
Comments from the editor 

We are very grateful to the editor for reading the manuscript extremely carefully and forwarding the 

valuable suggestions for improvement. Point-by-point responses to the editor’s comments are listed 

below. 

 

 

The editor’s comment 1: There were published not a few downscaling algorithms keeping 

spatial correlation structure of meteorological fields (Charles et al., 1999; Mohamed Ali et al., 2017 

among many others). The corresponding studies should be mentioned, and advantages of the 

algorithm developed in this study should be clearly denoted in Introduction.  

Also, I recommend remove the first sentence (“Traditional statistical downscaling methods are 

performed on independent station measurements and ignore spatial correlations and spatiotemporal 

heterogeneity”) from the Abstract. 

 

Ben Alaya, Mohamed Ali & Ouarda, Taha & Chebana, Fateh. (2017). Non-Gaussian spatiotemporal 

simulation of multisite daily precipitation: downscaling framework. Climate Dynamics. 

10.1007/s00382-017-3578-0. 

Charles, Stephen & Bates, Bryson & P. Hughes, James. (1999). A spatiotemporal model for 

downscaling precipitation occurrence and amounts. Journal of Geophysical Research. 104. 31657-

31669. 10.1029/1999JD900119.  

 

Authors’ response: Thank you very much for the suggestions. 

The main advantage of the method developed (STDDM) is reproducing downscaled data in the 

spatially continuous grid scale, instead of the discrete station scale. Compared to the discrete points, 

the spatial continuous grid data can express the spatial distribution of climate variables more 

accurately and clearly. In addition, the method (STDDM) also consider the spatial and temporal 

heterogeneity of the climate variables, as the factors driving the climate variable vary in space and 

time. For different space and different time, the specific algorithm or parameter of the downscaling 

method is different. 

 

In the old version of the manuscript, the sentence ‘traditional statistical downscaling methods … 

ignore spatial correlations’ may be not accurate. The main idea here is as the following. 

The classic downscaling method (Charles et al., 1999; Mohamed Ali et al., 2017 for example) was 

performed on discrete points, and produced downscaled data in the discrete station scale. Compared 

to the discrete points, the spatial continuous grid data can express the spatial distribution of climate 

variables more accurately and clearly. Consequently, the spatial continuous grid data can express 

the spatial correlation and heterogeneity more accurately and clearly. Additionally, the method 

(STDDM) also consider the spatial and temporal heterogeneity of the climate variables. For different 

space and different time, the specific algorithm or parameter of the downscaling method is different. 

 

The revised in the manuscript (Line 42-68): 

Before the revises: 

In these studies, statistical downscaling methods have been developed based on the relationship 
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between the global-scale simulations and the local station-scale observations. The methods are 

conducted on each station, independently. Thus, the specific downscaling relationship and 

downscaled climate variable are both independent and discrete at the station scale, instead of being 

spatially continuous at a fine-resolution grid-scale. However, as underlays of local region are 

complex with different topographies, land covers, and clouds coverage, the downscaling 

relationships and downscaled climate variables at discrete stations cannot clearly express the spatial 

heterogeneity, compared to the spatially continuous data. For ungauged areas without station 

coverage, it is inviable to obtain high-quality downscaling relationships and downscaled local 

climate variables. Moreover, the downscaled local climate results and downscaling relationships at 

the station scale are difficult to show the spatial correlation; however, results from the downscaling, 

processed on spatially continuous data, such as finer grids, can naturally show spatial relationships. 

Additionally, spatially continuous data can be directly used in a spatially distributed hydrological 

model, such as Crest (Wang et al., 2011), VIC (Lohmann et al. 1998), and MIKE SHE (DHI, 2014), 

which is the forefront of international hydrological scientific research (Beven et al. 1990). In 

addition, spatially continuous downscaled climate data can be easily integrated with remote sensing 

data of geologies, topographies, soils, or land covers. In fact, spatially continuous data is widely 

used in the rapidly developing field of remote sensing, which benefits hydrological models by 

providing a data source (Engman et al., 1991). Therefore, the downscaling method processed on 

spatially continuous data is of vital importance. For the continuous space covered with complex 

underlays, statistical downscaling methods should take spatial heterogeneity into consideration, thus 

creating downscaling relationships spatially distributed at spatially continuous scale.  

In addition to spatial heterogeneity, the relationship between the climate variables at the global-scale 

and local-scale also shows temporal heterogeneity in a single year, because the dominators that 

affect climate vary through time (e.g., seasons or months). Therefore, a temporally distributed 

downscaling method, which creates different relationships at different times, should be taken into 

consideration. However, many downscaling methods have not taken temporal heterogeneity into 

consideration. For each observed site, the established downscaling method was a global standard 

for the whole time, instead of being different in separate seasons or months (Labraga 2010; Wu et 

al., 2017; Sachindra et al., 2018). In the study, temporally distributed downscaling is considered. 

Combining temporal heterogeneity and spatial heterogeneity in continual space, a climate 

downscaling model based on a spatiotemporally distributed framework (a spatiotemporally 

distributed downscaling method), should be proposed to project future climate at a regional scale.  

After the revises: 

Most statistical downscaling methods are conducted on discrete stations (Charles et al., 1999; Zhang 

et al., 2005; Maurer et al., 2008; Mullan et al., 2016; Alaya et al., 2017; Chen et al., 2018) and 

produce downscaled data the in the station scale., including single-station and multi-station methods. 

The single-station method produces the downscaled climate variable at a single point (or watershed 

average), or independently at several points (Zhang et al., 2005; Maurer et al., 2008). The multi -

station method generates the downscaled climate variable dependently for multiple sites (Charles et 

al., 1999; Alaya et al., 2017; Chen et al., 2018). For both the single-station and multi-station methods, 

the specific downscaling relationship and downscaled climate variable are both discrete in the 

station scale, instead of being spatially continuous in a grid-scale of a finer-resolution. Compared 

to the spatially continuous grid data, discrete stations are sparse. As underlays of local region are 

complex with different topographies, land covers, and clouds coverage, the discrete point-scale data 



underrepresents the spatial variability. For ungauged areas without station coverage, it is inviable to 

obtain high-quality downscaling relationships and downscaled local climate variables. Moreover, 

compared to point-scale data, spatially continuous grid data can express the spatial distribution of 

climate variables more accurately and clearly; thus express the spatial correlation and heterogeneity 

more accurately and clearly. Additionally, spatially continuous grid data can be directly used in a 

spatially distributed or semi-distributed hydrological model, such as Crest (Wang et al., 2011), VIC 

(Lohmann et al. 1998), and MIKE SHE (DHI, 2014), which is the forefront of international 

hydrological scientific research (Beven et al. 1990). Spatially continuous downscaled climate data 

can also be easily integrated with remote sensing data of geologies, topographies, soils, or land 

covers. In fact, spatially continuous data is widely used in the rapidly developing field of remote 

sensing, which benefits hydrological models by providing a data source (Engman et al., 1991). 

Therefore, the downscaling method processed on spatially continuous data is of vital importance.  

Some downscaling methods could obtain spatially continuous data. Dynamic downscaling methods 

could produce downscaled climate variables in spatial continuous grid-scale. However, the 

downscaled grid-data is commonly limited in the resolution, coarser than 25 kilometers (Trzaska et 

al., 2014; Maraun et al, 2010); thus could not be applied to small watersheds. A few statistical 

downscaling methods of the weather generator could provide downscaled climate variables in a 

spatially continuous scale (Perica et, al., 1996; Venema et al., 2010). The specific algorithms can be 

divided into three cartographies: transformed Gaussian processes (Guillot and Lebel, 1999), point 

process models (Wheater et al., 2005; Cowpertwait et al., 2002), and spatial-temporal 

implementation of multifractal cascade models (Lovejoy and Schertzer, 2006). However, few 

researches have implicated these approaches on GCM outputs. Furthermore, as the refined data 

obtain from the weather generator is biased from the observed data, correction is needed. However, 

in the researches, there is no observed field of finer-resolution corresponding to the downscaled 

scale; thus, not all the spatial unit in the downscaled field could be corrected by the observed field.  

As the factors driving climate variables vary in regions and seasons, the statistical downscaling 

method should consider the spatial and temporal heterogeneity (Fowler et al., 2007; Manzanas et 

al., 2018). Most methods (Charles et al., 1999; Maurer et al., 2008; Alaya et al., 2017) performed 

the downscaling for each specific-site (or specific type sites), respectively; thus the downscaled 

result showed spatial heterogeneity. However, few downscaling methods consider the spatial 

heterogeneity in a spatially continuous scale. In terms of temporal heterogeneity, some downscaling 

algorithms are processed independently on months (or seasons) (Boé et al., 2007; Leander and 

Buishand, 2007). For the different time, the algorithm or parameters are different; thus the temporal 

heterogeneity is expressed. However, few downscaling methods consider temporal heterogeneity 

combined with spatial heterogeneity in the spatially continuous scale.  

To produce downscaled data in a spatially continuous scale and consider temporal heterogeneity 

combined with spatially continuous heterogeneity, the study proposed a spatiotemporally distributed 

downscaling method (STDDM). A finer-resolution observed field (Hutchinson et al., 1998a; 

Hutchinson et al., 1998b;) is induced as the reference to correct the refined GCM outputs for each 

grid and time; subsequently, the corrected data is produced as the downscaled data. The correction 

is distributed in time and continuous-space. 

 

The following references was also added. 

Hutchinson, M. F.: Interpolation of Rainfall Data with Thin Plate Smoothing Splines - Part I : Two 
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dimensional Smoothing of Data with Short Range Correlation, J. Geogr. Inf. Decis. Anal., 2(2), 

152–167, doi:10.1.1.13.6255, 1998. 

Hutchinson, M. F.: Interpolation of Rainfall Data with Thin Plate Smoothing Splines - Part II: 

Analysis of Topographic Dependence, J. Geogr. Inf. Decis. Anal., 2(2), 152–167, 1998. 

Boé, J., Terray, L., Habets, F. and Martin, E.: Statistical and dynamical downscaling of the Seine 

basin climate for hydro-meteorological studies, Int. J. Climatol., 27(12), 1643–1655, 

doi:10.1002/joc.1602, 2007. 
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multisite daily precipitation: downscaling framework, Clim. Dyn., 50(1–2), doi:10.1007/s00382-

017-3578-0, 2018. 

Charles, S. P., Bates, B. C. and Hughes, J. P.: A spatiotemporal model for downscaling precipitation 

occurrence and amounts, J. Geophys. Res. Atmos., 104(D24), 31657–31669, 

doi:10.1029/1999JD900119, 1999. 

Chen, J., Chen, H. and Guo, S.: Multi-site precipitation downscaling using a stochastic weather 

generator, Clim. Dyn., 50(5–6), 1975–1992, doi:10.1007/s00382-017-3731-9, 2018. 

Cowpertwait, P. S. P.: A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes, 

Water Resour. Res., 38(8), 6-1-6–14, doi:10.1029/2001WR000709, 2002. 

Guillot, G. and Lebel, T.: Disaggregation of Sahelian mesoscale convective system rain fields: 

Further developments and validation, J. Geophys. Res. Atmos., 104(D24), 31533–31551, 

doi:10.1029/1999JD900986, 1999. 

Liang X, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land surface 

water and energy fluxes for general circulation models [J]. Journal of Geophysical Research: 

Atmospheres, 99(D7): 14415-14428, 1994. 

Ferraris, L., Gabellani, S., Rebora, N. and Provenzale, A.: A comparison of stochastic models for 

spatial rainfall downscaling, Water Resour. Res., 39(12), doi:10.1029/2003WR002504, 2003.  

Fowler, H. J., Blenkinsop, S. and Tebaldi, C.: Linking climate change modelling to impacts studies: 

Recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27(12), 

1547–1578, doi:10.1002/joc.1556, 2007. 

Leander, R. and Buishand, T. A.: Resampling of regional climate model output for the simulation of 

extreme river flows, J. Hydrol., 332(3–4), 487–496, doi:10.1016/j.jhydrol.2006.08.006, 2007. 

Trzaska, S. and Schnarr, E.: A Review of Downscaling Methods for Climate Change Projections, 

Review, (September), 1–42, doi:10.4236/ojog.2016.613098, 2014. 

Wheater, H. S., Chandler, R. E., Onof, C. J., Isham, V. S., Bellone, E., Yang, C., Lekkas, D., Lourmas, 

G. and Segond, M. L.: Spatial-temporal rainfall modelling for flood risk estimation, Stoch. Environ. 

Res. Risk Assess., 19(6), 403–416, doi:10.1007/s00477-005-0011-8, 2005. 

Zhang, X. C.: Spatial downscaling of global climate model output for site-specific assessment of 

crop production and soil erosion, Agric. For. Meteorol., 135(1–4), 215–229, 

doi:10.1016/j.agrformet.2005.11.016, 2005. 

 

 

The editor’s comment 2: Page 3; line 52. Strictly saying, only MIKE SHE is a distributed 

model. Two others are semi-distributed ones. Please change 

 

Authors’ response: Thank you very much for the suggestions.  



 

The revised in the manuscript (Line 51-53): 

Before the revises: 

Additionally, spatially continuous data can be directly used in a spatially distributed hydrological 

model, such as Crest (Wang et al., 2011), VIC (Lohmann et al. 1998), and MIKE SHE (DHI, 2014), 

which is the forefront of international hydrological scientific research (Beven et al. 1990).  

After the revises: 

Additionally, spatially continuous data can be directly used in a spatially distributed or semi-

distributed hydrological model, such as Crest (Wang et al., 2011), VIC (Lohmann et al. 1998), and 

MIKE SHE (DHI, 2014), which is the forefront of international hydrological scientific research 

(Beven et al. 1990). 

 

 

The editor’s comment 3: Eq. 4. It is not necessary to give this well-known formula. Also, 

replace VC with the “coefficient of variation” (CV) throughout the text 

 

Authors’ response: Thank you very much. It was revised in the manuscript. 

 

The main revised in the manuscript (Line 214-226): 

Before the revises: 

Thus, we calculated variation coefficients (VC) for each year from 1998 to 2100, to investigate the 

precipitation changes in temporal and spatial distribution. 

The VC is defined as the ratio of the standard deviation to the average value, described by Eq. 4.  
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where x  represents monthly (or daily) precipitation in one year; n is the month number (or day 

number) of a year and  indicates the average monthly or daily precipitation of a year. VC measures 

the standard dispersion of the data items, which can indicate the unevenness of temporal and spatial 

distributions of the precipitation. In this study, heterogeneity in temporal, spatial and spatiotemporal 

distributions were measured by temporal, spatial and spatiotemporal VC, respectively. Temporal 

VC was calculated on the daily or monthly precipitations in one year and the VC for one year is 

averaged over those of the 15 stations. For monthly precipitation, we only select extreme wet and 

dry precipitations, as the extreme wet and dry are more likely to cause floods or droughts and thus 

should be paid more attention. Spatial VC was calculated on the annual total precipitations of the 

15 stations in one year. Spatiotemporal VC was calculated on the monthly precipitations of the 

extreme wet months of the wet stations and the extreme dry months of the dry stations in one year, 

as the extreme precipitation values were more likely to cause floods or droughts.  

After the revises: 

Thus, we calculated variation coefficients for each year from 1998 to 2100, to investigate the 

precipitation changes in temporal and spatial distribution.  



The variation coefficient measures the standard dispersion of the data items, which can indicate the 

unevenness of temporal and spatial distributions of the precipitation. In this study, heterogeneity in 

temporal, spatial and spatiotemporal distributions was measured by the temporal, spatial and 

spatiotemporal variation coefficient, respectively. Temporal variation coefficients were calculated 

on the daily or monthly precipitations in one year and the variation coefficient for one year is 

averaged over those of the 15 stations. For monthly precipitation, we only select extreme wet and 

dry precipitations, as the extreme wet and dry are more likely to cause floods or droughts and thus 

should be paid more attention. Spatial variation coefficients were calculated on the annual total 

precipitations of the 15 stations in one year. Spatiotemporal variation coefficient was calculated on 

the monthly precipitations of the extreme wet months of the wet stations and the extreme dry months 

of the dry stations in one year, as the extreme precipitation values were more likely to cause floods 

or droughts. 
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Precipitation projections using a spatiotemporal distributed method: 3 

a case study in the Poyang Lake Watershed based on MRI-CGCM3 4 

Ling Zhang 1, Xiaoling Chen1, 2, Jianzhong Lu1, *, Dong Liang1 5 
1State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 6 
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Abstract. Traditional statistical downscaling methods are performed on independent station measurementsTo bridge the gap 11 

between large-scale GCM (Global Climate Model) outputs and ignore spatial correlations and spatiotemporal heterogeneity. 12 

In this studyregional-scale climate requirements of hydrological models, a spatiotemporally distributed downscaling model 13 

(STDDM) was developed. Using this method, we interpolatedThe STDDM was done in three stage: (1) upsampling grid -14 

observations and GCM (Global Climate Model) simulations to continuouslyspatially continuous finer -grids and then created; 15 

(2) creating the mapping relationship between the observations and the simulations, respectively for eachdifferently in space 16 

and time; (3) correcting the simulation and produced downscaled data in spatially continuous grid at each timescale. We 17 

applied the STDDM to precipitation downscaling in Poyang Lake Watershed using MRI-CGCM3 (Meteorological Research 18 

Institute Coupled Ocean-Atmosphere General Circulation Model3), with an accepted uncertainty of ≤ 4.9%; then created future 19 

precipitation changes from 1998 to 2100 (1998-2012 in the historical and 2013-2100 in the RCP8.5 scenario). The precipitation 20 

changes increased heterogeneities in temporal and spatial distribution under future climate warming. In terms of temporal 21 

patterns, the wet season become wetter while the dry season become drier. The frequency of extreme precipitation increased 22 

while that of the moderate precipitation decreased. Total precipitation increased while rain days decreased. The max continuous 23 

dry days and the max daily precipitation both increased. In terms of spatial patterns, the dry area exhibited a drier condition 24 

during the dry season; the wet area exhibited a wetter condition during the wet season. Analysis with temperature increment 25 

showed precipitation changes can be significantly explained by climate warming, with p < 0.05 and R ≥ 0.56. The precipitation 26 
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changes and explains indicated the downscaling method is reasonable and the STDDM could be applied in the basin-scale 27 

region based on a GCM successfully. The results implicated an increasing risk of flood-droughts under global warming, which 28 

were a reference for water balance analysis and water resource planting. 29 
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1. 1 Introduction 

Global warming has caused temporal and spatial redistributions of precipitation (Frei et al. 1998; Trenberth et al. 2011) and 

has increased the frequency and intensity of floods and droughts, seriously threating social systems and ecosystems (Pall et al, 

2000; Dai, 2013). To the fragile ecological and living environments, what the future hydrological situation will be under future 

global warming is a crucial question to avoid or reduce damages from climate warming. 

Global Climate Models (GCMs) are basic tools for assessing the effects of future climate change and provide an initial source 

for future climates (Xu, 1999). However, GCMs have coarse global resolutions ranging from 1°×1° to 4°×4°, and are not 

applicable in regional scales, such as watersheds. Downscaling algorithms have been developed to link the global-scale 

GCMsGCM outputs and the regional-scale climate variables, including dynamic (Giorgi, 1990; Teutschbein and Seibert, 2012) 

and statistic (Wilby et al., 2007; Chu et al., 2010) models. The dynamic method employs regional climate models (RCMs) that 

are nested inside GCMs based on the complex physics of atmospheric processes and involves high computational costs. 

Limited by an insufficient understanding of the physical mechanism and expensively computing resources, the dynamic 

downscaling model cannot easily satisfy small and mid-size region as the Poyang Lake Watershed. Unlike dynamic 

downscaling, statistic downscaling constructs an empirical relationship between climate variables of the global-scale and local-

scale, with inexpensive computations. Benefiting from inexpensive computations and easy implementations, downscaling 

methods have been widely used, including regression models (Labraga et al. 2010, Quintana et al. 2010; Zorita et al. 1999), 

weather typing schemes (Boéj et al. 2007; ENKE et al. 2005) and weather generators (Mullan et al., 2016; Baigorria and Jones 

et al., 2011).  

In these studies,Most statistical downscaling methods have been developed based on the relationship between the global-scale 

simulations and the local station-scale observations. The methods are conducted on each discrete stations (Charles et al., 1999; 

Zhang et al., 2005; Maurer et al., 2008; Mullan et al., 2016; Alaya et al., 2017; Chen et al., 2018) and produce downscaled 

data the in the station scale., including single-station, and multi-station methods. The single-station method produces the 
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downscaled climate variable at a single point (or watershed average), or independently. Thus at several points (Zhang et al., 

2005; Maurer et al., 2008). The multi-station method generates the downscaled climate variable dependently for multiple sites 

(Charles et al., 1999; Alaya et al., 2017; Chen et al., 2018). For both the single-station and multi-station methods, the specific 

downscaling relationship and downscaled climate variable are both independent and discrete atin the station scale, instead of 

being spatially continuous at a fine-resolutionin a grid-scale. However, as of a finer-resolution. Compared to the spatially 

continuous grid data, discrete stations are sparse. As underlays of local region are complex with different topographies, land 

covers, and clouds coverage, the downscaling relationships and downscaled climate variables at discrete stations cannot clearly 

express the spatial heterogeneity, compared to the spatially continuous data.discrete point-scale data underrepresents the spatial 

variability. For ungauged areas without station coverage, it is inviable to obtain high-quality downscaling relationships and 

downscaled local climate variables. Moreover, the downscaled localcompared to point-scale data, spatially continuous grid 

data can express the spatial distribution of climate resultsvariables more accurately and downscaling relationships at the station 

scale are difficult to showclearly; thus express the spatial correlation; however, results from the downscaling, processed on 

spatially continuous data, such as finer grids, can naturally show spatial relationships. and heterogeneity more accurately and 

clearly. Additionally, spatially continuous grid data can be directly used in a spatially distributed or semi-distributed 

hydrological model, such as Crest (Wang et al., 2011), VIC (Lohmann et al. 1998), and MIKE SHE (DHI, 2014), which is the 

forefront of international hydrological scientific research (Beven et al. 1990). In addition, spatiallySpatially continuous 

downscaled climate data can also be easily integrated with remote sensing data of geologies, topographies, soils, or land covers. 

In fact, spatially continuous data is widely used in the rapidly developing field of remote sensing, which benefits hydrological 

models by providing a data source (Engman et al., 1991). Therefore, the downscaling method processed on spatially continuous 

data is of vital importance. For the continuous space covered with complex underlays, statistical downscaling methods should 

take spatial heterogeneity into consideration, thus creating downscaling relationships spatially distributed at spatially 

continuous scale.  
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In addition to spatial heterogeneity, the relationship between the climate variables at the global-scale and local-scale also shows 

temporal heterogeneity in a single year, because the dominators that affect climate vary through time (e.g., seasons or months). 

Therefore, a temporally distributed downscaling method, which creates different relationships at different times, should be 

taken into consideration. However, many downscaling methods have not taken temporal heterogeneity into consideration. For 

each observed site, the established downscaling method was a global standard for the whole time, instead of being different in 

separate seasons or months (Labraga 2010; Wu et al., 2017; Sachindra et al., 2018). In the study, temporally distributed 

downscaling is considered. Combining temporal heterogeneity and spatial heterogeneity in continual space, a climate 

downscaling model based on a spatiotemporally distributed framework (a spatiotemporally distributed downscaling method), 

should be proposed to project future climate at a regional scale.  

Some downscaling methods could obtain spatially continuous data. Dynamic downscaling methods could produce downscaled 

climate variables in spatial continuous grid-scale. However, the downscaled grid-data is commonly limited in the resolution, 

coarser than 25 kilometers (Trzaska et al., 2014; Maraun et al, 2010); thus could not be applied to small watersheds. A few 

statistical downscaling methods of the weather generator could provide downscaled climate variables in a spatially continuous 

scale (Perica et, al., 1996; Venema et al., 2010). The specific algorithms can be divided into three cartographies: transformed 

Gaussian processes (Guillot and Lebel, 1999), point process models (Wheater et al., 2005; Cowpertwait et al., 2002), and 

spatial-temporal implementation of multifractal cascade models (Lovejoy and Schertzer, 2006). However, few researches have 

implicated these approaches on GCM outputs. Furthermore, as the refined data obtain from the weather generator is biased 

from the observed data, correction is needed. However, in the researches, there is no observed field of finer-resolution 

corresponding to the downscaled scale; thus, not all the spatial unit in the downscaled field could be corrected by the observed 

field. 

As the factors driving climate variables vary in regions and seasons, the statistical downscaling method should consider the 

spatial and temporal heterogeneity (Fowler et al., 2007; Manzanas et al., 2018). Most methods (Charles et al., 1999; Maurer et 

al., 2008; Alaya et al., 2017) performed the downscaling for each specific-site (or specific type sites), respectively; thus the 
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downscaled result showed spatial heterogeneity. However, few downscaling methods consider the spatial heterogeneity in a 

spatially continuous scale. In terms of temporal heterogeneity, some downscaling algorithms are processed independently on 

months (or seasons) (Boé et al., 2007; Leander and Buishand, 2007). For the different time, the algorithm or parameters are 

different; thus the temporal heterogeneity is expressed. However, few downscaling methods consider temporal heterogeneity 

combined with spatial heterogeneity in the spatially continuous scale.  

To produce downscaled data in a spatially continuous scale and consider temporal heterogeneity combined with spatially 

continuous heterogeneity, the study proposed a spatiotemporally distributed downscaling method (STDDM). A finer-

resolution observed field is induced as the reference to correct the refined GCM outputs for each grid and time; subsequently, 

the corrected data is produced as the downscaled data. The correction is distributed in time and continuous-space. 

The Poyang Lake Watershed is sensitive to climate changes in the East Asian monsoon region and therefore is not immune to 

global warming. Redistributions of precipitation due to global warming have resulted in an increased occurrence of extreme 

hydrological events, an enhanced flood frequency and intensity (Wang et al., 2009; Guo et al., 2006), a significant decline in 

lake level and inundation area (Feng et al. 2012; Zhang et al. 2014), which threatened to fragile wetland and forest ecosystems 

(Han et al. 2015, Dyderski et al. 2018), economic developments and human lives (Ye et al., 2011). However, the Poyang Lake 

Wetland ecosystem is an internationally important habitat for migratory birds, abundant of biodiversity and regarded as a 

Natural Reserve. In addition, the watershed is a commercial grain production area and an important part of the Yangtze River 

Economic Belt. As this region is economically and ecologically significant, investigating the future precipitation changes in  

the watershed is crucial for protection from climate damages. Previous studies of future precipitation changes in the Poyang 

Lake Watershed include temporal and special patterns. Precipitation changes in temporal pattern, focused on intensity and 

frequency of precipitation extremes (Hong et al. 2014; Wang et al. 2017), as well as the annual or quarterly total precipitation 

(Guo et al., 2010; Guo et al., 2008; Li et al., 2016). In spatial pattern, precipitation change analysis covers five subbasins 

(Xinjiang, Raohe, Xiushui, Ganjiang and Fuhe subbasins) (Guo, et al. 2010; Hong, et al. 2014) and 13 discrete meteorological 

stations (Li et al. 2016), or 7 coarse grids (Guo, et al. 2008). There has been little research concerning the spatial-temporal 
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distribution of precipitation in a continual fine-resolution grids space. In addition, a driving force analysis of precipitation 

changes related to temperatures increment has not been conducted. 

In the study, taking Poyang Lake Watershed as a test case, we projected future precipitations based on the spatiotemporally 

distributed downscaling method (STDDM), using MRI-GCM3 simulations and meteorological observations. The objects are 

as the following: (1) to develop a spatiotemporally distributed downscaling method (STDDM), projecting future climate 

variables in spatially continual scale; and (2) to document temporal and spatial changes in precipitation for the Poyang Lake 

Watershed in the 21st century and the correlations between these precipitation changes and temperature increment. Future 

precipitation changes can provide basic hydrological information necessary to a better understanding of water volumes and 

flood-droughts risks; furtherly benefits wetland and forest ecosystem conservation and aids decision-making in development, 

utilization, and planning of water resources. 

2. 2 Study area and datasets 

1. 2.1 Study Area 

Poyang Lake Basin (24°28’-30°05’ N and 113°33’-118°29’E) is located in the southeast of China, connected with Yangtze 

River in the north (Fig. 1). Within the southeast subtropical monsoon zone, the annual average temperature of the watershed 

is 17.5℃. The mean annual precipitation is 1638 mm, with 192 rainy days (daily precipitation ≥ 0.1 mm/day) and 173 rain-

free days (daily precipitation < 0.1 mm/day). The rainy season lasts from April to July, occupying about 70% of the annual 

total amount. Inter or intra annual precipitation variations are dominated by the southeast and southwest monsoon, mainly in 

summer. With a coverage area of 162000 km2, the diversities of topographies also effect on precipitation changes. The 

topography varies from high mountains of Luoxiao, Wuyi, and Nanling in east, south and west, with the elevation reaching to 

the 2200m, to the depressing of Ji Tai or Ganzhou Depressing in the south or center and alluvial plains of Poyang Lake Plain 

in the north, with the elevation reaching to <50 m (1a). The different topography and location generate the uneven distribution 
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of precipitation in space and produce less rain in the depressing, plains, and hills area because of the leeward sloop, but more 

orographic rain in the mountain area for the reason of the windward sloop (1b) (Mingjin et al. 2011). To analyze precipitation 

changes in the rich- or poor-rain area, the meteorological stations were classified into dry and wet stations (Fig. 1a and b), 

according to the annual precipitation amount. We sorted the annual precipitation averaged over the time from 1961 to 2005, 

of the 15 stations. The four stations with the max or min mean annual precipitations are set as dry or wet stations, indicating 

the dry or wet area (Fig.1b), respectively. 

In the past 50 years of the Poyang Lake Watershed, annual mean temperature indeed experiences a significant (p<0.02) increase 

with a change rate of 0.15 ℃/10a (Fig.1d), based on the meteorological observations from 1961 to 2005. Under the temperature 

increasing condition, the precipitation in temporal and spatial distribution becomes more uneven (Zhan et al. 2011), which 

increases the risk of floods and droughts (Li et al. 2016; Ye et al. 2011).  

2. 2.2 Data sets  

Global Climate Models (GCMs) are widely used tools to project future climate change. GCMs from the Coupled Model 

Intercomparison Project Phase Five (CMIP5) performs better than other CMIPs such as CMIP3 and CMIP4, with generally 

finer resolution and more improved physical mechanism (Sperber, 2013; Taylor et al. 2012). Compared to the other CGMs of 

CMIP5, the MRI-CGCM3 (Meteorological Research Institute Coupled Ocean-Atmosphere General Circulation Model3, 

Yukimoto et al. 2012) performs better in simulating diurnal rainfall over subtropical China (Yuan et al. 2013) and has the 

finest resolution of 1.121° × 1.125°. Thus we select MRI-CGCM3 data applied in Poyang Lake Watershed to test the 

performance of the STDDM.  

The future data of MRI-CGCM3 includes simulations of the Representative Concentration Pathways (RCPs) of 8.5,6, 4.5 and 

2.6. Compared to the other RCPs, in the RCP8.5 scenario temperature increases the most, which is corresponds to a highest 

greenhouse gas emission, leading to a radiative forcing of 8.5 W/m2 and temperature increase of 7.14 °C at the end of 21st 

century (Taylor et al. 2012). The research is to detect the remarkable precipitation changes under climate warming; thus we 
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selected future simulations in the RCP8.5 scenario. In the study, we merge the historical (from 1961 to 2005), historical extent 

(from 2006 to 2012) and RCP85 (from 2013 to 2100) data, as the merged data (1961-2100). To quantitatively analyze the 

precipitation changes under climate warming in the 21st century, we compared precipitation between the baseline and future 

period. As annual precipitation observations have main oscillation periods of quasi-20 years (Zhan et al. 2011), we selected 

three 20 years from the merged data. From the merged data, simulations from 1998 to 2017 were selected as the baseline period 

data, simulations from 2041 to 2060 were selected as the near future period data, and simulations from 2081 to 2100 were 

selected as the further future period data. 

The local grid observations (Hutchinson et al., 1998a; Hutchinson et al., 1998b; Zhao et al., 2014) with a resolution of 0.5°×0.5° 

are downloaded from the China Meteorological Data Service Center (http://data.cma.cn/). The local grid observations and 

MRI-CGCM3 historical simulations were used to construct a relationship to correct the GCM data. China metrology point data 

were also downscaled and used to validate the grid observations and the downscaled GCM simulations. To investigate the 

relationship between precipitation changes and the temperature increment, we extract not only precipitations but also 

temperature.  

3. 3 Methodology 

3. 3.1 Future climate projection based on the spatiotemporally distributed downscaling model 

Considering the spatiotemporal heterogeneity of precipitation at the regional scale such as the Poyang Lake Watershed, we 

developed a spatiotemporally distributed downscaling model (STDDM), which is a logical framework based on a specific 

mathematic algorithm. The mathematic algorithm was used to create a mapping relationship between the global-scale GCM 

simulations and the local scale climates variables. The mapping relationship is used as a transform function to correct the 

future climate simulations to no-bias data. In the framework, we constructed respective mapping relationships between the 

match-ups of GCMs simulations and local climate observations in each time (e.g., months or seasons) at each location. The 
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STDDM was improved compared to the traditional downscaling methods by adjusting the specific downscaling algorithm to 

be suitable in the distributed space and time. Therefore, the downscaling processes show spatiotemporal differences in the 

parameters or the equations, and the output data are spatially continuous, unlike that in traditional downscaling methods, which 

ignores the temporal and continuous spatial differences and express space as discrete points instead of continuous grids. 

Figure 2a shows the logical framework of the STDDM while Fig. 2b demonstrates how it was applied in Poyang Lake 

Watershed using MRI-CGCM3 based on a linear-scaling algorithm. The STDDM contains three parts (Fig. 2a and b): (1) 

upsampling GCMs simulations and local-scale observations to a continuous grid space of the same finer resolution; (2) 

constructing respective mapping relationship between the GCMs simulations and local observations in distributed space and 

time; (3) correcting the GCMs simulations using the mapping relationship constructed in step 2.  

4. 3.1.1 Upsampling GCMs simulations 

MRI-GCM3 simulations were interpolated by Natural Neighbor Interpolation (Sibson et al., 1981) to a scale of 20 km×20 km, 

the smallest size of the subbasin of the Poyang Lake Watershed (Zhang et al. 2017), generating 263 spatial grids (Fig. 2b). For 

the spatiotemporally distributed downscaling, we used China meteorology spatially continua grid data as observations, instead 

of China meteorology station data. We interpolated the gridded observations to 20 km × 20 km, the same as the downscaled 

climate simulations. The match-up grids of simulations and observations at each time and each grid-box were generated. 

5. 3.1.2 Constructing relationships between the GCMs simulations and local observations 

Because there is an inevitable mismatch between the simulations and observations (Li, 2009; Wood et al., 2004) after the 

upsampling, bias correction should be performed. The bias correction was processed by the transform function between match-

ups of the upsampled simulation and observations, which represents the mapping relationship between the match-ups. The 

transform function could be any bias corrected model, including linear scaling, local intensity scaling, power transformation, 

distribution mapping models (Teutschbein et al. 2012) and other linear or nonlinear regression models. 
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As the influencing factors on climates show heterogeneity in space and time, we created spatiotemporally distributed 

relationships, described by the following formula. 

, , ,' ( )T S T S T SCC F , , ,' ( )T S T S T SCC F  (1) 

Where, ,'T SC ,'T SC and ,T SC ,T SC  indicate the upsampled global-scale climate simulations and the local climate variables, 

respectively, in the given time of T and the space of S. ,T SF ,T SF demonstrates a transform function, used to correct the 

upsampled GCMs simulations. The function is a specific bias correction model, spatiotemporally distributed in mathematic 

equations or parameters, which is constructed based on the data from the historical period of 1961 to 2005.  

In this study, we use a linear-scaling algorithm (Lenderink et al., 2007) as the bias correction model. For the linear-scaling 

algorithm, the simulations were corrected by the discrepancy between the simulations and observations. Precipitations derived 

from the GCMs were corrected by multiplying the precipitation bias coefficient, which is the ratio of the mean monthly 

observation to simulation from the historical period; temperatures were corrected by adding the temperature bias coefficient,  

which is the difference between the mean monthly observation and simulation in the historical period. However, as the bias 

varies among the months from January to December and among the locations of the 236 spatial grids, a global standard bias 

coefficient is prohibited. To better capture the bias in distributed time and space, we should create an individual bias coefficient 

for the given month and gird box. Thus, a spatiotemporally distributed bias matrix was constructed. The respective downscaling 

model and bias coefficient for a given month (T) and space (S) were established by Eq. 2 and 3.  

' _P P P Cof  ' _P P P Cof   (2) 

' _TM TM TM Cof

' _TM TM TM Cof  

(3) 

where P (T) represents the precipitation (or temperature) of upsampled simulations. P’ (TM’) represents the downscaled result 

or upsampled observations; P_Cof (TM_Cof) represents the bias correction coefficient of precipitations (or temperatures). In 
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the construction of P_Cof (TM_Cof), P (TM) and P’ (TM’) was set as the average monthly precipitation (or temperature) over 

the historical time from 1961 to 2005. All the input and output data in the equations are in the given month (T) and space (S). 

6. 3.1.3 Correcting the GCMs simulations 

The constructed relationship between the GCMs simulations and the observations from the historical period (in section 3.1.2) 

also hold for the future (Maraun et al., 2010). Thus, the transform function was used to correct the future CGCMs simulations. 

In this study, we corrected the daily and monthly precipitations (or temperatures) from MRI-CGCM3 by adding (or multiplying) 

the bias coefficients in the corresponding month and grid box.   

7. 3.2 Precipitation changes analysis  

8. 3.2.1 Statistic indexes of precipitation changes 

To obtain the general change in the temporal distribution, we calculated monthly precipitations from 1998 to 2100, averaged 

over the whole watershed. As floods and droughts occur more frequently in wet and dry months, we specifically analyze the 

extreme wet and dry precipitation changes in the 21st century. Therein, monthly precipitations, > 75% percentile of the 12 

months, were classified as the extreme wet monthly precipitations for each year of the 103 years; monthly precipitations, ≤ 

25% percentile were classified as the extreme dry monthly precipitation. The monthly precipitation of the 25%-50% and 50%-

75% quantiles were classified as normal dry and wet monthly precipitations. The wet monthly precipitations include extreme 

and normal wet monthly precipitations; the dry monthly precipitations include extreme and normal dry monthly precipitations. 

To understand precipitation dynamics in terms of frequency and intensity, daily precipitations were categorized into five 

classes based on the classification by the Chinese Meteorological Administration and the possible risk of floods and droughts: 

light rain, medium rain, heavy rain, rainstorm, and extreme rainstorm with daily precipitation of 0.1-10, 10-25, 25-50, 50-100 

and >100 mm/day, respectively. The frequency of precipitation intensities indicates heterogeneity in temporal distribution. 

The higher frequency of moderate rain means the more homogeneous, vice versa is the extreme rain. Therefore, the 

file:///C:/Users/zl/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/result.html
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precipitation intensities were separated to moderate or extreme rains, including light rain, median rain or heavy rain, rainstorm, 

extreme rainstorm, respectively.  

To further analyze the changes in precipitation frequencies and intensities, we calculate the annual days of light rain, medium 

rain, heavy rain, rainstorm and extreme rainstorm from 1998 to 2100 averaged over the whole watershed. Annual total 

precipitation, annual dry days, annual max daily precipitation and annual max continuous dry days were displayed as well.  

The meteorological stations (Fig. 1a) are uniformly distributed in the whole watershed and cover all kinds of the topographies 

and land covers. Therefore, in the study, the all above precipitation indexes of one year for the whole watershed were calculated 

based on the precipitation averaged over the grids containing the 15 stations, instead of the entire grids. Under global climate 

warming, precipitation becomes more concentrated which leads to more heterogeneity in temporal and spatial distribution 

(Donat et al., 2016; Min et al., 2011). Thus, we calculated variation coefficients (VC) for each year from 1998 to 2100, to 

investigate the precipitation changes in temporal and spatial distribution. 

The VC is defined as the ratio of the standard deviation to the average value, described by Eq. 4.  

( )









 2

1

x

n
VC  

 

(4) 

where x  represents monthly (or daily) precipitation in one year; n is the month number (or day number) of a year and 

indicates the average monthly or daily precipitation of a year. VC The variation coefficient measures the standard dispersion 

of the data items, which can indicate the unevenness of temporal and spatial distributions of the precipitation. In this study, 

heterogeneity in temporal, spatial and spatiotemporal distributions was measured by the temporal, spatial and spatiotemporal 

VCvariation coefficient, respectively. Temporal VCvariation coefficients were calculated on the daily or monthly 

precipitations in one year and the VCvariation coefficient for one year is averaged over those of the 15 stations. For monthly 

precipitation, we only select extreme wet and dry precipitations, as the extreme wet and dry are more likely to cause floods or 

droughts and thus should be paid more attention. Spatial VCvariation coefficients were calculated on the annual total 

precipitations of the 15 stations in one year. Spatiotemporal VCvariation coefficient was calculated on the monthly 
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precipitations of the extreme wet months of the wet stations and the extreme dry months of the dry stations in one year, as the 

extreme precipitation values were more likely to cause floods or droughts. 

9. 3.2.2 Relationship analysis between precipitation changes and temperature increasing 

We investigated the precipitation changes as a result of global temperature increase. To this end, we made liner regression 

between the precipitation index and temperature changes from 2005 to 2100. We note that a mean filter with a window size of 

21 years can reduce potential random fluctuation from precipitation by the most; thus was used to smooth annual precipitation 

indexes and temperature simulations from 2005 to 2100. The long-time smoothed annual precipitation or temperature minus 

the average annual value from 1998 to 2017, are set as precipitation index or temperature changes. A linear regression model 

was used to investigate whether precipitation changes are related to climate warming. The two 11 years, 2005 to 2015 and 

2090 to 2100 at the start and end, did not have filter diameter of 21 years; thus climate data used to be regressed is from 2016 

to 2089. 

4. 4 Result and Discussion 

10. 4.1 Model assessment 

Validation about the China meteorological grid observations should be performed, as well as the STDDM. As the STDDM 

introduce the China meteorological grid observations and the grid data is not the direct in-suit data, validation about the gridded 

data is necessary. The determination coefficient (R2), root mean square error (RMSE) and PBias (percent bias) were used to 

examine the model performance. 
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11. 4.1.1 Evaluation for the gridded meteorological 

The China meteorological grid observations are referenced data to corrected GCMs simulations and reliability of the 

observations is vital to the performance of the STDDM. So we make a validation using meteorological station observations, 

in Fig. 3. 

As shown in Fig. 3, we select four meteorological stations. The selected stations are uniformly distributed.  The validation 

produced an acceptable precision with R2 > 0.91, absolute PBias < 2% for precipitations and R2 =0.99, absolute PBias < 6% 

for temperature. All the dots of gridded and stationed value were distributed along the 1:1 line, thus confirming the satisfactory 

performance. 

12. 4.1.2 Validations of precipitation and temperature projections in Poyang Lake Watershed 

Before being used in future climate projection, the model should be examined. Data from 1961 to 1985 were used to construct 

the model, and the remaining historical data from 1986 to 2005 were used to validate.  

To test whether the downscaling method (STDDM) is effective in climate projections, we compare the results before and after 

the bias correction in Fig. 4. The results before and after the bias correction marked as the outcomes by the STDDM and No-

STDDM, respectively. The projections by the STDDM show better performance with high correlations and narrow bias, 

compared to the result by No-STDDM. Considering the complexity of climate physical mechanism and difficulty to accurately 

simulate by the present methods, the uncertainty could be acceptable.  

Using the STDDM and MRI-CGCMs, we obtained the temporal and spatial variation of future precipitations in the Poyang 

Lake Watershed, and investigated the heterogeneity changes of precipitation in the temporal and spatial distribution. 

13. 4.2 Temporal variation of future precipitation 

To discover the temporal variation under the future climate warming, we analyzed the monthly and daily precipitation changes 

during the period from 1998 to 2100. For monthly precipitation, we analyzed intra-annual and inter-annual dynamics of 
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precipitation; based on the dynamics, we investigated the heterogeneity changes of monthly precipitation. For daily 

precipitation, we analyzed the changes of precipitation intensities and frequencies; based on the changes, heterogeneity 

changes of daily precipitation was also investigate. 

14. 4.2.1 Monthly precipitation changes  

We analyzed the monthly precipitation changes during the period from 1998 to 2100 in Fig. 5. Precipitation show significant 

intra-annual dynamics. Months with abundant rain (wet months), indicated by a reddish color, are mainly in April to July (the 

wet season), while the rain-poor months (dry months), indicated by a bluish color, are mainly in September to the subsequent 

February (the dry season). Precipitation concentrates in spring (March to May) and summer (July to August), occupying 73% 

of the annual amount. The intra-annual dynamics of precipitation is similar to that shown by Feng (2012). Precipitation also 

showed inter-annual dynamics. The wet months become wetter, and the wet season comes earlier from April to March, even 

in February. In addition, each monthly precipitations of seven months (April to November) took increasing trends, of which 

most months (5 months; April, May, June, August) are in the wet season; while precipitations of the other five months 

experienced decreasing trends, all of which were in the dry season. It seems that wet months become wetter and dry months 

become drier, in general. 

To better demonstrate the inter-annual dynamics of precipitation, monthly precipitations in each year were sorted in a 

descending order in Fig. 5(b). As the time of the monsoon reaching the Poyang Lake Watershed, varied in different years, with 

1~2 months’ advance or delay; the wet or dry months for different years are not the same. By sorting monthly precipitation, 

wet months and dry month could be distinguished intuitively in Fig. 5(b). Obviously, monthly precipitation of wet months 

experienced an increasing trend respectively, even some with slight significance; in contrast, each dry monthly precipitation 

exhibited decreasing trends, separately, despite the insignificant signs. We accumulated the extreme wet or dry monthly 

precipitations for each year in Fig. 6. The precipitation of extreme wet months showed a significantly increasing trend (p<0.05) 

(Fig. 6a), while the precipitation of the extreme dry months demonstrated a significantly decreasing trend (p<0.05). Extreme 
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wet months increased from 277.82 mm•month-1/a over historical time from 1998-2017, to 344.10 mm•month-1/a over future 

time from 2081 to 2100, by 23.86% with a change rate of 7.3 mm•month-1/10a. Extreme dry months decreased from 35.44 

mm•month-1/a over historical time from 1998-2017, to 30.46 mm•month-1/a over future time from 2081 to 2100, by -14.05% 

with a change rate of 0.92 mm•month-1/10a. Therein, the extreme wet months are mainly concentrated in March-July (Fig. 6c), 

part of the wet season, while the extreme dry months are mainly concentrated in September-February (Fig. 6d), consistent to 

the dry season.  

Overall, under climate warming over the 21st century, the wet monthly precipitations become wetter while the dry month 

precipitations become drier, which suggested the uneven temporal distribution of precipitation (Fig. 7). As shown in Fig. 7, 

the temporal variation coefficient of the extreme month (including extreme wet and months) precipitations within each year 

from 1988 to 2100, experiences significantly increasing trends (p<0.01), and increased from 0.76 /a over historical time from 

1998-2017, to 0.84 /a over future time from 2081 to 2100, by 10.53% with change rate of 0.01 /10a. The significantly increasing 

trends indicated the more uneven trend of precipitation in the temporal distribution, which might lead to increased  risks of  

floods and droughts. 

15. 4.2.2 Daily precipitation changes 

To understand the changes in precipitation intensities and frequencies under future climate warming, daily precipitation 

variations were also analyzed and are shown in Fig. 8. Moderate vs extreme rain frequencies (Fig. 8a and b), the annual total  

rain vs the annual total rainy days (Fig. 8c), and the annual max precipitation vs the annual max continuous rainy days (Fig. 

8d) were analyzed. 

Under climate warming, the annual frequency of moderate rains experienced decreasing trends; in contrast, the annual 

frequency of extreme rains experienced significantly increasing trends (Fig. 8a). Statistically, averaged over 103 years, annual 

precipitation frequencies are dominated by the moderate rain frequency a total of 163.70 days, or 44.8% (163.70/365), while 

the extreme rain occurs less often, a total of 20.70 days, or 6.70% (20.7/365). The remaining is rain-free days, a total of 180.75 
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days, 49.5% (180.75/365). The annual moderate rain frequency decreased, from 170.56 days/a over the historical period from 

1998 to 2017, to 159.55 days/a over  the future period from 2081 to 2100, by -6.46% with a change rate of -14.4 days/10a; on 

the contrary, the annual extreme rain frequency increased from 19.18 days/a over historical time from1998 to 2017, to 23.42 

days/a over future time from 2081 to 2100, by 22.10% with a change rate of 0.49 days/10a (Fig. 8b). 

Furthermore, the annual total rainy days, the sum of the moderate and extreme rain frequencies, demonstrated a significantly 

decreasing trend in the 21st century, whereas the annual total precipitation exhibited a significantly increasing trend (Fig, 7c). 

Rainy days decreased from 187.57 days/a over the historical period from 1998 to 2017, to 180.37 days/a over the future period 

from 2081 to 2100, by -3.84% with a change rate of -1.00 days/10a; while the annual total rain amount increased, from 1650 

mm/a over the historical period, from 1998 to 2017, to 1906 mm/a over the future period, from 2081 to 2100, by 15.55% with 

a change rate of 23.00 mm/10a. The increase in the annual total rain and decrease in the annual rainy days suggested more 

concentrated precipitation and dry days in the future. This tendency might lead to the increased risk of floods and droughts, 

which was also indicated by the increased annual max daily precipitation and max continuous dry days (Fig. 8d).  Annual 

max daily precipitation increased from 148.76 mm•day-1/a averaged over the historical period from 1998 to 2017, to 212.01 

mm•day-1/a averaged over the future period from 2081 to 2100, by 42.51% with a change rate of 7.2 mm•day-1/10a; while the 

max continuous dry days increased from 25.35 days/a over the historical period from 1998 to 2017, to 28.15 days/a over the 

future period from 2081 to 2100, by 11.05% with a change rate of 0.5 days/10a. 

Overall, the significantly inverse change trends in the moderate vs extreme rain frequencies, the annual total rain vs the annual 

total rainy days, and the annual max precipitation vs the annual max continuous rainy days, indicated an increasing temporal 

heterogeneity in precipitation distribution over the 21st century. Obviously, the increasing heterogeneity was exhibited by the 

increasing temporal VCvariation coefficient of daily precipitations (Fig. 9). The temporal VCvariation coefficient of daily 

precipitations increased from 1.50 /a over the historical period from 1998 to 2017, to 1.62 /a over the future period from 2081 

to 2100, by 7.48% with a change rate of 0.016 /10a. 
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16. 4.3 Spatial variation of future precipitation 

Climate warming could cause the rain belt shift (Putnam et al., 2017), which might lead to precipitation changes in the spatial 

pattern. To investigate the spatial variation, we analyzed the similarities and differences of precipitation changes in space (Fig. 

1); based on the differences, we use the indexes of the spatial and spatiotemporal VCvariation coefficient to investigate the 

spatial heterogeneity changes (Fig. 11). Fig. 10 shows the precipitation changes in the spatial pattern during the period from 

1998 to 2100; Fig. 11 shows the spatial and spatiotemporal VCvariation coefficient for each year over 1988 to 2100. 

Precipitations showed a regular spatial pattern both in the wet and dry season, in Fig. 10a-c and e-g. More specifically, 

precipitation was distributed more in the east and west, however less in the north central plain and the south bottom depression. 

Rich rain in the east and west are dominated by the southeast and southwest summer monsoons. Less precipitation was due to 

the leeward sloop of the eastern (Xuefeng Mountain) and western mountains (Wuyi Mountain). Less precipitation in the south 

bottom depression was because that water vapor was blocked from this region by the NanLing Mountain in the south (Fig. 1a). 

The precipitation distribution in spatial pattern from 1998 to 2100 (Fig. 10 a-c and d-f) were consistent with the observations 

from 1951 to 2005 (Fig. 1b.), thus confirming the satisfactory performance of the STDDM. Moreover, wet and dry season 

precipitation showed inverse changes. The wet season precipitations exhibited ascending (Fig. 10a-c and g) change while the 

dry season precipitation exhibited descending (Fig. 10d-f and h) change from 1998 to 2100. The inverse changes were 

consistent with the interannual variability of increased precipitation in wet months and decreased precipitation in dry months 

(Section 4.2). The increase of precipitation in the wet seasons and decrease in precipitation in the dry seasons were also detected 

in the change rate of the cells over the entire watershed (Fig. 10g or h). 

However, precipitation change also showed a different spatial pattern. Precipitation change rate was heterogeneous in spatial 

distribution for dry or wet season respectively (Fig. 10g and h). In the wet season, the precipitation increased more in the north 

part of the watershed, except for the central plain (Fig. 10g); in the dry season, the precipitation decreased more in the central 

area (Fig. 10h). Statistically, in the wet season, precipitation increased with the change rate raising from ≤ 3.6 mm/10a in the 

southwest, to ≥ 11.7 mm/10a in the northeast; in the dry season, precipitation decreased with the change rate falling from ≥  -
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2.0 mm/10a in the surrounding region, to ≤ -2.7 mm/10a in the central region. Furthermore, precipitation changes show 

different spatial characteristics in wet and dry seasons. From 1998 to 2100, in the wet season (Fig. 10a-c), the wet area (the 

reddish area, mainly in the north except for the center plain) becomes wetter; in the dry season (Fig. 10 d-f), the dry area (the 

bluish area, mainly in the north center plain and in the south depression) become drier. 

The uneven change rates may lead to increase of the spatial heterogeneity of precipitation under global warming, and the 

tendency of the wet area to become wetter and the dry area to become drier also indicated the increasing spatiotemporal 

heterogeneity of precipitations. Indeed, the spatial heterogeneity did increase, with the spatial VCvariation coefficients raising 

from 0.097 /a over the historical period (1998-2017), to 0.110 /a over the future period (2081-2100), by 12.64% with a change 

rate of 0.002 /10a (Fig. 11a). The spatiotemporal heterogeneity did increase with the spatiotemporal VCvariation coefficient 

raising from 0.89 /a over the historical period (1998-2017), to 0.94 /a over the future period (2081-2100), by 4.96% with a 

change rate of 0.008 /10a. Overall, the uneven change rates for the whole basin and inverse changes for the dry and wet area 

indicated an increasing spatial heterogeneity in precipitation distribution over the 21st century. 

17. 4.4 The impact assessment of temperature increment on precipitation changes 

Previous studies have detected precipitation changes and have attributed these changes to climate warming (Westra et al., 2013; 

Zhang et al., 2013). In this study, the spatiotemporal changes of precipitation in the Poyang Lake Watershed in the 21st century 

were hypothesized to be related to temperature increments. So we analyze the correlations qualitatively and quantitatively. 

The following are trying to demonstrate the driving force related to climate warming on precipitation changes in the temporal  

pattern. In the wet season from April to July, the summer monsoon might become weaker in Southeast Asia as the temperature 

increasing (Wang, 2001; Wang, 2002; Guo et al., 2003). Consequently, the summer monsoon is delayed for a longer time in 

the middle and lower Yangtze River basin instead of moving further north. The delay leads to much more rain during the wet 

season. As being located in the middle of the Yangtze River basin, the Poyang Lake Watershed becomes wetter in the wet 

season (Fig. 5-5, Fig. 10a-c). In fact, the increase in precipitation in the Poyang Lake Watershed was detected in previous 



 

 27 / 37 

 

studies (Yu and Zhou, 2007; Ding et al., 2008). In the dry period from September to the subsequent February (especially in 

the winter season, from December to February), during which summer monsoon is inactive, there is less water vapor in the 

atmosphere to condense into rain. Additionally, stronger winds in the winter (Wu et al., 2013) blow the evaporation away, thus 

enhancing the difficulty of generating rain from water vapor compared to the other seasons. When temperature increases, the 

ability of the atmosphere to hold water vapors is strengthened, which makes it more difficult to precipitate. Therefore, 

precipitation decreases in the dry season, consistent with Li et al.'s (2016) result. As temperature increment increases the ability 

of the atmosphere to contain water vapor, rain is more difficult, and if it rains it will rain largely (Min et al., 2011; Zhang et 

al., 2013). Thus, the frequency of heavy rain and rain-free events increases, indicating increased frequency and strengthened 

intensity of the extreme precipitation. Overall, the climate warming might make precipitation more temporally uneven. 

Climate warming could also explain the spatial distribution of precipitation changes in the dry and wet seasons. In the wet 

season, the summer monsoon delays in the middle and lower Yangtze River Basin. The delaying area covers only the north 

part of the Poyang Lake Watershed. As it receives abundant water vapor from the delayed summer monsoon, the north part of 

Poyang Lake Watershed experiences a greater increase in precipitation with a larger change rate (Fig. 10g). The eastern Poyang 

Lake Watershed is the nearest to the western Pacific Ocean; thus the eastern region receives more continuous water vapor. So 

the precipitation change rate decreases from the southeast to the northwest in the wet season. However, in the dry season 

especially in winter, during which there is a low-frequency or absent summer monsoon, the water vapor mainly comes from 

evapotranspiration. In the watershed, the periphery is covered by the lake of Poyang in the northern plain and high-density 

vegetation in the northwest, southeast and southwest mountains; so there is more evapotranspiration in the periphery. The 

center is mainly covered by farmland and grassland; so there is less evapotranspiration in the center (Wu et al., 2013). Thus, 

the moisture decreases from the surrounding to the center. Therefore, as temperature increases, it is more difficult for rain to 

occur in the area of lower moisture, the center of the Poyang Lake Watershed. Therefore the precipitation decreased with a 

change rate falling from the surrounding to the center in the dry season (Fig. 10h). 
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To quantitatively analyze the relationship between precipitation changes and temperature increment, we created a scatter plot 

between precipitation indexes changes and temperature increment, as shown in Fig. 12. A trend analysis was conducted using 

linear regression of each annual precipitation index over the 103 years from 1998 to 2100. The associated slopes represent the 

change rate of each precipitation index relative to temperature increment. The significance of the trend is indicated by p value. 

As shown in Fig. 12, there is a significant correlation between the precipitation change and the temperature increment, with p 

≤ 0.001 and R≥ 0.78 for 6 precipitation indexes: the annual precipitation in the wet season (Fig. 12a), the annual max daily 

precipitation (Fig. 12d), the temporal VCvariation coefficient of the monthly precipitation (Fig. 12c), the temporal VCvariation 

coefficient of the daily precipitation (Fig. 12f), the spatial VCvariation coefficient (Fig. 12g) and the spatiotemporal 

VCvariation coefficient (Fig. 12h). However, changes of the other two precipitation indexes, the annual precipitation in the 

dry season (Fig. 12b) and the annual max continuous dry days (Fig. 12e), appeared to be correlated with slight signs of p ≤ 

0.05 and R ≤ 0.58. The overestimation of moderate- or free-rain frequency  from the GCM simulations (Teutschbein et al. 

2012) might explain the slightly low correlation between the annual precipitation values in the dry season and temperature 

increment, while the overestimation of the precipitation frequencies (Prudhomme et al. 2003) could explain the slightly low 

correlation between the annual max continuous dry days and  temperature increment. For all the correlations (Fig. 12a-h), the 

precipitation changed with fluctuation, which might be caused by random variations from GCMs. 

Overall, despite the low correlations and stochastic fluctuation, the correlations could indicate that the climate warming can 

partly explain the precipitation changes. Statistically, precipitation changes relative to temperature increment are 16.657 

mm•month-1/K, -4.31 mm•month-1 /K, 17.45 mm•day-1 /K, 0.71 days/K, 0.028/K, 0.033/K, 0.0074/K and 0.02/K for the annual 

precipitation in the wet season, the annual precipitation in the dry season, the annual max daily precipitation, the annual max 

continuous dry days, the temporal VCvariation coefficient of the monthly precipitation, the temporal VCvariation coefficient 

of the daily precipitation, and the spatial VCvariation coefficient and the spatiotemporal VCvariation coefficient, respectively. 



 

 29 / 37 

 

In summary, the explanation of precipitation changes in temporal and spatial distribution qualitatively and quantitatively, 

suggests the downscaling method is reasonable and the STDDM could be applied in the basin-scale region based on a GCM 

successfully. 

5. 5 Conclusion 

A spatiotemporally distributed downscaling method (STDDM) was proposed in this study. The downscaling method 

considered the heterogeneity in spatial and temporal distributions, and produced local climate variables as spatially continuous 

data instead of independent and discrete points. The STDDM showed a better performance than the No-STDDM. Using the 

STDDM, we constructed the spatially continuous future precipitation distribution and dynamics in the wet and dry season from 

1998 to 2100, based on MRI-CGCM3. Several findings were obtained:  

First, the spatial and temporal heterogeneity of precipitation increased under future climate warming. In the temporal pattern, 

the wet season become wetter, while the dry season become drier. The frequency of extreme precipitation increased, while 

that of the moderate precipitation decreased. Total precipitation increased, while rain days decreased. The max dry day number 

and the max daily precipitation both increased. These precipitation changes demonstrated an increasing heterogeneity of 

precipitation in temporal distribution, and the change rate of temporal heterogeneity is 0.01 /10a (0.016 /10a) for the temporal 

VCvariation coefficient of the monthly (daily) precipitation. In the spatial pattern, the change rate of precipitation was uneven 

over the whole watershed. Additionally, the wet areas become wetter in the wet season and the dry areas become drier in the 

dry season. The uneven change rates for the whole basin and inverse change for dry and wet area demonstrated an increasing 

heterogeneity in the spatial distribution, and the change rate of spatial heterogeneity was 0.002/10a.   

Second, precipitation changes can be significantly explained by climate warming, with p < 0.05 and R ≥  0.56. The 

explanation of precipitation changes in temporal and spatial distribution qualitatively and quantitatively, suggests the 

downscaling method is reasonable and the STDDM could be applied in the basin-scale region based on a GCM successfully. 
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The results can be applied to a hydrological and hydrodynamic model, to study the future changes in water volumes, lake 

levels and areas response to climate warming. The relationship between precipitation variations and temperature increment 

could be helpful to the driving forces analysis of precipitation changes. The dry to be drier and wet to be wetter condition may 

lead to increased risk of floods and droughts. In particular, in the region where floods and droughts do not usually occur, 

additional adaptation measures could be taken to prevent loss from the future frequent hydrological disasters.  
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