Reply to Referee Comment 1

We are very grateful to the reviewer for reading the manuscript extremely carefully and forwarding the
valuable suggestions for improvement. Point-by-point responses to the reviewers’ comments are listed

below.

The reviewer’s comment 1: The authors use MRI-CGCM3 data to estimate the future precipitation
changes. Why do you choose MRI-CGCM3 data, not other Global Climate Models?

Authors’ response: Thank you very much for the suggestions.

Compared to the other CGMs of CMIP5, the MRI-CGCM3 (Meteorological Research Institute Coupled
Ocean-Atmosphere General Circulation Model3) performs better in simulating diurnal rainfall over
subtropical China (Yuan et al. 2013) and has the finest resolution of 1.121° x 1.125°, thus being applied
in Poyang Lake Watershed. And MRI-CGCM model is just a study case to examine the performance of
STDDM. Other single-model is also ok to test the applicability of STDDM.

The references:

Yuan, W.: Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations, Adv.
Atmos. Sci., 30(6), 1679-1694, doi:10.1007/s00376-013-2250-9, 2013.

The related content is in the manuscript in L114-120.

The reviewer’s comment 2: The authors use precipitation simulations in RCP8.5 scenario from MRI-
CGCMs to estimate precipitation changes under future climate warming. Why do you choose only
RCP8.5 scenario, instead of other scenarios?

Authors’ response: Thank you very much for the suggestions.

The future data includes simulations of the Representative Concentration Pathways (RCPs) of 8.5, 6.0,
4.5 and 2.6. Compared to the other RCPs, temperature increases the most in the RCP8.5 scenario, which
corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5 W/m2 and
temperature increment of 7.14 °C at the end of 21st century.

The research is to detect obvious changes of precipitations under climate warming. What we should do is



to display the significant change of precipitations in a scenario where temperature increment is large
enough. Precipitation changes can be detected the most obviously under the climate warming scenario
with temperature increasing the most. Compared to the other RCPs, the temperature in RCP8.5 scenario
increased the most. So we select future simulations in the RCP8.5 scenario.

The related content is in L.121-125.

The reviewer’s comment 3: The authors analyze the future precipitation changes in the Poyang Lake
watershed using a Global Climate Model. The Poyang Lake watershed is a small area; while the Global
Climate Model is coarse with resolution larger than 1°x 1< which is difficult to be applied in a local scale
such as the Poyang Lake watershed. The application could be reconsidered.

Authors’ response: Thank you very much for the suggestions.

The Poyang Lake watershed is one of the major grain producing areas of China. In the south of the
watershed, there is an internationally important habitat for migratory birds, abundant of biodiversity and
regarded as Natural Reserve. The watershed is also a vital part of Yangtze River Economic Belt. However,
floods and droughts occurs fluently in the Poyang Lake watershed, which cannot be immune to climate
warming. As an important economic and ecological zones, what the precipitations changes in
spatiotemporal distribution will be under the climate worming is a concern.

GCMs is a basic tool to analyze the future climate changes. As the resolution of GCMs is coarse unable
to applied in small scale such as Poyang Lake Watershed, we downscaled the climate variables in the
watershed with resolution of 20 km x 20 km. The uncertainty is < 4.9%, demonstrating that the
downscaled data can be applied in the Poyang Lake watershed.

The related content is in L68-76, L29-33 and L254-256 .

The reviewer’s comment 4: In the methodology section, there is some confusions. What is the
relationship between the STDDM and linear-scale algorithm? That should be explained more clearly.
Authors’ response: Thank you very much for the suggestions.

STDDM is a logical frame, including three parts: upsampling GCMs simulations, constructing mapping
relationships between the GCMs simulations and local observations, and correcting the GCMs



simulations. In the part 2 constructing relations, a transform function were built between the simulations
and the local observations to transform simulations to no-bias data. The transform function could be any
bias corrected model, including linear scaling, local intensity scaling, power transformation, distribution
mapping models (Teutschbein et al. 2012) and so on. The transform model can be linear or no-linear
regressions model. That is the relationship between the simulations and observations. In the study, the
linear scaling algorithm was used as a transform function (also called as bias-corrected model), as a case
study.
The references:
Teutschbein C, Seibert J. Bias correction of regional climate model simulations for hydrological climate-
change impact studies: Review and evaluation of different methods [J]. Journal of Hydrology, 2012, 456:
12-29.
The revised paragraph of manuscript (Line 166-167):

Before the revises:
The bias correction was processed by using the translation function between match-ups of the up-sampled
simulation and observation, which is the relations of the match-ups.

After the revises:
The bias correction was processed by the transform function between match-ups of the upsampled
simulation and observations, which represents the mapping relationship between the match-ups. The
transform function could be any bias corrected model, including linear scaling, local intensity scaling,
power transformation, distribution mapping models (Teutschbein et al. 2012) and other linear or nonlinear

regression models.

The reviewer’s comment 5: By STDDM, you calculate the precipitation of each grid separately and get
the downscaled precipitations. The downscaled precipitation is grid data. There may be some outstanding
grid in which the precipitation is far different from the adjacent grids. According to first law of geography,
near things are more related than distant things. So | suggest that the downscaled precipitation should be
smoothed by smoothing filter.

Authors’ response: Thank you very much for the suggestions.
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The downscaled climate data is calculated based on the relationships between the up-sampled simulations
and observations. The up-sampled simulations and observations are grid data. The relationships are the
transform function between the match-ups of the simulation and observation. The transform function is
constructed separately for match-ups in different grids. The grid data, including the simulations and
observations, follows the first law of geography that the climate variable value is more related than distant
grids. So the transform function based on the match-ups in nearer grids is more related than distant grids.
Consequently, the climate variables calculated by the transform function should also follows the first low
of geography. Besides, the downscaled results (precipitations in Fig. 9) shows almost no outstanding grid,
which demonstrates that the results follows the first low of geography.

On the contrary, smoothing may lead to information missing of the climate variables.

So | think there could be no need to do smoothing.

The reviewer’s comment 6: In 4.1 section, the validation period is from 1986 to 2005. However the
observation data is from 1961 to 2005. Why not validate the downscaled precipitation in the same period
from 1961 to 2005?

Authors’ response: Thank you very much for the suggestions.

To avoid model overfitting, there should be calibrations and validations. In the study, the calibration and
validation periods are from 1961 to 1985 and 1986 to 2005, separately. The downscaled model is
constructed based on the data in calibration period. We should also need to know whether the model could
be applied in the data of different time. So the validation period is different from the calibrations.

The model could be more correctly base on more data. So at last, we used all data from 1961 to 2005 to
reconstruct the downscaling model.

The related content is in Line 170-172 and Line 227-230.

The reviewer’s comment 7: Linel199: The sentence missed a comma.
Authors’ response: Thank you very much for the suggestions.

It has been revised in the manuscript.



The reviewer’s comment 8: There are 69 references. Please provide the reference number for each
reference. Is every reference useful to the research? If not, please delete some.
Authors’ response: Thank you very much for the suggestions.

There is no need to add references number in the manuscript. All the references are useful to the study.

The reviewer’s comment 9: Line197-200: Monthly precipitations, > 75% percentile of the 12 monthly
precipitations, were classified as the extreme wet monthly precipitations for each year of the 103 years;
monthly precipitations, < 25% percentile were classified as the extreme dry monthly precipitation. The
monthly precipitation of 25%-50% and 50%-75% quantiles are classified as normal dry and wet monthly
precipitations. Why do the author classify the monthly precipitation into 4 categories, not 5 or 7? Why
choose 25%, 50%, 50% and 75% quantiles as the classified boundary?

Authors’ response: Thank you very much for the suggestions.

As the extreme wet and dry months cause floods and droughts more frequently, we pay more attention to
the precipitations changes in extreme wet or dry months. So the months are differentiated as extreme and
normal ones. The precipitation changes in wet and dry months also could show different condition, so the
precipitation months in dry and wet should be separated. Here, we differentiate the months as the extreme
wet, extreme dry, normal wet and normal dry ones. As for the classified boundary, it is more flexible.
Several tries showed that 25%, 50%, 50% and 75% quantiles is appropriate classified standard. However,
other classified standard is also OK, only if the precipitation changes of extreme wet, extreme dry, normal
wet and normal dry months could be differentiated.
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Reply to Referee Comment 2

We are very grateful to the reviewer for reading the manuscript extremely carefully and forwarding the
valuable suggestions for improvement. Point-by-point responses to the reviewers’ comments are listed

below.

1. General comments

Reviewer’s comment: However, the results, conclusions, and discussion presented in the current
manuscript are not clear, concise, and well structured.

Authors’ response: Thank you very much for the suggestion.

As you suggested, the results, conclusions, and discussion have been revised in the manuscript.

2. Specific Comments

Reviewer’s comment 1: Assemble projection based on multi-GCMs has been widely used for regional
future climate change scenarios, which is referred as the mainstream and popular method in the
downscaling technique. However, only one GCM MRI-CGCM3 was selected in this study, based on the
conclusions from Yuan et al. (2013) indicating a better performance in simulating diurnal rainfall over
subtropical China, which is not enough for performance evaluation of multi-GCMs from CMIP5 in the
specific Poyang Lake basin.

Authors’ response: Thank you very much for the suggestion.

The research is mainly aimed to propose a spatiotemporal distributed downscaling method which could
be applied to every single-GCM model. The MRI-CGCM3 is a study case to examine the model
performance or availability of STDDM, as well as Poyang Lake which is taken as a study area. The
validation is operated in several aspects. For the historical data, simulations from the GCM-downscaled
result by STDDM and observations from meteorological stations were compared (Section 4.1). For the
future data, we compared the future period (2081-2100) with the baseline period (1998-2017). The intra-
annual and inner-annual variability were analyzed. The precipitation changes were also explained by
climate warming in section 4.4. The explanation suggests the downscaling method is reasonable and
STTDM could be applied in the basin-scale region based on a GCM successfully. The examination on a
test GCM is necessary before STDDM could be used in other GCMs or multi-GCMs.

Indeed assemble projection is a mean stream. The model ensemble has a better model performance than
the single-model assessed by R (correlation coefficient) and RMSE (Root-Mean-Square Error). However,
the model ensemble is burdened with a smaller standard deviation (SD) than the single-models and
observations (Fig 1). Except for R and RMSE, SD is also an important model evaluation index. The small
SD value means small fluctuation, which demonstrates the fluctuation signal of original models (the

signal-models) is not kept completely after being assembled. The SD of multi-GCMs is usually smaller
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than original models (Fig 1). The monthly and daily variation are weakened in model ensembles. The
ensemble can hardly analyze the seasonal or daily extreme event change exactly, taking the extreme dry
(or wet) months and the max daily precipitation for example. In the study, we analyze the seasonal
variations, as well as the change of extreme event intensities and frequencies. Using multi-GCMs can
hardly reflect the application accuracy of STDDM precisely, in extreme climate analysis based on
monthly and daily data. So a single-model should be selected to test the performance of STDDM.

A specific single-model could be used to analyze the seasonal change exactly, especially the extreme
climate event change. As MRI-CGCM3 has the best spatial resolution among the CMIP5 GCMs, and a
better performance in simulating diurnal rainfall over subtropical China, we took MRI-CGCM3 as a test
case to apply in the Poyang Lake Basin and examine whether the STDDM can be used to produce
reasonable monthly and daily data, especially the extreme climate change.

The title Variations of future precipitations in Poyang Lake Watershed under global warming using a
spatiotemporally distributed downscaling model might confuse you. So it will be revised as Precipitation
projection using a spatiotemporal distributed method: a case study in Poyang Lake Basin based on MRI-
CGCM3. And the content will be revised corresponding to the revised title.

In summary, using multi-GCMs instead of MRI-CGCM3 in the study could be reconsidered.
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Figure 1. The Taylor figures (Taylor et al.,2001) of model evaluation. Following Taylor et al. (2001), the
radial distance from the origin denotes the standard deviation of each data set (the primary observations
are shown as a red line) and the angular distance from the horizontal denotes the correlation coefficient r
between each model data set and the primary observations. The centered RMS error (RMSE’) is indicated
by the distance to the intersection of the green dashed line and the horizontal axis with units and magnitude
indicated by the radial axis. The model ensemble is constructed by a genetic algorithm. The genetic
algorithm is used to calculate the best weigh for each single-model, assuming RMSE” as the cost function.
The model ensemble is the weighted sum of each single-model. The other single-models include

ACCESS1-0, ACCESS1-3, BCC-CSM1-1-m, BCC-CSM1-1, BNU-ESM, CanESM2, CCSM4, CMCC-
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CMS, CMCC-CM, CNRM-CMS5, FGOALS-g2, GISS-E2-H-CC, GISS-E2-H, GISS-E2-R-CC, GISS-E2-
R, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-
CM5B-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROCS5, MPI-ESM-LR, MPI-ESM-MR, MRI-
CGCM3 and NorESMI-M. The model description can be  obtained  from
https://pemdi.linl.gov/mips/cmip5/availability. html.
The references:
Taylor K E. Summarizing multiple aspects of model performance in a single diagram [J]. Journal of
Geophysical Research: Atmospheres, 2001, 106(D7): 7183-7192.
The main revised paragraph of manuscript (Line 1-2):

Before the revises:
Variations of future precipitations in Poyang Lake Watershed under the global warming using a
spatiotemporally distributed downscaling model

After the revises:
Precipitation projections using a spatiotemporal distributed method: a case study in the Poyang Lake
Watershed based on MRI-CGCM3

Reviewer’s comment 2: In order to detect the sensitivity of precipitation change under global climate
warming, different RCP scenarios should be selected to do comparative analysis. However, only RCP 8.5
was selected to generate future climate change scenarios in the current manuscript, which is insufficient
to obtain a scientific and convinced projection for the study area.

Authors’ response: Thank you very much for the suggestion.

The future data includes simulations of the Representative Concentration Pathways (RCPs) of 8.5, 6.0,
4.5 and 2.6. Compared to the other RCPs, temperature increases the most in the RCP8.5 scenario, which
corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5 W/m2 and
temperature increase of 7.14 °C at the end of 21st century.

The research is to detect remarkable precipitation changes under climate warming, which should be
pronounced enough to be acknowledged by us. To get the obvious precipitation changes, what we should
do is to obtain the future precipitation in a high-emission scenario where the temperature increment is
large enough. Compared to the other RCPs, the temperature increment in RCP8.5 scenario is the largest.
So we select future simulations in the RCP8.5 scenario.

Although it is valuable to detect the sensitivity of precipitation change, the sensitivity analysis is not the
purpose of the study. And there are many climate change related researches (Gourdji et al.,2013; Sillmann
etal.,2013; De etal., 2014; Cai et al.,2017) only use the high-emissions scenario to investigate the impacts
of climate warming. The result from RCP8.5 scenario is the most remarkable, from which we can get the
obvious change and know what will happen when climate warming gets worse. The study is to investigate

the remarkable change of precipitation under climate warming.
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So it could be reasonable to only select RCP85 scenario in the experiment to detect the significant changes

of precipitation.

The references:
De Lavergne C, Palter J B, Galbraith E D, et al. Cessation of deep convection in the open Southern Ocean
under anthropogenic climate change [J]. Nature Climate Change, 2014, 4(4): 278.
Cai W, Li K, Liao H, et al. Weather conditions conducive to Beijing severe haze more frequent under
climate change[J]. Nature Climate Change, 2017, 7(4): 257.
Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the
reproductive period: Historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013).
Sillmann J, Kharin V'V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multi-model ensemble:
Part 2. Future climate projections|[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2473-
2493.
The main revised in the manuscript (Line 122-123):

Before the revises:
Thus, to detect more sensitive precipitation change under climate warming, we selected future simulations
in the RCP8.5 scenario.

After the revises:
The research is to detect the remarkable precipitation changes under climate warming; thus we selected

future simulations in the RCP8.5 scenario.

Reviewer’s comment 3: Too many time periods are defined in the manuscript corresponding to different
years, such as baseline and future periods, historical, historical extent and future, etc., which would make
readers confused and difficult to understand.

Authors’ response: Thank you very much for the suggestion.

Cmip5 GCMs include historical (1850-2005), historical extent (2006-2012), RCPs (2005-2100 or 2005-
2300) scenarios (Friedlingstein et al., 2008). At the WGCM meeting in October 2011, there was
agreement that it would be useful to extend the CMIPS5 historical runs to near-present 2012, rather than
ending them in 2005 (Friedlingstein et al., 2008). So another scenario (historical extension) from 2006 to
2012 was constructed to extend the historical data to 2012. In the study, we merge the historical (from
1961 to 2005), historical extent (from 2006 to 2012) and RCP85 (from 2013 to 2100) data, as merged
data (1961-2100). From the merged data, simulations from 1998 to 2017 were selected as the baseline
period data, and simulations from 2081 to 2100 were selected as the future period data.

The references:

Friedlingstein OB, Webb M, Gregory J. A Summary of the CMIP5 Experiment Design [J]. 2008.

The main revised paragraph of manuscript (Line 117-134):
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Before the revises:

From MRI-CGCM3, we select historical (1961 to 2005), historical extent (2006 to 2012) and future (2006
to 2100) precipitation and temperature simulations. The future data includes simulations of the
Representative Concentration Pathways (RCPs) of 8.5,6, 4.5 and 2.6. Compared to the other RCPs, in the
RCP8.5 scenario temperature increases the most, which is corresponds to a highest greenhouse gas
emission, leading to a radiative forcing of 8.5 W/m2 and temperature increase of 7.14 °C at the end of
21st century (Taylor et al. 2012). Thus, to detect more sensitive precipitation change under climate
warming, we selected future simulations in the RCP8.5 scenario.

The local grid observations (Zhao et al., 2014) with a resolution of 0.5°x0.5° are downloaded from
the China Meteorological Data Service Center (http://data.cma.cn/). The local grid observations and MRI-
CGCM3 historical simulations were used to construct relationship to correct the MRI-CGCM3 data.
China metrology point data were also downscaled and used to validate the bias-corrected MRI-CGCM3
simulations. To investigate the relationship between precipitation changes and the temperature increase,
we extract not only temperature data, but also precipitations.

To quantitatively analyse the precipitation changes under climate warming in 21st century, we
compared precipitation between the baseline and future period. As annual precipitation observations have
main oscillation periods of quasi-20 years (Zhan et al. 2011), we selected three 20 years, the baseline
period from 1998 to 2017, the near future period from 2041 to 2060 and the far future period from 2081
to 2100. We merge historical simulations from 1998 to 2005, and historical extent simulations from 2006
to 2012, and RCP8.5 simulations from 2013 to 2017, which is the nearest 20 years and thus selected as
the baseline period. The data in near and far future period are derived from simulations in RCP8.5
scenarios.

After the revises:

Thus we select MRI-CGCM3 data applied in Poyang Lake Watershed to test the performance of the
STDDM.

The future data of MRI-CGCM3 includes simulations of the Representative Concentration Pathways
(RCPs) of 8.5,6, 4.5 and 2.6. Compared to the other RCPs, in the RCP8.5 scenario temperature increases
the most, which is corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5
W/m2 and temperature increase of 7.14 °C at the end of 21st century (Taylor et al. 2012). The research is
to detect the remarkable precipitation changes under climate warming; thus we selected future simulations
in the RCP8.5 scenario. In the study, we merge the historical (from 1961 to 2005), historical extent (from
2006 to 2012) and RCP8S5 (from 2013 to 2100) data, as the merged data (1961-2100). To quantitatively
analyze the precipitation changes under climate warming in 21st century, we compared precipitation
between the baseline and future period. As annual precipitation observations have main oscillation periods
of quasi-20 years (Zhan et al. 2011), we selected three 20 years from the merged data. From the merged

data, simulations from 1998 to 2017 were selected as the baseline period data, simulations from 2041 to
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2060 were selected as the near future period data, and simulations from 2081 to 2100 were selected as the
further future period data.

The local grid observations (Zhao et al., 2014) with a resolution of 0.5°%0.5° are downloaded from the
China Meteorological Data Service Center (http://data.cma.cn/). The local grid observations and MRI-
CGCMS3 historical simulations were used to construct relationship to correct the GCM data. China
metrology point data were also downscaled and used to validate the grid observations and the downscaled
GCM simulations. To investigate the relationship between precipitation changes and the temperature

increment, we extract not only precipitations, but also temperature.

Reviewer’s comment 4: It will be better to add an evaluation section for the gridded meteorological data
by using gauging stations observation.

Authors’ response: Thank you very much for the suggestion.

The evaluation for the gridded meteorological data has be added in the manuscript.

The following was added in the manuscript (Line 238-239):

Validation about the China meteorological grid observations should be performed, as well as the STDDM.
As the STDDM introduce the China meteorological grid observations and the grid data is not the direct
in-suit data, validation about the gridded data is necessary. The determination coefficient (R2), root mean
square error (RMSE) and PBias (percent bias) were used to examine the model performance.

The following was added after Line 570:
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Fig. 3. Validation of gridded meteorological data (GridObs) by using gauging stations observation:
Precipitation (pcp; a,b,c and d) and temperature (tem; e,d,f and g) at meteorological station of Jian (a and

e), Ganzhou (b and d), Zhangshu (c and f) and Lushan (d and g).

Reviewer’s comment S5: English writing is poor in the current manuscript, which needs to be polished
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by a native English-speaking editor. Examples of grammar errors are as follows:

Line 27: threating to — threatening

Line 37: constructed — constructs

Line 43: in the station scale — at the station scale, many similar errors in other paragraphs.

Line 45: as underlays of the local region is complex — as underlays of local region are complex

Line 57: project — projects

Line 69: Precipitation redistributions under global warming has — Precipitation redistributions under
global warming have

Line 77: includes — include

Line 84: metrological — meteorological, many similar errors in other sentences. Figure 2, 1(a):
observitions — observations

Authors’ response: Thank you very much for the language editing.

The writing errors has been revised in the manuscript.
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The Revised Manuscript

Variations—offutureprecipitationsPrecipitation projections using a

spatiotemporal distributed method: a case study in the Poyang Lake

Watershed under—the—global-warming—using—a—spatictemporally
distributed-downscaling-meodelbased on MRI-CGCM3

Ling Zhang !, Xiaoling Chen''2, Jianzhong Lu' ", Dong Liang*

IState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan
430079, China

2Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University,
Nanchang 330022, China

* Correspondence to: Jianzhong Lu (lujzhong@whu.edu.cn)

Abstract. Traditional statistiestatistical downscaling methods are preeessedperformed on independent stations;
whieh—tgreresstation measurements and ignore spatial correlations and spatiotemporal heterogeneity. In this
study, a spatiotemporally distributed downscaling model (STDDM) was developed. FreUsing this method, we
interpolated grid observations and GEMsGCM (Global Climate MedelsModel) simulations to
eentiruatcontinuously finer grids: and then created mapping relationship_between the observations and the
simulations, respectively for each grid at each time. We applied the STDDM #tato precipitation downscaling efin
Poyang Lake Watershed using MRI-CGCM3 (Meteorological Research Institute Coupled Ocean-Atmosphere
General Circulation Model3), with an aeeeptantaccepted uncertainty of < 4.9%—and%; then created future
precipitation changes from 1998 to 2100 (1998-2012 in the historical and 2013-2100 in the RCP8.5 scenario).
The precipitation changes shewed—trereastrg—increased heterogeneities in temporal and spatial distribution
under the—future climate warming. In theterms of temporal patternpatterns, the wet season precipitation
tereaseebwith-ehangerate (CR =733 mm/A0a-{11-66-mmAK)-become wetter while the dry season preeipitations
deereased—with—CR——0:92—mm/Ba—{—431—mmAbecome drier. The frequency of extreme precipitation
frequeney—and—intensity—were—enhaneced—with—ER=0:49increased while that of the moderate precipitation
decreased. Total precipitation increased while rain days#l@a—aad—?—me‘eLayJ’#}Ga—respeeﬂveJy—m— decreased.

The max_continuous dry days and the max daily precipitation both increased. In terms of spatial pattern;

i A v verpatterns, the watershed—and-the-wet-or
dry area exhibited a wetter-erdrier condition +rduring the wet-or-dry season; the wet area exhibited a wetter
condition during the wet season. Analysis with temperature trereasesincrement showed precipitation changes
appearedcan be significantly fexplained by climate warming, with p < 0.05 and R = 0.56)cerrelatedto-chmate
warmitng=. The precipitation changes and explains indicated the downscaling method is reasonable and the
STDDM could be applied in the basin-scale region based on a GCM successfully. The results implicated thean
increasing risk of flood-droughts under global warming-ard, which were a reference for water balance analysis
and water resource planting._
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1 Introduction

Global warming has caused preeipitation—redistrbution—ta-temporal and spatial distrbutien—redistributions of
precipitation (Frei et al. 1998; Trenberth et al. 2011 }+nereastng) and has increased the frequency and intensity of
floods and droughts, thas-seriously threating-te social systems and ecosystems (Pall et al, 2000; Dai, 2013). To
the fragile ecological and living ervirermentenvironments, what the future hydrological situation will be under
future global warming is a crucial question to avoid or reduce damages from climate warming.

AsaGlobal Climate Models (GCMs) are basic teehntools for assessing the effects of future climate change effeets;
Glebal-ClimateMedels{GEMs)-and provide an initial source effor future climates (Xu, 1999). However, GCMs
rematrhave coarse with-global resolutions fargerthanranging from 1°x1°-which-is—urable to apply4°x4°, and
are not applicable in regional seatescales, such as watersheds. Downscaling algorithms have been developed to
link the global-scale GCMs outputs and the regional-scale climate variables, including dynamic (Giorgi, 1990;
Teutschbein and Seibert, 2012) and statistic (Wilby et al., 2007; Chu et al., 2010) models. The dynamic method
employs regional climate models (RCMs) that are nested inside GCMs based on_the complex physics of
atmospheric processes and involves high computational costs. Limited by an insufficient understanding of the
physical mechanism and expensively computing resources, the dynamic downscaling model cannot easily satisfy
small and mid-size region as the Poyang Lake BasirWatershed. Unlike dynamic downscaling-medels, statistic
downscaling eenstruetedconstructs an empirical relationship between climate variables of the global-scale
eutput-and local-scale-elimate-variables-, with inexpensive computations. BerefittirgBenefiting from inexpensive
computations and easy implementations, downscaling methods have been widely used, including regression
models (Labraga et al. 2010, Quintana et al. 2010; Zorita et al. 1999), weather typing schemes (Boéj et al. 2007;
ENKE et al. 2005) and weather generators (Mullan et al., 2016; Baigorria and Jones et al., 2011).

In these researehesstudies, statistical downscaling methods have been developed based on the relationship
between the global-scale simulations and the local station-scale observations--the-station-seate-. The methods
are preeessedconducted on each station, independently. Thus, the specific downscaling relationship and
downscaled climate variable; are both independent and discrete #at the station scale, instead of being spatially
continuous ta—grid—seate—withat a firer-fine-resolution_grid-scale. However, as underlays of local region isare
complex with different topographies, land covers, and clouds coverage, the downscaling relationships and
downscaled climate variables at discrete stations eantcannot clearly express the spatial heterogeneity-elearly,
compared to the spatially continuous data. Partiedtarly—fer—the—For ungauged areaareas without statiens
eeveredstation coverage, it is inviable to getobtain high-quality ef~downscaling relationships and downscaled
local elmatesclimate variables. Moreover, the downscaled local climate results and downscaling relatienship
tarelationships at the station scale; are difficult to show the spatial correlation; whereashowever, results from the
downscaling—whieh—s, processed on spatially continuous data, such as finer grids, can naturally show spatial
relattenship-raturathsrelationships. Additionally, spatially continuous data can be directly used in thea spatially
distributed hydrological model, such as Crest (Wang et al., 2011), VIC (Lohmann et al. 1998), and MIKE SHE (DH],
2014), which is the feeus-and-frontierforefront of international hydrological scientific research (Beven et al. 1990).
Besides-In addition, spatially continuous downscaled climate data-in-spatialy-contirtodspattera can be easily
integrated with remote sensing data of geologies, topographies, soils, or land covers. In fact, spatially continuous
data is widely used as-in the rapidly developing field of remote sensing-techrotogy—develops—+apiehy, which
benefits hydrological models by providing a data source (Engman et al,, 1991). Therefore, the downscaling
method processed on spatially continuous data is of vital importance. Fhe-spatiatdistributed-For the continuous
space covered with complex underlays, statistical downscaling methed-which-ereatesmethods should take spatial
heterogeneity into consideration, thus creating downscaling relationship—and—prefect—ehmates—relationships
spatially distributed at spatialspatially continuous scalersheuld-be-takertrtoconsideration:.

In addition to the-spatial heterogeneity, the relationship between the climate variables efat the global-scale and
local-scale also shows differentin-temporal heterogeneity ef-erein a single year, as-deminatoraffectingbecause
the dominators that affect climate vares—r—different-vary through time (eg-e.g., seasons or Menthsmonths).
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Therefore, the—temporala  temporally distributed downscaling method, which creates different
refattenshiprelationships at different timetimes, should be taken into consideration. However, many downscaling
methods eidrttakehave not taken temporal heterogeneity into consideration. For each reiviguat-observed site,
the established downscaling method was a global standard for the whole time-sertes—eata, instead of being
different in separate seasons or Menthsmonths (Labraga 2010; Wu et al., 2017; Sachindra et al., 2018). In the
study, the-temporally distributed downscaling esutdseis considered. Combining thetemporal heterogeneity and
spatial heterogeneity in—timre—and continual space, a climate downscaling model based on spattetermperala
spatiotemporally distributed framework;a-spatietemperat (a spatiotemporally distributed downscaling method;),
should be proposed to project future climate eharges-+trat a regional scale.
SensttiveThe Poyang Lake Watershed is sensitive to climate changes in the East Asian monsoon region—Peyang
take—Watershed and therefore is not immune to global warming. Preeiptation—redistributions—ander
Redistributions of precipitation due to global warming has-eaused-+rere-have resulted in an increased occurrence
of extreme hydrological events, with-mantfestation-ef-thean enhanced flood frequency and intensity (Wang et
al., 2009; Guo et al., 2006), a significant decline efin lake level and inundation area (Feng et al. 2012; Zhang et al.
2014), which peses—a-threatthreatened to-the fragile wetland and forest eeesystemecosystems (Han et al. 2015,
Dyderski et al. 2018), economic developments and peepte’shuman lives (Ye et al., 2011).
However, the Poyang Lake Wetland ecosystem; is an internationally important habitat for migratory birds,
abundant of biodiversity and regarded as a Natural Reserve:. In addition, the watershed is a commercial grain
production area; and an important part of the Yangtze River Economic Belt. As a-this region is economically and
ecologically significant-ecoremic—and-ecosystem—region, investigating the future precipitation changes in the
watershed is ergtalcrucial for preventionprotection from climate damages. Previous studies of future
precipitation changes in the Poyang Lake Watershed treladesinclude temporal and special patternpatterns.
Precipitation changes in temporal pattern, focused on intensity and frequency of precipitation extremes (Hong
et al. 2014; Wang et al. 2017), as well as the annual or quarterly total preetpitationsprecipitation (Guo et al., 2010;
Guo et al., 2008; Li et al., 2016). In spatial pattern, precipitation change analysis isbased-en-the-covers five sub—
bastassubbasins (Xinjiang, Raohe, Xiushui, Ganjiang and Fuhe sab—bastassubbasins) (Guo, et al. 2010; Hong, et
al. 2014%,) and 13 discrete metretegicatmeteorological stations (Li et al. 2016), or 7 coarse grids (Guo, et al. 2008).
HittleThere has been little research eeneerrs-en-concerning the spatial-temporal distribution withof precipitation
in a continual firerfine-resolution grids space—retto-renton-thepessible. In addition, a driving force analysis
ferof precipitation changes related to tereastrg-temperatures increment has not been conducted.
In the study, taking Poyang Lake Watershed as a test case, we projected future precipitations based on the
spatiotempeoralspatiotemporally distributed downscaling method (STDDM), using MRI-GCM3 simulations and
metrologiealmeteorological observations:-with. The objects are as the following-speeifie-objeets: (1) develeprgto
develop a spatietemperatspatiotemporally distributed downscaling method (STDDM)yHerspatiatly—eentinaal-),

projecting future climate variables prejeetions—in spatially continual scale; and (2) deeumenting—precipitation
ehanges+r-to document temporal and spatial patterarchanges in precipitation for the Poyang Lake Watershed in

the 2%th21st century; and_the correlations between these precipitation changes and temperature
trereastrgincrement. Future precipitation changes can provide basic hydrological information necessary to-get a
better understanding of water reseuree-volumes and flood-droughts risks—whieh; furtherly benefits a-setentifie
stghtt-wetland and forest ecosystem conservation; and aids decision--making in development, utilization, and
planning of water resources.

2 Study area and datasets
2.1 Study Area

Poyang Lake Basin (24°28'-30°05" N and 113°33'-118°29'E) is located in the southeast of China, connected with

Yangtze River in the north (Fig. 1). Within the southeast subtropical monsoon zone, the annual average

temperature of the watershed is 17.5C°. The mean annual precipitation is 36381638 mm, with 192 rainy days

(daily precipitation = 0.1 mm/day) and 173 rain-free days (daily precipitation < 0.1 mm/day). The rainy season
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lasts from April to July, occupying about 70% of the annual total amount. Inter or intra annual precipitation
variations are dominated by the southeast and southwest monsoon, mainly in summer. With a coverage area of
162000 km’, the diversities of topographies also affeeteffect on precipitation changes. The topography varies
from high mountains of Luoxiao, Wuyi, and Nanling in east, south and west, with the elevation reaching to the
2200m, to the depressing of Ji Tai or Ganzhou Depressing in the south or center and alluvial plains of Poyang
Lake Plain in the north, with the elevation reaching to <50 m (Fig—1a). The different topography and location
generate the uneven distribution ratr-of precipitation in space—wth and produce less rain in the depressing,
plains, and hills area ferbecause of the leeward sloop, but more orographic rain in the mountain area beeausefor
the reason of the windward sloop (Fig—1b) (Mingjin et al. 2011). To anakyseanalyze precipitation changes in the
rich- or —poor-rain area, the metretegicatmeteorological stations were classified into dry and wet stations (Fig.
1la and b), according to the annual precipitation amount. We sorted the annual precipitation averaged over the
time from 1961 to 2005, of the 15 stations. The 4four stations with the max or min mean annual precipitations
are set as dry or wet stations, indicating the dry or wet area; (Fig.1b), respectively.

In the past 50 years of the Poyang Lake Watershed, annual mean temperature indeed experiences a significant
(p<0.02) increase with a change rate of 0.15 C°/10a (Fig.1d), based on the metrelogicatmeteorological
observations from 1961 to 2005. Under the temperature increasing condition, the precipitation in temporal and
spatial distribution becomes more uneven (Zhan et al. 2011), which increases the risk of floods and droughts (Li
et al. 2016; Ye et al. 2011).

2.2 Data sets

Global Climate Models (GCMs) are widely used tools to project future climate change. GCMs from the Coupled
Model Intercomparison Project Phase Five (CMIP5) performs better than other CMIPs such as CMIP3 and CMIP4,
with generally finer resolution and more improved physical mechanism (Sperber, 2013; Taylor et al. 2012).
Compared to the other CGMs of CMIP5, the MRI-CGCM3 (Meteorological Research Institute Coupled Ocean-
Atmosphere General Circulation Model3, Yukimoto et al. 2012) performs better in simulating diurnal rainfall over
subtropical China (Yuan et al. 2013) and has the finest resolution of 1.121° x 1.125°-+thus-betrg. Thus we select

I\/IRI CGCI\/I3 data apphed in Poyang Lake Watershed—FFem—MRl—GGGM%}—mm—seleet—ms%eﬂeaJ—&%% to 2605)
tons—test the

performance of the STDDM.

The future data_of MRI-CGCM3 includes simulations of the Representative Concentration Pathways (RCPs) of
8.5,6, 4.5 and 2.6. Compared to the other RCPs, in the RCP8.5 scenario temperature increases the most, which is
corresponds to a highest greenhouse gas emission, leading to a radiative forcing of 8.5 W/m’ and temperature
increase of 7.14 °C at the end of 21st century (Taylor et al. 2012). The research is to detect the remarkable
precipitation changes under climate warming; thus we selected future simulations in the RCP8.5 scenario. In the
study, we merge the historical (from 1961 to 2005), historical extent (from 2006 to 2012) and RCP85 (from 2013
to 2100) data, as the merged data (1961-2100). To quantitatively analyze the precipitation changes under climate
warming in the 21st century, we compared precipitation between the baseline and future period. As annual
preC|p|tat|on observatlons have main oscﬂlatlon perlods of quasi-20 years (Zhan et al 291—2%4!%&5—&9—%%%&

2011), we selected three 20 years from the merged data. From the merged data, simulations from 1998 to 2017

were selected as the baseline period data, simulations from 2041 to 2060 were selected as the near future period
data, and simulations from 2081 to 2100 were selected as the further future period data.

The local grid observations (Zhao et al.,, 2014) with a resolution of 0.5°x0.5° are downloaded from the China
Meteorological Data Service Center (http.//data.cma.cn/). The local grid observations and MRI-CGCM3 historical
simulations were used to construct a relationship to correct the MRHEGEM3GCM data. China metrology point
data were also downscaled and used to validate the bias—eorrectedMRI-EGEMIgrid observations and the
downscaled GCM simulations. To investigate the relationship between precipitation changes and the temperature

trereaseincrement, we extract not onIy %empe%a%u-lce—eta%a—bu{—alsefprempltatmns but also temperature.




3 Methodology

3.1 Future elimatesclimate projection based on the spatiotemporally distributed downscaling model

Considering the spatiotemporal heterogeneity of preeipttationstnprecipitation at the regional scale such as the
Poyang Lake Watershed, we developed a spatiotemporally distributed downscaling model (STDDM), which is a
logical framework based on a specific mathematic algorithm. The mathematic algorithm was used to create a
mapping relationship between GEMsthe global-scale GCM simulations tr—the—glebal-seate-and the local scale
climates variables—r—the-teeal-seale-. The mapping relationship is used as a #anstatientransform function to
translatecorrect the future climate simulations frem—the—GEMs—seate—to regienatseate-no-bias data. In the
framework, we constructed respective mapping relationships between the eerrespending-rratehematch-ups of
GCMs simulations and local climate observations in each different-time (eg—Menthse.g.,, months or seasons) at
each different-locationwere-censtraeted:. The STDDM was improved trcompared to the traditional downscaling
methods by adjusting the specific downscaling algorithm to be suitable-te in the distributed space and time;
where. Therefore, the downscaling preecess—shoews—spatiotempeoratly—differentprocesses show spatiotemporal
differences in the parameters or the equations, and the output data are spatialeentinued—compared—toe
thespatially continuous, unlike that in traditional downscaling methods, which ignores the temporal and
eentirvoushycontinuous spatial iffereneetn-the-downseatirgproeessdifferences and expresses-the-express space
byas discrete points instead of eentiruatspace-andcontinuous grids.

Figure 2a shows the logical framework of the STDDM while Fig. 2b demonstrates how it was applied in Poyang
Lake Watershed using MRI-CGCM3 based on a linear-scaling algorithm. The STDDM contains three parts (Fig.
2a and b): (1) Yp—samphrgupsampling GCMs simulations and local-scale observations to a eertirgatcontinuous
grid space of the same finer resolution; (2) Senstruetirgconstructing respective mapping relationship between
the GCMs simulations and local observations in distributed space— and time; (3) Cerrectingcorrecting the GCMs
simulations ef-the-futare-seerartor-using the relattorsmapping relationship constructed in step 2.

3.1.1 Up-samphingUpsampling GCMs simulations

H-the-study-MRI-GCM3 simulations were interpolated by Natural NeighboeurNeighbor Interpolation (Sibson et
al., 1981}, to a scale of 20 kmx20 km, the smallest size of the sub—bastrsubbasin of the Poyang Lake Watershed
(Zhang et al. 2017), generating 263 spatial grids (Fig. 2b). For the spatiotemporally distributed downscaling, we
used China meteorology spatially continua grigsgrid data as observations, instead of China meteorology statiens:
Fhestation data. We interpolated the gridded observations-weretrterpotated to 20 km x 20 km, the same as the

downscaled climate simulations. The match-up grids of simulations and observations at each time and each grid-
box arewere generated.

3.1.2 Constructing relatiensrelationships between the GCMs simulations and local observations

AsBecause there is an inevitable mismatch between the simulations and observations efdifferenttimeand-space
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(Li, 2009; Wood et al., 2004) after the wp—samplrgupsampling, bias correction should be performed. The bias
correction was processed by ustrg—the #ranstattentransform function between match-ups of the up—
sarmpledupsampled simulation and ebservationrobservations, which isrepresents the relatiens—efmapping
relationship between the match-ups. The transform function could be any bias corrected model, including linear
scaling, local intensity scaling, power transformation, distribution mapping models (Teutschbein et al. 2012) and
other linear or nonlinear regression models.

As the influencing factors on climates show heterogeneity in space and time, we created
spattetermperalspatiotemporally distributed relationsrelationships, described by the following formula.—

Q'T,s—_%égﬁ)cns =Trs (Crs) (1)

Where, CTTC'T’S andQﬁCT’S indicate the up—sampledupsampled global-scale climate simulations and the

local climate variables, respectively, in the given time of 7 and the space of & TT%F s demonstrates a

translatentransform function, used to correct the ap—sampledupsampled GCMs simulations. The function is a
specific dewnsealng-atgoerithmbias correction model, spatiotemporally distributed in mathematic equations or
parameters, which is constructed based on the data #from the historical tirefrerperiod of 1961 to 2005.

In thethis study, we ereated-transtationfunetionbased-enuse a linear-scaling algorithm (Lenderink et al., 2007})
as the bias correction model. For the linear-scaling algorithm, the simulations were corrected by the discrepancy
between the simulations and observations—n—histerieal—tme:. Precipitations derived from_the GCMs were
corrected by multiplying the precipitation bias coefficient, which is the ratio of the mean monthly observation to
simulation tfrom the historical #ewhieperiod; temperatures were corrected by adding the temperature bias
coefficient, which is the difference valae-between the mean monthly observation and simulation in eentret
timethe historical period. However, as the bias varies among the Menrthsmonths from January to December and
among the locations of the 236 spatial grids, thea global standard bias coefficient is prohibited. To better capture
the bias in distributed time and space, we should create an individual bias coefficient for the given Merthkmonth
and gird box. Thus, a spatiotemperatspatiotemporally distributed bias matrix was constructed. The respective
downscaling model and bias coefficient for a given Menthkmonth (7) and space (5) waswere established by Eq. 2
and 3.

P =PxP_Cof- P'=PxP_Cof 2)

= = (3)
TM'=TM +TM _Cof

where; P (7) represents the precipitation (or temperature) of wp—sampledupsampled simulations. P’ (7TM)
represents the downscaled result or up—sampledupsampled observations; P_CoF- (TM_Cof) represents the bias
correction coefficient of precipitations (or temperatures). In the construction of £_Cof —(TM_Co#), P(7TM) and P’
(7TM)) was set as the average monthly precipitation (or temperature) over the historical time from 1961 to 2005.
All the input and output data in the equations isare in the given Menthmonth (7) and space (5).

3.1.3 Correcting the GCMs simulations

The constructed relationship between the GCMs simulations and the observations #from the historical
tmeperiod (in section 3.1.2%—are) also hold for data—n—the future (Maraun et al, 2010). Thus, the
translationtransform function was used to correct the future CGCMs simulations-a-the-future:. In thethis study,
we corrected the daily and monthly precipitations (or temperatures) from MRI-CGCM3; by adding (or multiplying)
the bias coefficients in the corresponding Menthkmonth and grid box.

3.2 Precipitation changes analysis
3.2.1 Statistic indicesindexes of precipitation changes

To obtain the general change in_the temporal distribution, we calculated monthly precipitations from 1998 to
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2100, averaged over the whole watershed. As fleedfloods and ereughtdroughts occur more frequently in wet
and dry months, we speeiatyspecifically analyze the extreme wet and dry precipitation changes in the 21st
century. Therein, monthly precipitations, > 75% percentile of the 12 menthly-preeipttationsmonths, were classified
as the extreme wet monthly precipitations for each year of the 103 years; monthly precipitations, = 25% percentile
were classified as the extreme dry monthly precipitation. The monthly precipitation of the 25%-50% and 50%-75%
quantiles arewere classified as normal dry and wet monthly precipitations. The wet monthly precipitations include
extreme and normal wet monthly precipitations-while; the dry monthly precipitations include extreme and normal
dry monthly precipitations. To—further understand precipitation dynamics in terms of frequency and
ttensttiesintensity, daily precipitations were categorized into five classes based on the classification by the
Chinese Meteorological Administration and the possible risk te-fleed—dreughtof floods and droughts: light rain,
medtarmedium rain, heavy rain, rainstorm, and extreme rainstorm with daily precipitation +rof 0.1-10, 10-25,
25-50, 50-100 and >100 mm/day, respectively. The frequency of precipitation intensities indicates heterogeneity
in temporal distribution. The higher frequency of moderate rain means the mere—homegenreedsmore
homogeneous, vice versa is the extreme rain. Therefore, the precipitation intensities were separated to moderate
or extreme rains, including light rain, median rain or heavy rain, rainstorm, extreme rainstorm, respectively.

To analysisfurther analyze the changes in precipitation frequencies and intensities, we calculate the annual days
of light rain, medium rain, heavy rain, rainstorm and extreme rainstorm from 1998 to 2100 averaged over the
whole watershed. Annual total precipitation, annual dry days, annual max daily precipitation and annual max
eentirualcontinuous dry days arewere displayed as well. _The meteorological stations (Fig. 1a) are uniformly
distributed in the whole watershed and cover all kinds of the topographies and land covers. Therefore, in the

study, the all above precipitation indexes of one year for the whole watershed were calculated based on the
preC|p|tat|on averaged over the gnds contammg the 15 stations, instead of the entire gr|ds—a5—Ehe—1—5aaefeFeJeg+ea+

. Under global climate warming, precipitation becomes more eentredconcentrated which leads to more
heterogeneity in temporal and spatial distribution (Donat et al., 2016; Min et al., 2011). Thus, we calculated
variation coefficients (VC) for each year from 1998 to 2100, to mvestlgate the precipitation changes in temporal
and spatial distribution.

Eq—4—

The VC is defined as the ratio of the standard deviation to the average value, described by Eqg. 4.

/ (x—p)’ /Z(X—u)2
VC—V =1 \c- n-1 ()
1)

il
WhereX-where X _represents monthly (or daily) precipitation efin one year; H+Hsnis the month number (or day

number) of a year and K-l indicates averagedthe average monthly or daily precipitation of a year. VC measures

the standard dispersion of the data items, which can indicate the unevenness of preeiptations+a-temporal and
spatial distrbutien-distributions of the precipitation. In thethis study, heterogeneity in temporal, spatial and
spatiotemporal distribation—wasdistributions were measured by temporal, spatial and spatiotemporal VC,
respectively. Temporal VC was calculated on the daily or monthly precipitations in one year-where and the VC
for one year is averaged over thatthose of the 15 stations. For monthly precipitation, we only select extreme wet
and dry precipitations, as the extreme wet and dry are more likely to cause floods or droughts and thus should
be paypaid more attractionsto-attention. Spatial VC werewas calculated on the annual total precipitations of the
15 stations in one year. Spatiotemporal VC was calculated on the monthly precipitations of the extreme wet
months of the wet stations and the extreme dry months of the dry stations in one year, as the extreme
precipitation vatae-wasvalues were more likely to cause floods or droughts.
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3.2.2 Relationship analysis between precipitation changes and temperature increasing

We investigated the precipitation changes as a result of global temperature increase. To this end, we made liner
regression between the precipitation index and temperature changes from 2005 to 2100. We note that a mean
filter with a widewwindow size of 21 years can reduce potential random fluctuation from precipitation by the
most; thus was used to smooth annual precipitation indexes and temperature simulations from 2005 to 2100.
The long-time smoothed annual precipitation or temperature minus the average annual value from 1998 to 2017,
are set as precipitation index or temperature changes. A linear regression model was used to investigate whether
precipitation changes are related to climate warming. The two 11 years, 2005 to 2015 and 2090 to 2100 at the
start and end, did not have filter diameter of 21 years; thus climate data used to be regressed is from 2016 to
2089.

4 Result and Discussion-

4.1 Validatiens-of precipitationModel assessment

Validation about the China meteorological grid observations should be performed, as well as the STDDM. As the
STDDM introduce the China meteorological grid observations and temperatureprojectionsthe grid data is not the

direct in-Poyang-Lake-Watershed

: v ; —-suit data,
validation about the gridded data is necessary. The determination coefficient (R2), root mean square error (RMSE)
and PBias (percent bias) were used to examine the model performance.—

4.1.1 Evaluation for the gridded meteorological

The China meteorological grid observations are referenced data to corrected GCMs simulations and reliability of
the observations is vital to the performance of the STDDM. So we make a validation using meteorological station
observations, in Fig. 3.

As shown in Fig. 3, we select four meteorological stations. The selected stations are uniformly distributed. The
validation produced an acceptable precision with R* > 0.91, absolute PBias < 2% for precipitations and R* =0.99,
absolute PBias < 6% for temperature. All the dots of gridded and stationed value were distributed along the 1:1
line, thus confirming the satisfactory performance.

4.1.2 Validations of precipitation and temperature projections in Poyang Lake Watershed

Before being used in future climate projection, the model should be examined. Data from 1961 to 1985 were
used to construct the model, and the remaining historical data from 1986 to 2005 were used to validate.

To test whether the downscaling method (STDDM) is effective in climate projections, we compare the results
before and after the bias correction in Fig. 3-4. The results before and after the bias correction marked as the
outcomes by the STDDM and No-STDDM, respectively. The projections with-bias-cerrectionsby the STDDM show
better performance with high correlations and narrow bias, compared to the result witheut-bias-cerrections:by
No-STDDM. Considering the complexity of climate physical mechanism—whieh—is—eiffiestt and difficulty to
accurately stmutatedsimulate by the present methods, the uncertainty could be acceptable.

Using the STDDM and MRI-CGCMs, we obtained the temporal and spatial variation of future precipitations in
the Poyang Lake Watershed, and investigated the heterogeneity changes of precipitation in the temporal and
spatial distribution.
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4.2 Temporal variation of future precipitation
A Mesntabrsenie

To facititate-disecovering-discover the genreraHntra—and-nter—annudal-variabiity-evertemporal variation under the
future climate warming, we anralysedanalyzed the monthly and daily precipitation changes during the period

from 1998 to 2100. For monthly precipitation, we analyzed intra-annual and inter-annual dynamics of
precipitation; based on the dynamics, we investigated the heterogeneity changes of monthly precipitation. For
daily precipitation, we analyzed the changes of precipitation intensities and frequencies; based on the changes,
heterogeneity changes of daily precipitation was also investigate.

4.2.1 Monthly precipitation changes

We analyzed the monthly preC|p|tat|on changes during the period from 1998 to 2100 in Fig. 45. PreC|p|tat|on

highlightsthe-show . S|gn|f|cant intra-annual dynamlcsef—lcaﬂs—%eh l\/Ionths W|th abundant rain (vvet monthsl

indicated by a reddish color, are mainly in April to July (the wet season)), while the rain-poor ratr-months (dry
months), indicated by a bluish color, are mainly in September to aextthe subsequent February (the dry season).
Precipitation concentrates in spring (March to May) and summer (July to August), occupying 73% of the annual
amount. The intra-annual dynamics of preetpitations-precipitation is similar to that eftheshown by Fengs (2012).
t—thePrecipitation also showed inter-annual preeipitation—pattern—the—rich—+atrdynamics. The wet months
become rieherwetter, and the reh—ratrwet season comes earlier from April to March, even in February.
Preeipitations—In addition, each monthly precipitations of seven months (April to November) took increasing
trends, of which ZAA%most months (5 eutefthe7months; April, May, June, August) are in the wet season; while
precipitations of the other five months experienced decreasing trends-and, all the-menthsof which were in the
dry season. It seems that wet months become wetter and dry months become drier, in general.

me-To better demonstrate the eapesﬁe
vaHaHeH&&heéeeFeaseﬁq—Ehe—d%y—peﬁed—mad—meFease&que{%mter annual dynamics of precipitation, monthly

precipitations in each year were sorted in thea descending order in Fig. 45(b). Wet-roenthly-preeipitationsAs the
time of the monsoon reaching the Poyang Lake Watershed, varied in different years, with 1~2 months’ advance
or delay; the wet or dry months for different years are not the same. By sorting monthly precipitation, wet months
and dry month could be distinguished intuitively in Fig. 5(b). Obviously, monthly precipitation of wet months
experienced an increasing trend respectively, even with-some stgrtficantsigr-whereaswith slight significance; in
contrast, each dry monthly precipitation exhibited decreasing trends, separately, despite the insignificant signs.
We accumulated the extreme wet or dry monthly precipitations for each year in Fig. 56. The precipitation of
extreme wet months showed a significantly increasing trend (p<0.05) (Fig. 5aj-ard6a), while the precipitation of
the extreme dry months demonstrated a significantly decreasing trend (p<0.05). Extreme wet months increased
from 277.82 mmemonth"/a over historical time from 1998-2017, to 344.10 mmemonth™'/a over future time from

2081 to 2100, by 23.86-% with a change rate of 7.3 mmemonth '/10a:while-the-precipitation-of-extreme. Extreme

dry months-demenstrated—a-significantly-deereastrg-trerad{p<0-05-{Fg—5b)and decreased from 35.44 mmse
month*/a over historical time from 1998-2017, to 30.46 mmemonth*/a over future time from 2081 to 2100, by

-14.05% with a change rate of 0.92 mmemonth/10a. Therein, the extreme wet months are mainly concentrated
in March-July (Fig. 5e6c¢), part of the wet season:, while the extreme dry months are mainly concentrated in
September-February (Fig. 5€6d), consistent to the dry season.

Overall, withunder climate warming over the 2£21st century, the wet monthly precipitations become wetter while
the dry month precipitations become eryerdrier, which kightghtssuggested the uneven temporal distribution of
precipitation (Fig. 67). As shown in Fig. 67, the temporal variation coefficient of the extreme month (including
extreme wet and months) precipitations within each year from 1988 to 2100, experiences significantly increasing
trends (p<0.01), and increased from 0.76 /a over historical time from 1998-2017, to 0.84 /a over future time from
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2081 to 2100, by 10.53% with change rate of 0.01 /10a. The significantly increasing trends indicated the more
uneven trend of precipitation in the temporal distribution, which might lead to trereastrgincreased  risks of
floods and droughts.

4.12.2 Daily sealeprecipitation changes

To understand the changes efin precipitation intensities and frequencies under the-future climate warming, daily
precipitation variations were also aralysedanalyzed and are shown in Fig. #Averaged-over103-years—anndat
preetpitatton—8. Moderate vs extreme rain frequencies are—deminated—by(Fig. 8a and b), the mederate—rain;
aannual total e#+63+0rain vs the annual total rainy days—44-8-%{163-+70/365white (Fig. 8c), and the extreme
ratn-eceurstess-often—atotalof 20-78annual max precipitation vs the annual max continuous rainy days,—6-+6-%

(26:-7/365)— (Flg 8d) were analyzed

; y ver-the climate warming, the
annual frequency of moderate rains expenenced decreasmg trends in contrast, the annual frequency of extreme
rains experienced significantly increasing trends (Fig. #a8a). Statistically, the-averaged over 103 years, annual
precipitation frequencies are dominated by the moderate rain frequency a total of 163.70 days, or 44.8%
(163.70/365), while the extreme rain occurs less often, a total of 20.70 days, or 6.70% (20.7/365). The remaining
is rain-free days, a total of 180.75 days, 49.5% (180.75/365). was-The annual moderate rain frequency decreased,
from 170.56 days/a over the historical time—fremt998period from 1998 to 2017, to 159.55 days/a over _the
future simeperiod from 2081 to 2100, by -6.46% with a change rate of -14.4 days/10a; whiteon the contrary, the
annual extreme rain frequency-was increased from 19.18 days/a over historical time from1998 to 2017, to 23.42
days/a over future time from 2081 to 2100, by 22.10-% with a change rate of 0.49 days/10a (Fig. #8b).
Fhe-Furthermore, the annual total rainy days, the sum of the moderate and extreme ratrsrain frequencies,
demonstrated a significantly decreasing trerdstrend in the 21st century:, whereas the annual total precipitation
exhibited a significantly increasing trend (Fig, 7c). Rainy days were-decreased from 187.57 days/a over the
historical t#e—fremi998period from 1998 to 2017, to 180.37 days/a over the future #meperiod from 2081 to
2100, by -3.84% with a change rate of -1.00 days/10a; while the annual total rain amount was-increased, from
1650 mm/a over the historical #meperiod, from 1998 to 2017, to 1906 mm/a over the future #meperiod, from
2081 to 2100, by 15.55-% with a change rate of 23.86mm00 mm/10a. The trereastrgincrease in the annual total
rain and deereastrgdecrease in the annual rainy days suggested more concentrated precipitation and dry days:
Fhe in the future. This tendency might lead to trereastrg-the increased risk of fleed—dreughtfloods and droughts,
which was also deeumentedindicated by the trereastrgincreased annual max daily precipitation and max
continuous dry days (Fig. 76)%-8d). Annual max daily precipitation was-increased from 148.76 mmeday ‘/a
averaged over the historical time-frem998period from 1998 to 2017, to 212.01 mmeday '/a averaged over the
future timeperiod from 2081 to 2100, by 42.51% with a change rate of 7.2 mmeday '/10a; while the max
continuous dry days was-increased from 25.35 days/a over the historical ##aeperiod from 1998 to 2017, to 28.15
days/a over the future timeperiod from 2081 to 2100, by 11.05% with a change rate of 0.5 days/10a.

Overall, the significantly inverse change terdstrends in the moderate vs extreme rain frequencies, the annual
total rain vs the annual total rainy days, and the annual max precipitation vs_the annual max continuous rainy
days, indicated an increasing temporal heterogeneity in precipitation distribution over the 21st century. Obviously,
the increasing heterogeneity was alse-exhibited by the increasing temporal VC of daily precipitations (Fig. 89).
The temporal VC of daily preetpitation—wasprecipitations increased from 1.50 /a over the historical time
frem998period from 1998 to 2017, to 1.62 /a over the future tmeperiod from 2081 to 2100, by 7.48% with a
change rate of 0.016 /10a.

4.3 Spatial variation of future precipitation

Climate warming could cause the rain belt shift (Putnam et al., 2017), which might lead to precipitation changes
in the spatial pattern. ¥he-To investigate the spatial variation-was, we analyzed #-the similarities and differences
of precipitation changes in space (Fig. Qeeel—}Q—As—ﬂeeek‘rl) based on the dn‘ferences we use the mdexes of the

spatial and éred




the-extreme-wet{ApriJulyand-dry{September—ebruary-menthsspatiotemporal VC to investigate the spatial
heterogeneity changes (Frg 11) Frg 5eanel—d§—Besrele5—10 shows the precipitation is—dlemirated-by-southeast
v Y - hanges in %eummeemeneeen—rs—#eqeent—ﬁrem

recrgrtatron As—ehewn—rn—Frg—Qa—c—anel—&g—ereerertatrene showed a regular spatral pattern both in the wet and
dry season:, in Fig. 10a-c and e-g. More specifically, preetpitations-were-precipitation was distributed more in the
east and west, whiehhowever less in the north central plain and the south bottom depression. Rich rain in the
east and west are dominated by the southeast and southwest summer menseor—Whereasprecipitations-were

distributed-tess+r-thenorth-central-platnferreasens-of-betrg-as-monsoons. Less precipitation was due to the
leeward sloop of the easteastern (Xuefeng Mountain) and west+eunrtatrwestern mountains (Wuyi Mountainy;

and). Less precipitation in the south bottom depression due-towas because that the-water vapor was blocked
from this region by the NanLing Mountain in the south (Fig. 1a). The precipitation distribution in spatial pattern
from 1998 to 2100 (Fig. 910 a-c and d-f) were consistent tewith the observations from 1951 to 2005 (Fig. 1b.),
thus confirming the satisfactory performance of the STDDM. Moreover, wet and dry season precipitation showed
inverse changes. The wet season precipitations exhibited ascending (Fig. 10a-c and g) change while the dry
season precipitation exhibited descending (Fig. 10d-f and h) change from 1998 to 2100. The inverse changes
were consistent with the interannual variability of increased precipitation in wet months and decreased
precipitation in dry months (Section 4.2). The increase of precipitation in the wet seasons and decrease in
precipitation in the dry seasons were also detected in the change rate of the cells over the entire watershed (Fig.

Og or h)

spatial pattern. Precipitation change rate was heterogeneous in spatral distribution for dry or wet season
respectively (Fig. 10g and h). In the wet season, the precipitation increased more in the north part of the
watershed, except for the eentrecentral plain (Fig. 9g)-white10g); in the dry season, the precrpltatlon decreased
more in the eertercentral area (Fig.




preetpitations—ta-the-spatial-distribation-{10h). Statistically, in the wet season, precipitation increased with the

change rate raising from = 3.6 mm/10a in the southwest, to = 11.7 mm/10a in the northeast; in the dry season,
precipitation decreased with the change rate falling from = -2.0 mm/10a in the surrounding region, to < -2.7

mm/lOa in the central region. Furthermore%%%}%eee@ea%—ﬂ%ﬁetetegeﬂe%%%edﬂﬂththeeeatawe

Hewever, precipitation changes show a-different spatial pattern-betweencharacteristics in wet and dry seasons.

From 1998 to 2100, in the wet season (Fig-9a. 10a-c), the wet area (the reddish area, mainly in the north except
for the center plain) beeemebecomes wetter; white-in the dry season (Fig. 910 d-f), the dry area (the bluish area,

mainly in the north center plain and in the south depression) become drier.Fhe-terdeney-of-betrg-wetter+—

The uneven change rates may lead to increase of the spatial heterogeneity of precipitation under global warming,
and the tendency of the Wet area to become wetter and drier+a-the dry area mrght—eﬁh%ee—the—ﬁek—ef—ﬂeeels

become dr|er also |nd|cated the increasing heteregeﬂe&y—et—p%eerettaﬁeﬂs—m—the—spanotemporal d—l—S—t—H—bHHGH

theterogeneity of precipitations. Indeed, the spatial heterogeneity did increase, with the spatial VC raising from

0.097 /a over the historical period (1998-2017), to 0.110 /a over the future period (2081-2100), by 12.64% with a
change rate of 0.002 /10a (Fig. 11a). The spatiotemporal Fg—10b)-Speethicathy—the-heterogeneity wasraiseddid
increase with the spatiotemporal VC trereastrgraising from 0.89 /a over the historical #efremt998—+e-period
(1998-2017;), to 0.94 /a over the future time—freom—period (2081-+te—-2100;), by 4.96% with a change rate of
0.00840a— /10a. Overall, the uneven change rates for the whole basin and inverse changes for the dry and wet
area indicated an increasing spatial heterogeneity in precipitation distribution over the 21st century.

4.4 The impact assessment of temperature irereasingincrement on precipitation changes

Previous studies have detected precipitation changes; and attributehave attributed these changes to climate
warming (Westra et al., 2013; Zhang et al., 2013). In hethis study, the spatiotemporal changes of precipitation in
the Poyang Lake Watershed in the 21st century were suppesedhypothesized to be related to the-trereastng
temperature— increments. So we analyze the correlations qualitatively and quantitatively.

The following are trying to demonstrate the driving force related to climate warming on precipitation changes in
the temporal pattern. In the wet season from April to July, the summer monsoon might becemesbecome weaker
in the-seutheast-efSoutheast Asiarwith as the elimate-warmingtemperature increasing (Wang, 2001; Wang, 2002;
Guo et al., 2003). Consequently, the summer monsoon delaysis delayed for a longer time in the middle and lower
Yangtze River basin feradengertimer-instead of moving further north. The delaysteaddelay leads to much more
rain during the wet season. LeeatedAs being located in the middle of the Yangtze River basin, the Poyang Lake
Watershed becomes wetter in the wet season (Fig. 45-5, Fig. 9a10a-c). In fact, the increase efin precipitation in
the Poyang Lake Watershed was detected in previous studies (Yu and Zhou, 2007; Ding et al., 2008). In the peer
ratrdry period from September to rextthe subsequent February (especially in the winter meseason, from
December to FebruaryywithHew—fregueney-), during which summer monsoon is inactive, there is less water vapor
in atmespheres—which-s-ret-easy-te-the atmosphere to condense into rain. Additionally, stronger winds in the
winter (Wu et al., 2013) blow the evaporation away—Fhe-strorgerwind-a-winterenrhanees, thus enhancing the
difficulty te-gathereneugh-of generating rain from water vapor te—ratr-compared to the other seasons. When
temperature increases-everthe2dsteenturythe-atmespheres, the ability of heldirgthe atmosphere to hold water
vapors is strengthened, which wakemakes it more difficult to precipitate. Therefore, preeipitations
deereaseprecipitation decreases in the dry season, simifartoeconsistent with Li et al.'s (2016) researehresult. As
chrmate—warmtrgtemperature increment increases the ability of the atmosphere to contain water vapor, #is
harderto-condensetate-rain enlyis more difficult, and if it has-ereugh-more-watervaperrains it will rain largely
(Min et al., 2011; Zhang et al., 2013). Thus, the frequency of heavy rain and rain-free—ratr events increases, which
trelieates—moereindicating increased frequency and strengthened intensity of the extreme rats—and—tess—of

moderateratrs—Overal—elimate-warmingrightake-precipitation. Overall, the climate warming might make
precipitation more temporally uneven-atemperatdistrbution.
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Climate warming could also explain the spatial distribution of precipitation ehangechanges in the dry and wet
seasons. In the wet season, the summer monsoon delays in the middle and lower Yangtze River Basin. The
delaying area covers only the north part of the Poyang Lake Watershed. Beeause-ef-getting—+iehAs it receives
abundant water vapor from the delayed summer monsoon, preetpitation—r-the north part of Poyang Lake
Watershed are-trereased-more-with-experiences a greater increase in precipitation with a larger change rate (Fig.
9¢10g). The east-efeastern Poyang Lake Watershed is the nearest to the sea-west-efwestern Pacific Ocean; thus
the easteanr-geteastern region receives more continuous water vapor-esentiruath~—hatswhy. So the precipitation
change rate decreases from the southeast to the northwest: in the wet season. However, in the dry season
especially in winter, during which there is witha low-frequency or evear-reabsent summer monsoon, the water

vapor mainly comes from evapotranspiration. In the watershed, thereis-mere-evapetranspirationta-the periphery;
whieh is covered by the lake of Poyang in the northern plain and high-density vegetation in the northwest,

southeast; and southwest mountains;—and—ake—efPoyang—ta—the—north—platri—white, so there is lessmore
evapotranspiration in the periphery. The center; is mainly covered by farmland and grassland; so there is less
evapotranspiration in the center (Wu et al, 2013). Thus, the moisture decreases from the
surrouneirgssurrounding to the center. Therefore, #s-mere-difficulttoratrrtowermoisture-area—the-center

part-ofPoyang-Ltake-Watershed-as-as temperature increases—thus, it is more difficult for rain to occur in the area
of lower moisture, the center of the Poyang Lake Watershed. Therefore the precipitation deereastrgdecreased

with a change rate falling from the surreundingssurrounding to the center in the dry season (Fig. 9R10h).

To quantitatively analyze the relationship between precipitation changes and temperature trereastrgincrement,
we madecreated a scatter plot between precipitation indexes changes and temperature trereasesincrement, as
shown in Fig. H—Frendl2. A trend analysis was conducted byusing linear regression everof each annual
precipitation treexes—agatnstindex over the 103 years from 1998 to 2100. The associated slopes
representedrepresent the change rate ferof each ferg—term-precipitation trdexes-index relative to temperature
increment. The significance of the trend signifieantsiga-wasis indicated by p value. As shown in Fig. 3212, there
is statiealya significant eerrelattenscorrelation between the precipitation ekangeschange and the temperature
trereasthgincrement, with sigatficanrtstign—ef-p < 0.001 and R= 0.78 for 6 precipitation indexes;: the annual
precipitation in the wet season (Fig. Ha%12a), the annual max daily precipitation (Fig. +eh12d), the temporal VC

of the monthly precipitation (Fig. #3e}12c¢), the temporal VC of the daily precipitation (Fig. H12f), the spatial
VC (Fig. #+g12g) and_the spatiotemporal VC (Fig. +hk12h). However, the—ehanrgechanges of the other two

precipitation indexes, the annual precipitation in the dry season (Fig. #b12b) and the annual max
eentirualcontinuous dry days (Fig. 4+el?e), appeared to be correlated with slight signs of p < 0.05 and R <
0.58. The overestimation of kghtmoderate- or free-rain frequency from the GCM simulations (Teutschbein et
al. 2012) might explatasexplain the shghtecerrelationstorslightly low correlation between the annual precipitation
values in the dry season: and temperature increment, while the overestimation of the precipitation frequencies
(Prudhomme et al. 2003) could beexplain the reaser-of-the-shghtslightly low correlation ferbetween the annual
max eenrttrbatcontinuous dry days: and temperature increment. For all the correlations (Fig. ++al2a-h), the
precipitation changed with fluctuation, which might be caused by random variations effrom GCMs.
BespiteOverall, despite the shghtsigaslow correlations and stochastic fluctuation, the correlations exkibitedcould
indicate that the climate warming can partly explairedexplain the precipitation changes—with—variations—of.
Statistically, precipitation changes relative to temperature increment are 16.657 mmemonth™/K, -4.31
mmemonth™ /K, 17.45 mmeday™ /K, 0.71 days/K, 0.028/K, 0.033/K, 0.0074/K and 0.02/K for the annual
precipitation in the wet season, the annual precipitation in the dry season, the annual max daily precipitation, the
annual max eentirdatcontinuous dry days, the temporal VC of the monthly precipitation, ardthe temporal VC of
the daily precipitation, and the spatial VC and the spatiotemporal VC, respectively.

In summary, the explanation of precipitation changes in temporal and spatial distribution qualitatively and
quantitatively, suggests the downscaling method is reasonable and the STDDM could be applied in the basin-
scale region based on a GCM successfully.
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5 Conclusion

A spatietemperalspatiotemporally distributed downscaling method (STDDM) was proposed _in this study. The
downscaling method considered the heterogeneity in spatial and temporal distributions, and produced local
climate variables as spatialspatially continuous data instead of independent and discrete points. FheThe STDDM
showed a better performance than the No-STDDM. Using the STDDM, we constructed the spatially continuous
future precipitation distribution and dynamics in the wet and dry season are-censtruected-and-severalfrom 1998
to 2100, based on MRI-CGCM3. Several findings arewere obtained-;

FirsthyFirst, the spatial and temporal heterogeneity of precipitation tr-thespatialandtemporat-patierrisenhaneced
increased under future climate warming. In the temporal pattern, the wet season precipiation—trereased-with
ehangerateof £33 mm/Baand-11-66-mmA:become wetter, while the dry season preeipitation-deereased-with
ehangerateof 0B.92 mm/tBaand—4-34-mm/become drier. The frequency of extreme precipitation fregueney
and—thtensity—were—strengthened—with—ehange—rateincreased, while that of 8:49the moderate precipitation
decreased. Total precipitation increased, while rain days/0a-and-7-2mmseday /a- decreased. The inverse-changes

the-max dry and-wetseaser,day number and the irereasirg-extremesfreguenetes-max daily precipitation both
increased. These precipitation changes demonstrated an aseendingincreasing heterogeneity of precipitation in

temporal distribution, withand the change rate of temporal heterogeneity is 0.01 /10a (8-6284}-er—0.016 /10a

{6:8633/K) for the temporal VC of the monthly er(daily) precipitation. In the spatial pattern, the wreven-charge

y change rate of
precipitation was uneven over the whole watershed. Additionally, the wet areas become wetter in the wet season

and the dry areas become drier in the dry season—which—+ranifested. The uneven change rates for the whole
basin and inverse change for dry and wet area demonstrated an increasing heterogeneity in the
spatioterperalspatial distribution, and the change rate of spatial heterogeneity was 0.002/10a—6-02/)
respeetively.

SeeeﬂeHy—aHast—mﬁﬁﬁemeeFa%u%eeﬂeFeases—shewed—%he{—Second preC|p|tat|on changes m—%he—eeaﬂal—ahel

amnan iy o fa A A

5|gh|f|cantly explame y temee%a%we—%ema&egchmate warmmg W|th p < 0. 05 and R 0. 56 The vaﬂalem%y

y 4- ' ’
9—93%9@9%&%—9—9%%% changes in temporal and spat|al d|str|but|0h qual|tat|vely and

quantitatively, suggests the downscaling method is reasonable and the STDDM could be applied in the basin-

scale region based on a GCM successfully.

ﬂeeels—eeel—d%eughts—m—%he—ﬁu%we—The results can be apphed to a hydrolog|ca| and hydrodynamlc model to

study the future changes efin water researeevolumes, lake tevetlevels and areaareas response to climate warming.
The relationship between precipitation variations and temperature trereastagincrement could be helpful to the
driving fereeforces analysis en+atrfaltof precipitation changes. FurthermereforThe dry to be drier and wet to be
wetter condition may lead to increased risk of floods and droughts. In particular, in the region where floods and
droughts diddo not usually occur-freguently, additional adaptation measures could be taken to prevent loss from
morethe future frequent ard-sertous-hydrological disasters.

Data availability

All data can be accessed as described in Sect. 2.2. The data sets and model codes are provided in the supplements.
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Fig. 45. Total variability of monthly precipitation from 1998 to 2100. Each column represents the data effor one year
and each cell represents an accumulative precipitation of one month. The red ane-(blue) arrows indicate that the
monthly precipitation experienced an increasing er(decreasing-trends) trend over the 103 years, respectively. The
asterisk demonstrates the significant trends with p<0.05. (a) Monthly precipitation in month order, referred to Spring
(March to May), summer (June to August), autumn (September to November), and winter (December to next February)
from top to bottom, respectively. (b) Monthly precipitation, sorted in the descending order for each year, where months
are classified as extreme wet (EWet), normal wet (NWet), normal dry (NDry) and extreme dry (Edry) months from up
to down. Therein, wet months (Wet) include extreme and normal wet ones while dry months (Dry) include extreme
and normal dry ones.
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Fig. #8. The changes efin daily precipitation intensities and frequencies. (a) Precipitation intensities and
frequencies for each year over 1998 to 2100, where each column represents a year and each row indicates a
precipitation intensity. Daily precipitation intensities are categorized to 5 classes, Light Rain (LR), Median Rain
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50, 50-100 and >100 mm/day, respectively. The moderate rain includes LR and MR while the extreme rain is
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increasing er(decreasing) trends over the 103 years (from 1998 to 2100), respectively. The asterisk represents
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from 1998 to 2017 (His1998-2017) are indicated by arrows. (b) Precipitation frequencies of LR, MR, HR, S, and ES
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Fig. 89. The temporal variation coefficient of daily precipitations for each year over 1988 to 2100. The far future
period from 2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 2017 (His1998-2017) are indicated
by arrows.

Monthly Pcp I Change rate
(mm/month) (b) (© - I (® (mm/10a)
324-360 = | 10.1-12.0
I
288-324 l 8.5-10.1
I
252-288 [ 6.8-8.5
I
216-252 : 52-6.8
Wet Season Wet Season Wet Season | Wet Season
100-216 in 1998-2017 in 2041-2060 in 2081-2100 I in 19982100 l 152
I
%0-1001 (a) f © ) Ry
I
80-90 [ 18--14
I
70-80 : 21-418
I
60-70 | -24--21
I
50-60 : 27-24
I
NoData Dry Season Dry Season Dry Season | P"{giea;‘:'(‘m NoData
in 1998-2017 in 2041-2060 in 2081-2100 in 1998-
1

Fig. 910. The precipitation changes in the spatial pattern during the period from 1998 to 2100: average monthly
precipitations of the wet season (April to July) during the histerieat-period from 1998 to 2017 (a), 2041 to 2060
(b), and 2081 to 2100 (c); average monthly precipitations of the wetdry season (AprHDecember to Jebynext
February) during the historical period from 1998 to 2017 (d), 2041 to 2060 (e), and 2081 to 2100 (f); change rate
of monthly precipitation in wet (g) and dry (h) season from 1998 to 2100. As floods and droughts occur more
frequently in extreme months, the precipitation in the analysis considered only the extreme wet (April-July) and
dry (September-February) months (Fig. 5¢c and d). Besides, precipitation is dominated by southeast summer
monsoon, which brings water vapor from the sea. The summer monsoon is frequent from the end of spring and
stat of autumn, covering the wet months April to July. However, though as dry months, the autumn period from
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September to November is affected by southeast summer monsoon (Tan et al., 1994) slightly because autumns
are the transpiration periods of summer to winter. Therefore, winter (December-February) was represented as
the dry season with poor rain; while April-July was represented as the wet season with abundant rain.
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Fig. #0811. The spatial (a) and spatiotemporal (b) variation coefficient for each year over 1988 to 2100. The
farfurther future period from 2081 to 2100 (Fur2081-2100) and baseline period from 1998 to 2017 (His1998-
2017) are indicated by arrows.
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Fig. #:12. The relationship between the precipitation #dexesindex changes (dPcp/ndex) and the temperature
ehangesincrement (d7). The precipitation indexes include annual precipitation in the wet season (PcpWet) (a),
annual precipitation in the dry season (PcpDry) (b), temporal variance coefficient of monthly precipitations
(Temp-VC-of-MonPcp) (c), annual max daily precipitation (PMax) (d), annual max eentirgatcontinuous dry days
(CCD) (e), temporal variance coefficient of daily precipitations (Temp-VC-of-DayPcp) (f), spatial variance
coefficient (Spatial-VC) (g), and spatiotemporal variance coefficient (Spatiotemporal-VC) (h). All the precipitation
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index changes show significant correlations with temperature trereases-increment.
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