3 7 15
, , ,Q V V Vz z z z  following the multivariate distribution 

 
1 3 7 15
, , ,

rQ V V V tF z z z z θ  with the distribution parameter vector 
rt

θ ; 

(4) Calculate the annual exceedance probability for each year throughout the period from T1 to T2; 

(5) Calculate AAR during the period from T1 to T2; 615 

(6) If -AAR   ( where is a very small value, such as 0.0001) , +1i i ; 

(7) If i N , repeat steps (2)–(6). 
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Table 1 Reservoirs information for the Xijiang River basin 

Reservoir Catchment area (km2) Flood control capacity (109m3) Year of operation 

Longtan 98,500 5.0 2006 

Baise 9,600 1.64 2006 

Laokou 72,368 0.36 2016 

Datengxia 198,612 1.5 2023 (predicted) 
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Table 2 Results of nonstationary analysis for the marginal distributions of  1 3 7 15, , ,Q V V V  

Flood 

variable 

Distribution   
    p_KS 

0  1  2  

1Q  GEV 
10.050*** 

[9.931, 10.182] 
0.0212*** 

[0.005,0.036] 
−2.166** 

[−4.006,−0.481] 
6892.085*** 

[5313.291, 8176.206] 
−0.271** 

[−0.527, −0.092] 
0.713 

3V  Gamma 
1.866*** 

[1.751, 1.977] 
0.0185** 

[0.002, 0.034] 
−2.094** 

[−3.801, −0.403] 
0.261*** 

[0.209, 0.300] 
- 0.832 

7V  Gamma 
2.638*** 

[2.522,2.754] 
0.0119** 

[−0.005,0.028] 
−1.934** 

[−3.713,−0.166] 
0.269*** 

[0.215,0.308] 
- 0.907 

15V  Gamma 
3.258*** 

[3.213,3.354] 
- −1.525** 

[−2.807,0.155] 
0.265*** 

[0.215,0.307] 
- 0.926 

1  and 2  are the parameters related to urban population (Pop) and reservoir index (RI), respectively. The symbols ‘***’, ‘**’ 785 

and ‘*’ denote that the estimated model parameters are significant at the levels of 0.01, 0.05 and 0.1, respectively. The numbers 

in brackets are the 95% uncertainty interval.  p_KS stands for the p-value of the KS test for marginal distributions. 
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Table 3 Results of nonstationary analysis for the dependence structure of  1 3 7 15, , ,Q V V V  

 790 

Copula 

parameter 

Model parameters 

0  1    2  

13  3.023*** 
[2.816, 3.249] 

- - 

17  1.719*** 
[1.483, 1.976] 

- - 

115  1.461*** 
[0.958,2.038] 

 −0.111 **   
[−0.021,−0.226] 

9.426** 
[0.970,20.416] 

37|1  0.0926* 
[−0.316, 0.473] 

 - 

315|1  −1.444** 
[−3.036,−0.693] 

- - 

715|13  −0.231* 
[−0.728, 0.199] 

- - 

1  and 
2  are the parameters related to urban population (Pop) and reservoir index (RI), respectively. The symbols ‘***’, ‘**’ 

and ‘*’ denote that the estimated model parameters are significant at the levels of 0.01, 0.05 and 0.1, respectively. The numbers 

in brackets are the 95% uncertainty interval. p_PIT stands for p-value of the PIT test for the C-vine copula. 
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 795 

 

Figure 1. Map of the Xijiang River basin (above the Dahuangjiangkou gauge). 
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Figure 2. Evolution of the urban population and reservoir index for both the observation and design life periods. 800 
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Figure 3. Decomposition of the four-dimensional C-vine copula. 
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Figure 4. Nonstationary marginal distributions for both the observation and design life periods. 
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 810 

Figure 5. Nonstationary copula parameter for pair  1 15,Q V  for both the observation and design life periods. 
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Figure 6. Design values of the annual maximum daily discharge for different average annual reliability (AAR) 

varying from 0.01 to 0.99 under three nonstationary conditions. 815 
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Figure 7. Design values of the 3-day flood volume for different average annual reliability (AAR) varying from 

0.01 to 0.99 under three nonstationary conditions. 
  820 
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Figure 8. Design values of the 7-day flood volume for different average annual reliability (AAR) varying from 

0.01 to 0.99 under three nonstationary conditions. 
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 825 

Figure 9. Design values of the 15-day flood volume for different average annual reliability (AAR) varying from 

0.01 to 0.99 under three nonstationary conditions. 
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 830 
Figure 10. Design flood hydrographs associated with OR, AND and Kendall probabilities. 
 


