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Reply to Referee #1 

 

General comments 

It is rather difficult to evaluate this work. The Authors provided some answers to the issues raised 

by the Referees, but, in my opinion, these replies are also questionable. The Editor will take a 

decision. Some comments follow below. 

Response： 

Great thanks for your professional and insightful comments on this manuscript in two 

review circles. All your comments are of great significance for improving the quality of this 

manuscript, and have been addressed in revising the manuscript. Please see our point-to-point 

replies below. 

 

Specific comments 

(1) Page(s) 9, Line(s) 215–216. 

Author(s). Given the limited length of the flood series used in this study, the higher-order 

distribution parameters such as scale and shape parameters were fixed to avoid possible large 

uncertainty. 

Referee. However, such an assumption can make the work rather weak. . . 

Response: 

In the revised manuscript, this assumption has been removed, and the nonstationarities of the 

higher-order distribution parameters such as scale and shape parameters have been examined by 

the time-varying moments model. The results indicate that both the scale and shape parameters for 

all flood variables in this study are stationary. Thus this modification does not 

make any difference to the results in the previous version of the manuscript. 

 

(2) Page(s) 10, Line(s) 219–220. 

Author(s). Since the domain of location parameter µ is generally (0; +1), µ was expressed as 

an exponential function. . . 

Referee. If this is the problem, any polynomial of the form g(t) = t2k, with integer k > 0, 

would generally satisfy the non-negativity constraint. . . 

Response: 

Thanks for this insightful comment. It is really true that the domains of distribution parameters 

could not be a strong argument for the selection of the functions expressing the relationships 

between distribution parameters and covariates. Choosing a proper function to model the 

nonstationarities of hydrological distribution parameters appears to be an issue common to most 

current relevant studies, since it is hard to provide some theoretical supports beyond the fitting 

quality. Polynomial functions are able to generally satisfy the non-negativity constraint, but seem 

to be too complex and might result in overfitting of distribution parameters when the model 

contains multiple explanatory covariates. In previous literatures, linear and exponential functions 

have been widely used to build the relationships between distribution parameters and covariates 

(Strupczewski et al., 2001; Vogel et al., 2011; Jiang et al., 2015; Read and Vogel, 2016; Yan et al., 

2017). In the revision, in addition to exponential function, linear function has also been 

supplemented as another candidate model for building the relationships between distribution 

parameters and covariates, so that both linear and nonlinear relationships are considered in this 



study. The proper model is chosen from these two types of functions in terms of fitting quality 

measured by corrected AIC. The results indicate that exponential function performs slightly better 

than linear model in characterizing the nonstationarities of distribution parameters. In the revised 

manuscript, Eq. (3) has been modified as: 
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(3) Page(s) 10, Eq(s) 3. 

In Eq. (3) the Authors are implicitly assuming a “multiplicative” model, being the exponential 

of a linear combination of the arguments: any reason for doing that? 

Response: 

Thanks for this comment. In the original manuscript, Eq. (3) gives a “multiplicative” model, 

which is able to take into account the possible interaction between different covariates leading to 

the flood nonstationarity. In the revised manuscript, we have added this explanation in the second 

paragraph of Section 3.1.1 as follows: 

As above, the linear expression in Eq. (3) gives an additive model which suggests that the 

effects of the covariates RI and Pop on   are independent, while the exponential expression 

defines a multiplicative model which is able to take into account the possible interaction between 

the covariates RI and Pop. 

 

(4) Page(s) 12, Line(s) 273. 

Author(s). Therefore the present study kept the copula parameters in T2 and T3 constant. . . 

Referee. However, as above, such an assumption can make the work rather weak. . . 

Response: 

In the revised manuscript, this assumption has been removed and the nonstationarities of the 

copula parameters in T2 and T3 are considered. The results indicate that all these copula 

parameters in T2 and T3 are stationary. This finding indicates that this assumption does not make 

any difference to the results in the previous version of the manuscript. 

 

(5) Page(s) 13, Line(s) 284–285. 

Author(s). To satisfy the domain range of the copula parameter under any condition, the 

copula parameter θc was written as the sum of one and an exponential function of the 

covariates. 

Referee. As above, if this is the problem, any polynomial of the form g(t) = 1 + t2k, with 

integer k > 0, would generally satisfy the constraint. . . 

Response: 

   In the revised manuscript, we have supplemented a linear function as a candidate model for 

describing the nonstationarity of the copula parameter. The proper model is chosen from linear and 

exponential functions in terms of fitting quality measured by corrected AIC. For more detailed 

explanation, please also refers to the Response in the above made to Comment (2). 

 

(6) Page(s) 13, Line(s) 296–297. 

Author(s). The best nonstationary model for each pair copula in T1 was chosen from the 

nonstationary models generally expressed by Eq. (7) in terms of the AIC value (Akaike, 1974). 



Referee. Maybe, it would be better to use a Corrected-AIC procedure: it should account for 

possible over-parameterization. . . 

Response: 

In the revision, corrected-AIC (Hurvich and Tsai, 1989) has been used as the criterion to 

perform model selection. It is found that corrected-AIC yields the same model selection results as 

with AIC. 

Newly cited reference: 

Hurvich, C. M., and Tsai, C. L.: Regression and time series model selection in small samples, 

Biometrika, 76, 297–307, 1989. 

 

(7) Page(s) 14, Line(s) 317–318. 

Author(s). OR, AND and Kendall cases. . . 

Referee. These were first introduced, and theoretically discussed, in Salvadori and De 

Michele (2004): please fix the references (always give proper credits to whom deserve 

credits). 

Response: 

In the revision, we have added this citation. 

 

(8) Page(s) 15, Eq(s) 10. 

The exceedance probability in Eq. (10) can be calculated directly via Eq. (1) in Salvadori et al. 

(2013), exploiting the inclusion-exclusion principle. 

Response: 

Eq. (10) is the theoretical expression of the AND exceedance probability. The value of Eq. (10) 

is calculated by the Monte Carol method, which is similar to the method in Salvadori et al. (2013). 

In the revised manuscript, we have added this citation in the final paragraph of Section 3.2.2. 

 

(9) Page(s) 20, Line(s) 448–450. 

Author(s). In addition, the change-point detection method based on the Cramer-von Mises 

statistic (Bucher et al., 2014) was employed to detect possible nonstationarities in both the 

marginal distributions and dependence of the multivariate flood series. . . 

Referee. Please show the p-values of the tests. 

Response: 

In the revised manuscript, we have added a table to display the p-values of the change-point 

test. 

Table 4 Results of change-point detection for the marginal distributions and dependence of 

 1 3 7 15, , ,Q V V V  

Flood 

series 

Change point of 

margin 

p-value  Flood series Change point of 

dependence 

p-value 

1Q  1993 0.072  ( 1Q , 3V ) 1955 0.083 

3V  1993 0.186  ( 1Q , 7V ) 1955 0.537 

7V  1994 0.752  ( 1Q , 15V ) 1972 0.599 

15V  1981 0.423  ( 1Q , 3V , 7V , 15V ) 1972 0.995 

  



Reply to Referee #4 

General comments 

Overall, this paper is well written and is of great interest to the flooding research community. 

Considering the floods in the context of multiple variables is important as such cases have been 

often observed in practice. I would like to invite the authors to address the following comments 

before this paper can be accepted.  

Response: 

We appreciate your positive evaluation as well as constructive comments on this paper. All of 

your concerns have been addressed in the manuscript. Please see our point-to-point reply below. 

 

Specific comments 

(1) While the paper focuses on the multivariate, it actually simplifies it through decomposing the 

multivariate into many bivariate cases. I understand this is in the consideration for parameter 

estimation. However, this also may result in possible bias in the results. I suggest the authors 

to give some discussions on this. 

Response: 

Thanks for this constructive comment. In this study, we constructed the joint distribution of the 

multivariate flood variables through decomposing the multivariate dependence into many bivariate 

pair copulas. To make it easy in parameter estimation, the model parameters for each pair copula 

were separately estimated. It is worth noting that these parameters can be also simultaneously 

estimated. These two methods could result in possible difference in parameter estimation. In the 

revision, we have added this discussion in the fifth paragraph of Section 3.1.2 as follows: 

To make it easy in parameter estimation, the model parameters for each pair copula were 

separately estimated. The model parameters for 13,t , 17,t  and 115,t  in T1 were first estimated, 

and those for the remaining copula parameters 37|1,t , 
315|1,t  and 

715|13,t  in T2 and T3 were then 

estimated in sequence. It is worth noting that these parameters can be also simultaneously 

estimated. These two methods could result in possible difference in parameter estimation. 

 

(2) Can the authors please present some statistical figures to pair the Q and V (just use the 

original data to see whether there is a strong correlation). I think these plots would be very 

helpful.  

Response: 

In the revised manuscript, we have added a figure to present statistical correlations between 

flood peak and flood volumes as follows: 

 
Figure 5. Statistical correlations between flood peak and flood volumes 
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(3) “In reality, all parameters of the flood distribution can be nonstationary, but this paper only 

considered nonstationarity of the location parameter (referring to the first moment or mean of 

the flood series).” This is an important assumption that needs more explanation. Does this 

assumption will significant affect the results? Have previous studies made similar 

assumptions? 

Response: 

In accordance with Comment (1) by Referee # 1, this assumption has been removed, and the 

nonstationarities of all distribution parameters are taken into consideration in the revision. In 

reality, all parameters of the flood distribution could be nonstationary, therefore this assumption 

could has some impacts on the results. As for this case study, even after the nonstationarity 

scenarios of all three distribution parameters has been considered, only the location parameter is 

found to be nonstationary and the higher-order distribution parameters are stationary, which does 

not make any difference to our previous results. Sometimes, this assumption that only the location 

parameter of hydrological distributions is considered to be nonstationary can be found in some 

previous studies (Sarhadi et al., 2016), where the higher-order distribution parameters were treated 

as constant. 

 

(4) Why annual maximum daily discharge, annual maximum 3-day flood volume, annual 

maximum 7-day flood volume, and annual maximum 15-day flood volume are used as the 

multivariate flood series. What are the physical significances of selecting such variables? Do 

they link to the catchment properties? 

Response: 

The calculation of design floods in China involving the derivation of flood hydrographs for 

hydraulic structures requires not only the flood peak, but also flood volumes with different 

durations, such as 3 days, 7 days, 15 days and 30 days. The selection of flood variables is 

associated with the durations of flood processes (or flood hydrographs). For a large catchment 

such as the Xijiang River basin, the duration of a flood process is usually longer than ten days. 

Therefore, the annual maximum daily discharge, annual maximum 3-day flood volume, annual 

maximum 7-day flood volume, and annual maximum 15-day flood volume are used to constitute 

the multivariate flood variables for deriving the design flood hydrograph. In the revised 

manuscript, we have added this explanation in the second paragraph of Section 2. 

 

(5) What does ARR mean in the Abstract? Should give the full name as it appeals at the first time. 

Response: 

Thanks for this comment. ARR is a typo and should be AAR (average annual reliability). In 

the revision, we have made this modification.  

 

(6) Authors have mentioned two remarks in the end of the paper, of which the first one is related 

to the observations that are used for the flooding risk analysis. I totally agree with the authors 

in that the data with sufficient length is critical to enable the statistical analysis, which has 

been systematically analyzed in Zheng et al. (2018). I suggest the authors to have a look at 

this paper that focus on the data collecting methods for rainfall and floods. 

Response:  

Thanks for recommending this suitable reference, which is helpful supporting our viewpoint. 



In the revised manuscript, we have added this citation in the fifth paragraph of Section 5.  

Newly cited reference: 

Zheng, F., Tao, R., Maier, H. R., See, L., Savic, D., Zhang, T., et al.: Crowdsourcing methods for 

data collection in geophysics: State of the art, issues, and future directions, Reviews of 

Geophysics, 56, https://doi.org/10.1029/2018RG000616, 2018. 



1 

 

Multivariate hydrologic design methods under nonstationary 

conditions and application to engineering practice 

Cong Jiang1, Lihua Xiong2, Lei Yan3, Jianfan Dong4 and Chong-Yu Xu2,5 

 

1School of Environmental Studies, China University of Geosciences, Wuhan 430074, China 5 

2State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, 

China 

3College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, China 

4Guangxi Water Resources Management Center, Nanning 530023, China 

5Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, N-0316 Oslo, Norway 10 

Correspondence to: Cong Jiang (jiangcong@cug.edu.cn) 

Abstract. Multivariate hydrologic design under stationary conditions is traditionally performed through 

the use of the design criterion of the return period, which is theoretically equal to the average inter-

arrival time of flood events divided by the exceedance probability of the design flood event. Under 

nonstationary conditions, the exceedance probability of a given multivariate flood event varies over 15 

time. This suggests that the traditional return-period concept cannot apply to engineering practice under 

nonstationary conditions since by such a definition a given multivariate flood event would correspond 

to a time-varying return period. In this paper, average annual reliability (AAR) was employed as the 

criterion for multivariate design rather than the return period to ensure that a given multivariate flood 

event corresponded to a unique design level under nonstationary conditions. The multivariate 20 

hydrologic design conditioned on the given AAR was estimated from the nonstationary multivariate 

flood distribution constructed by a dynamic C-vine copula, allowing for time-varying marginal 

distributions and a dependence structure. Both the most-likely design event and confidence interval for 

the multivariate hydrologic design conditioned on the given AAR were identified to provide supporting 

information for designer. The multivariate flood series from the Xijiang River, China were chosen as a 25 

case study. The results indicated that both the marginal distributions and dependence structure of the 

multivariate flood series were nonstationary due to the driving forces of urbanization and reservoir 



2 

 

regulation. The nonstationarities of both the marginal distributions and dependence structure was found 

to affect the outcome of the multivariate hydrologic design. 

 30 

Keywords: Multivariate hydrologic design; Nonstationarity; Average annual reliability; Dynamic C-

vine copula; Xijiang River 
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1. Introduction 

A complete flood event or a flood hydrograph contain multiple feature variables, such as flood peak 35 

and flood volume, which can be associated with the safety of hydraulic structures (Salvadori et al., 

2004, 2007, 2011; Xiao et al., 2009; Xiong et al., 2015; Loveridge et al., 2017). For example, the water 

level of a reservoir is controlled by not only flood peak flow, but also flood volume (Salvadori et al., 

2011). Therefore, multivariate hydrologic design, which takes into account multiple flood 

characteristics as well as their dependence, provides a more rational design strategy for hydraulic 40 

structures compared to univariate hydrologic design (Zheng et al., 2013, 2014; Balistrocchi and Bacchi, 

2017).  

Multivariate hydrologic design under stationary conditions has been widely investigated, and the 

design criterion is usually quantified by the return period, similar to univariate hydrologic design. Under 

the definition of the average recurrence interval between flood events equaling or exceeding a given 45 

threshold (Chow, 1964), the return period of a given flood event under stationary conditions 

theoretically equals the average inter-arrival time between flood events divided by the exceedance 

probability (Salvadori et al., 2011). On the other hand, the exceedance probability of a univariate flood 

event is usually uniquely defined without ambiguity, whereas the exceedance probability of a 

multivariate flood event could have multiple definitions (Salvadori and De Michele, 2004; Salvadori et 50 

al., 2011; Vandenberghe et al., 2011). To date, at least five kinds of different exceedance probabilities 

for a multivariate flood event have been defined: 1) the OR case in which at least one of the flood 

features exceeds the prescribed threshold; 2) the AND case in which all flood features exceed the 

prescribed thresholds; 3) the Kendall case in which the univariate representation transformed from the 

Kendall’s distribution function exceeds the prescribed threshold; 4) the Survival Kendall case in which 55 

the univariate representation transformed from the Survival Kendall’s distribution function exceeds the 

prescribed threshold and; 5) the structural case in which the univariate representation transformed from 

a structure function exceeds the prescribed threshold (Favre et al., 2004; Salvadori and De Michele, 

2004, 2010; Salvadori et al., 2007, 2013, 2015, 2016; Vandenberghe et al., 2011; Requena et al., 2013; 

Zheng et al., 2014). 60 

Due to climate change as well as certain anthropogenic driving forces (Milly et al., 2008), the 
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nonstationarities of both univariate and multivariate flood series have been widely reported (Xiong and 

Guo, 2004; Villarini et al., 2009; Vogel et al., 2011; López and Francés, 2013; Bender et al., 2014; 

Xiong et al., 2015; Blöschl et al., 2017; Kundzewicz et al., 2018). The multivariate flood distribution 

exhibits more complex nonstationarity behaviors than the univariate distribution, including 65 

nonstationarities of individual margins and the dependence structure between the margins (Quessy et al., 

2013; Bender et al., 2014; Xiong et al., 2015; Kwon et al., 2016; Sarhadi et al., 2016; Qi and Liu, 2017; 

Vezzoli et al., 2017; Bracken et al., 2018; Salvadori et al., 2018). Both nonstationarities of the margins 

and dependence structure could impact the multivariate hydrologic designs. Under nonstationary 

conditions, the exceedance probability p of a given flood event varies from year to year; thus, the return 70 

period, calculated as the average inter-arrival time between two successive flood events divided by p, is 

no longer a constant (Salas and Obeysekera, 2014; Jiang et al., 2015a; Kwon et al., 2016; Sarhadi et al., 

2016; Yan et al., 2017). As a result, a given flood event would correspond to a time-varying and non-

unique return period. Consequently, the traditional return period-based method for estimating 

hydrologic design may no longer be applicable to engineering practice under nonstationary conditions 75 

(Salas and Obeysekera, 2014). 

Although increasing attention has been focused on hydrologic design under nonstationary conditions 

in recent years, the focus has mainly been on univariate designs (Obeysekera and Salas, 2014; 

Obeysekera and Salas, 2016; Read and Vogel, 2016). To overcome the limitation of the traditional return 

period under nonstationary conditions, the concept of the return period has been revisited. Salas and 80 

Obeysekera (2014) extended two concepts of the return period into a nonstationary framework, defined 

as the expected waiting time (EWT) for an exceedance to occur (Olsen et al., 1998), and the time period 

that results in the expected number of exceedances (ENE) equal to one over this period (Parey et al., 

2010).  

Risk and reliability are both important measurements for assessing hydrologic designs (Vogel, 1987; 85 

Read and Vogel, 2015). Besides redefinitions of the return period, some risk-based or reliability-based 

metrics have been introduced as the hydrologic design criteria under nonstationary conditions (Rosner 

et al., 2014). Rootzén and Katz (2013) proposed the concept of design life level (DLL) to quantify 

hydrologic risk in a nonstationary climate during the entire design life period of hydraulic structures. 
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Read and Vogel (2015) introduced the concept of average annual reliability (AAR) to estimate the 90 

hydrologic design under nonstationary conditions. Liang et al. (2016) defined the equivalent reliability 

(ER) to estimate the design flood under nonstationary conditions by linking DLL to return period. 

Salvadori et al. (2018) associated hydrologic designs with both given life times and failure probabilities 

to calculate bivariate design values under nonstationarity. These design criteria assess the risk or 

reliability of hydraulic structures associated with the flood distribution during the entire design life 95 

period, rather than for a single year. For a given design life period, these criteria can always yield a 

unique risk or reliability; therefore, they are applicable to the hydrologic designs under both stationary 

and nonstationary conditions. 

Under the multivariate framework, a given design level would correspond to an infinite number of 

possible hydrologic design events (Hawkes, 2008; Kew et al., 2013; Fu et al., 2014; Zheng et al., 2015, 100 

2017); however, these design events are generally not equivalent because their joint probability density 

values (i.e. likelihood) usually differ (Salvadori et al., 2011; Volpi and Fiori, 2012; Li et al., 2017; Yin et 

al., 2017). In engineering practice, it should be necessary to determine a typical design event as 

representative for a specific design level. For example, in Chinese engineering practice, a unique design 

flood hydrograph corresponding to a given design level is usually required to determine the scale of 105 

hydraulic structures (Yin et al., 2017). The most-likely design event, which theoretically has the largest 

joint probability density (likelihood) among all possible design events (Salvadori et al., 2011), appears 

to be the best representative candidate. Besides the most-likely design event, it is also necessary to 

identify the confidence interval for an infinite possible design events to provide a finite design range for 

designers (Volpi and Fiori, 2012; Yin et al., 2017). The most-likely design event and confidence interval 110 

for the bivariate hydrologic design under stationary conditions have been identified (Salvadori et al., 

2011; Volpi and Fiori, 2012; Li et al., 2017; Yin et al., 2017; Salvadori et al., 2018); however, very few 

studies have focused on hydrologic designs with higher dimensions under nonstationary conditions. 

Therefore, the objective of the present study was to address the issue of multivariate hydrologic 

design applying to the engineering practice under nonstationary conditions, which is achieved through 115 

the following steps. First, the nonstationary multivariate flood distribution was constructed using a 

dynamic canonical vine (C-vine) copula (Aas et al., 2009), which was able to capture the 
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nonstationarities of both marginal distributions and the dependence structure. The design criterion for 

the multivariate flood event was then quantified according to average annual reliability (AAR) rather 

than the traditional return period, since a given multivariate flood event would correspond to a unique 120 

AAR under both stationary and nonstationary conditions (Read and Vogel, 2015; Yan et al., 2017). The 

multivariate hydrologic design for any given AAR was estimated from the nonstationary multivariate 

flood distribution. 

The aforementioned methods for the multivariate hydrologic design under nonstationary conditions 

were applied to the Xijiang River, China. The four-dimensional (4-D) multivariate flood series, 125 

including the annual maximum daily discharge, annual maximum 3-day flood volume, annual 

maximum 7-day flood volume and annual maximum 15-day flood volume of the Xijiang River were 

chosen as the case study data because they constitute the variables used for deriving the design flood 

hydrograph for hydraulic structures. It has been found that the natural flood processes of this river have 

been significantly altered by urbanization and reservoir regulation (Xu et al., 2014), but these two 130 

factors have not yet been taken into account in multivariate hydrologic design. 

The next section of the present paper describes the study area and data. Section 3 presents the 

methods developed in this paper. The results of the case study are provided in section 4. Finally, the 

conclusion and remarks are provided in section 5. 

2. Study area and data 135 

The multivariate flood series of the Xijiang River, South China (see Figure 1) were selected as a 

case study to illustrate the multivariate hydrologic design methods under nonstationary conditions. The 

drainage area of the Xijiang River basin (XRB) is 353,120 km2 with a river length of 2,214 km. The 

basin falls within a humid subtropical monsoon climate region, with the flood season extending from 

May to October; therefore, floods have always been a serious natural hazard within the basin. 140 

The calculation of design floods in China involving the derivation of flood hydrographs for 

hydraulic structures requires not only the flood peak, but also flood volumes with different durations, 

such as 3 days, 7 days, 15 days and 30 days (Ministry of Water Resources of People’s Republic of 

China, 1996; Xiao et al., 2009; Xiong et al., 2015; Li et al., 2017). For a large catchment such as the 

XRB, the duration of a flood process is usually longer than ten days. Therefore, the annual maximum 145 
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daily discharge ( 1Q ), annual maximum 3-day flood volume ( 3V ), annual maximum 7-day flood volume 

( 7V ) and annual maximum 15-day flood volume ( 15V ) of the Xijiang River were defined as the 

multivariate flood series  1 3 7 15, , ,Q V V V  for deriving design flood hydrographs. The flood data were 

from 1951 to 2012, and observed at the Dahuangjiangkou gauge located at the main stream of the 

Xijiang River and draining a total catchment area of 294,669 km2, approximately 83% of the total area 150 

of the XRB.  

Rapid urbanization over recent decades has resulted in increasing river regulation projects built in 

the XRB, such as artificial levees for protecting urban areas from river flooding. As a result, flood flow 

has become increasingly constrained to the channel rather than overflow to the floodplain, resulting in 

an increase in the observed river flood flow (Xu et al., 2014). For the purpose of flood control and 155 

hydropower generation, it is hard to find a river which is not impacted by reservoirs, particularly in a 

rapidly developing China. Reservoir regulation has become an increasingly significant factor affecting 

flood processes of the XRB, and should be seriously considered within downstream flood risk analysis 

and hydrologic design, particularly since 2007 when two reservoirs with considerable flood control 

capacities were put into operation. These are the Longtan and Baise reservoirs with flood control 160 

capacities of 5 × 109 m3 and 1.64 × 109 m3 and catchment areas of 98,500 km2 and 9,600 km2, 

respectively. Climate change will likely result in flood nonstationarity by altering climatic conditions of 

the basin. Climatic conditions dominating flood processes in the XRB, such as extreme precipitation, 

appear to have been stationary over the past decades (Yang et al., 2010). Therefore, the current study 

introduced only urbanization and reservoir regulation as potential driving forces of nonstationarity of 165 

the flood series, and ignored the effect of climate change. 

The effect of urbanization on flood processes was quantified using the urban population ( Pop ). 

Given the unavailability of urban population data at the basin scale and the fact that the vast majority of 

cities in the XRB are distributed in Guangxi province, we used urban population data for Guangxi 

province to represent those of the XRB. The annual urban population data for Guangxi province during 170 

the observation period were obtained from the China Compendium of Statistics 1949–2008 

(Department of Comprehensive Statistics of National Bureau of Statistics, 2010) and the website of the 
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National Bureau of Statistics of PRC (http://www.stats.gov.cn/tjsj/ndsj/). The present study assumed the 

design life period for hydraulic structures to be from 2013 to 2100. The urban population over the 

design life period was estimated based on the predicted growth rate of China’s urban population 175 

reported by He (2014). The reservoir index (RI), which depends on the catchment area and flood 

controlling capacities of reservoirs, was used to quantify the effects of reservoir regulation on flood 

processes (López and Francés, 2013). As shown in Table 1, two reservoirs with flood control functions 

have been completed during the observation period from 1951 to 2012, and a further two are planned 

for operation during the design life period. Figure 2 illustrates the evolution of the urban population and 180 

reservoir index during both the observation and design life periods. 

3. Methods 

The present study included the following methods: 1) a nonstationary multivariate flood distribution 

based on a dynamic C-vine copula, allowing for both time-varying marginal distributions and a time-

varying dependence structure and; 2) estimation of the multivariate hydrologic design associated with 185 

average annual reliability (AAR) under nonstationary conditions. To correspond to the case study in this 

paper, the multivariate flood series consisting of the annual maximum daily discharge ( 1Q ), annual 

maximum 3-day flood volume ( 3V ), annual maximum 7-day flood volume ( 7V ) and annual maximum 

15-day flood volume ( 15V ) were chosen to illustrate the multivariate design methods under 

nonstationary conditions. It must be noted that the proposed methods can be extended to other 190 

multivariate flood series such as consisting of flood peak, flood volume and flood duration. 

3.1.  Probability distribution of the nonstationary multivariate flood series 

According to Sklar’s Theorem (Sklar, 1959), the probability distribution of the 4-D flood series 

 1 3 7 15, , ,Q V V V  at time t measured by years ( 1,2,...,t n  , and n  is the length of the flood series) is 

formulated through a copula ( )C   as follows: 195 

 
       

1, 3, 7, 15,

1 1, 1, 3 3, 3, 7 7, 7, 15 15, 15, ,

1, 3, 7, 15, ,

, , ,

| , | , | , | |

, , , |

t t t t t

t t t t t t t t c t

t t t t c t

F q v v v

C F q F v F v F v

C u u u u

   
   

θ

θ θ θ θ θ

θ

                (1) 
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where  1 1, 1,|t tF q θ ,  3 3, 3,|t tF v θ ,  7 7, 7,|t tF v θ  and  15 15, 15,|t tF v θ  denote the marginal distributions for 

1Q , 3V , 7V  and 15V , respectively; 
1,tu , 

3,tu , 
7,tu  and 

15,tu  are the marginal probabilities of 1Q , 3V , 7V  and 

15V , respectively; 
1,tθ , 

3,tθ , 
7,tθ  and 

15,tθ  are the corresponding distribution parameters; and 
,c tθ  stands 

for the copula parameter vector, which describes the strength of the dependence structure. 200 

 1, 3, 7, 15, ,, , , ,t t t t t c tθ θ θ θ θ θ  is the parameter vector of the entire multivariate distribution, including the 

marginal distribution parameters as well as the copula parameters.  

According to the multivariate distribution of  1 3 7 15, , ,Q V V V  defined by Eq. (1), the corresponding 

density function can be written as: 

 
       

       
     

1, 3, 7, 15,

1 1, 1, 3 3, 3, 7 7, 7, 15 15, 15, ,

1 1, 1, 3 3, 3, 7 7, 7, 15 15, 15,

1, 3, 7, 15, , 1 1, 1, 3 3, 3, 7 7, 7

, , ,

| , | , | , | |

| | | |

, , , | | | |

t t t t t

t t t t t t t t c t

t t t t t t t t

t t t t c t t t t t t

f q v v v

c F q F v F v F v

f q f v f v f v

c u u u u f q f v f v

   
  

   

θ

θ θ θ θ θ

    θ θ θ θ

θ θ θ θ   , 15 15, 15,|t t tf v θ

            (2) 205 

where  1 1, 1,|t tf q θ ,  3 3, 3,|t tf v θ ,  7 7, 7,|t tf v θ  and  15 15, 15,|t tf v θ  are the density functions of the 

marginal distributions for 1Q , 3V , 7V  and 15V , respectively and ( )c   denotes the density function of 

copula ( )C  . As shown by Eq. (2), the multivariate distribution of  1 3 7 15, , ,Q V V V  can be separated into 

two modules, including the marginal distributions, i.e.,  1 1, 1,|t tf q θ ,  3 3, 3,|t tf v θ ,  7 7, 7,|t tf v θ  and 

 15 15, 15,|t tf v θ , as well as the dependence structure expressed by the copula density function 210 

 1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ . Under nonstationary conditions, both the margins and dependence structure of 

 1 3 7 15, , ,Q V V V  can vary with time t.  

3.1.1. Nonstationary marginal distributions based on the time-varying moments model 

The time-varying moments model that expresses the distribution parameters or moments as 

functions of time or some other explanatory variable(s) has been widely employed to capture the 215 

nonstationarities of univariate flood series (Strupczewski et al., 2001; Villarini et al., 2009). In this 

study, the nonstationary marginal distributions of the multivariate flood series  1 3 7 15, , ,Q V V V  were 



10 

 

constructed by the time-varying moments model.  

Based on cause-effect analysis, the flood processes of the XRB were found to mainly be impacted 

by urbanization and reservoir operation. The reservoir index RI and urban population Pop were 220 

therefore used as potential covariates for marginal distribution parameters, including the location 

parameter   , scale parameter   , and shape parameter   (if any). In this study, both linear and 

exponential functions were considered to build the relationships between distribution parameters and 

covariates (Strupczewski et al., 2001; Vogel et al., 2011; Salas and Obeysekera, 2014; Jiang et al., 2015; 

Sarhadi et al., 2016; Read and Vogel, 2016; Yan et al., 2017). Taking the location parameter for 225 

illustration, the candidate functions of    are generally formulated as follows: 

 
0 1 2

0 1 2

Linear:           

Exponential:  exp
t t t

t t t

Pop RI

Pop RI

   

   

  

  
    (3) 

where 0 , 1  and 2  are model parameters estimated using the maximum likelihood estimate (MLE) 

method (Strupczewski et al., 2001). As above, the linear expression in Eq. (3) gives an additive model 

which suggests that the effects of the covariates RI and Pop on   are independent, while the 230 

exponential expression defines a multiplicative model which is able to take into account the possible 

interaction between the covariates RI and Pop. It is important to note that Eq. (3) defines four specific 

nonstationary models, the first one is the most complex nonstationary model where it is assumed that 

both RI and Pop are the driving factors of marginal distributions; the second and third models illustrate 

that the marginal nonstationarity is linked only to RI and Pop, respectively and; the final one represents 235 

the simplest and stationary model, which does not contain any covariates.  

Five probability distributions widely used in flood frequency analysis, namely Pearson type III 

(PIII), Generalized Extreme Value (GEV), Gamma, Weibull and Lognormal distributions were 

employed for as the candidate distributions for margins (Villarini et al., 2009; Yan et al., 2017). The 

goodness of fit (GoF) of the probability distributions was examined by the Kolmogorov-Smirnov (KS) 240 

test with significance level set to 0.05 (Frank and Massey, 1951). The p-value of the KS test was 

simulated using the Monte Carlo method. The relative fitting qualities of the time-varying moments 

models were assessed by the Corrected Akaike Information Criterion (AICc; Hurvich and Tsai, 1989), 

which is stricter than the Akaike Information Criterion (AIC; Akaike, 1974). The best model featured 
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with the smallest AICc value was chosen to describe the marginal distributions from the nonstationary 245 

models as expressed by Eq. (3).  

3.1.2. Nonstationary dependence structure based on the dynamic C-vine copula 

After estimating the marginal distributions, the nonstationary dependence structure of 

 1 3 7 15, , ,Q V V V  as formulated by the copula density function  1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ  was constructed. 

Given that most applied copula functions are for bivariate random variables,  1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ  250 

cannot be directly expressed as a specific copula function. The pair copula method has been proven 

powerful for the construction of the distribution of multivariate random variables through the 

decomposition of the multivariate probability density into a series of bivariate copulas (Aas et al., 2009; 

Xiong et al., 2015). Therefore this study constructed the dependence structure of  1 3 7 15, , ,Q V V V  using 

the pair copula method. 255 

Numerous pair-copula decomposition forms for a multivariate distribution are available, among 

which two kinds of decompositions with regular vine structures prevail in practice, namely the 

canonical vine (C-vine) and the drawable vine (D-vine) (Aas et al., 2009). It is known that flood peak 

(e.g., 1Q ) is the dominant feature quantifying a flood event as well as the key factor in hydrologic design 

(Ministry of Water Resources of People’s Republic of China, 1996). The C-vine is more suitable when 260 

there is a key variable governing multivariate dependence (Aas et al., 2009). In this case, the C-vine was 

employed to construct the joint distribution of  1 3 7 15, , ,Q V V V  with 1Q  elected as the key variable. Thus, 

the density function  1, 3, 7, 15, ,, , , |t t t t c tc u u u u θ  can be decomposed into six bivariate pair copulas as 

follows: 

 

       
   

1, 3, 7, 15, , 13 1, 3, 13, 17 1, 7, 17, 115 1, 15, 115,

37|1 3, 1, 7, 1, 37|1,

, , , | , | , ,

| , |

t t t t c t t t t t t t t t t

t t t t t

c u u u u c u u c u u c u u

c F u u F u u

  



   

   

θ

                                         

                                       
   

315|1 3, 1, 15, 1, 315|1,

715|13 7, 1, 3, 15, 1, 3, 715|13,

| , |

| , , | ,

t t t t t

t t t t t t t

c F u u F u u

c F u u u F u u u





   
 
 

      

                                         

                    (4) 265 

where  , 13, 17, 115, 37|1, 315|1, 715|13,, , , , ,c t t t t t t t     θ  is the parameter vector in the C-vine copula, and:  
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 
 

 
 

 
 

 
   

 

 

13 1, 3, 13,

3, 1,

1,

17 1, 7, 17,

7, 1,

1,

115 1, 15, 115,

15, 1,

1,

37|1 3, 1, 7, 1, 37|1,

7, 1, 3,

3, 1,

315|1 3,

15, 1, 3,

, |
|

,
|

,
|

| , |
| ,

|

| ,

t t t

t t

t

t t t

t t

t

t t t

t t

t

t t t t t

t t t

t t

t t t

C u u
F u u

u

C u u
F u u

u

C u u
F u u

u

c F u u F u u
F u u u

F u u

C F u
F u u u
























   





   
 

1, 15, 1, 315|1,

3, 1,

| , |

|

t t t t t

t t

u F u u

F u u

 
 



   (5) 

Figure 3 shows the schematic decomposition of the 4-D C-vine copula as expressed by Eq. (4). It is 

evident that the hierarchical structure of the 4-D C-vine copula contains three trees and six edges. The 

first tree (T1) includes three bivariate pair copulas, i.e.,  13 13,tc  ,  17 17,tc   and  115 115,tc  , which 270 

directly act on the marginal probabilities and describe the bivariate dependencies between the key 

variable 1Q  and the other three variables, i.e., 3V , 7V  and 15V . The second tree (T2) includes two 

bivariate pair copulas  37|1 37|1,tc   and  315|1 315|1,tc  , which act on the conditional distribution functions 

with 
1,tu  as the conditioning variable. Finally, the third tree (T3) includes only one bivariate pair copula 

 715|13 715|13,tc   acting on conditional distribution functions with both 1,tu  and 3,tu  as the conditioning 275 

variables.  

In flood frequency analysis, the upper tail of the flood distribution deserves more attention because 

it allows the quantification of risks of the more serious flood events. The Gumbel-Hougaard copula, an 

extreme-value copula widely used in hydrology, accounts for the upper tail dependence, and is well-

suited to the dependence structure of a multivariate flood distribution (Salvadori et al., 2007; Zhang and 280 

Singh, 2007; Xiong et al., 2015). Consequently, the present study employed the bivariate Gumbel-

Hougaard copula to construct the dynamic C-vine copula formulated by Eq. (4). The bivariate Gumbel-

Hougaard copula is expressed as follows: 
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      
1/

, exp ln ln
      

 

c
c cC u v u v , [1, )c      (6) 

where u  and v  are the bivariate marginal probabilities and c  is the single parameter measuring the 285 

dependence strength.  

Similar to the nonstationary marginal distributions, the nonstationarity of the dependence structure 

of  1 3 7 15, , ,Q V V V  was characterized by the time variations of the copula parameters in T1, T2 and T3. 

Both linear and exponential functions were considered to characterize the time-varying copula 

parameters and generally formulated as follows: 290 

 
0 1 2

0 1 2

Linear:           

Exponential:  1+exp
c t t t

c t t t

Pop RI

Pop RI

   

   

  

  
，

，

    (7) 

where 0 , 1  and 2  are model parameters estimated using the MLE method (Aas et al., 2009). Here, 

the exponential expression in Eq. (7) was written as the sum of one and an exponential function of the 

covariates, so that the domain range of the copula parameter c  can be satisfied under any condition. To 

make it easy in parameter estimation, the model parameters for each pair copula were separately 295 

estimated. The model parameters for 
13,t , 

17,t  and 
115,t  in T1 were first estimated, and those for the 

remaining copula parameters 
37|1,t , 

315|1,t  and 
715|13,t  in T2 and T3 were then estimated in sequence. It 

is worth noting that these parameters can be also simultaneously estimated. These two methods could 

result in possible difference in parameter estimation. 

The available GoF tests for vine copulas are very limited, with the Probability Integral Transform 300 

(PIT) test (Rosenblatt, 1952) appearing to be reliable (Aas et al., 2009). Under a null hypothesis of the 

multivariate flood variables  1 3 7 15, , ,Q V V V  following a given C-vine copula, the PIT converts the 

dependent flood variables into a new set of variables that are independent and uniformly distributed on 

[0,1]4. The GoF of vine copulas can be obtained through determining whether the resulting variables are 

independent and uniform in [0,1]. For more details of the PIT test, readers are referred to Aas et al. 305 

(2009). The best nonstationary model for each bivariate pair copula in Eq. (4) was chosen from the 

nonstationary models generally expressed by Eq. (7) in terms of the AICc value. 

3.2.Multivariate hydrologic design under nonstationary conditions 
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3.2.1. Average annual reliability for multivariate flood events 

The AAR introduced by Read and Vogel (2015) was calculated using the arithmetic average method, 310 

thereby taking into account the reliability of each year with the same weighting factor. A safer design 

strategy should pay more attention to worse (i.e. lower) annual reliability; however, the arithmetic-

average AAR is not capable of this function. The present study employed the geometric average method 

to calculate AAR, which is dominated more by the minimum than arithmetic average, and is 

theoretically able to yield safer design values. The geometric-average AAR is also equivalent to the 315 

metrics of DLL (Rootzén and Katz, 2013) and ER (Liang et al., 2016; Yan et al., 2017). 

Denoting  1 3 7 15, , ,q v v v  as a given multivariate flood event, its exceedance probability tp , which is 

the occurrence probability of a more dangerous multivariate event than  1 3 7 15, , ,q v v v  in a specific 

hazard scenario, would vary from year to year under nonstationary conditions. The AAR for 

 1 3 7 15, , ,q v v v  was calculated by the geometric average method as follows: 320 

   
2 2 1

1

1

1

1 3 7 15, , , 1
T T T

t

t T

AAR q v v v p
 



 
  
 
     (8) 

where 1T  and 2T  stand for the beginning year and ending year of the operation of an assumed hydraulic 

structure, respectively; 2 1 1 T T  is the length of the design life period of the assumed hydraulic 

structure and; 1 tp  measures the annual reliability of the given multivariate flood event  1 3 7 15, , ,q v v v  

at time t . 325 

3.2.2. Exceedance probabilities of multivariate flood events 

The present study characterized AAR by considering three widely used definitions of the 

exceedance probabilities of the multivariate flood event  1 3 7 15, , ,q v v v , i.e., the OR, AND and Kendall 

cases (Salvadori and De Michele, 2004; Favre et al., 2004; Salvadori et al., 2007; Salvadori and De 

Michele, 2010; Vandenberghe et al., 2011; Salvadori et al., 2016). The OR case for  1 3 7 15, , ,q v v v  330 

defines the case under which at least one of the flood features exceeds the prescribed threshold. The 

exceedance probability in the OR case at time t  is denoted as or

tp , and is calculated by: 



15 

 

   1, 1 3, 3 7, 7 15, 15 1 3 7 151 , , ,or

t t t t t tp P Q q V v V v V v F q v v v          θ   (9) 

where ‘ ’ stands for the OR operator and  tF  θ  is defined in Eq. (1). 

The AND case for  1 3 7 15, , ,q v v v  defines the case under which all of the flood features exceed the 335 

prescribed thresholds, and the corresponding exceedance probability and

tp  at time t  is:  

 
 

1, 1 3, 3 7, 7 15, 15

1, 3, 7, 15, 1, 3, 7, 15,

1 1, 3 3, 7 7, 15 15,

, , ,

: , , ,

and

and

t t t t t

t t t t t t t t t

and

t t t t

p P Q q V v V v V v

f Q V V V dQ dV dV dV

q Q v V v V v V


       

   

            

         θ   (10) 

where ‘ ’ is the AND operator and  tf  θ  is defined in Eq. (2).  

Under the Kendall case, the multivariate flood event  1 3 7 15, , ,q v v v  is first transformed into a 

univariate representation via the Kendall’s distribution function ( )CK   as follows: 340 

     1, 3, 7, 15, , 1, 3, 7, 15,, , , , , ,C t t t t t c t t t t t t t tK P C U U U U P F Q V V V          
θ θ   (11) 

where  1 3 7 15, , ,t tF q v v v  θ  is the probability level corresponding to the given flood event 

 1 3 7 15, , ,q v v v . The corresponding exceedance probability ken

tp  in the Kendall case at time t  is given as 

follows: 

 1  ken

t C tp K       (12) 345 

For general multivariate cases, the exceedance probabilities  or

tp , and

tp  and ken

tp  could have no 

analytical solutions, but can be numerically estimated through the Monte Carlo method (Niederreiter, 

1978; Salvadori et al., 2011, 2013). The AAR in the OR, AND and Kendall cases can be calculated by 

replacing the exceedance probability tp  in Eq. (8) by or

tp , and

tp  and ken

tp , respectively. 

3.2.3. Most-likely design event and confidence interval for multivariate hydrologic design 350 

The methods identifying both the most-like design event, denoted by  
1 3 7 15

* * * *, , ,Q V V Vz z z z , and the 

confidence interval for the multivariate hydrologic design  
1 3 7 15
, , ,Q V V Vz z z z  given =AAR   are 

introduced below. The average annual probability density, denoted by ( )g  , of the multivariate 
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hydrologic design  
1 3 7 15
, , ,Q V V Vz z z z  over the entire design life period from 1T  to 2T , is expressed as 

follows: 355 

   
2

1 3 7 15 1 3 7 15

12 1

1
, , , , , ,

1 


 

 θ
T

Q V V V Q V V V t

t T

g z z z z f z z z z
T T

    (13) 

The probability distribution function for AAR   can be written as: 

 
 

 
1 3 7 15

1 3 7 15 1 3 7 15

: , , ,

, , ,  
AAR q v v v

g q v v v dq dv dv dv



 

          (14) 

By denoting the density function of    as    , the probability density of  
1 3 7 15
, , ,Q V V Vz z z z  

conditioned on =AAR   can be expressed as:  360 

 
 

 
1 3 7 15

1 3 7 15|

, , ,
, , ,

Q V V V

AAR Q V V V

g z z z z
g z z z z

 
       (15) 

The most-likely design event conditioned on =AAR   is theoretically given as: 

   
1 3 7 15 1 3 7 15

* * * *

|, , , arg max , , ,Q V V V AAR Q V V Vz z z z g z z z z     (16) 

Unfortunately, the analytical solutions of both the most-likely design event  
1 3 7 15

* * * *, , ,Q V V Vz z z z  and 

confidence interval are unavailable, but can be approximately estimated through the Monte Carlo 365 

simulation method. First, the design events with sample size N conditioned on =AAR   are generated. 

These design events are then sorted in descending order of their multivariate probability densities, 

denoted by:  

       
1 3 7 15 1 3 7 15 1 3 7 15 1 3 7 15

1 1 1 1 2 2 2 2, , , , , , , , , , , , , , ,Nc Nc Nc Nc N N N N

Q V V V Q V V V Q V V V Q V V Vz z z z z z z z z z z z z z z z , ，  (17) 

where cNc N p  , and cp  is the critical probability level for the confidence interval. Thus, the 370 

approximate solution for  
1 3 7 15

* * * *, , ,Q V V Vz z z z  is  
1 3 7 15

1 1 1 1, , ,Q V V Vz z z z . The lower boundary for the confidence 

interval is given as: 
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 
 
 
 

1 1 1 1

3 3 3 3

7 7 7 7

15 15 15 15

1 2

1 2

1 2

1 2

=min , , ,

=min , , ,

=min , , ,

=min , , ,

L Nc

Q Q Q Q

L Nc

V V V V

L Nc

V V V V

L Nc

V V V V

z z z z

z z z z

z z z z

z z z z

 






 


     (18) 

The upper boundary for the confidence interval is estimated by: 

 
 
 
 

1 1 1 1

3 3 3 3

7 7 7 7

15 15 15 15

1 2

1 2

1 2

1 2

=max , , ,

=max , , ,

=max , , ,

=max , , ,

U Nc

Q Q Q Q

U Nc

V V V V

U Nc

V V V V

U Nc

V V V V

z z z z

z z z z

z z z z

z z z z

 






 


     (19) 375 

3.2.4. Derivation of design flood hydrographs 

In China, the design flood hydrographs for hydraulic structures are usually derived from the design 

flood events set against a benchmark flood hydrograph, which is chosen from the observed flood 

processes (Ministry of Water Resources of People’s Republic of China, 1996; Xiao et al., 2009, Yin et 

al., 2017). As an example, suppose that a flood hydrograph consists of the features of annual maximum 380 

daily discharge, 3-day flood volume, 7-day flood volume and 15-day flood volume. The four features of 

the benchmark flood hydrograph are denoted by 1

BQ , 3

BV , 7

BV  and 15

BV , respectively. The design flood 

hydrograph corresponding to the multivariate hydrologic design realization  
1 3 7 15
, , ,Q V V Vz z z z  can be 

derived by multiplying the benchmark flood hydrograph by different amplifiers, given as described 

below. 385 

The amplifier 1K  for the annual maximum daily discharge is calculated by:  

1

1

1

Q

B

z
K

Q
                                    (20) 

The amplifier 3 1K   for the 3-day flood volume except for the annual maximum daily discharge is 

calculated by: 

 
 

3 1

3 1

3 1

V Q

T B

z V z
K

V V Q






     (21) 390 
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where  V  is the operator transforming daily discharge into flood volume. The amplifier 7 3K  for the 

7-day flood volume except for the 3-day flood volume is calculated by: 

7 3

7 3

7 3

V V

T B

z z
K

V V






               (22) 

Finally, the amplifier 15 7K  for the 15-day flood volume except for the 7-day flood volume is calculated 

by: 395 

15 7

15 7

15 7

V V

T B

z z
K

V V






      (23) 

4. Results 

4.1. Nonstationary analysis for marginal distributions 

The time-varying moments model was employed to perform nonstationary analysis for each 

marginal distribution of the multivariate flood series  1 3 7 15, , ,Q V V V  of the Xijiang River. In general, the 400 

candidate distributions for all margins passed the GoF test at the 0.05 significance level. The chosen 

models featured with the smallest AICc values were shown in Table 2. The results indicated that the 

GEV distribution provided the best fit for the annual maximum daily discharge series 1Q , whereas the 

Gamma distribution was chosen as the theoretical distribution for the flood volume series 3V , 7V  and 

15V . All estimated model parameters were found to be statistically significant at the 0.05 level. The 95% 405 

uncertainty intervals for the estimated parameters are were calculated by the parametric bootstrap 

method (Kyselý, 2009). In accordance with the modeling results, it can be seen that the location 

parameters   for all flood series were nonstationary, while the scale and shape parameters were 

stationary. Through an exponential function, the location parameters   referring to the means of the 

flood series were generally positively related to the urban population Pop , whereas they were 410 

negatively related to the reservoir index RI . This finding revealed the opposite roles played by 

urbanization and reservoir regulation on the flood processes of the XRB. In particular, more artificial 

levees were required to protect urban areas from flooding by constraining the flood flow to river 



19 

 

channels, which resulted in increasing the river channel flood flow. The reservoirs played an active role 

in flood control by reducing the flood discharge downstream. 415 

More specific to each margin of  1 3 7 15, , ,Q V V V , the location parameters   of the three short-

duration flood series, i.e., 1Q , 3V  and 7V , were positively linked to Pop , whereas RI  was the driving 

factor reducing   for all flood series, including 1Q , 3V , 7V  and 15V . Owing to the difference in covariate 

selections, the short-duration flood series, including 1Q , 3V  and 7V , displayed asynchronous 

nonstationary behaviors with the long-duration flood series 15V  occurring in the observation period of 420 

1951–2012. As shown in Figure 4, 1Q , 3V  and 7V   presented significantly increasing trends during 1951–

2005, particularly since the 1980s, marking the beginning of a period of rapid urbanization in China. 

15V  tended to follow a stationary process during 1951–2005. After the two flood control reservoirs were 

put into operation in 2006, all flood series, including 1Q , 3V , 7V  and 15V , exhibited a sharp decline.  

The predicted marginal distributions for  1 3 7 15, , ,Q V V V  during the design life period from 2013 to 425 

2100 were estimated using the time-varying moments model by replacing the observed covariates for   

with those predicted. Figure 4 also shows that the mean values of 1Q , 3V  and 7V  during the design life 

period increased with the growth of the urban population, following which they decreased sharply in 

2023 after a larger reservoir named Datengxia is expected to be put into operation. After 2023, with no 

more reservoirs planned, the predicted mean values of 1Q , 3V  and 7V  would be expected to reach their 430 

peaks in the mid-21th century followed by a slight declining trend because of a shrinking urban 

population. Since 15V  was only related to RI , 15V  would show an abrupt decline in 2023 due to the 

regulation of the Datengxia Reservoir. In general, the predicted nonstationary marginal distributions for 

1Q  and 3V  during 2013–2100 was roughly approximate to the marginal distributions under the 

assumption of stationarity, whereas the predicted nonstationary marginal distributions for 7V  and 15V  435 

exhibited smaller mean values than those of the stationary distributions.  

4.2. Nonstationary dependence structure for  1 3 7 15, , ,Q V V V  

After estimating the nonstationary marginal distributions for  1 3 7 15, , ,Q V V V , the multivariate 
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dependence structure was constructed by the dynamic C-vine copula with 1Q  elected as the key variable. 

Figure 5 illustrates significant correlations between the flood peak 1Q  and the flood volumes (i.e., 3V , 440 

7V  and 15V ). Table 3 shows the estimation results of the dynamic C-vine copula. The PIT test for the 

nonstationary dependence structure of  1 3 7 15, , ,Q V V V  suggested a satisfactory fitting effect, and most 

estimated parameters were statistically significant at the 0.05 level. The results indicated that the copula 

parameter 115  for pair  1 15,Q V  was found to be nonstationary and expressed as an exponential function 

of both the urban population Pop and reservoir index RI, whereas other copula parameters indicated 445 

stationary dependences. It was seen that the margin of 1Q  displayed asynchronous nonstationarity 

behaviors with 15V  (see Table 2 and Figure 4). Therefore, the dependence nonstationarity of the pair 

 1 15,Q V  could possibly be attributed to the asynchronous marginal nonstationarities.  

According to the regression function, 115  was negatively related to Pop whereas it was positively 

related to RI. In other words, growing urbanization weakened the multivariate flood dependence, 450 

whereas reservoir regulation played an opposite role enhancing the dependence. This finding indicated 

that human activities, including urbanization and reservoir regulation, not only changed the statistical 

characteristics of the marginal distributions of  1 3 7 15, , ,Q V V V , but also affected the dependence of 

 1 3 7 15, , ,Q V V V . Figure 6 shows the time variations of 115θ  during the observation period of 1951–2012 

as well as during the design life period of 2013–2100. Due to reservoir regulation, 115θ  presented two 455 

obvious upward change points in both 2007 and 2023. Besides, 115θ  also exhibited an obvious 

decreasing trend with urban population growth from 1951 to the mid-21th century, followed by a slight 

increasing trend due to shrinking urban population. During the design life period, the predicted 

nonstationary 115θ  suggests a weaker dependence for  1 3 7 15, , ,Q V V V  than the dependence under the 

stationary assumption, since it is usually smaller than the stationary estimation. 460 

In addition, the change-point detection method based on the Cramér-von Mises statistic (Bücher et 

al., 2014) was employed to detect possible nonstationarities in both the marginal distributions and 

dependence of the multivariate flood series  1 3 7 15, , ,Q V V V . Readers are referred to Bücher et al. (2014) 
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and Kojadinovic (2017) for specific steps to implement the change-point detection. The results 

indicated that neither the marginal distributions nor dependence displayed change points at the 0.05 465 

significance level (see Table 4), whereas the previous analysis suggested nonstationary margins and 

dependence due to the joint effects of urbanization and reservoir regulation. These aforementioned 

inconsistencies could be attributed to the opposite roles of urbanization and reservoir regulation on 

shifting of the multivariate flood distribution, with urbanization generally enlarging the mean values of 

the flood series and weakening their dependence, and reservoir regulation decreasing the mean values 470 

and strengthening the dependence. In other words, the nonstationarities induced by these two factors 

may have offset each other. As a result, the nonstationarities of  1 3 7 15, , ,Q V V V  might have not been 

captured by the statistical method based on the Cramér-von Mises statistic. This finding highlights the 

significance of cause-effect analysis in judging the nonstationarities of hydrologic series (Serinaldi and 

Kilsby, 2015; Xiong et al., 2015). 475 

4.3. Multivariate hydrologic design characterized by average annual reliability 

The multivariate hydrologic designs, characterized by AAR associated with the OR, AND and 

Kendall exceedance probabilities, were estimated from the predicted nonstationary multivariate 

distribution for  1 3 7 15, , ,Q V V V  during the design life period from 2013 to 2100. The left columns in 

Figures 7–10 show the most-likely design events and the 90% confidence intervals conditioned on the 480 

AAR varying from 0.01 to 0.99. The multivariate hydrologic design events associated with both the OR 

and Kendall exceedance probabilities exhibited the lower boundaries, whereas the design events 

associated with the AND exceedance probability exhibited the upper boundaries.  

The design flood hydrographs were derived from the multivariate hydrologic designs against the 

benchmark flood hydrograph observed in 1988. Figure 11 shows the design flood hydrographs by 485 

setting AAR equal to 0.90, 0.95 and 0.99. For any given multivariate flood event, the corresponding OR 

exceedance probability was larger than that of AND, with the Kendall exceedance probability 

somewhere in between (Vandenberghe et al., 2011). These differences among the OR, AND and Kendall 

exceedance probabilities indicate the different design strategies. It must be noted that the choice of 

design strategy in engineering practice is usually priori and is dependent on the specific design 490 
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requirements and mechanisms of failure for hydraulic structures (Serinaldi, 2015; Salvadori et al., 

2016). 

We calculated the univariate hydrologic design events from the predicted marginal distributions to 

compare the design strategies under the multivariate framework with those under the univariate 

framework. Figures 7–10 show that the univariate hydrologic design events exactly constituted the 495 

lower boundaries of the multivariate hydrologic design events associated with the OR exceedance 

probability, as well as the upper boundaries of the design events associated with the AND exceedance 

probability. Under a given AAR, the hydrologic designs under the univariate framework were generally 

smaller than the most-likely design events associated with the OR exceedance probability; whereas they 

were larger than those associated with the AND exceedance probability; and they were most 500 

approximate to those associated with the Kendall exceedance probability. The comparisons of the flood 

hydrographs displayed in Figure 11 reinforced these findings. 

4.4. Impacts of multivariate nonstationarity behaviors on hydrologic design values 

Sections 4.1 and 4.2 show the marginal distribution and dependence structure of the multivariate 

flood distribution of  1 3 7 15, , ,Q V V V  to be nonstationary. We estimated the multivariate hydrologic 505 

design events under an assumption of stationarity to illustrate how these nonstationarities act on the 

multivariate hydrologic designs, i.e., both marginal distributions and the dependence structure were 

treated as stationary (see the right columns in Figures 7–10). Figure 4 suggests that both the predicted 

nonstationary marginal distributions for 1Q  and 3V  during the design life period were approximate to the 

stationary marginal distributions. Therefore, the nonstationary and stationary marginal distributions 510 

yielded similar design values for 
1Qz  and 

3Vz  (see Figures 7 and 8). The predicted nonstationary 

distributions for both 7V  and 15V  indicated smaller mean values compared to those of the stationary 

distributions (see Figure 4); therefore, the corresponding hydrologic design values estimated from the 

nonstationary marginal distributions were generally smaller than those estimated from the stationary 

marginal distributions (see Figures 9 and 10). 515 

The nonstationary multivariate flood distribution during the design life period was also predicted to 

exhibit a weaker dependence structure than that of the stationary distribution (see Figure 6). The 
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dependence nonstationarity was expected to have a much subtler effect on the multivariate hydrologic 

design compared to the marginal nonstationarities (Xiong et al., 2015). To illustrate the individual effect 

of the dependence nonstationarity on the multivariate hydrologic design, an artificial nonstationary 520 

condition for the multivariate flood distribution was set that only the marginal nonstationarities were 

considered, whereas the dependence structure was treated as stationary. The results of the multivariate 

hydrologic design events are shown in the middle columns in Figures 7–10. In general, the dependence 

nonstationarity had less effect on the multivariate hydrologic designs compared the marginal 

nonstationarities; however, some visible differences in both the 90% confidence intervals were still 525 

identified. In summary, the nonstationary and weaker dependence structure generally suggested wider 

confidence intervals for the multivariate hydrologic design values.  

5. Conclusion and remarks 

The statistical characteristics of both the marginal distributions and the dependence structure of 

multivariate flood variables can vary with time under nonstationary conditions. It is possible that the 530 

multivariate flood distribution estimated from the historical information will not reflect the statistical 

characteristics of flooding in the future. As a result, the stationary-based hydrologic design would not be 

able to deal with potential hydrologic risks of hydraulic structures. It is necessary for hydrologic 

designers to take into account the physical driving forces (such as human activates and climate change) 

responsible for the nonstationarities of multivariate flood variables. 535 

The present study introduced possible methods for addressing multivariate hydrologic design for 

application in engineering practice under nonstationary conditions. A dynamic C-vine copula allowing 

for both time-varying marginal distributions and time-varying dependence structure was developed to 

capture the nonstationarities of a multivariate flood distribution. The multivariate hydrologic design 

under nonstationary conditions was estimated by specifying the design criterion by average annual 540 

reliability. The most-likely design event and confidence interval were identified as the outcome of the 

multivariate hydrologic design. Multivariate flood series  1 3 7 15, , ,Q V V V  from the Xijiang River were 

chosen as a case study, with the main findings given below. 

Urbanization and reservoir regulation were found to be the driving forces responsible for the 
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nonstationarities of both the marginal distributions and dependence structure of the multivariate flood 545 

series  1 3 7 15, , ,Q V V V . The growth of the urban population generally resulted in an increased mean value 

of the individual flood series, whereas it weakened the dependence of  1 3 7 15, , ,Q V V V . The increasing 

reservoir index had the opposite effects on the individual flood series as well as their dependence. 

Under a given average annual reliability, the OR exceedance probability yielded the largest design 

values, followed by the Kendall and the AND exceedance probabilities. Nonstationarities in both 550 

marginal distributions and dependence structure affected the outcome of the multivariate hydrologic 

design. It is the marginal nonstationarities that played a dominant role in affecting the multivariate 

hydrologic design.  

There are two remarks that can be made related to the practical implications of the hydrologic 

design methods developed in the current study that are detailed below.  555 

The first remark relates to the length of observed flood data required for multivariate and 

nonstationary hydrologic design. In theory, sufficiently long observed flood data (or other extreme-

value data) are required to derive robust estimations of the distribution parameters and the correct 

hydrologic design values (Zheng et al., 2018). However, in reality, most data series are limited in length, 

thus forcing us to use what we have at hands to do research or design works without fulfilling the 560 

theoretical assumptions or requirements. Some recent studies suggested that univariate flood frequency 

analysis under stationary conditions usually requires flood data with a continuous period of at least 30 

years (Ministry of Water Resources of People’s Republic of China, 1996; Engeland et al., 2018; 

Kobierska et al., 2018). However, determining a definitive answer to what length of observed flood data 

is required for flood frequency analysis under multivariate and/or nonstationary settings poses a 565 

challenge since this issue has not yet been fully addressed. However, it is certain that multivariate and 

nonstationary hydrologic designs naturally require dataset of longer length, since they usually contain 

more parameters to be estimated. 

The second remark related to the tradeoff between reducing estimation bias and increasing model 

uncertainty. Nonstationary models generally improve performance in fitting observation data by 570 

reducing estimation bias (Jiang et al., 2015b), but this is usually achieved at the expense of increasing 

model complexity, such as adding more model parameters and introducing more nonstationary 
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covariates, which might induce additional sources of model uncertainty (Serinaldi and Kilsby, 2015; 

Read and Vogel, 2016). A careful balance between the model fitting effect and the model complexity 

should be maintained in practice when employing multivariate and nonstationary hydrologic design by 575 

keeping in mind the following two points: 1) the multivariate and nonstationary models should remain 

effective but should also be kept as simple as possible to avoid over-fitting and; 2) to ensure a robust 

relationship between the distribution parameters and the explanatory covariates, the chosen covariates 

should be physically-related to the flood processes and supported by a well-defined cause-effect 

analysis.  580 
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Appendix 

1. Calculating multivariate exceedance probabilities 595 

1.1 OR exceedance probability (formulated by Eq. (9) in the paper) 

Since the cumulative distribution function  1 3 7 15, , , tF q v v v θ  has no analytical expression, the OR 

exceedance probability or

tp  at time t is calculated by the Monte Carlo method as follows: 

(1) Calculate the marginal probabilities  1 3 7 15, , ,u u u u  of  1 3 7 15, , ,q v v v ; 

(2) Generate m samples  1, 3, 7, 15,, , ,i i i iu u u u  ( 1,2,...,i m ) from the C-vine copula; 600 

(3) Calculate    1 3 7 15 1, 1 3, 3 7, 7 15, 151

1
, , , , , ,

1

m

t i i i ii
F q v v v u u u u u u u u

m 
   


θ = 1 ; 

(4) Calculate  1 3 7 151 , , ,or

t tp F q v v v  θ . 

1.2 AND exceedance probability (formulated by Eq. (10) in the paper) 

The AND exceedance probability and

tp  at time t is calculated by the Monte Carlo method as follows: 

(1) Calculate the marginal probabilities  1 3 7 15, , ,u u u u  of  1 3 7 15, , ,q v v v ; 605 

(2) Generate m samples  1, 3, 7, 15,, , ,i i i iu u u u  ( 1,2,...,i m ) from the C-vine copula; 

(3) Calculate  1, 1 3, 3 7, 7 15, 151

1
, , ,

1

mand

t i i i ii
p u u u u u u u u

m 
   


= 1 . 

1.3 The Kendall exceedance probability (formulated by Eq. (11) and Eq. (12) in the paper) 

The Kendall exceedance probability ken

tp  at time t is calculated by the Monte Carlo method as 

follows: 610 

(1) Calculate the marginal probabilities  1 3 7 15, , ,u u u u  of  1 3 7 15, , ,q v v v ; 

(2) Calculate  1 3 7 15, , ,t tF q v v v  θ  (see calculation steps 2–3 for OR exceedance probability); 

(3) Generate m samples  1, 3, 7, 15,, , ,i i i iu u u u  ( 1,2,...,i m ) from the C-vine copula; 

(4) For 1,2,...,j m , calculate  1, 1, 3, 3, 7, 7, 15, 15,1

1
, , ,

1

m

j i j i j i j i ji
v u u u u u u u u

m 
   


= 1 ; 
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(5) Calculate    
1

1 m

C t i ti
K v

m
 


  1 ; 615 

(6) Calculate  1ken

t C tp K   . 

2. Generating the multivariate design event samples (formulated by Eq. (17) in the paper) 

To calculate the most-likely design event and confidence interval conditioned on AAR  , we need 

to generate the numerous multivariate design event samples by the Monte Carlo method. Here, we give 

the details of generating the design event samples as follows: 620 

(1) Define the total number of design event samples N and the initial number of the design event 

sample 0i  ;  

(2) Generate a random integer (denoted by tr) among (T1, T1+1,…, T2); 

(3) Generate a random sample  
1 3 7 15
, , ,Q V V Vz z z z  following the multivariate distribution 

 
1 3 7 15
, , ,

rQ V V V tF z z z z θ  with the distribution parameter vector 
rt

θ ; 625 

(4) Calculate the annual exceedance probability for each year throughout the period from T1 to T2; 

(5) Calculate AAR during the period from T1 to T2; 

(6) If -AAR    ( where is a very small value, such as 0.0001) , +1i i ; 

(7) If i N , repeat steps (2)–(6). 
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Table 1 Reservoirs information for the Xijiang River basin 

Reservoir Catchment area (km2) Flood control capacity (109m3) Year of operation 

Longtan 98,500 5.0 2006 

Baise 9,600 1.64 2006 

Laokou 72,368 0.36 2016 

Datengxia 198,612 1.5 2023 (predicted) 

 800 
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Table 2 Results of nonstationary analysis for the marginal distributions of  1 3 7 15, , ,Q V V V  

Flood 

series 

Distribution   
    p_KS 

0  1  2  

1Q  GEV 
10.050*** 

[9.931, 10.182] 
0.0212*** 

[0.005,0.036] 
−2.166** 

[−4.006,−0.481] 
6892.085*** 

[5313.291, 8176.206] 
−0.271** 

[−0.527, −0.092] 
0.713 

3V  Gamma 
1.866*** 

[1.751, 1.977] 
0.0185** 

[0.002, 0.034] 
−2.094** 

[−3.801, −0.403] 
0.261*** 

[0.209, 0.300] 
- 0.832 

7V  Gamma 
2.638*** 

[2.522,2.754] 
0.0119** 

[−0.005,0.028] 
−1.934** 

[−3.713,−0.166] 
0.269*** 

[0.215,0.308] 
- 0.907 

15V  Gamma 
3.258*** 

[3.213,3.354] 
- −1.525** 

[−2.807,0.155] 
0.265*** 

[0.215,0.307] 
- 0.926 

The relationships between   and covariates were built by the exponential function in Eq. (3). 
1  and 

2  are the 

parameters related to urban population (Pop) and reservoir index (RI), respectively. The symbols ‘***’, ‘**’ and ‘*’ denote that 

the estimated model parameters are significant at the levels of 0.01, 0.05 and 0.1, respectively. The numbers in brackets are 805 

the 95% uncertainty interval.  p_KS stands for the p-value of the KS test for marginal distributions. 
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Table 3 Results of nonstationary analysis for the dependence structure of  1 3 7 15, , ,Q V V V  

 

Copula 

parameter 

Model parameters 

0  1    2  

13  3.023*** 
[2.816, 3.249] 

- - 

17  1.719*** 
[1.483, 1.976] 

- - 

115  1.461*** 
[0.958,2.038] 

 −0.111 **   
[−0.021,−0.226] 

9.426** 
[0.970,20.416] 

37|1  0.0926* 
[−0.316, 0.473] 

 - 

315|1  −1.444** 
[−3.036,−0.693] 

- - 

715|13  −0.231* 
[−0.728, 0.199] 

- - 

The relationships between copula parameters and covariates were built by the exponential function in Eq. (7). 
1  and 

2  810 

are the parameters related to urban population (Pop) and reservoir index (RI), respectively. The symbols ‘***’, ‘**’ and ‘*’ 

denote that the estimated model parameters are significant at the levels of 0.01, 0.05 and 0.1, respectively. The numbers in 

brackets are the 95% uncertainty interval. p_PIT stands for p-value of the PIT test for the C-vine copula. 
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Table 4 Results of change-point detection for the marginal distributions and dependence of  1 3 7 15, , ,Q V V V  815 

Flood series Change point of margin p-value  Flood series Change point of dependence p-value 

1Q  1993 0.072  ( 1Q , 3V ) 1955 0.083 

3V  1993 0.186  ( 1Q , 7V ) 1955 0.537 

7V  1994 0.752  ( 1Q , 15V ) 1972 0.599 

15V  1981 0.423  ( 1Q , 3V , 7V , 15V ) 1972 0.995 
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Figure 1. Map of the Xijiang River basin (above the Dahuangjiangkou gauge). 820 
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Figure 2. Evolution of the urban population and reservoir index during both the observation and design life 

periods. 
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Figure 3. Decomposition of the four-dimensional C-vine copula. 
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Figure 4. Nonstationary marginal distributions during both the observation and design life periods. 
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Figure 5. Statistical correlations between flood peak and flood volumes. The symbol ‘***’ indicates the 835 

statistical correlation at the 0.01 significance level. 
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Figure 6. Nonstationary copula parameter for pair  1 15,Q V  during both the observation and design life periods. 840 
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Figure 7. Design values of the annual maximum daily discharge for different average annual reliability (AAR) 

varying from 0.01 to 0.99 under three nonstationary conditions. 
  845 
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Figure 8. Design values of the 3-day flood volume for different average annual reliability (AAR) varying from 

0.01 to 0.99 under three nonstationary conditions. 
  



46 

 

 850 

Figure 9. Design values of the 7-day flood volume for different average annual reliability (AAR) varying from 

0.01 to 0.99 under three nonstationary conditions. 
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Figure 10. Design values of the 15-day flood volume for different average annual reliability (AAR) varying from 855 

0.01 to 0.99 under three nonstationary conditions. 
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Figure 11. Design flood hydrographs associated with OR, AND and Kendall probabilities. 860 
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