
Reply to Referee Comment 1 

 

We are very grateful to the reviewer for reading the manuscript extremely carefully and forwarding the 

valuable suggestions for improvement. Point-by-point responses to the reviewers’ comments are listed 

below. 

 

The reviewer’s comment 1: The authors use MRI-CGCM3 data to estimate the future precipitation 

changes. Why do you choose MRI-CGCM3 data, not other Global Climate Models?  

Authors’ response: Thank you very much for the suggestions. 

Compared to the other CGMs of CMIP5, the MRI-CGCM3 (Meteorological Research Institute Coupled 

Ocean-Atmosphere General Circulation Model3) performs better in simulating diurnal rainfall over 

subtropical China (Yuan et al. 2013) and has the finest resolution of 1.121° × 1.125°, thus being applied 

in Poyang Lake Watershed. And MRI-CGCM model is just a study case to examine the performance of 

STDDM. Other single-model is also ok to test the applicability of STDDM. 

The references: 

Yuan, W.: Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations, Adv. 

Atmos. Sci., 30(6), 1679–1694, doi:10.1007/s00376-013-2250-9, 2013. 

The related content is in the manuscript in L114-120.  

 

The reviewer’s comment 2: The authors use precipitation simulations in RCP8.5 scenario from MRI-

CGCMs to estimate precipitation changes under future climate warming. Why do you choose only 

RCP8.5 scenario, instead of other scenarios? 

Authors’ response: Thank you very much for the suggestions. 

The future data includes simulations of the Representative Concentration Pathways (RCPs) of 8.5, 6.0, 

4.5 and 2.6. Compared to the other RCPs, temperature increases the most in the RCP8.5 scenario, which 

corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5 W/m2 and 

temperature increment of 7.14 °C at the end of 21st century. 

The research is to detect obvious changes of precipitations under climate warming. What we should do is 



to display the significant change of precipitations in a scenario where temperature increment is large 

enough. Precipitation changes can be detected the most obviously under the climate warming scenario 

with temperature increasing the most. Compared to the other RCPs, the temperature in RCP8.5 scenario 

increased the most. So we select future simulations in the RCP8.5 scenario. 

The related content is in L.121-125.  

 

The reviewer’s comment 3: The authors analyze the future precipitation changes in the Poyang Lake 

watershed using a Global Climate Model. The Poyang Lake watershed is a small area; while the Global 

Climate Model is coarse with resolution larger than 1° x 1°, which is difficult to be applied in a local scale 

such as the Poyang Lake watershed. The application could be reconsidered. 

Authors’ response: Thank you very much for the suggestions. 

The Poyang Lake watershed is one of the major grain producing areas of China. In the south of the 

watershed, there is an internationally important habitat for migratory birds, abundant of biodiversity and 

regarded as Natural Reserve. The watershed is also a vital part of Yangtze River Economic Belt. However, 

floods and droughts occurs fluently in the Poyang Lake watershed, which cannot be immune to climate 

warming. As an important economic and ecological zones, what the precipitations changes in 

spatiotemporal distribution will be under the climate worming is a concern.  

GCMs is a basic tool to analyze the future climate changes. As the resolution of GCMs is coarse unable 

to applied in small scale such as Poyang Lake Watershed, we downscaled the climate variables in the 

watershed with resolution of 20 km x 20 km. The uncertainty is ≤ 4.9%, demonstrating that the 

downscaled data can be applied in the Poyang Lake watershed.  

The related content is in L68-76, L29-33 and L254-256 . 

 

The reviewer’s comment 4: In the methodology section, there is some confusions. What is the 

relationship between the STDDM and linear-scale algorithm? That should be explained more clearly. 

Authors’ response: Thank you very much for the suggestions. 

STDDM is a logical frame, including three parts: upsampling GCMs simulations, constructing mapping 

relationships between the GCMs simulations and local observations, and correcting the GCMs 



simulations. In the part 2 constructing relations, a transform function were built between the simulations 

and the local observations to transform simulations to no-bias data. The transform function could be any 

bias corrected model, including linear scaling, local intensity scaling, power transformation, distribution 

mapping models (Teutschbein et al. 2012) and so on. The transform model can be linear or no-linear 

regressions model. That is the relationship between the simulations and observations. In the study, the 

linear scaling algorithm was used as a transform function (also called as bias-corrected model), as a case 

study. 

The references: 

Teutschbein C, Seibert J. Bias correction of regional climate model simulations for hydrological climate-

change impact studies: Review and evaluation of different methods [J]. Journal of Hydrology, 2012, 456: 

12-29. 

The revised paragraph of manuscript (Line 166-167): 

Before the revises: 

The bias correction was processed by using the translation function between match-ups of the up-sampled 

simulation and observation, which is the relations of the match-ups. 

After the revises: 

The bias correction was processed by the transform function between match-ups of the upsampled 

simulation and observations, which represents the mapping relationship between the match-ups. The 

transform function could be any bias corrected model, including linear scaling, local intensity scaling, 

power transformation, distribution mapping models (Teutschbein et al. 2012) and other linear or nonlinear 

regression models. 

 

The reviewer’s comment 5: By STDDM, you calculate the precipitation of each grid separately and get 

the downscaled precipitations. The downscaled precipitation is grid data. There may be some outstanding 

grid in which the precipitation is far different from the adjacent grids. According to first law of geography, 

near things are more related than distant things. So I suggest that the downscaled precipitation should be 

smoothed by smoothing filter. 

Authors’ response: Thank you very much for the suggestions. 
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The downscaled climate data is calculated based on the relationships between the up-sampled simulations 

and observations. The up-sampled simulations and observations are grid data. The relationships are the 

transform function between the match-ups of the simulation and observation. The transform function is 

constructed separately for match-ups in different grids. The grid data, including the simulations and 

observations, follows the first law of geography that the climate variable value is more related than distant 

grids. So the transform function based on the match-ups in nearer grids is more related than distant grids. 

Consequently, the climate variables calculated by the transform function should also follows the first low 

of geography. Besides, the downscaled results (precipitations in Fig. 9) shows almost no outstanding grid, 

which demonstrates that the results follows the first low of geography.  

On the contrary, smoothing may lead to information missing of the climate variables. 

So I think there could be no need to do smoothing. 

 

The reviewer’s comment 6: In 4.1 section, the validation period is from 1986 to 2005. However the 

observation data is from 1961 to 2005. Why not validate the downscaled precipitation in the same period 

from 1961 to 2005? 

Authors’ response: Thank you very much for the suggestions. 

To avoid model overfitting, there should be calibrations and validations. In the study, the calibration and 

validation periods are from 1961 to 1985 and 1986 to 2005, separately. The downscaled model is 

constructed based on the data in calibration period. We should also need to know whether the model could 

be applied in the data of different time. So the validation period is different from the calibrations. 

The model could be more correctly base on more data. So at last, we used all data from 1961 to 2005 to 

reconstruct the downscaling model. 

The related content is in Line 170-172 and Line 227-230. 

 

The reviewer’s comment 7: Line199: The sentence missed a comma. 

Authors’ response: Thank you very much for the suggestions. 

It has been revised in the manuscript. 

 



The reviewer’s comment 8: There are 69 references. Please provide the reference number for each 

reference. Is every reference useful to the research? If not, please delete some. 

Authors’ response: Thank you very much for the suggestions. 

There is no need to add references number in the manuscript. All the references are useful to the study. 

 

The reviewer’s comment 9: Line197-200: Monthly precipitations, > 75% percentile of the 12 monthly 

precipitations, were classified as the extreme wet monthly precipitations for each year of the 103 years; 

monthly precipitations, ≤ 25% percentile were classified as the extreme dry monthly precipitation. The 

monthly precipitation of 25%-50% and 50%-75% quantiles are classified as normal dry and wet monthly 

precipitations. Why do the author classify the monthly precipitation into 4 categories, not 5 or 7? Why 

choose 25%, 50%, 50% and 75% quantiles as the classified boundary?  

Authors’ response: Thank you very much for the suggestions. 

As the extreme wet and dry months cause floods and droughts more frequently, we pay more attention to 

the precipitations changes in extreme wet or dry months. So the months are differentiated as extreme and 

normal ones. The precipitation changes in wet and dry months also could show different condition, so the 

precipitation months in dry and wet should be separated. Here, we differentiate the months as the extreme 

wet, extreme dry, normal wet and normal dry ones. As for the classified boundary, it is more flexible. 

Several tries showed that 25%, 50%, 50% and 75% quantiles is appropriate classified standard. However, 

other classified standard is also OK, only if the precipitation changes of extreme wet, extreme dry, normal 

wet and normal dry months could be differentiated. 
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Reply to Referee Comment 2 1 

 2 

We are very grateful to the reviewer for reading the manuscript extremely carefully and forwarding the 3 

valuable suggestions for improvement. Point-by-point responses to the reviewers’ comments are listed 4 

below. 5 

 6 

1. General comments 7 

Reviewer’s comment: However, the results, conclusions, and discussion presented in the current 8 

manuscript are not clear, concise, and well structured.  9 

Authors’ response: Thank you very much for the suggestion. 10 

As you suggested, the results, conclusions, and discussion have been revised in the manuscript. 11 

 12 

2. Specific Comments 13 

Reviewer’s comment 1: Assemble projection based on multi-GCMs has been widely used for regional 14 

future climate change scenarios, which is referred as the mainstream and popular method in the 15 

downscaling technique. However, only one GCM MRI-CGCM3 was selected in this study, based on the 16 

conclusions from Yuan et al. (2013) indicating a better performance in simulating diurnal rainfall over 17 

subtropical China, which is not enough for performance evaluation of multi-GCMs from CMIP5 in the 18 

specific Poyang Lake basin. 19 

Authors’ response: Thank you very much for the suggestion. 20 

The research is mainly aimed to propose a spatiotemporal distributed downscaling method which could 21 

be applied to every single-GCM model. The MRI-CGCM3 is a study case to examine the model 22 

performance or availability of STDDM, as well as Poyang Lake which is taken as a study area. The 23 

validation is operated in several aspects. For the historical data, simulations from the GCM-downscaled 24 

result by STDDM and observations from meteorological stations were compared (Section 4.1). For the 25 

future data, we compared the future period (2081-2100) with the baseline period (1998-2017). The intra-26 

annual and inner-annual variability were analyzed. The precipitation changes were also explained by 27 

climate warming in section 4.4. The explanation suggests the downscaling method is reasonable and 28 

STTDM could be applied in the basin-scale region based on a GCM successfully. The examination on a 29 

test GCM is necessary before STDDM could be used in other GCMs or multi-GCMs.  30 

Indeed assemble projection is a mean stream. The model ensemble has a better model performance than 31 

the single-model assessed by R (correlation coefficient) and RMSE (Root-Mean-Square Error). However, 32 

the model ensemble is burdened with a smaller standard deviation (SD) than the single-models and 33 

observations (Fig 1). Except for R and RMSE, SD is also an important model evaluation index. The small 34 

SD value means small fluctuation, which demonstrates the fluctuation signal of original models (the 35 

signal-models) is not kept completely after being assembled. The SD of multi-GCMs is usually smaller 36 
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than original models (Fig 1). The monthly and daily variation are weakened in model ensembles. The 37 

ensemble can hardly analyze the seasonal or daily extreme event change exactly, taking the extreme dry 38 

(or wet) months and the max daily precipitation for example. In the study, we analyze the seasonal 39 

variations, as well as the change of extreme event intensities and frequencies. Using multi-GCMs can 40 

hardly reflect the application accuracy of STDDM precisely, in extreme climate analysis based on 41 

monthly and daily data. So a single-model should be selected to test the performance of STDDM. 42 

A specific single-model could be used to analyze the seasonal change exactly, especially the extreme 43 

climate event change. As MRI-CGCM3 has the best spatial resolution among the CMIP5 GCMs, and a 44 

better performance in simulating diurnal rainfall over subtropical China, we took MRI-CGCM3 as a test 45 

case to apply in the Poyang Lake Basin and examine whether the STDDM can be used to produce 46 

reasonable monthly and daily data, especially the extreme climate change. 47 

The title Variations of future precipitations in Poyang Lake Watershed under global warming using a 48 

spatiotemporally distributed downscaling model might confuse you. So it will be revised as Precipitation 49 

projection using a spatiotemporal distributed method: a case study in Poyang Lake Basin based on MRI-50 

CGCM3. And the content will be revised corresponding to the revised title.  51 

In summary, using multi-GCMs instead of MRI-CGCM3 in the study could be reconsidered. 52 

 53 

Figure 1. The Taylor figures (Taylor et al.,2001) of model evaluation. Following Taylor et al. (2001), the 54 

radial distance from the origin denotes the standard deviation of each data set (the primary observations 55 

are shown as a red line) and the angular distance from the horizontal denotes the correlation coefficient r 56 

between each model data set and the primary observations. The centered RMS error (RMSE’) is indicated 57 

by the distance to the intersection of the green dashed line and the horizontal axis with units and magnitude 58 

indicated by the radial axis. The model ensemble is constructed by a genetic algorithm. The genetic 59 

algorithm is used to calculate the best weigh for each single-model, assuming RMSE’ as the cost function. 60 

The model ensemble is the weighted sum of each single-model. The other single-models include 61 

ACCESS1-0, ACCESS1-3, BCC-CSM1-1-m, BCC-CSM1-1, BNU-ESM, CanESM2, CCSM4, CMCC-62 
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CMS, CMCC-CM, CNRM-CM5, FGOALS-g2, GISS-E2-H-CC, GISS-E2-H, GISS-E2-R-CC, GISS-E2-63 

R, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-64 

CM5B-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, MRI-65 

CGCM3 and NorESM1-M. The model description can be obtained from 66 

https://pcmdi.llnl.gov/mips/cmip5/availability.html. 67 

The references: 68 

Taylor K E. Summarizing multiple aspects of model performance in a single diagram [J]. Journal of 69 

Geophysical Research: Atmospheres, 2001, 106(D7): 7183-7192. 70 

The main revised paragraph of manuscript (Line 1-2): 71 

Before the revises: 72 

Variations of future precipitations in Poyang Lake Watershed under the global warming using a 73 

spatiotemporally distributed downscaling model 74 

After the revises: 75 

Precipitation projections using a spatiotemporal distributed method: a case study in the Poyang Lake 76 

Watershed based on MRI-CGCM3 77 

 78 

Reviewer’s comment 2: In order to detect the sensitivity of precipitation change under global climate 79 

warming, different RCP scenarios should be selected to do comparative analysis. However, only RCP 8.5 80 

was selected to generate future climate change scenarios in the current manuscript, which is insufficient 81 

to obtain a scientific and convinced projection for the study area.  82 

Authors’ response: Thank you very much for the suggestion. 83 

The future data includes simulations of the Representative Concentration Pathways (RCPs) of 8.5, 6.0, 84 

4.5 and 2.6. Compared to the other RCPs, temperature increases the most in the RCP8.5 scenario, which 85 

corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5 W/m2 and 86 

temperature increase of 7.14 °C at the end of 21st century. 87 

The research is to detect remarkable precipitation changes under climate warming, which should be 88 

pronounced enough to be acknowledged by us. To get the obvious precipitation changes, what we should 89 

do is to obtain the future precipitation in a high-emission scenario where the temperature increment is 90 

large enough. Compared to the other RCPs, the temperature increment in RCP8.5 scenario is the largest. 91 

So we select future simulations in the RCP8.5 scenario.  92 

Although it is valuable to detect the sensitivity of precipitation change, the sensitivity analysis is not the 93 

purpose of the study. And there are many climate change related researches (Gourdji et al.,2013; Sillmann 94 

et al.,2013; De et al., 2014; Cai et al.,2017) only use the high-emissions scenario to investigate the impacts 95 

of climate warming. The result from RCP8.5 scenario is the most remarkable, from which we can get the 96 

obvious change and know what will happen when climate warming gets worse. The study is to investigate 97 

the remarkable change of precipitation under climate warming.  98 
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So it could be reasonable to only select RCP85 scenario in the experiment to detect the significant changes 99 

of precipitation. 100 

 101 

The references:  102 

De Lavergne C, Palter J B, Galbraith E D, et al. Cessation of deep convection in the open Southern Ocean 103 

under anthropogenic climate change [J]. Nature Climate Change, 2014, 4(4): 278. 104 

Cai W, Li K, Liao H, et al. Weather conditions conducive to Beijing severe haze more frequent under 105 

climate change[J]. Nature Climate Change, 2017, 7(4): 257. 106 

Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the 107 

reproductive period: Historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013). 108 

Sillmann J, Kharin V V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multi-model ensemble: 109 

Part 2. Future climate projections[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2473-110 

2493. 111 

The main revised in the manuscript (Line 122-123): 112 

Before the revises: 113 

Thus, to detect more sensitive precipitation change under climate warming, we selected future simulations 114 

in the RCP8.5 scenario.  115 

After the revises: 116 

The research is to detect the remarkable precipitation changes under climate warming; thus we selected 117 

future simulations in the RCP8.5 scenario. 118 

 119 

Reviewer’s comment 3: Too many time periods are defined in the manuscript corresponding to different 120 

years, such as baseline and future periods, historical, historical extent and future, etc., which would make 121 

readers confused and difficult to understand. 122 

Authors’ response: Thank you very much for the suggestion. 123 

Cmip5 GCMs include historical (1850-2005), historical extent (2006-2012), RCPs (2005-2100 or 2005-124 

2300) scenarios (Friedlingstein et al., 2008). At the WGCM meeting in October 2011, there was 125 

agreement that it would be useful to extend the CMIP5 historical runs to near-present 2012, rather than 126 

ending them in 2005 (Friedlingstein et al., 2008). So another scenario (historical extension) from 2006 to 127 

2012 was constructed to extend the historical data to 2012. In the study, we merge the historical (from 128 

1961 to 2005), historical extent (from 2006 to 2012) and RCP85 (from 2013 to 2100) data, as merged 129 

data (1961-2100). From the merged data, simulations from 1998 to 2017 were selected as the baseline 130 

period data, and simulations from 2081 to 2100 were selected as the future period data. 131 

The references: 132 

Friedlingstein OB, Webb M, Gregory J. A Summary of the CMIP5 Experiment Design [J]. 2008. 133 

The main revised paragraph of manuscript (Line 117-134): 134 
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Before the revises: 135 

From MRI-CGCM3, we select historical (1961 to 2005), historical extent (2006 to 2012) and future (2006 136 

to 2100) precipitation and temperature simulations. The future data includes simulations of the 137 

Representative Concentration Pathways (RCPs) of 8.5,6, 4.5 and 2.6. Compared to the other RCPs, in the 138 

RCP8.5 scenario temperature increases the most, which is corresponds to a highest greenhouse gas 139 

emission, leading to a radiative forcing of 8.5 W/m2 and temperature increase of 7.14 °C at the end of 140 

21st century (Taylor et al. 2012). Thus, to detect more sensitive precipitation change under climate 141 

warming, we selected future simulations in the RCP8.5 scenario.  142 

The local grid observations (Zhao et al., 2014) with a resolution of 0.5°×0.5° are downloaded from 143 

the China Meteorological Data Service Center (http://data.cma.cn/). The local grid observations and MRI-144 

CGCM3 historical simulations were used to construct relationship to correct the MRI-CGCM3 data. 145 

China metrology point data were also downscaled and used to validate the bias-corrected MRI-CGCM3 146 

simulations. To investigate the relationship between precipitation changes and the temperature increase, 147 

we extract not only temperature data, but also precipitations.  148 

To quantitatively analyse the precipitation changes under climate warming in 21st century, we 149 

compared precipitation between the baseline and future period. As annual precipitation observations have 150 

main oscillation periods of quasi-20 years (Zhan et al. 2011), we selected three 20 years, the baseline 151 

period from 1998 to 2017, the near future period from 2041 to 2060 and the far future period from 2081 152 

to 2100. We merge historical simulations from 1998 to 2005, and historical extent simulations from 2006 153 

to 2012, and RCP8.5 simulations from 2013 to 2017, which is the nearest 20 years and thus selected as 154 

the baseline period. The data in near and far future period are derived from simulations in RCP8.5 155 

scenarios. 156 

After the revises: 157 

Thus we select MRI-CGCM3 data applied in Poyang Lake Watershed to test the performance of the 158 

STDDM.  159 

The future data of MRI-CGCM3 includes simulations of the Representative Concentration Pathways 160 

(RCPs) of 8.5,6, 4.5 and 2.6. Compared to the other RCPs, in the RCP8.5 scenario temperature increases 161 

the most, which is corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5 162 

W/m2 and temperature increase of 7.14 °C at the end of 21st century (Taylor et al. 2012). The research is 163 

to detect the remarkable precipitation changes under climate warming; thus we selected future simulations 164 

in the RCP8.5 scenario. In the study, we merge the historical (from 1961 to 2005), historical extent (from 165 

2006 to 2012) and RCP85 (from 2013 to 2100) data, as the merged data (1961-2100). To quantitatively 166 

analyze the precipitation changes under climate warming in 21st century, we compared precipitation 167 

between the baseline and future period. As annual precipitation observations have main oscillation periods 168 

of quasi-20 years (Zhan et al. 2011), we selected three 20 years from the merged data. From the merged 169 

data, simulations from 1998 to 2017 were selected as the baseline period data, simulations from 2041 to 170 
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2060 were selected as the near future period data, and simulations from 2081 to 2100 were selected as the 171 

further future period data. 172 

The local grid observations (Zhao et al., 2014) with a resolution of 0.5°×0.5° are downloaded from the 173 

China Meteorological Data Service Center (http://data.cma.cn/). The local grid observations and MRI-174 

CGCM3 historical simulations were used to construct relationship to correct the GCM data. China 175 

metrology point data were also downscaled and used to validate the grid observations and the downscaled 176 

GCM simulations. To investigate the relationship between precipitation changes and the temperature 177 

increment, we extract not only precipitations, but also temperature. 178 

 179 

Reviewer’s comment 4: It will be better to add an evaluation section for the gridded meteorological data 180 

by using gauging stations observation. 181 

Authors’ response: Thank you very much for the suggestion. 182 

The evaluation for the gridded meteorological data has be added in the manuscript. 183 

The following was added in the manuscript (Line 238-239): 184 

Validation about the China meteorological grid observations should be performed, as well as the STDDM. 185 

As the STDDM introduce the China meteorological grid observations and the grid data is not the direct 186 

in-suit data, validation about the gridded data is necessary. The determination coefficient (R2), root mean 187 

square error (RMSE) and PBias (percent bias) were used to examine the model performance. 188 

The following was added after Line 570: 189 

 190 

 191 

Fig. 3. Validation of gridded meteorological data (GridObs) by using gauging stations observation: 192 

Precipitation (pcp; a,b,c and d) and temperature (tem; e,d,f and g) at meteorological station of Jian (a and 193 

e), Ganzhou (b and d), Zhangshu (c and f) and Lushan (d and g). 194 

 195 

Reviewer’s comment 5: English writing is poor in the current manuscript, which needs to be polished 196 
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by a native English-speaking editor. Examples of grammar errors are as follows: 197 

Line 27: threating to → threatening 198 

Line 37: constructed → constructs 199 

Line 43: in the station scale → at the station scale, many similar errors in other paragraphs. 200 

Line 45: as underlays of the local region is complex → as underlays of local region are complex 201 

Line 57: project → projects 202 

Line 69: Precipitation redistributions under global warming has → Precipitation redistributions under 203 

global warming have 204 

Line 77: includes → include 205 

Line 84: metrological → meteorological, many similar errors in other sentences. Figure 2, 1(a): 206 

observitions → observations 207 

Authors’ response: Thank you very much for the language editing. 208 

The writing errors has been revised in the manuscript.  209 

 210 
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The Revised Manuscript 211 

Variations of future precipitationsPrecipitation projections using a 212 

spatiotemporal distributed method: a case study in the Poyang Lake 213 

Watershed under the global warming using a spatiotemporally 214 

distributed downscaling modelbased on MRI-CGCM3 215 

Ling Zhang 1, Xiaoling Chen1, 2, Jianzhong Lu1, *, Dong Liang1 216 

1State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 217 
430079, China 218 
2Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 219 
Nanchang 330022, China 220 
* Correspondence to: Jianzhong Lu (lujzhong@whu.edu.cn) 221 
Abstract. Traditional statisticstatistical downscaling methods are processedperformed on independent stations, 222 

which ignoresstation measurements and ignore spatial correlations and spatiotemporal heterogeneity. In this 223 

study, a spatiotemporally distributed downscaling model (STDDM) was developed. TheUsing this method, we 224 

interpolated grid observations and GCMsGCM (Global Climate ModelsModel) simulations to 225 

continualcontinuously finer grids; and then created mapping relationship between the observations and the 226 

simulations, respectively for each grid at each time. We applied the STDDM into precipitation downscaling ofin 227 

Poyang Lake Watershed using MRI-CGCM3 (Meteorological Research Institute Coupled Ocean-Atmosphere 228 

General Circulation Model3), with an acceptantaccepted uncertainty of ≤ 4.9%, and%; then created future 229 

precipitation changes from 1998 to 2100 (1998-2012 in the historical and 2013-2100 in the RCP8.5 scenario). 230 

The precipitation changes showed increasing increased heterogeneities in temporal and spatial distribution 231 

under the future climate warming. In theterms of temporal patternpatterns, the wet season precipitation 232 

increased with change rate (CR) = 7.33 mm/10a (11.66 mm/K) become wetter while the dry season precipitations 233 

decreased with CR = -0.92 mm/10a (-4.31 mm/K).become drier. The frequency of extreme precipitation 234 

frequency and intensity were enhanced with CR=0.49increased while that of the moderate precipitation 235 

decreased. Total precipitation increased while rain days/10a and 7.2mm•day
-1
/10a respectively. In  decreased. 236 

The max continuous dry days and the max daily precipitation both increased. In terms of spatial pattern, 237 

precipitations in wet or dry season showed an uneven change rate overpatterns, the watershed, and the wet or 238 

dry area exhibited a wetter or drier condition induring the wet or dry season; the wet area exhibited a wetter 239 

condition during the wet season. Analysis with temperature increasesincrement showed precipitation changes 240 

appearedcan be significantly (explained by climate warming, with p < 0.05 and R ≥ 0.56) correlated to climate 241 

warming.. The precipitation changes and explains indicated the downscaling method is reasonable and the 242 

STDDM could be applied in the basin-scale region based on a GCM successfully. The results implicated thean 243 

increasing risk of flood-droughts under global warming and, which were a reference for water balance analysis 244 

and water resource planting. 245 
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1 Introduction 

Global warming has caused precipitation redistribution in temporal and spatial distribution redistributions of 

precipitation (Frei et al. 1998; Trenberth et al. 2011), increasing) and has increased the frequency and intensity of 

floods and droughts, thus seriously threating to social systems and ecosystems (Pall et al, 2000; Dai, 2013). To 

the fragile ecological and living environmentenvironments, what the future hydrological situation will be under 

future global warming is a crucial question to avoid or reduce damages from climate warming. 

As aGlobal Climate Models (GCMs) are basic tool intools for assessing the effects of future climate change effects, 

Global Climate Models (GCMs) and provide an initial source offor future climates (Xu, 1999). However, GCMs 

remainhave coarse with global resolutions larger thanranging from 1°×1°, which is unable to apply4°×4°, and 

are not applicable in regional scalescales, such as watersheds. Downscaling algorithms have been developed to 

link the global-scale GCMs outputs and the regional-scale climate variables, including dynamic (Giorgi, 1990; 

Teutschbein and Seibert, 2012) and statistic (Wilby et al., 2007; Chu et al., 2010) models. The dynamic method 

employs regional climate models (RCMs) that are nested inside GCMs based on the complex physics of 

atmospheric processes and involves high computational costs. Limited by an insufficient understanding of the 

physical mechanism and expensively computing resources, the dynamic downscaling model cannot easily satisfy 

small and mid-size region as the Poyang Lake BasinWatershed. Unlike dynamic downscaling models, statistic 

downscaling constructedconstructs an empirical relationship between climate variables of the global-scale 

output and local-scale climate variables , with inexpensive computations. BenefittingBenefiting from inexpensive 

computations and easy implementations, downscaling methods have been widely used, including regression 

models (Labraga et al. 2010, Quintana et al. 2010; Zorita et al. 1999), weather typing schemes (Boéj et al. 2007; 

ENKE et al. 2005) and weather generators (Mullan et al., 2016; Baigorria and Jones et al., 2011).  

In these researchesstudies, statistical downscaling methods have been developed based on the relationship 

between the global-scale simulations and the local station-scale observations in the station scale.. The methods 

are processedconducted on each station, independently. Thus, the specific downscaling relationship and 

downscaled climate variable, are both independent and discrete inat the station scale, instead of being spatially 

continuous in grid-scale withat a finer fine-resolution grid-scale. However, as underlays of local region isare 

complex with different topographies, land covers, and clouds coverage, the downscaling relationships and 

downscaled climate variables at discrete stations can’tcannot clearly express the spatial heterogeneity clearly, 

compared to the spatially continuous data. Particularly, for the For ungauged areaareas without stations 

coveredstation coverage, it is inviable to getobtain high-quality of downscaling relationships and downscaled 

local climatesclimate variables. Moreover, the downscaled local climate results and downscaling relationship 

inrelationships at the station scale, are difficult to show the spatial correlation; whereashowever, results from the 

downscaling which is, processed on spatially continuous data, such as finer grids, can naturally show spatial 

relationship naturally.relationships. Additionally, spatially continuous data can be directly used in thea spatially 

distributed hydrological model, such as Crest (Wang et al., 2011), VIC (Lohmann et al. 1998), and MIKE SHE (DHI, 

2014), which is the focus and frontierforefront of international hydrological scientific research (Beven et al. 1990). 

Besides, In addition, spatially continuous downscaled climate data in spatially continuous pattern can be easily 

integrated with remote sensing data of geologies, topographies, soils, or land covers. In fact, spatially continuous 

data is widely used as in the rapidly developing field of remote sensing technology develops rapidly, which 

benefits hydrological models by providing a data source (Engman et al., 1991). Therefore, the downscaling 

method processed on spatially continuous data is of vital importance. The spatial distributed For the continuous 

space covered with complex underlays, statistical downscaling method, which createsmethods should take spatial 

heterogeneity into consideration, thus creating downscaling relationship and project climates relationships 

spatially distributed at spatialspatially continuous scale, should be taken into consideration..  

In addition to the spatial heterogeneity, the relationship between the climate variables ofat the global-scale and 

local-scale also shows different in temporal heterogeneity of onein a single year, as dominator affectingbecause 

the dominators that affect climate varies in different vary through time (eg.e.g., seasons or Monthsmonths). 
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Therefore, the temporala temporally distributed downscaling method, which creates different 

relationshiprelationships at different timetimes, should be taken into consideration. However, many downscaling 

methods didn’t takehave not taken temporal heterogeneity into consideration. For each individual observed site, 

the established downscaling method was a global standard for the whole time series data, instead of being 

different in separate seasons or Monthsmonths (Labraga 2010; Wu et al., 2017; Sachindra et al., 2018). In the 

study, the temporally distributed downscaling could beis considered. Combining thetemporal heterogeneity and 

spatial heterogeneity in time and continual space, a climate downscaling model based on spatiotemporala 

spatiotemporally distributed framework, a spatiotemporal (a spatiotemporally distributed downscaling method,), 

should be proposed to project future climate changes inat a regional scale.  

SensitiveThe Poyang Lake Watershed is sensitive to climate changes in the East Asian monsoon region, Poyang 

Lake Watershed and therefore is not immune to global warming. Precipitation redistributions under 

Redistributions of precipitation due to global warming has caused more have resulted in an increased occurrence 

of extreme hydrological events, with manifestation of thean enhanced flood frequency and intensity (Wang et 

al., 2009; Guo et al., 2006), a significant decline ofin lake level and inundation area (Feng et al. 2012; Zhang et al. 

2014), which poses a threatthreatened to the fragile wetland and forest ecosystemecosystems (Han et al. 2015, 

Dyderski et al. 2018), economic developments and people’shuman lives (Ye et al., 2011).  

However, the Poyang Lake Wetland ecosystem, is an internationally important habitat for migratory birds, 

abundant of biodiversity and regarded as a Natural Reserve;. In addition, the watershed is a commercial grain 

production area, and an important part of the Yangtze River Economic Belt. As a this region is economically and 

ecologically significant economic and ecosystem region, investigating the future precipitation changes in the 

watershed is crutialcrucial for preventionprotection from climate damages. Previous studies of future 

precipitation changes in the Poyang Lake Watershed includesinclude temporal and special patternpatterns. 

Precipitation changes in temporal pattern, focused on intensity and frequency of precipitation extremes (Hong 

et al. 2014; Wang et al. 2017), as well as the annual or quarterly total precipitationsprecipitation (Guo et al., 2010; 

Guo et al., 2008; Li et al., 2016). In spatial pattern, precipitation change analysis is based on the covers five sub-

basinssubbasins (Xinjiang, Raohe, Xiushui, Ganjiang and Fuhe sub-basinssubbasins) (Guo, et al. 2010; Hong, et 

al. 2014),) and 13 discrete metrologicalmeteorological stations (Li et al. 2016), or 7 coarse grids (Guo, et al. 2008). 

LittleThere has been little research concerns on concerning the spatial-temporal distribution withof precipitation 

in a continual finerfine-resolution grids space, not to mention the possible. In addition, a driving force analysis 

forof precipitation changes related to increasing temperatures increment has not been conducted. 

In the study, taking Poyang Lake Watershed as a test case, we projected future precipitations based on the 

spatiotemporalspatiotemporally distributed downscaling method (STDDM), using MRI-GCM3 simulations and 

metrologicalmeteorological observations, with. The objects are as the following specific objects: (1) developingto 

develop a spatiotemporalspatiotemporally distributed downscaling method (STDDM) for spatially continual ), 

projecting future climate variables projections; in spatially continual scale; and (2) documenting precipitation 

changes in to document temporal and spatial patternchanges in precipitation for the Poyang Lake Watershed in 

the 21th21st century, and the correlations between these precipitation changes and temperature 

increasingincrement. Future precipitation changes can provide basic hydrological information necessary to get a 

better understanding of water resource volumes and flood-droughts risks, which; furtherly benefits a scientific 

sight in wetland and forest ecosystem conservation, and aids decision -making in development, utilization, and 

planning of water resources. 

2 Study area and datasets 

2.1 Study Area 

Poyang Lake Basin (24°28’-30°05’ N and 113°33’-118°29’E) is located in the southeast of China, connected with 

Yangtze River in the north (Fig. 1). Within the southeast subtropical monsoon zone, the annual average 

temperature of the watershed is 17.5℃. The mean annual precipitation is 1638mm1638 mm, with 192 rainy days 

(daily precipitation ≥ 0.1 mm/day) and 173 rain-free days (daily precipitation < 0.1 mm/day). The rainy season 
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lasts from April to July, occupying about 70% of the annual total amount. Inter or intra annual precipitation 

variations are dominated by the southeast and southwest monsoon, mainly in summer. With a coverage area of 

162000 km
2
, the diversities of topographies also affecteffect on precipitation changes. The topography varies 

from high mountains of Luoxiao, Wuyi, and Nanling in east, south and west, with the elevation reaching to the 

2200m, to the depressing of Ji Tai or Ganzhou Depressing in the south or center and alluvial plains of Poyang 

Lake Plain in the north, with the elevation reaching to <50 m (Fig. 1a). The different topography and location 

generate the uneven distribution rain of precipitation in space, with and produce less rain in the depressing, 

plains, and hills area forbecause of the leeward sloop, but more orographic rain in the mountain area becausefor 

the reason of the windward sloop (Fig. 1b) (Mingjin et al. 2011). To analyseanalyze precipitation changes in the 

rich- or  poor-rain area, the metrologicalmeteorological stations were classified into dry and wet stations (Fig. 

1a and b), according to the annual precipitation amount. We sorted the annual precipitation averaged over the 

time from 1961 to 2005, of the 15 stations. The 4four stations with the max or min mean annual precipitations 

are set as dry or wet stations, indicating the dry or wet area, (Fig.1b), respectively. 

In the past 50 years of the Poyang Lake Watershed, annual mean temperature indeed experiences a significant 

(p<0.02) increase with a change rate of 0.15 ℃ /10a (Fig.1d), based on the metrologicalmeteorological 

observations from 1961 to 2005. Under the temperature increasing condition, the precipitation in temporal and 

spatial distribution becomes more uneven (Zhan et al. 2011), which increases the risk of floods and droughts (Li 

et al. 2016; Ye et al. 2011).  

2.2 Data sets  

Global Climate Models (GCMs) are widely used tools to project future climate change. GCMs from the Coupled 

Model Intercomparison Project Phase Five (CMIP5) performs better than other CMIPs such as CMIP3 and CMIP4, 

with generally finer resolution and more improved physical mechanism (Sperber, 2013; Taylor et al. 2012). 

Compared to the other CGMs of CMIP5, the MRI-CGCM3 (Meteorological Research Institute Coupled Ocean-

Atmosphere General Circulation Model3, Yukimoto et al. 2012) performs better in simulating diurnal rainfall over 

subtropical China (Yuan et al. 2013) and has the finest resolution of 1.121° × 1.125°, thus being. Thus we select 

MRI-CGCM3 data applied in Poyang Lake Watershed. From MRI-CGCM3, we select historical (1961 to 2005), 

historical extent (2006 to 2012) and future (2006 to 2100) precipitation and temperature simulations. test the 

performance of the STDDM.  

The future data of MRI-CGCM3 includes simulations of the Representative Concentration Pathways (RCPs) of 

8.5,6, 4.5 and 2.6. Compared to the other RCPs, in the RCP8.5 scenario temperature increases the most, which is 

corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5 W/m
2
 and temperature 

increase of 7.14 °C at the end of 21st century (Taylor et al. 2012). The research is to detect the remarkable 

precipitation changes under climate warming; thus we selected future simulations in the RCP8.5 scenario. In the 

study, we merge the historical (from 1961 to 2005), historical extent (from 2006 to 2012) and RCP85 (from 2013 

to 2100) data, as the merged data (1961-2100). To quantitatively analyze the precipitation changes under climate 

warming in the 21st century, we compared precipitation between the baseline and future period. As annual 

precipitation observations have main oscillation periods of quasi-20 years (Zhan et al. 2012). Thus, to detect 

more sensitive precipitation change under climate warming, we selected future simulations in the RCP8.5 scenario. 

2011), we selected three 20 years from the merged data. From the merged data, simulations from 1998 to 2017 

were selected as the baseline period data, simulations from 2041 to 2060 were selected as the near future period 

data, and simulations from 2081 to 2100 were selected as the further future period data. 

The local grid observations (Zhao et al., 2014) with a resolution of 0.5°×0.5° are downloaded from the China 

Meteorological Data Service Center (http://data.cma.cn/). The local grid observations and MRI-CGCM3 historical 

simulations were used to construct a relationship to correct the MRI-CGCM3GCM data. China metrology point 

data were also downscaled and used to validate the bias-corrected MRI-CGCM3grid observations and the 

downscaled GCM simulations. To investigate the relationship between precipitation changes and the temperature 

increaseincrement, we extract not only temperature data, but also precipitations but also temperature.  

To quantitatively analyse the precipitation changes under climate warming in 21st century, we compared 
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precipitation between the baseline and future period. As annual precipitation observations have main oscillation 

periods of quasi-20 years (Zhan et al. 2011), we selected three 20 years, the baseline period from 1998 to 2017, 

the near future period from 2041 to 2060 and the far future period from 2081 to 2100. We merge historical 

simulations from 1998 to 2005, and historical extent simulations from 2006 to 2012, and RCP8.5 simulations from 

2013 to 2017, which is the nearest 20 years and thus selected as the baseline period. The data in near and far 

future period are derived from simulations in RCP8.5 scenarios.  

3 Methodology 

3.1 Future climatesclimate projection based on the spatiotemporally distributed downscaling model 

Considering the spatiotemporal heterogeneity of precipitations inprecipitation at the regional scale such as the 

Poyang Lake Watershed, we developed a spatiotemporally distributed downscaling model (STDDM), which is a 

logical framework based on a specific mathematic algorithm. The mathematic algorithm was used to create a 

mapping relationship between GCMsthe global-scale GCM simulations in the global scale and the local scale 

climates variables in the local scale.. The mapping relationship is used as a translationtransform function to 

translatecorrect the future climate simulations from the GCMs scale to regional scale.no-bias data. In the 

framework, we constructed respective mapping relationships between the corresponding matchematch-ups of 

GCMs simulations and local climate observations in each different time (eg. Monthse.g., months or seasons) at 

each different location, were constructed.. The STDDM was improved incompared to the traditional downscaling 

methods by adjusting the specific downscaling algorithm to be suitable to in the distributed space and time, 

where. Therefore, the downscaling process shows spatiotemporally differentprocesses show spatiotemporal 

differences in the parameters or the equations, and the output data are spatial continued, compared to 

thespatially continuous, unlike that in traditional downscaling methods, which ignores the temporal and 

continuouslycontinuous spatial difference in the downscaling processdifferences and expresses the express space 

byas discrete points instead of continual space andcontinuous grids. 

Figure 2a shows the logical framework of the STDDM while Fig. 2b demonstrates how it was applied in Poyang 

Lake Watershed using MRI-CGCM3 based on a linear-scaling algorithm. The STDDM contains three parts (Fig. 

2a and b): (1) Up-samplingupsampling GCMs simulations and local-scale observations to a continualcontinuous 

grid space of the same finer resolution; (2) Constructingconstructing respective mapping relationship between 

the GCMs simulations and local observations in distributed space- and time; (3) Correctingcorrecting the GCMs 

simulations of the future scenario, using the relationsmapping relationship constructed in step 2.  

3.1.1 Up-samplingUpsampling GCMs simulations 

With a coarse resolution, unable to be integrated with sub-grid scale features (Grotch and Maccracken,1991) 

such as topography and land use, the GCMs simulations should be up-sampled to a finer resolution. To get 

corresponding match-ups of the global-scale simulation and local-scale observation in respective time and 

space, we up-sampled both GCMs simulations and observations into the same spatial continual grid with a high 

resolution (Fig. 2a). 

In the study, MRI-GCM3 simulations were interpolated by Natural NeighbourNeighbor Interpolation (Sibson et 

al., 1981),) to a scale of 20 km×20 km, the smallest size of the sub-basinsubbasin of the Poyang Lake Watershed 

(Zhang et al. 2017), generating 263 spatial grids (Fig. 2b). For the spatiotemporally distributed downscaling, we 

used China meteorology spatially continua gridsgrid data as observations, instead of China meteorology stations. 

Thestation data. We interpolated the gridded observations were interpolated to 20 km × 20 km, the same as the 

downscaled climate simulations. The match-up grids of simulations and observations at each time and each grid-

box arewere generated. 

3.1.2 Constructing relationsrelationships between the GCMs simulations and local observations 

AsBecause there is an inevitable mismatch between the simulations and observations of different time and space 
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(Li, 2009; Wood et al., 2004) after the up-samplingupsampling, bias correction should be performed. The bias 

correction was processed by using the translationtransform function between match-ups of the up-

sampledupsampled simulation and observationobservations, which isrepresents the relations ofmapping 

relationship between the match-ups. The transform function could be any bias corrected model, including linear 

scaling, local intensity scaling, power transformation, distribution mapping models (Teutschbein et al. 2012) and 

other linear or nonlinear regression models. 

As the influencing factors on climates show heterogeneity in space and time, we created 

spatiotemporalspatiotemporally distributed relationsrelationships, described by the following formula.    

, , ,' ( )T S T S T SCC F , , ,' ( )T S T S T SCC F  (1) 

Where, ,'T SC ,'T SC and ,T SC ,T SC  indicate the up-sampledupsampled global-scale climate simulations and the 

local climate variables, respectively, in the given time of T and the space of S. ,T SF ,T SF demonstrates a 

translationtransform function, used to correct the up-sampledupsampled GCMs simulations. The function is a 

specific downscaling algorithmbias correction model, spatiotemporally distributed in mathematic equations or 

parameters, which is constructed based on the data infrom the historical time fromperiod of 1961 to 2005.  

In thethis study, we created translation function based onuse a linear-scaling algorithm (Lenderink et al., 2007).) 

as the bias correction model. For the linear-scaling algorithm, the simulations were corrected by the discrepancy 

between the simulations and observations in historical time.. Precipitations derived from the GCMs were 

corrected by multiplying the precipitation bias coefficient, which is the ratio of the mean monthly observation to 

simulation infrom the historical time; whileperiod; temperatures were corrected by adding the temperature bias 

coefficient, which is the difference value between the mean monthly observation and simulation in control 

time.the historical period. However, as the bias varies among the Monthsmonths from January to December and 

among the locations of the 236 spatial grids, thea global standard bias coefficient is prohibited. To better capture 

the bias in distributed time and space, we should create an individual bias coefficient for the given Monthmonth 

and gird box. Thus, a spatiotemporalspatiotemporally distributed bias matrix was constructed. The respective 

downscaling model and bias coefficient for a given Monthmonth (T) and space (S) waswere established by Eq. 2 

and 3.  

' _P P P Cof  ' _P P P Cof   (2) 

' _TM TM TM Cof

' _TM TM TM Cof  
(3) 

where, P (T) represents the precipitation (or temperature) of up-sampledupsampled simulations. P’ (TM’) 
represents the downscaled result or up-sampledupsampled observations; P_Cof  (TM_Cof) represents the bias 

correction coefficient of precipitations (or temperatures). In the construction of P_Cof  (TM_Cof), P (TM) and P’ 
(TM’) was set as the average monthly precipitation (or temperature) over the historical time from 1961 to 2005. 

All the input and output data in the equations isare in the given Monthmonth (T) and space (S). 

3.1.3 Correcting the GCMs simulations 

The constructed relationship between the GCMs simulations and the observations infrom the historical 

timeperiod (in section 3.1.2), are) also hold for data in the future (Maraun et al., 2010). Thus, the 

translationtransform function was used to correct the future CGCMs simulations in the future.. In thethis study, 

we corrected the daily and monthly precipitations (or temperatures) from MRI-CGCM3, by adding (or multiplying) 

the bias coefficients in the corresponding Monthmonth and grid box.   

3.2 Precipitation changes analysis  

3.2.1 Statistic indicesindexes of precipitation changes 

To obtain the general change in the temporal distribution, we calculated monthly precipitations from 1998 to 



 

 19 / 39 

 

2100, averaged over the whole watershed. As floodfloods and droughtdroughts occur more frequently in wet 

and dry months, we speciallyspecifically analyze the extreme wet and dry precipitation changes in the 21st 

century. Therein, monthly precipitations, > 75% percentile of the 12 monthly precipitationsmonths, were classified 

as the extreme wet monthly precipitations for each year of the 103 years; monthly precipitations, ≤ 25% percentile 

were classified as the extreme dry monthly precipitation. The monthly precipitation of the 25%-50% and 50%-75% 

quantiles arewere classified as normal dry and wet monthly precipitations. The wet monthly precipitations include 

extreme and normal wet monthly precipitations while; the dry monthly precipitations include extreme and normal 

dry monthly precipitations. To further understand precipitation dynamics in terms of frequency and 

intensitiesintensity, daily precipitations were categorized into five classes based on the classification by the 

Chinese Meteorological Administration and the possible risk to flood-droughtof floods and droughts: light rain, 

medianmedium rain, heavy rain, rainstorm, and extreme rainstorm with daily precipitation inof 0.1-10, 10-25, 

25-50, 50-100 and >100 mm/day, respectively. The frequency of precipitation intensities indicates heterogeneity 

in temporal distribution. The higher frequency of moderate rain means the more homogeneousmore 

homogeneous, vice versa is the extreme rain. Therefore, the precipitation intensities were separated to moderate 

or extreme rains, including light rain, median rain or heavy rain, rainstorm, extreme rainstorm, respectively.  

To analysisfurther analyze the changes in precipitation frequencies and intensities, we calculate the annual days 

of light rain, medium rain, heavy rain, rainstorm and extreme rainstorm from 1998 to 2100 averaged over the 

whole watershed. Annual total precipitation, annual dry days, annual max daily precipitation and annual max 

continualcontinuous dry days arewere displayed as well.  The meteorological stations (Fig. 1a) are uniformly 

distributed in the whole watershed and cover all kinds of the topographies and land covers. Therefore, in the 

study, the all above precipitation indexes of one year for the whole watershed were calculated based on the 

precipitation averaged over the grids containing the 15 stations, instead of the entire grids, as the 15 metrological 

stations (Fig. 1a) are uniformly distributed in the whole watershed, covering all kinds of the topographies and 

land covers.  

. Under global climate warming, precipitation becomes more centredconcentrated which leads to more 

heterogeneity in temporal and spatial distribution (Donat et al., 2016; Min et al., 2011). Thus, we calculated 

variation coefficients (VC) for each year from 1998 to 2100, to investigate the precipitation changes in temporal 

and spatial distribution. The VC is defined by the ratio of the standard deviation and average value, described by 

Eq. 4.  

 

The VC is defined as the ratio of the standard deviation to the average value, described by Eq. 4.  
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Where, x where x  represents monthly (or daily) precipitation ofin one year; n is n is the month number (or day 

number) of a year and   indicates averagedthe average monthly or daily precipitation of a year. VC measures 

the standard dispersion of the data items, which can indicate the unevenness of precipitations in temporal and 

spatial distribution.distributions of the precipitation. In thethis study, heterogeneity in temporal, spatial and 

spatiotemporal distribution wasdistributions were measured by temporal, spatial and spatiotemporal VC, 

respectively. Temporal VC was calculated on the daily or monthly precipitations in one year, where and the VC 

for one year is averaged over thatthose of the 15 stations. For monthly precipitation, we only select extreme wet 

and dry precipitations, as the extreme wet and dry are more likely to cause floods or droughts and thus should 

be paypaid more attractions to.attention. Spatial VC werewas calculated on the annual total precipitations of the 

15 stations in one year. Spatiotemporal VC was calculated on the monthly precipitations of the extreme wet 

months of the wet stations and the extreme dry months of the dry stations in one year, as the extreme 

precipitation value wasvalues were more likely to cause floods or droughts. 

file:///C:/Users/zl/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/result.html
file:///C:/Users/zl/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/result.html
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3.2.2 Relationship analysis between precipitation changes and temperature increasing 

We investigated the precipitation changes as a result of global temperature increase. To this end, we made liner 

regression between the precipitation index and temperature changes from 2005 to 2100. We note that a mean 

filter with a widowwindow size of 21 years can reduce potential random fluctuation from precipitation by the 

most; thus was used to smooth annual precipitation indexes and temperature simulations from 2005 to 2100. 

The long-time smoothed annual precipitation or temperature minus the average annual value from 1998 to 2017, 

are set as precipitation index or temperature changes. A linear regression model was used to investigate whether 

precipitation changes are related to climate warming. The two 11 years, 2005 to 2015 and 2090 to 2100 at the 

start and end, did not have filter diameter of 21 years; thus climate data used to be regressed is from 2016 to 

2089. 

4 Result and Discussion  

4.1 Validations of precipitationModel assessment 

Validation about the China meteorological grid observations should be performed, as well as the STDDM. As the 

STDDM introduce the China meteorological grid observations and temperature projectionsthe grid data is not the 

direct in Poyang Lake Watershed 

Before being used in future climate projection, the model was examined. Data from 1961 to 1985 were used to 

construct the model, and the remaining historical data from 1986 to 2005 were used to validate. -suit data, 

validation about the gridded data is necessary. The determination coefficient (R2), root mean square error (RMSE) 

and PBias (percent bias) were used to examine the model performance.  

4.1.1 Evaluation for the gridded meteorological 

The China meteorological grid observations are referenced data to corrected GCMs simulations and reliability of 

the observations is vital to the performance of the STDDM. So we make a validation using meteorological station 

observations, in Fig. 3. 

As shown in Fig. 3, we select four meteorological stations. The selected stations are uniformly distributed.  The 

validation produced an acceptable precision with R
2
 > 0.91, absolute PBias < 2% for precipitations and R

2
 =0.99, 

absolute PBias < 6% for temperature. All the dots of gridded and stationed value were distributed along the 1:1 

line, thus confirming the satisfactory performance. 

4.1.2 Validations of precipitation and temperature projections in Poyang Lake Watershed 

Before being used in future climate projection, the model should be examined. Data from 1961 to 1985 were 

used to construct the model, and the remaining historical data from 1986 to 2005 were used to validate.  

To test whether the downscaling method (STDDM) is effective in climate projections, we compare the results 

before and after the bias correction in Fig. 3.4. The results before and after the bias correction marked as the 

outcomes by the STDDM and No-STDDM, respectively. The projections with bias correctionsby the STDDM show 

better performance with high correlations and narrow bias, compared to the result without bias corrections.by 

No-STDDM. Considering the complexity of climate physical mechanism, which is difficult and difficulty to 

accurately simulatedsimulate by the present methods, the uncertainty could be acceptable.  

Using the STDDM and MRI-CGCMs, we obtained the temporal and spatial variation of future precipitations in 

the Poyang Lake Watershed, and investigated the heterogeneity changes of precipitation in the temporal and 

spatial distribution. 
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4.2 Temporal variation of future precipitation 

4.1.1 Monthly scale  

To facilitate discovering discover the general intra- and inter-annual variability overtemporal variation under the 

future climate warming, we analysedanalyzed the monthly and daily precipitation changes during the period 

from 1998 to 2100. For monthly precipitation, we analyzed intra-annual and inter-annual dynamics of 

precipitation; based on the dynamics, we investigated the heterogeneity changes of monthly precipitation. For 

daily precipitation, we analyzed the changes of precipitation intensities and frequencies; based on the changes, 

heterogeneity changes of daily precipitation was also investigate. 

4.2.1 Monthly precipitation changes  

We analyzed the monthly precipitation changes during the period from 1998 to 2100 in Fig. 45. Precipitation 

gathered in spring (March to May) and summer (July to August), occupying 73% of the annual amount, which 

highlights the show significant intra-annual dynamics of rains. Rich. Months with abundant rain (wet months,), 

indicated by a reddish color, are mainly in April to July (the wet season);), while the rain-poor rain months (dry 

months), indicated by a bluish color, are mainly in September to nextthe subsequent February (the dry season). 

Precipitation concentrates in spring (March to May) and summer (July to August), occupying 73% of the annual 

amount. The intra-annual dynamics of precipitations precipitation is similar to that of theshown by Feng’s (2012). 

In thePrecipitation also showed inter-annual precipitation pattern, the rich raindynamics. The wet months 

become richerwetter, and the rich rainwet season comes earlier from April to March, even in February. 

Precipitations In addition, each monthly precipitations of seven months (April to November) took increasing 

trends, of which 71%most months (5 out of the 7 months; April, May, June, August) are in the wet season; while 

precipitations of the other five months experienced decreasing trends and, all the monthsof which were in the 

dry season. It seems that wet months become wetter and dry months become drier, in general. 

The monsoon is the dominant factor to inter or intra annual variability of precipitation. The reaching time of the 

monsoon reaching Poyang Lake Watershed, varies in different years, with 1~2 months’ advance or delay. 

Therefore, the rich or poor rain months for different years are not the same. To better demonstrate the opposite 

variations (the decreases in the dry period and increases in wet),inter-annual dynamics of precipitation, monthly 

precipitations in each year were sorted in thea descending order in Fig. 45(b). Wet monthly precipitationsAs the 

time of the monsoon reaching the Poyang Lake Watershed, varied in different years, with 1~2 months’ advance 

or delay; the wet or dry months for different years are not the same. By sorting monthly precipitation, wet months 

and dry month could be distinguished intuitively in Fig. 5(b). Obviously, monthly precipitation of wet months 

experienced an increasing trend respectively, even with some significant sign; whereaswith slight significance; in 

contrast, each dry monthly precipitation exhibited decreasing trends, separately, despite the insignificant signs. 

We accumulated the extreme wet or dry monthly precipitations for each year in Fig. 56. The precipitation of 

extreme wet months showed a significantly increasing trend (p<0.05) (Fig. 5a), and6a), while the precipitation of 

the extreme dry months demonstrated a significantly decreasing trend (p<0.05). Extreme wet months increased 

from 277.82 mm•month
-1
/a over historical time from 1998-2017, to 344.10 mm•month

-1
/a over future time from 

2081 to 2100, by 23.86 % with a change rate of 7.3 mm•month
-1
/10a; while the precipitation of extreme. Extreme 

dry months demonstrated a significantly decreasing trend (p<0.05) (Fig. 5b) and decreased from 35.44 mm•

month
-1
/a over historical time from 1998-2017, to 30.46 mm•month

-1
/a over future time from 2081 to 2100, by 

-14.05 % with a change rate of 0.92 mm•month
-1
/10a. Therein, the extreme wet months are mainly concentrated 

in March-July (Fig. 5c6c), part of the wet season;, while the extreme dry months are mainly concentrated in 

September-February (Fig. 5d6d), consistent to the dry season.  

Overall, withunder climate warming over the 2121st century, the wet monthly precipitations become wetter while 

the dry month precipitations become dryerdrier, which highlightssuggested the uneven temporal distribution of 

precipitation (Fig. 67). As shown in Fig. 67, the temporal variation coefficient of the extreme month (including 

extreme wet and months) precipitations within each year from 1988 to 2100, experiences significantly increasing 

trends (p<0.01), and increased from 0.76 /a over historical time from 1998-2017, to 0.84 /a over future time from 
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2081 to 2100, by 10.53% with change rate of 0.01 /10a. The significantly increasing trends indicated the more 

uneven trend of precipitation in the temporal distribution, which might lead to increasingincreased  risks of 

floods and droughts. 

4.12.2 Daily scaleprecipitation changes 

To understand the changes ofin precipitation intensities and frequencies under the future climate warming, daily 

precipitation variations were also analysedanalyzed and are shown in Fig. 7. Averaged over 103 years, annual 

precipitation 8. Moderate vs extreme rain frequencies are dominated by(Fig. 8a and b), the moderate rain, 

aannual total of 163.70rain vs the annual total rainy days, 44.8 % (163.70/365) while (Fig. 8c), and the extreme 

rain occurs less often, a total of 20.70annual max precipitation vs the annual max continuous rainy days, 6.70 % 

(20.7/365).  (Fig. 8d) were analyzed. 

UnderThe remaining is rain-free days, a total of 180.75 days, 49.5% (180.75/365). Over the climate warming, the 

annual frequency of moderate rains experienced decreasing trends; in contrast, the annual frequency of extreme 

rains experienced significantly increasing trends (Fig. 7a8a). Statistically, the averaged over 103 years, annual 

precipitation frequencies are dominated by the moderate rain frequency a total of 163.70 days, or 44.8% 

(163.70/365), while the extreme rain occurs less often, a total of 20.70 days, or 6.70% (20.7/365). The remaining 

is rain-free days, a total of 180.75 days, 49.5% (180.75/365). was The annual moderate rain frequency decreased, 

from 170.56 days/a over the historical time from1998period from 1998 to 2017, to 159.55 days/a over  the 

future timeperiod from 2081 to 2100, by -6.46% with a change rate of -14.4 days/10a; whileon the contrary, the 

annual extreme rain frequency was increased from 19.18 days/a over historical time from1998 to 2017, to 23.42 

days/a over future time from 2081 to 2100, by 22.10 % with a change rate of 0.49 days/10a (Fig. 7b8b). 

The Furthermore, the annual total rainy days, the sum of the moderate and extreme rainsrain frequencies, 

demonstrated a significantly decreasing trendstrend in the 21st century;, whereas the annual total precipitation 

exhibited a significantly increasing trend (Fig, 7c). Rainy days were decreased from 187.57 days/a over the 

historical time from1998period from 1998 to 2017, to 180.37 days/a over the future timeperiod from 2081 to 

2100, by -3.84% with a change rate of -1.00 days/10a; while the annual total rain amount was increased, from 

1650 mm/a over the historical timeperiod, from 1998 to 2017, to 1906 mm/a over the future timeperiod, from 

2081 to 2100, by 15.55 % with a change rate of 23.00mm00 mm/10a. The increasingincrease in the annual total 

rain and decreasingdecrease in the annual rainy days suggested more concentrated precipitation and dry days. 

The in the future. This tendency might lead to increasing the increased risk of flood-droughtfloods and droughts, 

which was also documentedindicated by the increasingincreased annual max daily precipitation and max 

continuous dry days (Fig. 7d).8d).  Annual max daily precipitation was increased from 148.76 mm•day
-1
/a 

averaged over the historical time from1998period from 1998 to 2017, to 212.01 mm•day
-1
/a averaged over the 

future timeperiod from 2081 to 2100, by 42.51% with a change rate of 7.2 mm•day
-1
/10a; while the max 

continuous dry days was increased from 25.35 days/a over the historical timeperiod from 1998 to 2017, to 28.15 

days/a over the future timeperiod from 2081 to 2100, by 11.05% with a change rate of 0.5 days/10a. 

Overall, the significantly inverse change tendstrends in the moderate vs extreme rain frequencies, the annual 

total rain vs the annual total rainy days, and the annual max precipitation vs the annual max continuous rainy 

days, indicated an increasing temporal heterogeneity in precipitation distribution over the 21st century. Obviously, 

the increasing heterogeneity was also exhibited by the increasing temporal VC of daily precipitations (Fig. 89). 

The temporal VC of daily precipitation wasprecipitations increased from 1.50 /a over the historical time 

from1998period from 1998 to 2017, to 1.62 /a over the future timeperiod from 2081 to 2100, by 7.48% with a 

change rate of 0.016 /10a. 

4.3 Spatial variation of future precipitation 

Climate warming could cause the rain belt shift (Putnam et al., 2017), which might lead to precipitation changes 

in the spatial pattern. The To investigate the spatial variation was, we analyzed in the similarities and differences 

of precipitation changes in space (Fig. 9 and 10. As floods 1); based on the differences, we use the indexes of the 

spatial and droughts occur more frequently in extreme months, the precipitation in the analysis considered only 
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the extreme wet (April-July) and dry (September-February) monthsspatiotemporal VC to investigate the spatial 

heterogeneity changes (Fig. 11). Fig. 5c and d). Besides, 10 shows the precipitation is dominated by southeast 

summer monsoon, which bring water vapour from the sea.changes in  The summer monsoon is frequent from 

the end of spring and stat of autumn, covering the wet months April to July. However, though as dry months, 

the autumn period from September to November is affected by southeast summer monsoon (Tan et al., 1994) 

slightly because autumns are the transpiration periods of summer to winter. Therefore, winter (December-

February) was represented as the dry season with poor rain; while April-July was represented as the wet season 

with rich rain. To visualize the spatial pattern of the precipitation changes in the wet and dry season under future 

climate warming, we calculated the mean wet or dry precipitation averaged over the historical during the period 

from 1998 to 2017 (Fig. 9a or d), the near future period from 2041 to 2060 (Fig. 9b or e), and the further future 

period from 2081 to 2100 (Fig. 9c or f), respectively. The change rate of wet or dry season precipitation from 

19982100; Fig. 11 shows the spatial and spatiotemporal VC for each year over 1988 to 2100 (Fig. 9g or h) were 

also exhibited the climate warming impacts on the spatial pattern of precipitation changes. 

PrecipitationsAs shown in Fig. 9a-c and e-g, precipitations showed a regular spatial pattern both in the wet and 

dry season., in Fig. 10a-c and e-g. More specifically, precipitations were precipitation was distributed more in the 

east and west, whichhowever less in the north central plain and the south bottom depression. Rich rain in the 

east and west are dominated by the southeast and southwest summer monsoon. Whereas, precipitations were 

distributed less in the north central plain for reasons of being as monsoons. Less precipitation was due to the 

leeward sloop of the easteastern (Xuefeng Mountain) and west mountainwestern mountains (Wuyi Mountain), 

and). Less precipitation in the south bottom depression due towas because that the water vapor was blocked 

from this region by the NanLing Mountain in the south (Fig. 1a). The precipitation distribution in spatial pattern 

from 1998 to 2100 (Fig. 910 a-c and d-f) were consistent towith the observations from 1951 to 2005 (Fig. 1b.), 

thus confirming the satisfactory performance of the STDDM. Moreover, wet and dry season precipitation showed 

inverse changes. The wet season precipitations exhibited ascending (Fig. 10a-c and g) change while the dry 

season precipitation exhibited descending (Fig. 10d-f and h) change from 1998 to 2100. The inverse changes 

were consistent with the interannual variability of increased precipitation in wet months and decreased 

precipitation in dry months (Section 4.2). The increase of precipitation in the wet seasons and decrease in 

precipitation in the dry seasons were also detected in the change rate of the cells over the entire watershed (Fig. 

10g or h). 

Yet, wet and dry season precipitations showed inverse changes. The inverse is consistent with the inter-annual 

variability of increasing However, precipitation trend in wet months and decreasing trend in dry months (Section 

4.2). The wet or dry season precipitations exhibited ascending (Fig. 9a-c and g) or descending (Fig. 9d-f and h) 

change from 1998 to 2100, respectively. Specifically, the wet season precipitation was increased from 172.5-

266.3 mm•month
-1
/a averaged over the historical time (1998-2005), 189.9-265.3mm•month

-1
/a averaged over 

the near future (2041-2060), to 219.9-345.8mm•month
-1
/a averaged over the further future (2081-2100), with 

an increasing change of 3.5-11.7mm•month-1/10a, range in the cells of the whole watershed (Fig. 9 a-c, g). In 

contrast, the dry season precipitation was decreased from 68.4-99.9mm•month
-1
/a averaged over the historical 

time (1998-2005), 66.5-99.0 mm•month
-1
/a averaged over the near future (2041-2060), to 56.7-84.9 mm•month

-

1
/a averaged over the further future (2081-2100), with an decreasing change of -2.7- -1.1mm•month

-1
/10a, 

range in the cells of the entire watershed (Fig. 9 d-f, h). The tendency of being wetter in wet seasons and drier 

in dry seasons might lead to increasing risks of floods and droughts.  

The increase of precipitation in wet seasons or decrease in dry seasons were also detected in the cells over the 

entire watershed (Fig. 9g or h). However, the spatial patterns of changes are complex with regionally different 

signs (Fig. 9g and h). The wet season precipitation increase was different in spatial distribution, with change rate 

raising from ≤3.6 mm/10a in the southwest, to ≥11.7 mm/10a in northeast; while the decrease of the dry season 

precipitation in falls from ≥ -2.0 mm/10a in the surroundings, to ≤ -2.7 mm/10a in the centre.showed a different 

spatial pattern. Precipitation change rate was heterogeneous in spatial distribution for dry or wet season 

respectively (Fig. 10g and h). In the wet season, the precipitation increased more in the north part of the 

watershed, except for the centrecentral plain (Fig. 9g); while10g); in the dry season, the precipitation decreased 

more in the centercentral area (Fig. 9h). The uneven change rates indicated the increasing heterogeneity of 
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precipitations in the spatial distribution (10h). Statistically, in the wet season, precipitation increased with the 

change rate raising from ≤ 3.6 mm/10a in the southwest, to ≥ 11.7 mm/10a in the northeast; in the dry season, 

precipitation decreased with the change rate falling from ≥ -2.0 mm/10a in the surrounding region, to ≤ -2.7 

mm/10a in the central region. FurthermoreFig. 10a). Specifically, the heterogeneity was raised with the spatial VC 

increasing from 0.097/a over historical time from1998 to 2017, to 0.110/a over future time from 2081 to 2100, 

by 12.64% with a change rate of 0.002/10a. 

However, precipitation changes show a different spatial pattern betweencharacteristics in wet and dry seasons. 

From 1998 to 2100, in the wet season (Fig 9a. 10a-c), the wet area (the reddish area, mainly in the north except 

for the center plain) becomebecomes wetter; while in the dry season (Fig. 910 d-f), the dry area (the bluish area, 

mainly in the north center plain and in the south depression) become drier. The tendency of being wetter in  

The uneven change rates may lead to increase of the spatial heterogeneity of precipitation under global warming, 

and the tendency of the wet area to become wetter and drier in the dry area might enhance the risk of floods 

and droughts. The drier condition in the dry season and area and wetter condition in the wet season and areato 

become drier also indicated the increasing heterogeneity of precipitations in the spatiotemporal distribution 

(heterogeneity of precipitations. Indeed, the spatial heterogeneity did increase, with the spatial VC raising from 

0.097 /a over the historical period (1998-2017), to 0.110 /a over the future period (2081-2100), by 12.64% with a 

change rate of 0.002 /10a (Fig. 11a). The spatiotemporal Fig. 10b). Specifically, the heterogeneity was raiseddid 

increase with the spatiotemporal VC increasingraising from 0.89 /a over the historical time from1998 to period 

(1998-2017,), to 0.94 /a over the future time from period (2081 to -2100,), by 4.96% with a change rate of 

0.008/10a.  /10a. Overall, the uneven change rates for the whole basin and inverse changes for the dry and wet 

area indicated an increasing spatial heterogeneity in precipitation distribution over the 21st century. 

4.4 The impact assessment of temperature increasingincrement on precipitation changes 

Previous studies have detected precipitation changes, and attributehave attributed these changes to climate 

warming (Westra et al., 2013; Zhang et al., 2013). In thethis study, the spatiotemporal changes of precipitation in 

the Poyang Lake Watershed in the 21st century were supposedhypothesized to be related to the increasing 

temperature.  increments. So we analyze the correlations qualitatively and quantitatively. 

The following are trying to demonstrate the driving force related to climate warming on precipitation changes in 

the temporal pattern. In the wet season from April to July, the summer monsoon might becomesbecome weaker 

in the southeast ofSoutheast Asia, with as the climate warmingtemperature increasing (Wang, 2001; Wang, 2002; 

Guo et al., 2003). Consequently, the summer monsoon delaysis delayed for a longer time in the middle and lower 

Yangtze River basin for a longer time, instead of moving further north. The delays leaddelay leads to much more 

rain during the wet season. LocatedAs being located in the middle of the Yangtze River basin, the Poyang Lake 

Watershed becomes wetter in the wet season (Fig. 45-5, Fig. 9a10a-c). In fact, the increase ofin precipitation in 

the Poyang Lake Watershed was detected in previous studies (Yu and Zhou, 2007; Ding et al., 2008). In the poor-

raindry period from September to nextthe subsequent February (especially in the winter timeseason, from 

December to February) with low-frequency ), during which summer monsoon is inactive, there is less water vapor 

in atmospheres, which is not easy to the atmosphere to condense into rain. Additionally, stronger winds in the 

winter (Wu et al., 2013) blow the evaporation away. The stronger wind in winter enhances, thus enhancing the 

difficulty to gather enough of generating rain from water vapor to rain, compared to the other seasons. When 

temperature increases over the 21st century, the atmospheres, the ability of holdingthe atmosphere to hold water 

vapors is strengthened, which makemakes it more difficult to precipitate. Therefore, precipitations 

decreaseprecipitation decreases in the dry season, similar toconsistent with Li et al.'s (2016) researchresult. As 

climate warmingtemperature increment increases the ability of the atmosphere to contain water vapor, it is 

harder to condense into rain onlyis more difficult, and if it has enough more water vaporrains it will rain largely 

(Min et al., 2011; Zhang et al., 2013). Thus, the frequency of heavy rain and rain-free-rain events increases, which 

indicates moreindicating increased frequency and strengthened intensity of the extreme rains and less of 

moderate rains. Overall, climate warming might make precipitation. Overall, the climate warming might make 

precipitation more temporally uneven in temporal distribution. 
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Climate warming could also explain the spatial distribution of precipitation changechanges in the dry and wet 

seasons. In the wet season, the summer monsoon delays in the middle and lower Yangtze River Basin. The 

delaying area covers only the north part of the Poyang Lake Watershed. Because of getting richAs it receives 

abundant water vapor from the delayed summer monsoon, precipitation in the north part of Poyang Lake 

Watershed are increased more with experiences a greater increase in precipitation with a larger change rate (Fig. 

9g10g). The east ofeastern Poyang Lake Watershed is the nearest to the sea, west ofwestern Pacific Ocean; thus 

the east can geteastern region receives more continuous water vapor continually. That's why. So the precipitation 

change rate decreases from the southeast to the northwest. in the wet season. However, in the dry season 

especially in winter, during which there is witha low-frequency or even noabsent summer monsoon, the water 

vapor mainly comes from evapotranspiration. In the watershed, there is more evapotranspiration in the periphery, 

which is covered by the lake of Poyang in the northern plain and high-density vegetation in the northwest, 

southeast, and southwest mountains, and lake of Poyang in the north plain; while; so there is lessmore 

evapotranspiration in the periphery. The center, is mainly covered by farmland and grassland; so there is less 

evapotranspiration in the center (Wu et al., 2013). Thus, the moisture decreases from the 

surroundingssurrounding to the center. Therefore, it is more difficult to rain in lower moisture area, the center 

part of Poyang Lake Watershed as as temperature increases; thus, it is more difficult for rain to occur in the area 

of lower moisture, the center of the Poyang Lake Watershed. Therefore the precipitation decreasingdecreased 

with a change rate falling from the surroundingssurrounding to the center in the dry season (Fig. 9h10h). 

To quantitatively analyze the relationship between precipitation changes and temperature increasingincrement, 

we madecreated a scatter plot between precipitation indexes changes and temperature increasesincrement, as 

shown in Fig. 11. Trend12. A trend analysis was conducted byusing linear regression overof each annual 

precipitation indexes againstindex over the 103 years from 1998 to 2100. The associated slopes 

representedrepresent the change rate forof each long-term precipitation indexes.index relative to temperature 

increment. The significance of the trend significant sign wasis indicated by p value. As shown in Fig. 1112, there 

is staticallya significant correlationscorrelation between the precipitation changeschange and the temperature 

increasingincrement, with significant sign of p ≤ 0.001 and R≥ 0.78 for 6 precipitation indexes,: the annual 

precipitation in the wet season (Fig. 11a),12a), the annual max daily precipitation (Fig. 11d),12d), the temporal VC 

of the monthly precipitation (Fig. 11c),12c), the temporal VC of the daily precipitation (Fig. 11f),12f), the spatial 

VC (Fig. 11g12g) and the spatiotemporal VC (Fig. 11h12h). However, the changechanges of the other two 

precipitation indexes, the annual precipitation in the dry season (Fig. 11b12b) and the annual max 

continualcontinuous dry days (Fig. 11e12e), appeared to be correlated with slight signs of p ≤ 0.05 and R ≤ 

0.58. The overestimation of lightmoderate- or free-rain frequency  from the GCM simulations (Teutschbein et 

al. 2012) might explainsexplain the slight correlations for slightly low correlation between the annual precipitation 

values in the dry season; and temperature increment, while the overestimation of the precipitation frequencies 

(Prudhomme et al. 2003) could beexplain the reason of the slightslightly low correlation forbetween the annual 

max continualcontinuous dry days. and  temperature increment. For all the correlations (Fig. 11a12a-h), the 

precipitation changed with fluctuation, which might be caused by random variations offrom GCMs. 

DespiteOverall, despite the slight signslow correlations and stochastic fluctuation, the correlations exhibitedcould 

indicate that the climate warming can partly explainedexplain the precipitation changes, with variations of. 

Statistically, precipitation changes relative to temperature increment are 16.657 mm•month
-1
/K, -4.31 

mm•month
-1
 /K, 17.45 mm•day

-1
 /K, 0.71 days/K, 0.028/K, 0.033/K, 0.0074/K and 0.02/K for the annual 

precipitation in the wet season, the annual precipitation in the dry season, the annual max daily precipitation, the 

annual max continualcontinuous dry days, the temporal VC of the monthly precipitation, andthe temporal VC of 

the daily precipitation, and the spatial VC and the spatiotemporal VC, respectively. 

In summary, the explanation of precipitation changes in temporal and spatial distribution qualitatively and 

quantitatively, suggests the downscaling method is reasonable and the STDDM could be applied in the basin-

scale region based on a GCM successfully. 
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5 Conclusion 

A spatiotemporalspatiotemporally distributed downscaling method (STDDM) was proposed in this study. The 

downscaling method considered the heterogeneity in spatial and temporal distributions, and produced local 

climate variables as spatialspatially continuous data instead of independent and discrete points. TheThe STDDM 

showed a better performance than the No-STDDM. Using the STDDM, we constructed the spatially continuous 

future precipitation distribution and dynamics in the wet and dry season are constructed and severalfrom 1998 

to 2100, based on MRI-CGCM3. Several findings arewere obtained.:  

FirstlyFirst, the spatial and temporal heterogeneity of precipitation in the spatial and temporal pattern is enhanced 

increased under future climate warming. In the temporal pattern, the wet season precipitation increased with 

change rate of 7.33 mm/10a and 11.66 mm/K;become wetter, while the dry season precipitation decreased with 

change rate of -0.92 mm/10a and -4.31 mm/K.become drier. The frequency of extreme precipitation frequency 

and intensity were strengthened with change rateincreased, while that of 0.49the moderate precipitation 

decreased. Total precipitation increased, while rain days/10a and 7.2mm•day
-1
/a. decreased. The inverse changes 

in the max dry and wet season,day number and the increasing extremes frequencies max daily precipitation both 

increased. These precipitation changes demonstrated an ascendingincreasing heterogeneity of precipitation in 

temporal distribution, withand the change rate of temporal heterogeneity is 0.01 /10a (0.028/K) or  0.016 /10a 

(0.033/K) for the temporal VC of the monthly or (daily) precipitation. In the spatial pattern, the uneven change 

rates of the entire cells covering the watershed demonstrated an increasing heterogeneity in spatial distribution, 

with the change rate of 0.002/10a (0.0074/K) for the spatial VC. In the spatiotemporal patternchange rate of 

precipitation was uneven over the whole watershed. Additionally, the wet areas become wetter in the wet season 

and the dry areas become drier in the dry season, which manifested. The uneven change rates for the whole 

basin and inverse change for dry and wet area demonstrated an increasing heterogeneity in the 

spatiotemporalspatial distribution, and the change rate of spatial heterogeneity was 0.002/10a (0.02/K) 

respectively..   

Secondly, analysis with temperature increases showed that Second, precipitation changes in the spatial and 

temporal pattern appear to be significantly related to the climate warming. Precipitation changes can be 

significantly explained by temperature increasingclimate warming, with p < 0.05 and R ≥ 0.56. The variability 

of annual precipitation in the wet season, annual precipitation in the dry season, annual max daily precipitation, 

annual max continual dry days, temporal VC of monthly explanation of precipitation, and temporal VC of daily 

precipitation, spatial VC and spatiotemporal VC, are 16.657 mm/K, -4.31 mm/K, 0.028/K, 17.45 mm/K, 0.71 days/K, 

0.033/K, 0.0074/K and 0.02/K, respectively changes in temporal and spatial distribution qualitatively and 

quantitatively, suggests the downscaling method is reasonable and the STDDM could be applied in the basin-

scale region based on a GCM successfully. 

This study demonstrates the precipitation changes under climate warming in the 21st century. The wetter 

condition in the wet season and drier condition in the dry season are expected to cause an increased risk of 

floods and droughts in the future. The results can be applied to a hydrological and hydrodynamic model, to 

study the future changes ofin water resourcevolumes, lake levellevels and areaareas response to climate warming. 

The relationship between precipitation variations and temperature increasingincrement could be helpful to the 

driving forceforces analysis on rainfallof precipitation changes. Furthermore, forThe dry to be drier and wet to be 

wetter condition may lead to increased risk of floods and droughts. In particular, in the region where floods and 

droughts diddo not usually occur frequently, additional adaptation measures could be taken to prevent loss from 

morethe future frequent and serious hydrological disasters.  

Data availability 

All data can be accessed as described in Sect. 2.2. The data sets and model codes are provided in the supplements. 



 

 27 / 39 

 

Acknowledgements 

This work was funded by the National Natural Science Funding of China (NSFC) (41331174, 41461080), the 

National Key Research and Development Program (2017YFB0504103), the Open Foundation of Jiangxi 

Engineering Research Center of Water Engineering Safety and Resources Efficient Utilization (OF201601), the 

ESA-MOST Cooperation DRAGON 4 Project (EOWAQYWET), the Fundamental Research Funds for the Central 

Universities (2042018kf0220) and the LIESMARS Special Research Funding. 

Reference 

Alexander, L. V., Zhang, X., Peterson, T. ., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M. R., Collins, W. D. 

and Trewin, B.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. 

Res., 111, D05109, doi:10.1029/2005JD006290, 2006. 

Baigorria, G. A. and Jones, J. W.: GiST: A Stochastic Model for Generating Spatially and Temporally Correlated 

Daily Rainfall Data, J. Clim., 23(22), 5990–6008, doi: 10.1175/2010jcli3537.1, 2010. 

Beven, K. J.: A Discussion of distributed hydrological modelling, Distrib. Hydrol. Model., 255–278, 

doi:10.1007/978-94-009-0257-2_13, 1996.  

Chen, H. and Sun, J.: How the “best” models project the future precipitation change in China, Adv. Atmos. Sci., 

26(4), 773–782, doi:10.1007/s00376-009-8211-7, 2009. 

Chu, J. T., Xia, J., Xu, C. Y. and Singh, V. P.: Statistical downscaling of daily mean temperature, pan evaporation 

and precipitation for climate change scenarios in Haihe River, China, Theor. Appl. Climatol., 99(1–2), 149–161, 

doi:10.1007/s00704-009-0129-6, 2010. 

Dai, A.: Increasing drought under global warming in observations and models, Nat. Clim. Chang., 3(1), 52–58, 

doi:10.1038/nclimate1633, 2013. 

DHI (Danish Hydraulic Institute): MIKE SHE, User Manual, Volume 1: User Guide. Hørsholm: Danish Hydraulic 

Institute, 2014. 

Dyderski, M. K., Paź , S., Frelich, L. E. and Jagodziński, A. M.: How much does climate change threaten European 

forest tree species distributions?, Glob. Chang. Biol., doi:10.1111/gcb.13925, 2017. 

Engman, E. T.: Remote sensing in hydrology, Geophys. Monogr. Ser., 108, 165–177, doi:10.1029/GM108p0165, 

1998. 

Enke, W., Schneider, F. and Deutschländer, T.: A novel scheme to derive optimized circulation pattern 

classifications for downscaling and forecast purposes, Theor. Appl. Climatol., 82(1–2), 51–63, doi:10.1007/s00704-

004-0116-x, 2005. 

Feng, L., Hu, C., Chen, X., Cai, X., Tian, L. and Gan, W.: Assessment of inundation changes of Poyang Lake using 

MODIS observations between 2000 and 2010, Remote Sens. Environ., 121, 80–92, doi:10.1016/j.rse.2012.01.014, 

2012a. 

Feng, L., Hu, C., Chen, X., Tian, L. and Chen, L.: Human induced turbidity changes in Poyang Lake between 2000 

and 2010: Observations from MODIS, J. Geophys. Res. Ocean., 117(7), doi:10.1029/2011JC007864, 2012b. 

Giorgi, F.: Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model, J. 

Clim., 3(9), 941–963, doi:10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2, 1990. 

Giorgi, F.: Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model, J. 

Clim., 3(9), 941–963, doi:10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2, 1990. 

Grotch, S. L. and MacCracken, M. C.: The Use of General Circulation Models to Predict Regional Climatic Change, 

J. Clim., 4(3), 286–303, doi:10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2, 1991. 

Guo, J.L., Guo, S., Guo, J., Chen, H.: Prediction of Precipitation Change in Poyang Lake Basin. Journal of Yangtze 

River Scientific Research Institute, 8, 007, 2010. 

Han, X., Chen, X. and Feng, L.: Four decades of winter wetland changes in Poyang Lake based on Landsat 

observations between 1973 and 2013, Remote Sens. Environ., 156, 426–437, doi:10.1016/j.rse.2014.10.003, 2014. 

Hong X, Guo S, Guo J, et al. Projected changes of extreme precipitation characteristics in the Poyang Lake Basin 

based on statistical downscaling model. Journal of Water Resources Research, 3(6), 511-521, 



 

 28 / 39 

 

doi:10.12677/JWRR.2014.36063, 2014. 

Lenderink, G., Buishand, A. and Van Deursen, W.: Estimates of future discharges of the river Rhine using two 

scenario methodologies: Direct versus delta approach, Hydrol. Earth Syst. Sci., 11(3), 1145–1159, 

doi:10.5194/hess-11-1145-2007, 2007. 

Li, H., Sheffield, J. and Wood, E.: Bias correction of monthly precipitation and temperature fields from 

Intergovernmental Panel on Climate Change AR4 models using equidistant quantile, J. Geophys. Res., 115(10), 

D10101, doi:10.1029/2009JD012882, 2010. 

Li, Y. L., Tao, H., Yao, J. and Zhang, Q.: Application of a distributed catchment model to investigate hydrological 

impacts of climate change within Poyang Lake catchment (China), Hydrol. Res., 47(S1), 120–135, 

doi:10.2166/nh.2016.234, 2016. 

Liu, C. M., Liu, W. Bin, Fu, G. Bin and Ouyang, R. L.: A discussion of some aspects of statistical downscaling in 

climate impacts assessment, Shuikexue Jinzhan/Advances Water Sci., 23(3), 427–437, doi:CNKI: 

32.1309.P.20120501.1616.002, 2012. 

Lohmann, D., Rashke, E., Nijssen, B. and Lettenmaier, D. P.: Regional scale hydrology: I. Formulation of the VIC-

2L model coupled to a routing model, Hydrol. Sci. J., 43(1), 131–141, doi:10.1080/02626669809492107, 1998. 

Min, Q., Min, D.: Drought Change Characteristics and Drought Protection Countermeasures for Poyanghu Lake 

Basin, Journal of China Hydrology, 1, 84-88, 2010. 

Min, S. K., Zhang, X., Zwiers, F. W. and Hegerl, G. C.: Human contribution to more-intense precipitation extremes, 

Nature, 470(7334), 378–381, doi:10.1038/nature09763, 2011. 

Mullan, D., Chen, J. and Zhang, X. J.: Validation of non-stationary precipitation series for site-specific impact 

assessment: comparison of two statistical downscaling techniques, Clim. Dyn., 46(3–4), 967–986, 

doi:10.1007/s00382-015-2626-x, 2016. 

Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G. J., Lohmann, D. and Allen, M. R.: Anthropogenic 

greenhouse gas contribution to flood risk in England and Wales in autumn 2000, Nature, 470(7334), 382–385, 

doi:10.1038/nature09762, 2011. 

Prudhomme, C., Reynard, N. and Crooks, S.: Downscaling of global climate models for flood frequency analysis: 

Where are we now, Hydrol. Process., 16, 1137–1150, 2002. 

Putnam, A. E. and Broecker, W. S.: Human-induced changes in the distribution of rainfall, Sci. Adv., 3(5), 

doi:10.1126/sciadv.1600871, 2017. 

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N. and Rafaj, P.: RCP 8.5-

A scenario of comparatively high greenhouse gas emissions, Clim. Change, 109(1), 33–57, doi:10.1007/s10584-

011-0149-y, 2011. 

Segu, P. Q.: Comparison of three downscaling methods in simulating the impact of climate change on the 

hydrology of Mediterranean basins, J. Hydrol., 383, 111–124, 2010. 

Sibson, R: A brief description of natural neighbour interpolation. Interpreting multivariate data, 1981. 

Sperber, K. R., Annamalai, H., Kang, I. S., Kitoh, A., Moise, A., Turner, A., Wang, B. and Zhou, T.: The Asian summer 

monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dyn., 41(9–10), 

2711–2744, doi:10.1007/s00382-012-1607-6, 2013. 

Tan, Ruizhi: A Study on the Regional Energetics during Break, Transitional and Active Periods of the Southwest 

Monsoon in South East Asia, SCIENTIA ATMOSPHERICA SINICA, 1994.  

Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: An overview of CMIP5 and the experiment desing. American 

Meteorological Society, Bulletim Am. Meteorol. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1, 2012. 

Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-

change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, 

doi:10.1016/j.jhydrol.2012.05.052, 2012. 

Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-

stationary conditions, Hydrol. Earth Syst. Sci., 17(12), 5061–5077, doi:10.5194/hess-17-5061-2013, 2013. 

Toggweiler, J. and Key, R.: Ocean circulation: Thermohaline circulation, Encycl. Atmos. Sci., 4, 1549–1555., 

doi:10.1002/joc, 2001. 

Trenberth K E.: Changes in precipitation with climate change, Clim. Res., 47(1–2), 123–138, 2011. 



 

 29 / 39 

 

Wang H, Zhao G, Peng J, et al.: Precipitation characteristics over five major river systems of Poyang drainage 

areas in recent 50 years. Resources and Environment in the Yangtze Basin, 7, 615-619, 2009. 

Wang, J., Hong, Y., Li, L., Gourley, J. J., Khan, S. I., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Limaye, 

A. S., Korme, T. and Okello, L.: The coupled routing and excess storage (CREST) distributed hydrological model, 

Hydrol. Sci. J., 56(1), 84–98, doi:10.1080/02626667.2010.543087, 2011. 

Weisheimer, R. M. A. L. A. and Gutiérrez, J. M.: Can bias correction and statistical downscaling methods improve 

the skill of seasonal precipitation forecasts  ?, Clim. Dyn., 50(3), 1161–1176, doi:10.1007/s00382-017-3668-z, 

2018. 

Wilby, R. and Dawson, C. W.: SDSM 4.2-A decision support tool for the assessment of regional climate change 

impacts, 94, 2007. 

Wilks, D. S.: Use of stochastic weather generators for precipitation downscaling, Wiley Interdiscip. Rev. Clim. 

Chang., 1(6), 898–907, doi:10.1002/wcc.85, 2010. 

WU, G., LIU, Y., ZHAO, X., & YE, C.: Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using 

MOD16 products, Geographical Research, 32(4), 617-627, 2013. 

Wu, J., Zha, J. and Zhao, D.: Evaluating the effects of land use and cover change on the decrease of surface wind 

speed over China in recent 30 years using a statistical downscaling method, Clim. Dyn., 48(1–2), 131–149, 

doi:10.1007/s00382-016-3065-z, 2017. 

Wu, Q., Nie, Q., Zhou, R.: Analysis of wind energy resources reserves and characteristics in mountain area of 

Jiangxi province, Journal of Natural Resources, 28(9), 1605-1614, doi: 10.11849/zrzyxb.2013.09.015, 2013. 

Xu, C. Y.: From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches, Prog. 

Phys. Geogr., 23(2), 229–249, doi:10.1191/030913399667424608, 1999. 

Ye, X., Zhang, Q., Bai, L. and Hu, Q.: A modeling study of catchment discharge to Poyang Lake under future 

climate in China, Quat. Int., 244(2), 221–229, doi:10.1016/j.quaint.2010.07.004, 2011. 

Yuan, W.: Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations, Adv. Atmos. Sci., 

30(6), 1679–1694, doi:10.1007/s00376-013-2250-9, 2013. 

Yukimoto, S., Adachi, Y., Hosaka, M., et al.: A New Global Climate Model of the Meteorological Research Institute: 

MRI-CGCM3-Model Description and Basic Performance, J. Meteorol. Soc. Japan, 90A, 23–64, 

doi:10.2151/jmsj.2012-A02, 2012. 

Zhan, M., Yin, J. and Zhang, Y.: Analysis on characteristic of precipitation in Poyang Lake Basin from 1959 to 2008, 

Procedia Environ. Sci., 10, 1526–1533, doi:10.1016/j.proenv.2011.09.243, 2011. 

Zhang, L., Lu, J., Chen, X., Liang, D., Fu, X., Sauvage, S. and Perez, J. M. S.: Stream flow simulation and verification 

in ungauged zones by coupling hydrological and hydrodynamic models: A case study of the Poyang Lake 

ungauged zone, Hydrol. Earth Syst. Sci., 21(11), 5847–5861, doi:10.5194/hess-21-5847-2017, 2017. 

Zhang, Q., Ye, X. chun, Werner, A. D., Li, Y. liang, Yao, J., Li, X. hu and Xu, C. yu: An investigation of enhanced 

recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts, J. Hydrol., 517, 425–434, 

doi:10.1016/j.jhydrol.2014.05.051, 2014. 

Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C. and Min, S. K.: Attributing intensification of precipitation extremes 

to human influence, Geophys. Res. Lett., 40(19), 5252–5257, doi:10.1002/grl.51010, 2013. 

Zhao, Y., Zhu, J. and Xu, Y.: Establishment and assessment of the grid precipitation datasets in China for recent 

50 years, J. Meteorol. Sci., 34(4), 4–10, 2014. 

Zorita, E. and Von Storch, H.: The analog method as a simple statistical downscaling technique: Comparison with 

more complicated methods, J. Clim., 12, 2474–2489, doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2, 

1999. 



 

 30 / 39 

 

Figures 

   



 

 31 / 39 

 

 
Fig. 1. The topography and landforms (a), precipitation distribution and dry-wet stations (b), temperature change 

(d) and location of the Poyang Lake Basin (c). We sorted annual total precipitationsthe annually accumulated 

precipitation of the 15 stations, averaged over time from 1961 to 2005, of the 15 stations.. The 4 stations with 

the max or min mean annual precipitations are set as dry or wet stations, respectively. 
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 Fig. 2 Conceptual flow chart of the climate projection including up-samplingupsampling, relation construction 

and correction: The common framework of the STDDM (a) and test case base on the linear-scaling algorithm (b). 

The STDDM was used to projectedproject MRI-CGCM3 simulations from 1998 to 2100.  

 

 



 

 33 / 39 

 

 

 
Fig. 3. Validation of gridded meteorological data (GridObs) by using gauging stations observation: Precipitation 

(pcp; a,b,c and d) and temperature (tem; e,d,f and g) at meteorological station of Jian (a and e), Ganzhou (b and 

d), Zhangshu (c and f) and Lushan (d and g). 
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Fig. 4. Validation of the precipitation (pcp) (a) and temperature (b) projection beforeprojections by the STDDM 

(in black) and afterNo-STDDM (in red) bias correction.). Dots represent the monthly precipitations (or 

temperature) from January to December,temperatures), averaged over 20 years from 1986 to 2005. The dots 

contain monthly precipitations of the 15 stations. The solid lines represent linear regression which is the best fit 

thoughthrough all match-ups of the projections and observations. 

 

 

 

 

 
Fig. 45. Total variability of monthly precipitation from 1998 to 2100. Each column represents the data offor one year 

and each cell represents an accumulative precipitation of one month. The red and (blue) arrows indicate that the 

monthly precipitation experienced an increasing or (decreasing trends) trend over the 103 years, respectively. The 

asterisk demonstrates the significant trends with p<0.05. (a) Monthly precipitation in month order, referred to Spring 

(March to May), summer (June to August), autumn (September to November), and winter (December to next February) 

from top to bottom, respectively. (b) Monthly precipitation, sorted in the descending order for each year, where months 

are classified as extreme wet (EWet), normal wet (NWet), normal dry (NDry) and extreme dry (Edry) months from up 

to down. Therein, wet months (Wet) include extreme and normal wet ones while dry months (Dry) include extreme 

and normal dry ones. 
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Fig. 56. The change trends of changes in monthly precipitations of extreme wet (EWet) (a) and dry (EDry) (b) 

months from 1998 to 2100. The farfurther future period from 2081 to 2100 (Fur2081-2100) and baseline period 

from 1998 to 2017 (His1998-2017) are indicated by arrows. Frequencies of the Monthsmonths in extreme wet (c) 

or dry (d) months are calculated during the period from 1998 to 2100.  

 

 

 

 
Fig. 67. The temporal variation coefficients of the extreme month precipitations for each year over 1988 to 2100. 

The extreme months are composed of the extreme wet and dry months. The far future period from 2081 to 2100 

(Fur2081-2100) and baseline period from 1998 to 2017 (His1998-2017) are indicated by arrows.  
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Fig. 78. The changes ofin daily precipitation intensities and frequencies. (a) Precipitation intensities and 

frequencies for each year over 1998 to 2100, where each column represents a year and each row indicates a 

precipitation intensity. Daily precipitation intensities are categorized to 5 classes, Light Rain (LR), Median Rain 

(MR), Heavy Rain (HR), Rainstorm (S), and Extreme Rainstorm (ES) with daily precipitation inof 0.1-10, 10-25, 25-

50, 50-100 and >100 mm/day, respectively. The moderate rain includes LR and MR while the extreme rain is 

composed of HR, S, and ES. The cell represents an annual frequency of one precipitation intensity, with a unit of 

days. The red or (blue) arrows indicate that annual frequency of the precipitation intensity experienced an 

increasing or (decreasing) trends over the 103 years (from 1998 to 2100), respectively. The asterisk represents 

the significant trends with p<0.05. The far future period from 2081 to 2100 (Fur2081-2100) and baseline period 

from 1998 to 2017 (His1998-2017) are indicated by arrows. (b) Precipitation frequencies of LR, MR, HR, S, and ES 

for Fur2081-2100 and His1998-2017, respectively. (c) The change of the long-term data for annual total 

precipitation (totalPcp) and total rainy days. (Raindays). (d) The change of the long-term data for annual max 

daily precipitation (RMax) and annual max continuous dry days (CCD).  

 

 

file:///C:/Users/zl/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
file:///C:/Users/zl/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/result.html
file:///C:/Users/zl/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/


 

 37 / 39 

 

 
Fig. 89. The temporal variation coefficient of daily precipitations for each year over 1988 to 2100. The far future 

period from 2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 2017 (His1998-2017) are indicated 

by arrows. 

 

 
Fig. 910. The precipitation changes in the spatial pattern during the period from 1998 to 2100: average monthly 

precipitations of the wet season (April to July) during the historical period from 1998 to 2017 (a), 2041 to 2060 

(b), and 2081 to 2100 (c); average monthly precipitations of the wetdry season (AprilDecember to Julynext 

February) during the historical period from 1998 to 2017 (d), 2041 to 2060 (e), and 2081 to 2100 (f); change rate 

of monthly precipitation in wet (g) and dry (h) season from 1998 to 2100. As floods and droughts occur more 

frequently in extreme months, the precipitation in the analysis considered only the extreme wet (April-July) and 

dry (September-February) months (Fig. 5c and d). Besides, precipitation is dominated by southeast summer 

monsoon, which brings water vapor from the sea. The summer monsoon is frequent from the end of spring and 

stat of autumn, covering the wet months April to July. However, though as dry months, the autumn period from 
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September to November is affected by southeast summer monsoon (Tan et al., 1994) slightly because autumns 

are the transpiration periods of summer to winter. Therefore, winter (December-February) was represented as 

the dry season with poor rain; while April-July was represented as the wet season with abundant rain. 

 

 

 

 
Fig. 1011. The spatial (a) and spatiotemporal (b) variation coefficient for each year over 1988 to 2100. The 

farfurther future period from 2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 2017 (His1998-

2017) are indicated by arrows. 

 

 

 

 

 

 
Fig. 1112. The relationship between the precipitation indexesindex changes (dPcpIndex) and the temperature 

changesincrement (dT). The precipitation indexes include annual precipitation in the wet season (PcpWet) (a), 

annual precipitation in the dry season (PcpDry) (b), temporal variance coefficient of monthly precipitations 

(Temp-VC-of-MonPcp) (c), annual max daily precipitation (PMax) (d), annual max continualcontinuous dry days 

(CCD) (e), temporal variance coefficient of daily precipitations (Temp-VC-of-DayPcp) (f), spatial variance 

coefficient (Spatial-VC) (g), and spatiotemporal variance coefficient (Spatiotemporal-VC) (h). All the precipitation 
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index changes show significant correlations with temperature increases.increment. 

 

 


