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Abstract. To bridge the gap between large-scale GCM (Global Climate Model) outputs and regional-scale climate 9 

requirements of hydrological models, a spatiotemporally distributed downscaling model (STDDM) was developed. The 10 

STDDM was done in three stage: (1) upsampling grid-observations and GCM (Global Climate Model) simulations to spatially 11 

continuous finer-grids; (2) creating the mapping relationship between the observations and the simulations, differently in space 12 

and time; (3) correcting the simulation and produced downscaled data in spatially continuous grid scale. We applied the 13 

STDDM to precipitation downscaling in Poyang Lake Watershed using MRI-CGCM3 (Meteorological Research Institute 14 

Coupled Ocean-Atmosphere General Circulation Model3), with an accepted uncertainty of ≤ 4.9%; then created future 15 

precipitation changes from 1998 to 2100 (1998-2012 in the historical and 2013-2100 in the RCP8.5 scenario). The precipitation 16 

changes increased heterogeneities in temporal and spatial distribution under future climate warming. In terms of temporal 17 

patterns, the wet season become wetter while the dry season become drier. The frequency of extreme precipitation increased 18 

while that of the moderate precipitation decreased. Total precipitation increased while rain days decreased. The max continuous 19 

dry days and the max daily precipitation both increased. In terms of spatial patterns, the dry area exhibited a drier condition 20 

during the dry season; the wet area exhibited a wetter condition during the wet season. Analysis with temperature increment 21 

showed precipitation changes can be significantly explained by climate warming, with p < 0.05 and R ≥ 0.56. The precipitation 22 

changes and explains indicated the downscaling method is reasonable and the STDDM could be applied in the basin-scale 23 

region based on a GCM successfully. The results implicated an increasing risk of flood-droughts under global warming, which 24 

were a reference for water balance analysis and water resource planting. 25 
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1 Introduction 26 

Global warming has caused temporal and spatial redistributions of precipitation (Frei et al. 1998; Trenberth et al. 2011) and 27 

has increased the frequency and intensity of floods and droughts, seriously threating social systems and ecosystems (Pall et al, 28 

2000; Dai, 2013). To the fragile ecological and living environments, what the future hydrological situation will be under future 29 

global warming is a crucial question to avoid or reduce damages from climate warming. 30 

Global Climate Models (GCMs) are basic tools for assessing the effects of future climate change and provide an initial source 31 

for future climates (Xu, 1999). However, GCMs have coarse global resolutions ranging from 1°×1° to 4°×4°, and are not 32 

applicable in regional scales, such as watersheds. Downscaling algorithms have been developed to link the global-scale GCM 33 

outputs and the regional-scale climate variables, including dynamic (Giorgi, 1990; Teutschbein and Seibert, 2012) and statistic 34 

(Wilby et al., 2007; Chu et al., 2010) models. The dynamic method employs regional climate models (RCMs) that are nested 35 

inside GCMs based on the complex physics of atmospheric processes and involves high computational costs. Limited by an 36 

insufficient understanding of the physical mechanism and expensively computing resources, the dynamic downscaling model 37 

cannot easily satisfy small and mid-size region as the Poyang Lake Watershed. Unlike dynamic downscaling, statistic 38 

downscaling constructs an empirical relationship between climate variables of the global-scale and local-scale, with 39 

inexpensive computations. Benefiting from inexpensive computations and easy implementations, downscaling methods have 40 

been widely used, including regression models (Labraga et al. 2010, Quintana et al. 2010; Zorita et al. 1999), weather typing 41 

schemes (Boéj et al. 2007; ENKE et al. 2005) and weather generators (Mullan et al., 2016; Baigorria and Jones et al., 2011). 42 

Most statistical downscaling methods are conducted on discrete stations (Charles et al., 1999; Zhang et al., 2005; Maurer et 43 

al., 2008; Mullan et al., 2016; Alaya et al., 2017; Chen et al., 2018) and produce downscaled data the in the station scale., 44 

including single-station and multi-station methods. The single-station method produces the downscaled climate variable at a 45 

single point (or watershed average), or independently at several points (Zhang et al., 2005; Maurer et al., 2008). The multi-46 

station method generates the downscaled climate variable dependently for multiple sites (Charles et al., 1999; Alaya et al., 47 

2017; Chen et al., 2018). For both the single-station and multi-station methods, the specific downscaling relationship and 48 

downscaled climate variable are both discrete in the station scale, instead of being spatially continuous in a grid-scale of a 49 
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finer-resolution. Compared to the spatially continuous grid data, discrete stations are sparse. As underlays of local region are 50 

complex with different topographies, land covers, and clouds coverage, the discrete point-scale data underrepresents the spatial 51 

variability. For ungauged areas without station coverage, it is inviable to obtain high-quality downscaling relationships and 52 

downscaled local climate variables. Moreover, compared to point-scale data, spatially continuous grid data can express the 53 

spatial distribution of climate variables more accurately and clearly; thus express the spatial correlation and heterogeneity 54 

more accurately and clearly. Additionally, spatially continuous grid data can be directly used in a spatially distributed or semi-55 

distributed hydrological model, such as Crest (Wang et al., 2011), VIC (Lohmann et al. 1998), and MIKE SHE (DHI, 2014), 56 

which is the forefront of international hydrological scientific research (Beven et al. 1990).  Spatially continuous downscaled 57 

climate data can also be easily integrated with remote sensing data of geologies, topographies, soils, or land covers. In fact, 58 

spatially continuous data is widely used in the rapidly developing field of remote sensing, which benefits hydrological models 59 

by providing a data source (Engman et al., 1991). Therefore, the downscaling method processed on spatially continuous data 60 

is of vital importance.  61 

Some downscaling methods could obtain spatially continuous data. Dynamic downscaling methods could produce downscaled 62 

climate variables in spatial continuous grid-scale. However, the downscaled grid-data is commonly limited in the resolution, 63 

coarser than 25 kilometers (Trzaska et al., 2014; Maraun et al, 2010); thus could not be applied to small watersheds. A few 64 

statistical downscaling methods of the weather generator could provide downscaled climate variables in a spatially continuous 65 

scale (Perica et, al., 1996; Venema et al., 2010). The specific algorithms can be divided into three cartographies: transformed 66 

Gaussian processes (Guillot and Lebel, 1999), point process models (Wheater et al., 2005; Cowpertwait et al., 2002), and 67 

spatial-temporal implementation of multifractal cascade models (Lovejoy and Schertzer, 2006). However, few researches have 68 

implicated these approaches on GCM outputs. Furthermore, as the refined data obtain from the weather generator is biased 69 

from the observed data, correction is needed. However, in the researches, there is no observed field of finer-resolution 70 

corresponding to the downscaled scale; thus, not all the spatial unit in the downscaled field could be corrected by the observed 71 

field. 72 

As the factors driving climate variables vary in regions and seasons, the statistical downscaling method should consider the 73 

spatial and temporal heterogeneity (Fowler et al., 2007; Manzanas et al., 2018). Most methods (Charles et al., 1999; Maurer et 74 
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al., 2008; Alaya et al., 2017) performed the downscaling for each specific-site (or specific type sites), respectively; thus the 75 

downscaled result showed spatial heterogeneity. However, few downscaling methods consider the spatial heterogeneity in a 76 

spatially continuous scale. In terms of temporal heterogeneity, some downscaling algorithms are processed independently on 77 

months (or seasons) (Boé et al., 2007; Leander and Buishand, 2007). For the different time, the algorithm or parameters are 78 

different; thus the temporal heterogeneity is expressed. However, few downscaling methods consider temporal heterogeneity 79 

combined with spatial heterogeneity in the spatially continuous scale.  80 

To produce downscaled data in a spatially continuous scale and consider temporal heterogeneity combined with spatially 81 

continuous heterogeneity, the study proposed a spatiotemporally distributed downscaling method (STDDM). A finer-82 

resolution observed field (Hutchinson et al., 1998a; Hutchinson et al., 1998b) is induced as the reference to correct the refined 83 

GCM outputs for each grid and time; subsequently, the corrected data is produced as the downscaled data. The correction is 84 

distributed in time and continuous-space. 85 

The Poyang Lake Watershed is sensitive to climate changes in the East Asian monsoon region and therefore is not immune to 86 

global warming. Redistributions of precipitation due to global warming have resulted in an increased occurrence of extreme 87 

hydrological events, an enhanced flood frequency and intensity (Wang et al., 2009; Guo et al., 2006), a significant decline in 88 

lake level and inundation area (Feng et al. 2012; Zhang et al. 2014), which threatened to fragile wetland and forest ecosystems 89 

(Han et al. 2015, Dyderski et al. 2018), economic developments and human lives (Ye et al., 2011). However, the Poyang Lake 90 

Wetland ecosystem is an internationally important habitat for migratory birds, abundant of biodiversity and regarded as a 91 

Natural Reserve. In addition, the watershed is a commercial grain production area and an important part of the Yangtze River 92 

Economic Belt. As this region is economically and ecologically significant, investigating the future precipitation changes in 93 

the watershed is crucial for protection from climate damages. Previous studies of future precipitation changes in the Poyang 94 

Lake Watershed include temporal and special patterns. Precipitation changes in temporal pattern, focused on intensity and 95 

frequency of precipitation extremes (Hong et al. 2014; Wang et al. 2017), as well as the annual or quarterly total precipitation 96 

(Guo et al., 2010; Guo et al., 2008; Li et al., 2016). In spatial pattern, precipitation change analysis covers five subbasins 97 

(Xinjiang, Raohe, Xiushui, Ganjiang and Fuhe subbasins) (Guo, et al. 2010; Hong, et al. 2014) and 13 discrete meteorological 98 

stations (Li et al. 2016), or 7 coarse grids (Guo, et al. 2008). There has been little research concerning the spatial-temporal 99 
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distribution of precipitation in a continual fine-resolution grids space. In addition, driving force analysis of precipitation 100 

changes related to temperatures increment has not been conducted. 101 

In the study, taking Poyang Lake Watershed as a test case, we projected future precipitations based on the spatiotemporally 102 

distributed downscaling method (STDDM), using MRI-GCM3 simulations and meteorological observations. The objects are 103 

as the following: (1) to develop a spatiotemporally distributed downscaling method (STDDM), projecting future climate 104 

variables in spatially continual scale; and (2) to document temporal and spatial changes in precipitation for the Poyang Lake 105 

Watershed in the 21st century and the correlations between these precipitation changes and temperature increment. Future 106 

precipitation changes can provide basic hydrological information necessary to a better understanding of water volumes and 107 

flood-droughts risks; furtherly benefits wetland and forest ecosystem conservation and aids decision-making in development, 108 

utilization, and planning of water resources. 109 

2 Study area and datasets 110 

2.1 Study Area 111 

Poyang Lake Basin (24°28’-30°05’ N and 113°33’-118°29’E) is located in the southeast of China, connected with Yangtze 112 

River in the north (Fig. 1). Within the southeast subtropical monsoon zone, the annual average temperature of the watershed 113 

is 17.5℃. The mean annual precipitation is 1638 mm, with 192 rainy days (daily precipitation ≥ 0.1 mm/day) and 173 rain-114 

free days (daily precipitation < 0.1 mm/day). The rainy season lasts from April to July, occupying about 70% of the annual 115 

total amount. Inter or intra annual precipitation variations are dominated by the southeast and southwest monsoon, mainly in 116 

summer. With a coverage area of 162000 km2, the diversities of topographies also effect on precipitation changes. The 117 

topography varies from high mountains of Luoxiao, Wuyi, and Nanling in east, south and west, with the elevation reaching to 118 

the 2200m, to the depressing of Ji Tai or Ganzhou Depressing in the south or center and alluvial plains of Poyang Lake Plain 119 

in the north, with the elevation reaching to <50 m (1a). The different topography and location generate the uneven distribution 120 

of precipitation in space and produce less rain in the depressing, plains, and hills area because of the leeward sloop, but more 121 

orographic rain in the mountain area for the reason of the windward sloop (1b) (Mingjin et al. 2011). To analyze precipitation 122 
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changes in the rich- or poor-rain area, the meteorological stations were classified into dry and wet stations (Fig. 1a and b), 123 

according to the annual precipitation amount. We sorted the annual precipitation averaged over the time from 1961 to 2005, 124 

of the 15 stations. The four stations with the max or min mean annual precipitations are set as dry or wet stations, indicating 125 

the dry or wet area (Fig.1b), respectively. 126 

In the past 50 years of the Poyang Lake Watershed, annual mean temperature indeed experiences a significant (p<0.02) increase 127 

with a change rate of 0.15 ℃/10a (Fig.1d), based on the meteorological observations from 1961 to 2005. Under the temperature 128 

increasing condition, the precipitation in temporal and spatial distribution becomes more uneven (Zhan et al. 2011), which 129 

increases the risk of floods and droughts (Li et al. 2016; Ye et al. 2011).  130 

2.2 Data sets  131 

Global Climate Models (GCMs) are widely used tools to project future climate change. GCMs from the Coupled Model 132 

Intercomparison Project Phase Five (CMIP5) performs better than other CMIPs such as CMIP3 and CMIP4, with generally 133 

finer resolution and more improved physical mechanism (Sperber, 2013; Taylor et al. 2012). Compared to the other CGMs of 134 

CMIP5, the MRI-CGCM3 (Meteorological Research Institute Coupled Ocean-Atmosphere General Circulation Model3, 135 

Yukimoto et al. 2012) performs better in simulating diurnal rainfall over subtropical China (Yuan et al. 2013) and has the 136 

finest resolution of 1.121° × 1.125°. Thus we select MRI-CGCM3 data applied in Poyang Lake Watershed to test the 137 

performance of the STDDM.  138 

The future data of MRI-CGCM3 includes simulations of the Representative Concentration Pathways (RCPs) of 8.5,6, 4.5 and 139 

2.6. Compared to the other RCPs, in the RCP8.5 scenario temperature increases the most, which is corresponds to a highest 140 

greenhouse gas emission, leading to a radiative forcing of 8.5 W/m2 and temperature increase of 7.14 °C at the end of 21st 141 

century (Taylor et al. 2012). The research is to detect the remarkable precipitation changes under climate warming; thus we 142 

selected future simulations in the RCP8.5 scenario. In the study, we merge the historical (from 1961 to 2005), historical extent 143 

(from 2006 to 2012) and RCP85 (from 2013 to 2100) data, as the merged data (1961-2100). To quantitatively analyze the 144 

precipitation changes under climate warming in the 21st century, we compared precipitation between the baseline and future 145 

period. As annual precipitation observations have main oscillation periods of quasi-20 years (Zhan et al. 2011), we selected 146 
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three 20 years from the merged data. From the merged data, simulations from 1998 to 2017 were selected as the baseline period 147 

data, simulations from 2041 to 2060 were selected as the near future period data, and simulations from 2081 to 2100 were 148 

selected as the further future period data. 149 

The local grid observations (Hutchinson et al., 1998a; Hutchinson et al., 1998b; Zhao et al., 2014) with a resolution of 0.5°×0.5° 150 

are downloaded from the China Meteorological Data Service Center (http://data.cma.cn/). The local grid observations and 151 

MRI-CGCM3 historical simulations were used to construct a relationship to correct the GCM data. China metrology point data 152 

were also downscaled and used to validate the grid observations and the downscaled GCM simulations. To investigate the 153 

relationship between precipitation changes and the temperature increment, we extract not only precipitations but also 154 

temperature.  155 

3 Methodology 156 

3.1 Future climate projection based on the spatiotemporally distributed downscaling model 157 

Considering the spatiotemporal heterogeneity of precipitation at the regional scale such as the Poyang Lake Watershed, we 158 

developed a spatiotemporally distributed downscaling model (STDDM), which is a logical framework based on a specific 159 

mathematic algorithm. The mathematic algorithm was used to create a mapping relationship between the global-scale GCM 160 

simulations and the local scale climates variables. The mapping relationship is used as a transform function to correct the 161 

future climate simulations to no-bias data. In the framework, we constructed respective mapping relationships between the 162 

match-ups of GCMs simulations and local climate observations in each time (e.g., months or seasons) at each location. The 163 

STDDM was improved compared to the traditional downscaling methods by adjusting the specific downscaling algorithm to 164 

be suitable in the distributed space and time. Therefore, the downscaling processes show spatiotemporal differences in the 165 

parameters or the equations, and the output data are spatially continuous, unlike that in traditional downscaling methods, which 166 

ignores the temporal and continuous spatial differences and express space as discrete points instead of continuous grids. 167 

Figure 2a shows the logical framework of the STDDM while Fig. 2b demonstrates how it was applied in Poyang Lake 168 

Watershed using MRI-CGCM3 based on a linear-scaling algorithm. The STDDM contains three parts (Fig. 2a and b): (1) 169 
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upsampling GCMs simulations and local-scale observations to a continuous grid space of the same finer resolution; (2) 170 

constructing respective mapping relationship between the GCMs simulations and local observations in distributed space and 171 

time; (3) correcting the GCMs simulations using the mapping relationship constructed in step 2.  172 

3.1.1 Upsampling GCMs simulations 173 

MRI-GCM3 simulations were interpolated by Natural Neighbor Interpolation (Sibson et al., 1981) to a scale of 20 km×20 km, 174 

the smallest size of the subbasin of the Poyang Lake Watershed (Zhang et al. 2017), generating 263 spatial grids (Fig. 2b). For 175 

the spatiotemporally distributed downscaling, we used China meteorology spatially continua grid data as observations, instead 176 

of China meteorology station data. We interpolated the gridded observations to 20 km × 20 km, the same as the downscaled 177 

climate simulations. The match-up grids of simulations and observations at each time and each grid-box were generated. 178 

3.1.2 Constructing relationships between the GCMs simulations and local observations 179 

Because there is an inevitable mismatch between the simulations and observations (Li, 2009; Wood et al., 2004) after the 180 

upsampling, bias correction should be performed. The bias correction was processed by the transform function between match-181 

ups of the upsampled simulation and observations, which represents the mapping relationship between the match-ups. The 182 

transform function could be any bias corrected model, including linear scaling, local intensity scaling, power transformation, 183 

distribution mapping models (Teutschbein et al. 2012) and other linear or nonlinear regression models. 184 

As the influencing factors on climates show heterogeneity in space and time, we created spatiotemporally distributed 185 

relationships, described by the following formula. 186 

, , ,' ( )T S T S T SCC F  (1) 

Where, ,'T SC and ,T SC  indicate the upsampled global-scale climate simulations and the local climate variables, respectively, 187 

in the given time of T and the space of S. ,T SF demonstrates a transform function, used to correct the upsampled GCMs 188 

simulations. The function is a specific bias correction model, spatiotemporally distributed in mathematic equations or 189 

parameters, which is constructed based on the data from the historical period of 1961 to 2005.  190 
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In this study, we use a linear-scaling algorithm (Lenderink et al., 2007) as the bias correction model. For the linear-scaling 191 

algorithm, the simulations were corrected by the discrepancy between the simulations and observations. Precipitations derived 192 

from the GCMs were corrected by multiplying the precipitation bias coefficient, which is the ratio of the mean monthly 193 

observation to simulation from the historical period; temperatures were corrected by adding the temperature bias coefficient, 194 

which is the difference between the mean monthly observation and simulation in the historical period. However, as the bias 195 

varies among the months from January to December and among the locations of the 236 spatial grids, a global standard bias 196 

coefficient is prohibited. To better capture the bias in distributed time and space, we should create an individual bias coefficient 197 

for the given month and gird box. Thus, a spatiotemporally distributed bias matrix was constructed. The respective downscaling 198 

model and bias coefficient for a given month (T) and space (S) were established by Eq. 2 and 3.  199 

' _P P P Cof   (2) 

' _TM TM TM Cof  (3) 

where P (T) represents the precipitation (or temperature) of upsampled simulations. P’ (TM’) represents the downscaled result 200 

or upsampled observations; P_Cof (TM_Cof) represents the bias correction coefficient of precipitations (or temperatures). In 201 

the construction of P_Cof (TM_Cof), P (TM) and P’ (TM’) was set as the average monthly precipitation (or temperature) over 202 

the historical time from 1961 to 2005. All the input and output data in the equations are in the given month (T) and space (S). 203 

3.1.3 Correcting the GCMs simulations 204 

The constructed relationship between the GCMs simulations and the observations from the historical period (in section 3.1.2) 205 

also hold for the future (Maraun et al., 2010). Thus, the transform function was used to correct the future CGCMs simulations. 206 

In this study, we corrected the daily and monthly precipitations (or temperatures) from MRI-CGCM3 by adding (or multiplying) 207 

the bias coefficients in the corresponding month and grid box.   208 
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3.2 Precipitation changes analysis  209 

3.2.1 Statistic indexes of precipitation changes 210 

To obtain the general change in the temporal distribution, we calculated monthly precipitations from 1998 to 2100, averaged 211 

over the whole watershed. As floods and droughts occur more frequently in wet and dry months, we specifically analyze the 212 

extreme wet and dry precipitation changes in the 21st century. Therein, monthly precipitations, > 75% percentile of the 12 213 

months, were classified as the extreme wet monthly precipitations for each year of the 103 years; monthly precipitations, ≤ 214 

25% percentile were classified as the extreme dry monthly precipitation. The monthly precipitation of the 25%-50% and 50%-215 

75% quantiles were classified as normal dry and wet monthly precipitations. The wet monthly precipitations include extreme 216 

and normal wet monthly precipitations; the dry monthly precipitations include extreme and normal dry monthly precipitations. 217 

To understand precipitation dynamics in terms of frequency and intensity, daily precipitations were categorized into five 218 

classes based on the classification by the Chinese Meteorological Administration and the possible risk of floods and droughts: 219 

light rain, medium rain, heavy rain, rainstorm, and extreme rainstorm with daily precipitation of 0.1-10, 10-25, 25-50, 50-100 220 

and >100 mm/day, respectively. The frequency of precipitation intensities indicates heterogeneity in temporal distribution. 221 

The higher frequency of moderate rain means the more homogeneous, vice versa is the extreme rain. Therefore, the 222 

precipitation intensities were separated to moderate or extreme rains, including light rain, median rain or heavy rain, rainstorm, 223 

extreme rainstorm, respectively.  224 

To further analyze the changes in precipitation frequencies and intensities, we calculate the annual days of light rain, medium 225 

rain, heavy rain, rainstorm and extreme rainstorm from 1998 to 2100 averaged over the whole watershed. Annual total 226 

precipitation, annual dry days, annual max daily precipitation and annual max continuous dry days were displayed as well.  227 

The meteorological stations (Fig. 1a) are uniformly distributed in the whole watershed and cover all kinds of the topographies 228 

and land covers. Therefore, in the study, the all above precipitation indexes of one year for the whole watershed were calculated 229 

based on the precipitation averaged over the grids containing the 15 stations, instead of the entire grids. Under global climate 230 

warming, precipitation becomes more concentrated which leads to more heterogeneity in temporal and spatial distribution 231 

(Donat et al., 2016; Min et al., 2011). Thus, we calculated variation coefficients for each year from 1998 to 2100, to investigate 232 

file:///C:/Users/zl/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/result.html
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the precipitation changes in temporal and spatial distribution. The variation coefficient measures the standard dispersion of the 233 

data items, which can indicate the unevenness of temporal and spatial distributions of the precipitation. In this study, 234 

heterogeneity in temporal, spatial and spatiotemporal distributions was measured by the temporal, spatial and spatiotemporal 235 

variation coefficient, respectively. Temporal variation coefficients were calculated on the daily or monthly precipitations in 236 

one year and the variation coefficient for one year is averaged over those of the 15 stations. For monthly precipitation, we only 237 

select extreme wet and dry precipitations, as the extreme wet and dry are more likely to cause floods or droughts and thus 238 

should be paid more attention. Spatial variation coefficients were calculated on the annual total precipitations of the 15 stations 239 

in one year. Spatiotemporal variation coefficient was calculated on the monthly precipitations of the extreme wet months of 240 

the wet stations and the extreme dry months of the dry stations in one year, as the extreme precipitation values were more 241 

likely to cause floods or droughts. 242 

3.2.2 Relationship analysis between precipitation changes and temperature increasing 243 

We investigated the precipitation changes as a result of global temperature increase. To this end, we made liner regression 244 

between the precipitation index and temperature changes from 2005 to 2100. We note that a mean filter with a window size of 245 

21 years can reduce potential random fluctuation from precipitation by the most; thus was used to smooth annual precipitation 246 

indexes and temperature simulations from 2005 to 2100. The long-time smoothed annual precipitation or temperature minus 247 

the average annual value from 1998 to 2017, are set as precipitation index or temperature changes. A linear regression model 248 

was used to investigate whether precipitation changes are related to climate warming. The two 11 years, 2005 to 2015 and 249 

2090 to 2100 at the start and end, did not have filter diameter of 21 years; thus climate data used to be regressed is from 2016 250 

to 2089. 251 

4 Result and Discussion 252 

4.1 Model assessment 253 

Validation about the China meteorological grid observations should be performed, as well as the STDDM. As the STDDM 254 

introduce the China meteorological grid observations and the grid data is not the direct in-suit data, validation about the gridded 255 
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data is necessary. The determination coefficient (R2), root mean square error (RMSE) and PBias (percent bias) were used to 256 

examine the model performance. 257 

4.1.1 Evaluation for the gridded meteorological 258 

The China meteorological grid observations are referenced data to corrected GCMs simulations and reliability of the 259 

observations is vital to the performance of the STDDM. So we make a validation using meteorological station observations, 260 

in Fig. 3. 261 

As shown in Fig. 3, we select four meteorological stations. The selected stations are uniformly distributed.  The validation 262 

produced an acceptable precision with R2 > 0.91, absolute PBias < 2% for precipitations and R2 =0.99, absolute PBias < 6% 263 

for temperature. All the dots of gridded and stationed value were distributed along the 1:1 line, thus confirming the satisfactory 264 

performance. 265 

4.1.2 Validations of precipitation and temperature projections in Poyang Lake Watershed 266 

Before being used in future climate projection, the model should be examined. Data from 1961 to 1985 were used to construct 267 

the model, and the remaining historical data from 1986 to 2005 were used to validate.  268 

To test whether the downscaling method (STDDM) is effective in climate projections, we compare the results before and after 269 

the bias correction in Fig. 4. The results before and after the bias correction marked as the outcomes by the STDDM and No-270 

STDDM, respectively. The projections by the STDDM show better performance with high correlations and narrow bias, 271 

compared to the result by No-STDDM. Considering the complexity of climate physical mechanism and difficulty to accurately 272 

simulate by the present methods, the uncertainty could be acceptable.  273 

Using the STDDM and MRI-CGCMs, we obtained the temporal and spatial variation of future precipitations in the Poyang 274 

Lake Watershed, and investigated the heterogeneity changes of precipitation in the temporal and spatial distribution. 275 

4.2 Temporal variation of future precipitation 276 

To discover the temporal variation under the future climate warming, we analyzed the monthly and daily precipitation changes 277 

during the period from 1998 to 2100. For monthly precipitation, we analyzed intra-annual and inter-annual dynamics of 278 
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precipitation; based on the dynamics, we investigated the heterogeneity changes of monthly precipitation. For daily 279 

precipitation, we analyzed the changes of precipitation intensities and frequencies; based on the changes, heterogeneity 280 

changes of daily precipitation was also investigate. 281 

4.2.1 Monthly precipitation changes  282 

We analyzed the monthly precipitation changes during the period from 1998 to 2100 in Fig. 5. Precipitation show significant 283 

intra-annual dynamics. Months with abundant rain (wet months), indicated by a reddish color, are mainly in April to July (the 284 

wet season), while the rain-poor months (dry months), indicated by a bluish color, are mainly in September to the subsequent 285 

February (the dry season). Precipitation concentrates in spring (March to May) and summer (July to August), occupying 73% 286 

of the annual amount. The intra-annual dynamics of precipitation is similar to that shown by Feng (2012). Precipitation also 287 

showed inter-annual dynamics. The wet months become wetter, and the wet season comes earlier from April to March, even 288 

in February. In addition, each monthly precipitations of seven months (April to November) took increasing trends, of which 289 

most months (5 months; April, May, June, August) are in the wet season; while precipitations of the other five months 290 

experienced decreasing trends, all of which were in the dry season. It seems that wet months become wetter and dry months 291 

become drier, in general. 292 

To better demonstrate the inter-annual dynamics of precipitation, monthly precipitations in each year were sorted in a 293 

descending order in Fig. 5(b). As the time of the monsoon reaching the Poyang Lake Watershed, varied in different years, with 294 

1~2 months’ advance or delay; the wet or dry months for different years are not the same. By sorting monthly precipitation, 295 

wet months and dry month could be distinguished intuitively in Fig. 5(b). Obviously, monthly precipitation of wet months 296 

experienced an increasing trend respectively, even some with slight significance; in contrast, each dry monthly precipitation 297 

exhibited decreasing trends, separately, despite the insignificant signs. We accumulated the extreme wet or dry monthly 298 

precipitations for each year in Fig. 6. The precipitation of extreme wet months showed a significantly increasing trend (p<0.05) 299 

(Fig. 6a), while the precipitation of the extreme dry months demonstrated a significantly decreasing trend (p<0.05). Extreme 300 

wet months increased from 277.82 mm•month-1/a over historical time from 1998-2017, to 344.10 mm•month-1/a over future 301 

time from 2081 to 2100, by 23.86% with a change rate of 7.3 mm•month-1/10a. Extreme dry months decreased from 35.44 302 
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mm•month-1/a over historical time from 1998-2017, to 30.46 mm•month-1/a over future time from 2081 to 2100, by -14.05% 303 

with a change rate of 0.92 mm•month-1/10a. Therein, the extreme wet months are mainly concentrated in March-July (Fig. 6c), 304 

part of the wet season, while the extreme dry months are mainly concentrated in September-February (Fig. 6d), consistent to 305 

the dry season.  306 

Overall, under climate warming over the 21st century, the wet monthly precipitations become wetter while the dry month 307 

precipitations become drier, which suggested the uneven temporal distribution of precipitation (Fig. 7). As shown in Fig. 7, 308 

the temporal variation coefficient of the extreme month (including extreme wet and months) precipitations within each year 309 

from 1988 to 2100, experiences significantly increasing trends (p<0.01), and increased from 0.76 /a over historical time from 310 

1998-2017, to 0.84 /a over future time from 2081 to 2100, by 10.53% with change rate of 0.01 /10a. The significantly increasing 311 

trends indicated the more uneven trend of precipitation in the temporal distribution, which might lead to increased  risks of 312 

floods and droughts. 313 

4.2.2 Daily precipitation changes 314 

To understand the changes in precipitation intensities and frequencies under future climate warming, daily precipitation 315 

variations were also analyzed and are shown in Fig. 8. Moderate vs extreme rain frequencies (Fig. 8a and b), the annual total 316 

rain vs the annual total rainy days (Fig. 8c), and the annual max precipitation vs the annual max continuous rainy days (Fig.  317 

8d) were analyzed. 318 

Under climate warming, the annual frequency of moderate rains experienced decreasing trends; in contrast, the annual 319 

frequency of extreme rains experienced significantly increasing trends (Fig. 8a). Statistically, averaged over 103 years, annual 320 

precipitation frequencies are dominated by the moderate rain frequency a total of 163.70 days, or 44.8% (163.70/365), while 321 

the extreme rain occurs less often, a total of 20.70 days, or 6.70% (20.7/365). The remaining is rain-free days, a total of 180.75 322 

days, 49.5% (180.75/365). The annual moderate rain frequency decreased, from 170.56 days/a over the historical period from 323 

1998 to 2017, to 159.55 days/a over  the future period from 2081 to 2100, by -6.46% with a change rate of -14.4 days/10a; on 324 

the contrary, the annual extreme rain frequency increased from 19.18 days/a over historical time from1998 to 2017, to 23.42 325 

days/a over future time from 2081 to 2100, by 22.10% with a change rate of 0.49 days/10a (Fig. 8b). 326 
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Furthermore, the annual total rainy days, the sum of the moderate and extreme rain frequencies, demonstrated a significantly 327 

decreasing trend in the 21st century, whereas the annual total precipitation exhibited a significantly increasing trend (Fig, 7c). 328 

Rainy days decreased from 187.57 days/a over the historical period from 1998 to 2017, to 180.37 days/a over the future period 329 

from 2081 to 2100, by -3.84% with a change rate of -1.00 days/10a; while the annual total rain amount increased, from 1650 330 

mm/a over the historical period, from 1998 to 2017, to 1906 mm/a over the future period, from 2081 to 2100, by 15.55% with 331 

a change rate of 23.00 mm/10a. The increase in the annual total rain and decrease in the annual rainy days suggested more 332 

concentrated precipitation and dry days in the future. This tendency might lead to the increased risk of floods and droughts, 333 

which was also indicated by the increased annual max daily precipitation and max continuous dry days (Fig. 8d).  Annual max 334 

daily precipitation increased from 148.76 mm•day-1/a averaged over the historical period from 1998 to 2017, to 212.01 335 

mm•day-1/a averaged over the future period from 2081 to 2100, by 42.51% with a change rate of 7.2 mm•day-1/10a; while the 336 

max continuous dry days increased from 25.35 days/a over the historical period from 1998 to 2017, to 28.15 days/a over the 337 

future period from 2081 to 2100, by 11.05% with a change rate of 0.5 days/10a. 338 

Overall, the significantly inverse change trends in the moderate vs extreme rain frequencies, the annual total rain vs the annual 339 

total rainy days, and the annual max precipitation vs the annual max continuous rainy days, indicated an increasing temporal 340 

heterogeneity in precipitation distribution over the 21st century. Obviously, the increasing heterogeneity was exhibited by the 341 

increasing temporal variation coefficient of daily precipitations (Fig. 9). The temporal variation coefficient of daily 342 

precipitations increased from 1.50 /a over the historical period from 1998 to 2017, to 1.62 /a over the future period from 2081 343 

to 2100, by 7.48% with a change rate of 0.016 /10a. 344 

4.3 Spatial variation of future precipitation 345 

Climate warming could cause the rain belt shift (Putnam et al., 2017), which might lead to precipitation changes in the spatial 346 

pattern. To investigate the spatial variation, we analyzed the similarities and differences of precipitation changes in space (Fig. 347 

1); based on the differences, we use the indexes of the spatial and spatiotemporal variation coefficient to investigate the spatial 348 

heterogeneity changes (Fig. 11). Fig. 10 shows the precipitation changes in the spatial pattern during the period from 1998 to 349 

2100; Fig. 11 shows the spatial and spatiotemporal variation coefficient for each year over 1988 to 2100. 350 
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Precipitations showed a regular spatial pattern both in the wet and dry season, in Fig. 10a-c and e-g. More specifically, 351 

precipitation was distributed more in the east and west, however less in the north central plain and the south bottom depression. 352 

Rich rain in the east and west are dominated by the southeast and southwest summer monsoons. Less precipitation was due to 353 

the leeward sloop of the eastern (Xuefeng Mountain) and western mountains (Wuyi Mountain). Less precipitation in the south 354 

bottom depression was because that water vapor was blocked from this region by the NanLing Mountain in the south (Fig. 1a). 355 

The precipitation distribution in spatial pattern from 1998 to 2100 (Fig. 10 a-c and d-f) were consistent with the observations 356 

from 1951 to 2005 (Fig. 1b.), thus confirming the satisfactory performance of the STDDM. Moreover, wet and dry season 357 

precipitation showed inverse changes. The wet season precipitations exhibited ascending (Fig. 10a-c and g) change while the 358 

dry season precipitation exhibited descending (Fig. 10d-f and h) change from 1998 to 2100. The inverse changes were 359 

consistent with the interannual variability of increased precipitation in wet months and decreased precipitation in dry months 360 

(Section 4.2). The increase of precipitation in the wet seasons and decrease in precipitation in the dry seasons were also detected 361 

in the change rate of the cells over the entire watershed (Fig. 10g or h). 362 

However, precipitation change also showed a different spatial pattern. Precipitation change rate was heterogeneous in spatial 363 

distribution for dry or wet season respectively (Fig. 10g and h). In the wet season, the precipitation increased more in the north 364 

part of the watershed, except for the central plain (Fig. 10g); in the dry season, the precipitation decreased more in the central 365 

area (Fig. 10h). Statistically, in the wet season, precipitation increased with the change rate raising from ≤ 3.6 mm/10a in the 366 

southwest, to ≥ 11.7 mm/10a in the northeast; in the dry season, precipitation decreased with the change rate falling from ≥ -367 

2.0 mm/10a in the surrounding region, to ≤ -2.7 mm/10a in the central region. Furthermore, precipitation changes show 368 

different spatial characteristics in wet and dry seasons. From 1998 to 2100, in the wet season (Fig. 10a-c), the wet area (the 369 

reddish area, mainly in the north except for the center plain) becomes wetter; in the dry season (Fig. 10 d-f), the dry area (the 370 

bluish area, mainly in the north center plain and in the south depression) become drier. 371 

The uneven change rates may lead to increase of the spatial heterogeneity of precipitation under global warming, and the 372 

tendency of the wet area to become wetter and the dry area to become drier also indicated the increasing spatiotemporal 373 

heterogeneity of precipitations. Indeed, the spatial heterogeneity did increase, with the spatial variation coefficients raising 374 

from 0.097 /a over the historical period (1998-2017), to 0.110 /a over the future period (2081-2100), by 12.64% with a change 375 
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rate of 0.002 /10a (Fig. 11a). The spatiotemporal heterogeneity did increase with the spatiotemporal variation coefficient 376 

raising from 0.89 /a over the historical period (1998-2017), to 0.94 /a over the future period (2081-2100), by 4.96% with a 377 

change rate of 0.008 /10a. Overall, the uneven change rates for the whole basin and inverse changes for the dry and wet area 378 

indicated an increasing spatial heterogeneity in precipitation distribution over the 21st century. 379 

4.4 The impact assessment of temperature increment on precipitation changes 380 

Previous studies have detected precipitation changes and have attributed these changes to climate warming (Westra et al., 2013; 381 

Zhang et al., 2013). In this study, the spatiotemporal changes of precipitation in the Poyang Lake Watershed in the 21st century 382 

were hypothesized to be related to temperature increments. So we analyze the correlations qualitatively and quantitatively. 383 

The following are trying to demonstrate the driving force related to climate warming on precipitation changes in the temporal 384 

pattern. In the wet season from April to July, the summer monsoon might become weaker in Southeast Asia as the temperature 385 

increasing (Wang, 2001; Wang, 2002; Guo et al., 2003). Consequently, the summer monsoon is delayed for a longer time in 386 

the middle and lower Yangtze River basin instead of moving further north. The delay leads to much more rain during the wet 387 

season. As being located in the middle of the Yangtze River basin, the Poyang Lake Watershed becomes wetter in the wet 388 

season (Fig. 5-5, Fig. 10a-c). In fact, the increase in precipitation in the Poyang Lake Watershed was detected in previous 389 

studies (Yu and Zhou, 2007; Ding et al., 2008). In the dry period from September to the subsequent February (especially in 390 

the winter season, from December to February), during which summer monsoon is inactive, there is less water vapor in the 391 

atmosphere to condense into rain. Additionally, stronger winds in the winter (Wu et al., 2013) blow the evaporation away, thus 392 

enhancing the difficulty of generating rain from water vapor compared to the other seasons. When temperature increases, the 393 

ability of the atmosphere to hold water vapors is strengthened, which makes it more difficult to precipitate. Therefore, 394 

precipitation decreases in the dry season, consistent with Li et al.'s (2016) result. As temperature increment increases the ability 395 

of the atmosphere to contain water vapor, rain is more difficult, and if it rains it will rain largely (Min et al., 2011; Zhang et 396 

al., 2013). Thus, the frequency of heavy rain and rain-free events increases, indicating increased frequency and strengthened 397 

intensity of the extreme precipitation. Overall, the climate warming might make precipitation more temporally uneven. 398 
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Climate warming could also explain the spatial distribution of precipitation changes in the dry and wet seasons. In the wet 399 

season, the summer monsoon delays in the middle and lower Yangtze River Basin. The delaying area covers only the north 400 

part of the Poyang Lake Watershed. As it receives abundant water vapor from the delayed summer monsoon, the north part of 401 

Poyang Lake Watershed experiences a greater increase in precipitation with a larger change rate (Fig. 10g). The eastern Poyang 402 

Lake Watershed is the nearest to the western Pacific Ocean; thus the eastern region receives more continuous water vapor. So 403 

the precipitation change rate decreases from the southeast to the northwest in the wet season. However, in the dry season 404 

especially in winter, during which there is a low-frequency or absent summer monsoon, the water vapor mainly comes from 405 

evapotranspiration. In the watershed, the periphery is covered by the lake of Poyang in the northern plain and high-density 406 

vegetation in the northwest, southeast and southwest mountains; so there is more evapotranspiration in the periphery. The 407 

center is mainly covered by farmland and grassland; so there is less evapotranspiration in the center (Wu et al., 2013). Thus, 408 

the moisture decreases from the surrounding to the center. Therefore, as temperature increases, it is more difficult for rain to 409 

occur in the area of lower moisture, the center of the Poyang Lake Watershed. Therefore the precipitation decreased with a 410 

change rate falling from the surrounding to the center in the dry season (Fig. 10h). 411 

To quantitatively analyze the relationship between precipitation changes and temperature increment, we created a scatter plot 412 

between precipitation indexes changes and temperature increment, as shown in Fig. 12. A trend analysis was conducted using 413 

linear regression of each annual precipitation index over the 103 years from 1998 to 2100. The associated slopes represent the 414 

change rate of each precipitation index relative to temperature increment. The significance of the trend is indicated by p value. 415 

As shown in Fig. 12, there is a significant correlation between the precipitation change and the temperature increment, with p 416 

≤ 0.001 and R≥ 0.78 for 6 precipitation indexes: the annual precipitation in the wet season (Fig. 12a), the annual max daily 417 

precipitation (Fig. 12d), the temporal variation coefficient of the monthly precipitation (Fig. 12c), the temporal variation 418 

coefficient of the daily precipitation (Fig. 12f), the spatial variation coefficient (Fig. 12g) and the spatiotemporal variation 419 

coefficient (Fig. 12h). However, changes of the other two precipitation indexes, the annual precipitation in the dry season (Fig. 420 

12b) and the annual max continuous dry days (Fig. 12e), appeared to be correlated with slight signs of p ≤ 0.05 and R ≤ 0.58. 421 

The overestimation of moderate- or free-rain frequency  from the GCM simulations (Teutschbein et al. 2012) might explain 422 

the slightly low correlation between the annual precipitation values in the dry season and temperature increment, while the 423 
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overestimation of the precipitation frequencies (Prudhomme et al. 2003) could explain the slightly low correlation between the 424 

annual max continuous dry days and  temperature increment. For all the correlations (Fig. 12a-h), the precipitation changed 425 

with fluctuation, which might be caused by random variations from GCMs. 426 

Overall, despite the low correlations and stochastic fluctuation, the correlations could indicate that the climate warming can 427 

partly explain the precipitation changes. Statistically, precipitation changes relative to temperature increment are 16.657 428 

mm•month-1/K, -4.31 mm•month-1 /K, 17.45 mm•day-1 /K, 0.71 days/K, 0.028/K, 0.033/K, 0.0074/K and 0.02/K for the annual 429 

precipitation in the wet season, the annual precipitation in the dry season, the annual max daily precipitation, the annual max 430 

continuous dry days, the temporal variation coefficient of the monthly precipitation, the temporal variation coefficient of the 431 

daily precipitation, and the spatial variation coefficient and the spatiotemporal variation coefficient, respectively. 432 

In summary, the explanation of precipitation changes in temporal and spatial distribution qualitatively and quantitatively, 433 

suggests the downscaling method is reasonable and the STDDM could be applied in the basin-scale region based on a GCM 434 

successfully. 435 

5 Conclusion 436 

A spatiotemporally distributed downscaling method (STDDM) was proposed in this study. The downscaling method 437 

considered the heterogeneity in spatial and temporal distributions, and produced local climate variables as spatially continuous 438 

data instead of independent and discrete points. The STDDM showed a better performance than the No-STDDM. Using the 439 

STDDM, we constructed the spatially continuous future precipitation distribution and dynamics in the wet and dry season from 440 

1998 to 2100, based on MRI-CGCM3. Several findings were obtained:  441 

First, the spatial and temporal heterogeneity of precipitation increased under future climate warming. In the temporal pattern, 442 

the wet season become wetter, while the dry season become drier. The frequency of extreme precipitation increased, while 443 

that of the moderate precipitation decreased. Total precipitation increased, while rain days decreased. The max dry day number 444 

and the max daily precipitation both increased. These precipitation changes demonstrated an increasing heterogeneity of 445 

precipitation in temporal distribution, and the change rate of temporal heterogeneity is 0.01 /10a (0.016 /10a) for the temporal 446 

variation coefficient of the monthly (daily) precipitation. In the spatial pattern, the change rate of precipitation was uneven 447 
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over the whole watershed. Additionally, the wet areas become wetter in the wet season and the dry areas become drier in the 448 

dry season. The uneven change rates for the whole basin and inverse change for dry and wet area demonstrated an increasing 449 

heterogeneity in the spatial distribution, and the change rate of spatial heterogeneity was 0.002/10a.   450 

Second, precipitation changes can be significantly explained by climate warming, with p < 0.05 and R ≥ 0.56. The explanation 451 

of precipitation changes in temporal and spatial distribution qualitatively and quantitatively, suggests the downscaling method 452 

is reasonable and the STDDM could be applied in the basin-scale region based on a GCM successfully. 453 

The results can be applied to a hydrological and hydrodynamic model, to study the future changes in water volumes, lake 454 

levels and areas response to climate warming. The relationship between precipitation variations and temperature increment 455 

could be helpful to the driving forces analysis of precipitation changes. The dry to be drier and wet to be wetter condition may 456 

lead to increased risk of floods and droughts. In particular, in the region where floods and droughts do not usually occur, 457 

additional adaptation measures could be taken to prevent loss from the future frequent hydrological disasters.  458 
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Figures 624 

 625 

Fig. 1. The topography and landforms (a), precipitation distribution and dry-wet stations (b), temperature change (d) and 626 

location of the Poyang Lake Basin (c). We sorted the annually accumulated precipitation of the 15 stations, averaged over time 627 

from 1961 to 2005. The 4 stations with the max or min mean annual precipitations are set as dry or wet stations, respectively. 628 

  629 



29 

 630 

 Fig. 2 Conceptual flow chart of the climate projection including upsampling, relation construction and correction: The 631 

common framework of the STDDM (a) and test case base on the linear-scaling algorithm (b). The STDDM was used to project 632 

MRI-CGCM3 simulations from 1998 to 2100.  633 

 634 

 635 
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 636 

Fig. 3. Validation of gridded meteorological data (GridObs) by using gauging stations observation: Precipitation (pcp; a,b,c 637 

and d) and temperature (tem; e,d,f and g) at meteorological station of Jian (a and e), Ganzhou (b and d), Zhangshu (c and f) 638 

and Lushan (d and g). 639 
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 640 

Fig. 4. Validation of the precipitation (pcp) (a) and temperature (b) projections by the STDDM (in black) and No-STDDM (in 641 

red). Dots represent the monthly precipitations (or temperatures), averaged over 20 years from 1986 to 2005. The dots contain 642 

monthly precipitations of the 15 stations. The solid lines represent linear regression which is the best fit through all match-ups 643 

of the projections and observations. 644 

 645 

 646 

 647 
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 648 

Fig. 5. Total variability of monthly precipitation from 1998 to 2100. Each column represents the data for one year and each 649 

cell represents an accumulative precipitation of one month. The red (blue) arrows indicate that the monthly precipitation 650 

experienced an increasing (decreasing) trend over the 103 years, respectively. The asterisk demonstrates the significant trends 651 

with p<0.05. (a) Monthly precipitation in month order, referred to Spring (March to May), summer (June to August), autumn 652 

(September to November), and winter (December to next February) from top to bottom, respectively. (b) Monthly precipitation, 653 

sorted in the descending order for each year, where months are classified as extreme wet (EWet), normal wet (NWet), normal 654 

dry (NDry) and extreme dry (Edry) months from up to down. Therein, wet months (Wet) include extreme and normal wet ones 655 

while dry months (Dry) include extreme and normal dry ones. 656 

 657 
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 658 

Fig. 6. The trends of changes in monthly precipitations of extreme wet (EWet) (a) and dry (EDry) (b) months from 1998 to 659 

2100. The further future period from 2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 2017 (His1998-2017) are 660 

indicated by arrows. Frequencies of the months in extreme wet (c) or dry (d) months are calculated during the period from 661 

1998 to 2100.  662 

 663 
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 664 

Fig. 7. The temporal variation coefficients of the extreme month precipitations for each year over 1988 to 2100. The extreme 665 

months are composed of the extreme wet and dry months. The far future period from 2081 to 2100 (Fur2081-2100) and baseline 666 

period from 1998 to 2017 (His1998-2017) are indicated by arrows.  667 

 668 

 669 
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  670 

 671 

Fig. 8. The changes in daily precipitation intensities and frequencies. (a) Precipitation intensities and frequencies for each year 672 

over 1998 to 2100, where each column represents a year and each row indicates a precipitation intensity. Daily precipitation 673 

intensities are categorized to 5 classes, Light Rain (LR), Median Rain (MR), Heavy Rain (HR), Rainstorm (S), and Extreme 674 

Rainstorm (ES) with daily precipitation of 0.1-10, 10-25, 25-50, 50-100 and >100 mm/day, respectively. The moderate rain 675 

includes LR and MR while the extreme rain is composed of HR, S, and ES. The cell represents an annual frequency of one 676 

precipitation intensity, with a unit of days. The red (blue) arrows indicate that annual frequency of the precipitation intensity 677 

experienced an increasing (decreasing) trends over the 103 years (from 1998 to 2100), respectively. The asterisk represents 678 

the significant trends with p<0.05. The far future period from 2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 679 

2017 (His1998-2017) are indicated by arrows. (b) Precipitation frequencies of LR, MR, HR, S, and ES for Fur2081-2100 and 680 

His1998-2017, respectively. (c) The change of the long-term data for annual total precipitation (totalPcp) and total rainy days 681 

(Raindays). (d) The change of the long-term data for annual max daily precipitation (RMax) and annual max continuous dry 682 

days (CCD).  683 
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 684 

 685 

Fig. 9. The temporal variation coefficient of daily precipitations for each year over 1988 to 2100. The far future period from 686 

2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 2017 (His1998-2017) are indicated by arrows. 687 

 688 
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     689 

Fig. 10. The precipitation changes in the spatial pattern during the period from 1998 to 2100: average monthly precipitations 690 

of the wet season (April to July) during the period from 1998 to 2017 (a), 2041 to 2060 (b), and 2081 to 2100 (c); average 691 

monthly precipitations of the dry season (December to next February) during the historical period from 1998 to 2017 (d), 2041 692 

to 2060 (e), and 2081 to 2100 (f); change rate of monthly precipitation in wet (g) and dry (h) season from 1998 to 2100. As 693 

floods and droughts occur more frequently in extreme months, the precipitation in the analysis considered only the extreme 694 

wet (April-July) and dry (September-February) months (Fig. 5c and d). Besides, precipitation is dominated by southeast 695 

summer monsoon, which brings water vapor from the sea. The summer monsoon is frequent from the end of spring and stat 696 

of autumn, covering the wet months April to July. However, though as dry months, the autumn period from September to 697 

November is affected by southeast summer monsoon (Tan et al., 1994) slightly because autumns are the transpiration periods 698 

of summer to winter. Therefore, winter (December-February) was represented as the dry season with poor rain; while April-699 

July was represented as the wet season with abundant rain. 700 

 701 
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 702 

 703 

Fig. 11. The spatial (a) and spatiotemporal (b) variation coefficient for each year over 1988 to 2100. The further future period 704 

from 2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 2017 (His1998-2017) are indicated by arrows. 705 

 706 

 707 
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 710 

 711 

Fig. 12. The relationship between the precipitation index changes (dPcpIndex) and the temperature increment (dT). The 712 

precipitation indexes include annual precipitation in the wet season (PcpWet) (a), annual precipitation in the dry season 713 

(PcpDry) (b), temporal variance coefficient of monthly precipitations (Temp-VC-of-MonPcp) (c), annual max daily 714 

precipitation (PMax) (d), annual max continuous dry days (CCD) (e), temporal variance coefficient of daily precipitations 715 

(Temp-VC-of-DayPcp) (f), spatial variance coefficient (Spatial-VC) (g), and spatiotemporal variance coefficient 716 

(Spatiotemporal-VC) (h). All the precipitation index changes show significant correlations with temperature increment. 717 
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