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Abstract. The characteristics of low flow periods, especially regarding their low temporal dynamics, suggest that the 

dimensions of the metrics related to these periods may be easily related to their meteorological drivers using simplified 

statistical model approaches. In this study, linear statistical models based on multiple linear regressions (MLR) are 

proposed. The study area chosen is the German Federal State of Lower Saxony with 28 available gauges used for 

analysis. A number of regression approaches are evaluated. An approach using principal components of local 10 

meteorological indices as input appeared to show the best performance. In a second analysis it was assessed whether 

the formulated models may be eligible for application in climate change impact analysis. The models were therefore 

applied to a climate model ensemble based on the RCP8.5 scenario. Analyses in the baseline period revealed that some 

of the meteorological indices needed for model input could not be fully reproduced by the climate models. The 

predictions for the future show an overall increase in the lowest average 7-day flow (NM7Q), projected by the majority 15 

of ensemble members and for the majority of stations.  

1 Introduction 

Low flows appear ideal for the analysis of statistical dependencies with their meteorological drivers, due to their 

specific characteristics. As opposed to high flows, low streamflow is usually far less dynamic and its meteorological 

drivers, i.e. primarily a lack of rain and increased evaporation, are observable over much larger scales in both time and 20 

space. Accordingly, several studies have aimed at explaining observed peculiarities in low flows by climatic 

phenomena, including Mosley (2000), who analyzed the influence of El Niño and La Niña effects on monthly lowest 

7-day flow in New Zealand. He determined a major deviation of low flows from the normal in La Niña years. Haslinger 

et al. (2014) found that correlations between streamflow anomalies and meteorological drought indices are high, 

especially within the low flow period. Van Loon and Laaha (2015) analyzed the dependence of streamflow drought 25 

duration and deficit volume on climatic indicators and catchment descriptors, while Liu et al. (2015) estimated the 

parameters of a GEV distribution fitted to the low-flow time series at their gauge in China as functions of a set of 

climatic indices.  

Based on these findings it is hypothesized that streamflow metrics describing low flow events may be efficiently 

assessed based on their relationship to metrics of meteorological states. This assumption entails that simple statistical 30 

models may be formulated that allow a reproduction of low flow metrics based on meteorological input. In this study 

the relationship between annual low flow and a variety of meteorological indices will be analyzed with the aim of 

formulating simple statistical models. Such models will be set up individually for each catchment in the study area and 
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are supposed to be capable of predicting low flow as a simple function of several relevant meteorological indices in 

time. Various temporal scales will be considered for the meteorological data and the most adequate ones for each 

catchment will be identified. The model fitting itself will be carried out using various statistical approaches in order to 

account for different effects, like non-stationarity or serial dependence in the annual low flow indices. In order to assess 

the performance of the strictly linear statistical approaches, they will be compared to a hydrological model, which is 5 

assumed to accurately reproduce rainfall-runoff relationships by involving more complex processes, relying on 

continuous meteorological input. This analysis will reveal whether the statistical models fail to acknowledge important 

non-linear relationships.   

Apart from identifying relevant low flow drivers, it is tested whether the use of the formulated statistical models may 

be extended to prediction of future low flows, using meteorological input from climate models. The probably most 10 

common approach in hydrological climate change impact analysis is to drive hydrological models, usually rainfall-

runoff models of variable complexity, with regional climate model data input, obtained for various emission scenarios. 

Also for low flows this model chain has been applied for impact assessment in several studies, e.g. by de Wit et al. 

(2007), Schneider et al. (2013), Forzieri et al. (2014), Wanders and Van Lanen (2015), van Vliet et al.(2015), Roudier 

et al. (2016) or Gosling et al. (2017). The statistical models may pose an alternative simpler impact model approach 15 

that is easily set up and applied to large numbers of catchments and extensive climate model ensembles - while 

predicting hydrological quantities with sufficient accuracy. They may thus offer a different, yet convenient tool for 

comprehensive regional climate change impact analyses. According to this hypothesis, the formulated models will be 

applied to an ensemble of regional climate model data in order to assess the plausibility of their low flow projections 

in the future. 20 

2 Study area and data 

2.1 Study area 

The area under investigation is the federal state of Lower Saxony situated in northwestern Germany. Its total area of 

47,634 km2 extends from the North Sea in the northwest to the Harz mountains in the southeast. The largest portion of 

Lower Saxony is part of the Northern German Plain, where the terrain is generally flat and low. Highest elevations are 25 

found in the secondary mountains of the Harz with up to 971 m a.s.l.. The topography is depicted in Fig. 1. 

2.2 Base data 

The meteorological data used in this work comprises of daily time series of precipitation, temperature and global 

radiation. The data is made available continuously in space via interpolation onto a 1x1-km raster for the total area of 

Lower Saxony. Regionalization is based on 771 precipitation gauges and 123 climatic stations and carried out for the 30 

period from 1951 to 2010. The regionalization process is described in detail in NLWKN (2012). 
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Figure 1: Study area with stations available for different analyses. 

 

Daily time series are also used for streamflow. In total, there are 353 flow records of average daily discharge available 

in and around the study area. Record lengths range from 7 to 193 years. For analysis in this work, gauges have been 5 

selected that have a maximum overlap with the available climate data, i.e. available records from 1951 to 2010. After 

removal of heavily influenced gauges, 28 stations remain for analysis, as depicted in Fig. 1. Catchment sizes range 

from 24 to 37,720 km². In previous work (NLWKN, 2017), a hydrological model has been set up for 7 of these stations, 

as indicated in Fig. 1. This selection of stations will be used for comparing statistical and hydrological model 

performance. 10 

2.3 Indices 

The daily time series of meteorological and streamflow data are used to compute indices, which pose the basis for all 

models. Target variables are a variety of annual low flow indices. They are selected in a way to represent different 

quantities of interest for low flow analysis (e.g. intensity, duration and timing). The low flow indices used in this study 

are shown in  15 

 

 

 

 

Table 1. In order to exclude winter low flows, which may be subject to different underlying processes, the indices are 20 

computed for the summer half year (May to October) only. Within the region most low flow events occur between 

between June and October. 
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Table 1: List of low flow indices. 

Index Unit Description 

Q95   

Q80 
m³/s 5- and 20-percent non-exceedance quantile of the daily average discharge 

NM7Q 

NM30Q 
m³/s Lowest 7- and 30-day average flow 

Vmax 

Vmean 
m³ 

Maximum and mean deficit volume: sum of daily discharge below the long term 20-percent 

non-exceedance quantile 

Dmax 

Dmean 
d 

Maximum and mean low flow duration: number of days with discharge below the long term 

20-percent non-exceedance quantile 

timing - Day of the year at which smallest daily flow occurs 

 

The selected low flow indices represent a small fraction of possible indices but cover quite a range of low flow 

quantities relevant for water resources management and planning. Non-exceedence quantiles represent the overall low 10 

flow situation in a year without specific relation to a certain event. The same holds for average volume and duration. 

NMxQ, maximum volume and duration, as well as timing, on the other hand, focus on the greatest events per year in 

their respective terms and characterize them accordingly. The consideration of variations within the individual index 

types (e.g. Q95 and Q80) is not solely owing to different management requirements but used to investigate the various 

models’ capability to reproduce both more and less extreme low flows.  15 

 

Meteorological indices are used as input for the models. Like for their low flow counterparts, annual values are 

calculated from daily time series of precipitation sums, mean and maximum temperature and global radiation, averaged 

over the respective basins of the considered discharge gauges. Table 2 summarizes the applied indices and gives a 

short description.  20 
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Table 2: Meteorological indices based on precipitation, temperature and potential evapotranspiration. 

Index Unit Description 

Pmean mm/d Average daily precipitation 

Px mm/d Non-exceedance quantiles of daily precipitation sums 

SPI - 
Standardized Precipitation Index: standardized deviation of accumulated precipitation sums 

from the long term normal (Mckee et al., 1993) 

DSDmean 

DSDmax 
d Mean and maximum dry spell duration: number of days with preciptation <1mm/d 

WSDmean 

WSDmax 
d Mean and maximum wet spell duration: number of days with preciptation >= 1mm/d 

Tmin 

Tmean 

Tmax 

°C Minimum, mean and maximum daily average temperature  

HWD d 
Heat wave duration: Number of days above 90-percent non-exceedance quantile of maximum 

temperature calculated for each specific day of the year 

ETPmean mm/d Average daily potential evaporation calculated according to Turc-Wendling 

P-ETPmean mm/d Average climatic water balance: precipitation minus potential evapotranspiration 

P/ETPmean - Aridity index: Ratio of average precipitation and potential evapotranspiration. 

SPEI - 
Standardized Precipitation Evaporation Index: standardized deviation of accumulated 

climatic water balance from long term normal (Vicente-Serrano et al., 2010) 

 

While the low flow indices are calculated for a fixed period within the year (the summer half year), the period for 

computation of the meteorological quantities is varied in length and position. Figure 2 shows the schema according 

to which every meteorological index has been computed. INQ represents the low flow index, calculated for its fixed 5 

period within a given year. IM denotes the meteorological index. The first number in the index notation represents the 

length of the base period for calculation (eg. 3, 6 or 12 months), while the second one indicates the lead time, i.e. the 

number of months the period is shifted back in time relative to the low flow index. A 0-shift indicates that the 

calculation period ends simultaneously with the low flow period. 

 10 

Figure 2: Calculation scheme for low flow indices with fixed base period and meteorological indices with varying base period 

and lead times relative to the low flow calculation period. 
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2.4 Climate model data 

An ensemble of 15 coupled global and regional climate models is applied for climate change impact analysis. An 

overview is shown in Table 3. The datasets are based on simulations of global climate models of CMIP5 run on an 

RCP8.5 scenario. The data is available on a 10x10-km grid. 

The climate model data has been pre-processed in previous work (NLWKN, 2017) and is available for a smaller domain 5 

than the observed climate data. Therefore, basin averages can only be computed for 17 of the 28 stations, as shown in 

Fig. 1.  

 

Table 3: List of coupled global and regional climate models used for analysis. 

Global model Regional model Short name 

CNRM-CERFACS-CNRM-CM5 run1 
CLMcom-CCLM4-8-17 CNRM-CCLM 

SMHI-RCA4 CNRM-RCA4 

ICHEC-EC-EARTH run12 

ICHEC-EC-EARTH run3 

ICHEC-EC-EARTH run1 

ICHEC-EC-EARTH run12 

CLMcom-CCLM4-8-17 EC-EARTH-CCLM 

DMI-HIRHAM5 EC-EARTH-HIRHAM5 

KNMI-RACMO22E EC-EARTH-RACMO22E 

SMHI-RCA4 EC-EARTH-RCA4 

MOHC-HadGEM2-ES run1 

CLMcom-CCLM4-8-17 HadGEM2-CCLM 

RACMO22E HadGEM2-RACMO22E 

SMHI-RCA4 HadGEM2-RCA4 

IPSL-INERIS-CM5A-MR run1 

IPSL-CM5A-MR 

SMHI-RCA4 IPSL-RCA4 

WRF331F IPSL-WRF331F 

MPI-M-MPI-ESM-LR run1 

CLMcom-CCLM4-8-17 MPI-ESM-CCLM 

SMHI-RCA4 MPI-ESM-RCA4 

REMO2009 run1 MPI-ESM-REMO1 

REMO2009 run2 MPI-ESM-REMO2 

3 Methods 10 

The aim is to model a desired low flow index on an annual basis as a function of a combination of meteorological 

indices observed in time. Several methods will be analyzed for this purpose in order to identify the one most suitable 

to model the relationships in consideration of their later application for far future predictions. These methods are 

described in the following. 

3.1 Multiple linear Regression  15 

Multiple linear regression (MLR) is probably the most common method to model relationships between variables and 

will pose the basis for several methods in this work. It aims at reproducing a target variable y as linear combination of 

k explanatory variables x1,…xk. The general shape of a multiple linear regression model is the following: 
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0 1 1 k ky β β x ... β x ε              (1) 

The regression coefficients β1,…βk are estimated in two different ways, i.e. a) an ordinary least squares (OLS) 

procedure and b) a generalized least squares (GLS) fitting. The latter method involves the inclusion of the covariance 

matrix of the residuals, which allows for correction for both heteroscedasticity and dependence of the residuals. Since 

heteroscedasticity did not appear to be a relevant issue in this study, while serial correlation in the data did, 5 

autoregressive (AR) covariance structures of various orders are tested to describe the residual covariance. The elements 

of an AR(1) covariance structure, for example, can be described via 

i j2
ijσ σ ρ


 ,            (2) 

where ρ denotes the autocorrelation between terms with lag 1.  

The need for and order of the considered AR process is determined using the likelihood ratio test on a case by case 10 

basis. This parametric test is developed to test the superiority of more complex models over their simpler forms, i.e. 

whether a model with a higher number of parameters performs significantly better than the same model with fewer 

parameters. Performance is thereby measured in terms of maximized log-likelihood function values and the (1 – α) 

quantile of the Chi2 distribution, whose degrees of freedom are chosen as the difference in number of parameters 

between the compared models (Coles, 2001). 15 

3.2 Principal component analysis 

The fitting of multiple linear regression models is restricted by sample size. Fitting a model with a large number of 

regressors to a small data set will result in over-fitting. Additionally, the problem of multicollinearity between the 

explanatory variables in a model arises. As such, for a small data set, only a small number of uncorrelated regressors 

should be selected. At the same time however, leaving out important explanatory variables may drastically lower the 20 

predictive power of the model. In order to overcome the restrictions given through the limited period of observation, 

a principal component analysis (PCA) is applied, merging many explanatory variables into a few uncorrelated 

components that pose the ideal basis for model fitting on limited data with maximum exploitation of information. PCA 

is carried out by firstly centering the set of p explanatory variables X* via subtraction of their respective means. Then, 

the (p x p) covariance matrix Σ is computed and its eigenvalues λ1, λ2, … λp  and eigenvectors γ1, γ2, …, γp  are 25 

determined. Multiplication of the eigenvectors with X* yields the following system of equations: 

1 11 1 21 2 p1 p

2 12 1 22 2 p2 p

p 1p 1 2p 2 pp p

y γ x γ x γ x

y γ x γ x γ x

y γ x γ x γ x

   

   

   

,         (3) 

where y1, y2, …, yp denote the principal components, sorted according to their contribution to the total variance of data 

at hand. The eigenvectors represent the respective loading of a variable x on a principal component y. 
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3.3 Hydrological modeling 

In order to evaluate the performance of the statistical approaches, hydrological modeling is applied as the benchmark 

for prognosis of future flow. The rainfall-runoff model used here is an adaptation of the Swedish HBV by Lindstrom 

et al. (1997), denoted HBV-IWW. The specifics of the model are described in detail e.g. in Wallner et al. (2013). A 

schematic overview of the structure of the model is presented in Fig. 3. The model is semi distributed and can be 5 

applied on the sub-catchment scale. Input is daily precipitation, temperature and potential evapotranspiration. The 

model comprises 5 routines and a variety of parameters controlling the translation between the various model 

components. The parameters are automatically optimized using the evolutionary multimethod algorithm AMALGAM 

(Vrugt and Robinson, 2007). 

 10 

 

Figure 3: Vertical structure of the HBW-IWW model according to Wallner et al. (2013) 

3.4 Model fitting and evaluation 

Given the vast number of meteorological indices, variable selection for the statistical models becomes paramount. In 

order to select appropriate indices and restrict the numbers of selected regressors, a two-way stepwise approach for 15 

variable selection is chosen that aims at minimizing the Bayesian information criterion (BIC; Schwarz,1978) of the 

final model. The BIC is closely related to the Aikaike information criterion (AIC; Aikaike, 1974) but penalizes variable 

inclusion stricter for larger sample sizes, which is the reason for its selection in this study. The smaller the BIC, the 



9 

 

better the predictive power of a model. The algorithm for variable selection randomly selects a variable and adds 

variables to the model that decrease the overall BIC. After each addition it is tested whether the removal of any of the 

existing variables in the model leads to further decrease in the BIC.  

Since the number of potential regressors in this study is high and variables may be strongly related, a second criterion 

is included into the BIC-minimization procedure. In order to prevent multicollinearity, the variance inflation factor 5 

(VIF) of each variable added to the model is computed. The VIF is a measure of how much of the variance of a 

predictor in a model can be explained by the other predictors in the same model. Computation is done via  

2

1
VIF

1 R



,           (4) 

   

where R² denotes the coefficient of determination of a regression model that describes the variable to be added as a 10 

function of the existing variables in the model. The recommended limits for the VIF vary throughout literature. Since 

multicollinearity is a major issue for the analyses of this study, a low value of 5 has been chosen. Variables that show 

higher VIFs are not included into the existing model. 

For the GLS models with AR-correlation structure, variable selection was carried out according to OLS model fitting, 

evaluating the necessity of the AR-structure for each added variable using the likelihood ratio test. For variable 15 

selection using principal components, the BIC-minimization strategy is extended, not by adding each additional 

variable directly to the model but by computing principal components first and testing them as potential regressors of 

the model.  

In contrast to the statistical models, the hydrological model is based on daily input and output and is therefore capable 

of modeling an entire years’ hydrograph rather than a single low flow metric. Calibrating the hydrological model on 20 

the complete hydrograph may reduce the predictability of the single low flow event and favor the statistical models 

(directly calibrated on the low flow value) in a comparison of model performances. Therefore, the HBV-IWW is 

calibrated in a strategy comparable to the statistical approaches, namely by including nothing but the desired annual 

low flow metric in the objective function. 

In order to allow for a proper assessment of the models’ capabilities of predicting future low flows, the available record 25 

at each station is split equally into a calibration and a validation period. Both periods are continuous in time and the 

calibration consistently precedes the validation period. This set-up is chosen to test the ability of models fitted to a past 

period of time to predict “future”, i.e. the validation period’s characteristics. In order to double the available periods 

for validation, the time series are inversed and models are fitted to the former validation period and evaluated in the 

calibration period. The inversion is applied in order to preserve the continuity of the time series. 30 

In order to compare the quality of the different model approaches, a selection of performance measures is computed. 

These measures include the coefficient of determination (R²), the normalized root mean square error (NRMSE) and 

the percent bias (pbias). The criteria are selected to show various aspects of model quality, i.e. information about the 

similarity of the course of simulated and observed time series, the average fit, and systematic errors.  
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3.5 Climate change impact analysis 

The most suitable statistical model is eventually applied using the ensemble of climate model data. The first step is the 

assessment of the performance of the model chains in reproducing the observed low flow. This analysis is done in a 

reference period from 1971-2000. The projections and changes in the low flow will be analyzed in a near (2021-2050) 

and far future (2071-2100) period. It should be noted that the aim of the prognosis using actual climate model data is 5 

primarily for the validation of the statistical model approaches rather than a detailed regional assessment of expected 

changes.  

In order to account for potential bias in the climate model data used for prediction of future low flow, the individual 

station models are recalibrated for each climate model separately. The problem that needs to be overcome for this 

process is the matching of the temporarily dissociated series of meteorological indices generated by the climate models 10 

with the observed low flow time series, which is handled as follows. At first, the explanatory variables identified in 

the observed model fitting procedure are carried over, i.e. no new variable selections are carried out. This is meaningful, 

since the selected variables represent observed low flow drivers. The principal components are then re-estimated for 

the selected variables as projected by the individual climate models. In order to relate the climate model data to the 

observed time series, the regression parameters are optimized in such a way that the empirical distribution of the 15 

predicted low flow matches that of the observed sample. In order for the recalibrated model to be no more precise than 

the originally fitted model, which may lead to false estimates of the regression coefficients, the model fitted to the 

observed data is used as the target during re-calibration rather than the observed low flow series itself.   

4 Results and discussion 

4.1 Model performance 20 

Performance of the individual MLR model variants are compared using the aforementioned performance measures. 

Figure 4 shows the model performance of all tested model configurations exemplary for NM7Q prediction in the 

calibration (top) and validation period (bottom). For the validation period one can clearly observe an increase in  

performance from left to right, i.e. an increasing predictive power with increasing model complexity. The OLS-fitted 

model shows poorest performance with a median R² of only 0.43.  25 

Highest predictive performance has been achieved with the principal component model. The coefficient of 

determination for the MLR model over all stations has a median value of 0.58. The PC-model also shows smallest 

percent bias with a median of 1.30 %. The inclusion of several variables in the form of principal components appears 

meaningful in order to avoid omittance of important regressors and potential multicollinearity, granted by the 

orthogonality of the components. Additionally, the principal component models are supposedly more robust against 30 

outliers in single variables  

Second best performance is shown by the GLS-fitted model with an AR-correlation structure. One should note that an 

AR-correlation structure has not been used for model fitting at every station. Only at those stations where the likelihood 

ratio test favored an inclusion was a GLS-fitting carried out. This was the case for 55% of the fitted models (35% 

AR(1) covariance structure, 20% AR(2) covariance structure). The bias in the calibration period arises through the 35 
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approximation of the unknown true autocorrelation structure in the data. Since the values are negligibly small, this 

approximation is considered reasonable. As the number of variables included in the GLS model is significantly lower 

compared to the principal component model, and the step of finding suitable components was skipped, the performance 

based on the close validation period, as shown here, appears to be comparably good. However, inclusion of AR-

processes via likelihood ratio testing results in some distortion of the residuals and violation of the prerequisites of 5 

linear regression fitting at several stations. Thus, the principal component model is considered favorable. 

 

 

Figure 4: Performance criteria of different model approaches in the calibration period (top) and validation period (bottom) 

over 28 stations. 10 
 

Figure 5 shows the same criteria as Fig. 4 with inclusion of the hydrological model, and thus for a total of 7 stations 

only. The performance of the HBV model in both calibration and validation periods is substantially better in all aspects 

with median validation R² of 0.50, an NRMSE of 76.1%, and a percent bias of 1.7%, compared to the PC-model with 

median values of 0.42, 78.4%, and 5.8% respectively. This performance however could only be achieved using the 15 

calibration strategy of matching exclusively the annual NM7Q values at each station. Calibration using the entire 

hydrograph or parts of the flow duration curve did not explicitly outperform the statistical approaches. Nevertheless, 

HBV-IWW appears to be suitable for assessment of future low flow development when calibrated specifically on low 

flow indices.  

The statistical models appear to be positively biased. At almost all investigated stations a positive mean error could be 20 

observed. As models are fitted in both directions to the time series, this error appears to originate in the model itself, 

rather than in underlying processes of the time series that cannot be captured. Overall differences in model performance 
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between the stations could not be correlated to any specific regions or catchment features. The quality of the simulation 

did not depend on catchment size, position in the study area or any other distinguishable factor.  

 

 

Figure 5: Criteria for goodness of fit of different model approaches in the calibration period (top) and validation period 5 
(bottom) over 7 stations.  

 

An obvious problem is the significant difference in model performance between the calibration and validation period. 

All quality criteria certify a much better performance during calibration than during validation. Table 4 and Table 5 

show the median differences in goodness-of-fit measures for all model variants over all stations and over the stations 10 

at which hydrological modeling was possible. The differences are severe, even though quite a number of precautions 

have been taken during calibration. The R² for PC, for example, differs by 0.22 between calibration and validation. 

For the 7 stations this difference increases to 0.23. Overfitting appears to be an issue, even though the number of 

regressors has been restricted. However, the differences are also observable for the hydrological model, in some cases 

even more drastically than for the statistical models. The median difference in R² over the 7 stations is 0.3 between 15 

calibration and validation period.  

 

Table 4: Median absolute difference in quality criteria between calibration and validation period for 28 stations. 

 OLS GLS PC 

NRMSE 37.8% 20.3% 20.8% 

PBIAS 5.1% 2.7% 2.7% 

R² 0.37 0.22 0.22 
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Through separation of the validation period into three parts it becomes obvious that performance decreases steadily 

with distance from the calibration period, as shown in Fig. 6. Compared are the estimated and the observed means for 

all statistical methodsThe effect shows that non-stationary relationships between low flow and meteorological indices 

are of major relevance and need to be considered in statistical modeling. Logically, with a changing climate, 

interrelationships between individual meteorological variables and hence the ratio of the influence of individual drivers 5 

on low flow formation will change. At the same time, other forcings and feedbacks may become more or less relevant, 

which have not been included in the statistical model formulation in the first place. In an initial attempt at encompassing 

the problem by addressing a potential linear time dependence of the regression coefficients, the parameters have been 

re-estimated as linear functions of time using a maximum likelihood fitting. The required complexity of the models 

has been assessed using likelihood ratio tests.  However, model fitting appeared problematic for the small calibration 10 

period and did not yield an improvement of the existing models. 

It should be noted that the model set up for calibration and validation allows for assessment of changes between directly 

adjacent periods only. Application of the models to predict low flows in a more distant future under more severe 

climatic change may significantly enhance the error due to non-stationarity.  

 15 

Table 5: Median absolute difference in quality criteria between calibration and 

validation period for 7 stations. 

 OLS GLS PC HydMod 

NRMSE 34.4% 21.4% 19.3% 32.7% 

PBIAS 6.9% 8.4% 7.6% 3.7% 

R² 0.35 0.23 0.23 0.30 

 

Apart from the non-stationary relationship between target variable and regressors, another possible explanation - 

especially with respect to the observations regarding the hydrological model - could be a significant difference in flow 20 

behavior between the two periods selected for calibration and validation, potentially caused by forcings other than the 

local climate. A previous study by Fangmann et al. (2013) has found that time series at a majority of gauges in the 

study area are divided by significant break points (according to Pettitt, 1979) between the years 1987 and 1989. Since 

neither the hydrological nor the statistical models involve input other than the local meteorology, this break cannot be 

accounted for by either approach. Also, anthropogenic interference poses a relevant factor. Even if indirectly 25 

considered in the statistical models, changes in the management patterns would significantly alter the prognosis; a 

factor that needs to be considered during model application. 
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Figure 6: Mean deviation of estimated from observed means for the whole validation period (left), as well as the first, second 

and final 10 years of validation. 

 

Modeling of the other tested indices showed quite a differentiated picture. As shown exemplary for 7 stations and the 5 

GLS approach in Fig. 7, some indices were reproduced more successfully (top), others less so (bottom) than the NM7Q. 

Estimation of the Q95 appeared slightly better in terms of all quality criteria. The Dmax was modeled effectively via 

GLS in terms of R² and NRMSE (median values of 0.54 and 80.8 %), but showed quite a large bias. Vmax and especially 

the annual low flow timing could not be modeled successfully by any of the statistical approaches (median R² of 0.31 

and 0.03, respectively). 10 

It was noted that the overall model performance was slightly higher for the more average values, i.e. NM30Q and Q80 

than for the more extreme indices NM7Q and Q95. The median R² values of the NM7Q and the NM30Q compare as 

0.47 and 0.52, the ones of the Q95 and Q80 as 0.49 and 0.62. Compared to the Dmax and Vmax, the annual average Dmean 

and Vmean cannot be predicted by the fitted models. The validation yields R² values below 0.1 for both cases.  

 15 
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Figure 7: Validation results for the GLS model and the hydrological model for various low flow indices at 7 stations 

performing better (top) and worse (bottom) than for the NM7Q.  

 5 

The differences in reproducibility of the various metrics can be explained by the nature of the indices and the structure 

of the statistical models. The regression model uses aggregated meteorological features over a specific period of time 

for prediction of a desired low flow variable. The shorter the required period, the lower the degree of averaging and 

the greater the possibility to capture extremes that cause a subsequent low flow event. Therefore, indices related to a 

specific event, like the NM7Q or the Dmax, can be modeled quite effectively based on previous meteorological states. 10 

The fact that more average indices like NM30Q and Q80 are reproduced better than more extreme ones can be explained 

by the same principle. Meteorological indices computed for longer base periods are required to model more average 

index values. Errors that occur if extremes cannot be explained by external variables are lower. Dmean and Vmean, 

however, do not represent averages of single but of multiple events. These features cannot be captured by small sets 

of regressors as used in this study.  15 

Alongside the validation results of the statistical models, those of the hydrological model are presented in Fig.7. The 

indices in the top panels are deduced from the simulation runs of the models that has been calibrated on the annual 

NM7Q. In order to better represent the indices related to duration and volume, the model used in the bottom panels 

has been calibrated using the annual Vmean as a fitting criterion. One can see that the results for all indices improve 

for the hydrological model as expected, due to a more detailed process representation. This is especially the case for 20 

the average duration and volume based indices. Still, the differences in performance for the individual indices is visible 

also for the hydrological models. 

It should be noted that the selected statistical methods exclusively take linear relationships between target variable and 

regressors into account. It appears that these linear dependencies are strong and major portions of the variance in the 
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target variables could be explained by the fitted models. At this point it cannot be precluded that non-linear 

relationships to some meteorological indices do exist but it is presumed that important influential quantities can be 

linearly related to the target variable. It is well-considered that such relationships may change under future conditions 

that deviate strongly from the present circumstances under which the statistical models were fitted. As discussed above, 

the statistical models can only be evaluated in a validation period directly adjacent to the calibration. Most hydrological 5 

models, which involve much greater detail in physical process representation, will more certainly be transferable to 

situations where interrelationships between low flow, meteorology and other influencing factors are altered. The actual 

capability of the statistical approaches in estimating future low flow as mere functions of future climate would need to 

be assessed e.g. using simulation studies involving “past” and “future” runoff simulated by a hydrological model. Such 

an experiment is beyond the scope of this study but may be a useful test for further studies. 10 

4.2 Low flow drivers 

The PC models are used to evaluate the selected explanatory variables over all stations. For the NM7Q, the majority 

of models comprise of one or two principal components made up by 2-8 meteorological indices. Many of the selected 

variables repeat for most of the models. The most common predictors of the NM7Q appear to be the aridity index 

P/ETP for 3- and 6-month base periods and for 1-4 months lead times, as well as the P-ETP for the same periods. The 15 

second most frequent regressor is the SPI of various base periods and lead times (0 to 3 months). Upper precipitation 

quantiles with various base periods and lead times follow in frequency. Several models also contain DSD and the ratio 

between average DSD and WSD as predictors. Pure temperature based predictors are rare, but do occur in some cases. 

The selected lead times of the temperature based indices are in these cases larger than for the precipitation or water 

balance indices. Lead times as long as 9 months, which would represent November-January temperature, are observed. 20 

Winter temperature hence appears to be an important predictor for summer low flow magnitude.  

The inclusion of indices with differing base periods and lead times at the individual stations represents the 

heterogeneity of transformation processes within the study area. One of the major determinants of how meteorological 

processes translate into flow is catchment size. Larger, rather slowly responding catchments with significant storage 

capacity will less likely be affected by small meteorological events and low flows will occur moderated and with 25 

significant temporal delay. Therefore, statistical models fitted for these catchments will most likely include 

meteorological indices that have been computed for longer base periods and lead times. Within small, quickly 

responding systems on the other hand, low flow magnitudes may be related to shorter dry periods that have occurred 

recently. Variable selection is thus carried out in favor of small base periods and lead times. Nevertheless, even for 

smaller catchments an inclusion of temporally leading meteorological indices may mimic initial storage conditions and 30 

determine the absolute magnitude of a summer low flow event. 

The models fitted to the NM30Q are comparable to the ones of the NM7Q but contain on average fewer explanatory 

variables per model. As discussed before, the more average low flow values are more easily predicted, apparently 

requiring fewer external information. In contrast to the NM7Q, temperature based indices do not appear to be important 

predictors of the NM30Q. Considering the models of the other indices, it can be seen that the selected regressors differ 35 

between the individual types. While Q95 and Q80 are primarily predicted by water balance parameters, as are the 
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NM7Q and NM30Q, the models for Dmax and Vmax count a high number of indices related to durations, especially 

average and maximum dry spell duration. The regressors selected for the forward and inversed fitting carried out at 

each station are not always identical. Some of the independent variables are naturally very similar for various base 

periods and lead times that they are almost exchangeable, which in turn makes the fitted models very similar. Still, this 

observation hints again at the problem of non-stationarity and the observed breakpoint near the transition between 5 

calibration and validation period.  

4.3 Prognosis 

For prognosis, the principal component models are applied using the ensemble of climate model data described above. 

For reasons of conciseness only the NM7Q is selected as the target variable in this example and only changes in the 

means for the near and far future period are assessed. In order to firstly evaluate the climate models’ capabilities of 10 

reproducing the required input variables for the impact models, the meteorological indices obtained from the models 

are compared to the observation in the reference period. Figure 8 summarizes the results. Three measures are used to 

assess the models’ capability to reproduce the indices: a) the mean error, i.e. the difference in means between 

simulation and observation over all stations (computed for scaled data to make it comparable between indices) b) the 

number of stations where this difference is significant at a 5%-significance level, tested using a non-parametric Mann-15 

Whitney test (Wilcoxon, 1945), and c) the NSE of the simulated and observed index time series, both ordered by size, 

as a means of assessing the similarity of the two distributions. The indices considered in the plot are calculated on a 6-

month base period with a 3-month shift and are representative for most base periods and lead times.  
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Figure 8: Comparison of simulated and observed meteorological indices for each model over 17 stations: mean error (left), 

number of significant shifts in location (center) and Nash-Suttcliffe efficiency of ordered series (right). 

 5 

The left panel shows that deviations are observed for the climatic water balance and the aridity index, i.e. average P-

ETP and P/ETP. The climate models consistently underestimate the observed values. What also becomes apparent is 

that upper precipitation quantiles (P70 – P90) are mostly underestimated. The amount of significant differences found 

for the means, especially in P90, suggest that there is a significant bias throughout the study area. Additionally, the 

NSE values are rather low, indicating a generally poor reproduction of these index values. Apart from the quantiles 10 

and the climatic water balance, errors are found for maximum temperature and dry spell durations. The lower 

precipitation quantiles show quite high errors but are rarely considered in the station models. For those variables that 

are considered, additional bias correction may be advisable.  

The climate models appear to have limited ability to reproduce some of the true meteorological indices. This effect 

may be due to the inability of the regional climate models to downscale the global climate data appropriately for the 15 

study area. One also needs to consider the difference in grid size between the observed data, which has a detailed 1-

km resolution, and the simulation, which is available on a 10-km grid. Since mere averaging of the grid cells has been 

applied to obtain the basin averages, the smoothing effect may be recognizable, especially for small catchments and in 

heterogeneous terrain. The re-calibration technique described in section 3.5 was chosen to address these issues related 

to various forms of scaling. 20 

Figure 9 shows the prognoses of the individual climate models over all stations. Along with the summer NM7Q 

(bottom), projections for the aridity index are shown, as they indicate the overall climatic development. Also, the index 
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is included in numerous stations’ impact models. The index’s development is shown for a 6-month base period without 

lead time, which equals the computation basis for the NM7Q (May - October; center) and a 4-months shift (January -

June), which equals the maximum lead-time considered in the station models (top).  

The changes for January-June P/ETP are predominantly positive for the majority of models and stations. Only the EC-

EARTH coupled with the CCLM and the RCA4 show negative trends. The total range of projections is -13.31 to 5 

+34.10% in the far future period. The positive change in the ratios is caused by a significant increase in January-June 

precipitation amounts, projected for all stations by all climate models, which exceeds the simultaneously projected 

increase in evapotranspiration. For summer, the projections for the P/ETP are more ambiguous. 9 ensemble members 

clearly predict a significant decline in the far future, while 5 models project an increase at all considered stations. The 

spread of the projection is accordingly large, ranging from -25.75 to +48.91%. The IPSL-WRF331F thereby shows by 10 

far the highest positive development and can potentially be considered an outlier. The rather negative trend in the 

summer P/ETP is related to both decreasing precipitation, as projected by most models, and increasing 

evapotranspiration. 

For the NM7Q the spread of changes over the considered stations is significantly larger and increases further from the 

near to the far future period. This is a logical consequence, since flow behaves much more heterogeneously throughout 15 

space and direction and magnitude of change may greatly depend on local conditions. Overall, the changes in the 

NM7Q appear to be a mixture of the patterns observed for P/ETP in both summer and winter. The highest increase in 

NM7Q is predicted by the IPSL-WRF331F model chain (median 48.18%), which also shows highest increase in 

precipitation amounts and strongest decrease in evapotranspiration in both summer and winter. EC-EARTH-CCLM 

and –RCA4 predict the strongest decrease (median -7.9 and -13.42%, respectively), which is also in accordance with 20 

declining P/ETP in both summer and winter. Apart from these models, there appears to be a general increase projected 

for summer NM7Q over the majority of stations. It seems that on average the influence of spring and winter 

meteorological states weighs stronger on the formation of summer NM7Q than the actual summer conditions.  
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Figure 9: Projected changes in winter (top) and summer (center) aridity index and NM7Q (bottom) by all models over 17 

stations and two future periods. 

 

Figure 10 shows the spatial distribution of the projected changes for the two future periods and the variables analyzed 5 

previously. Depicted are the median changes over all climate model ensemble members for the individual stations. All 

stations show an average increase in winter P/ETP ranging from +6.84 to +14.75% in the far future. At the majority of 

stations a decrease is projected for summer, with the largest changes occurring in the Harz mountains, i.e. the most 

southeastern stations in the study area, with an average decrease of -4.72%.  Positive changes can be found in the 
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northern stations with up to +3.12% in the near future but decreasing to +2.76% in the latter period. The NM7Q is 

projected to increase by up to 22.79% at all but four stations, where a median decrease of up to -12.01% is projected. 

Two of these stations are situated in or near the Harz Mountains, where flow forming processes and climate are quite 

different from the rest of the study area. Additionally, their areas are the smallest in the data set considered for impact 

analysis (44.5 to 363.0 km²). Apparently, the NM7Q in these areas is influenced more by summer meteorology than 5 

the rest of the study area.  

 

 

Figure 10: Medians of projected changes in winter (top) and summer (center) aridity index and NM7Q (bottom) by for 

individual stations over 15 climate models and two future periods. 10 
 

Finally, Fig. 11 shows boxplots for all stations and the projected changes in the NM7Q over all considered ensemble 

members. It can be seen that at most of the stations the predicted directions of change are quite unambiguous over the 

majority of climate models and projections are accordingly quite robust. Exceptions are stations 4819102, 4882195 

and 9286162, where the median change is close to 0. What also becomes apparent in these plots is the spatial 15 

dependence between stations. Identical leading digits of the station numbers indicate that stations belong to the same 

river basin, while increasing numbers indicate more downstream locations, i.e. larger size, as depicted in Fig. 12. The 

projected changes are obviously strongly related to catchment area, since continuous transitions are observable from 

most negative/smallest change in NM7Q at the smallest to most positive change at the largest catchments within each 

basin. Summer low flow in catchments with large storage capacity will more likely be influenced by the increasing 20 
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annual and winter precipitation amounts, while the flow in the smaller catchments is more drastically influenced by 

drier summer meteorological conditions. It remains to be analyzed, e.g. via hydrological modeling, whether this 

observation is an artifact created by oversimplification of the statistical approaches (through neglect of other relevant, 

potentially counteracting factors) or a truly observable phenomenon. Nonetheless, the coherence of the projected 

station means suggests that the statistical models - even though they have been fitted independently for every station - 5 

exhibit a meaningful spatial consistence within the region. Apparent outliers are not produced by any stations’ 

statistical impact model. 

 

 

Figure 11: Projected changes in summer NM7Q for individual stations over 15 climate models and two future periods. 10 
 

The significant increase in winter and partly projected decrease in summer P/ETP may suggest a temporal shift in 

minimum flows from summer/early fall to late fall/early winter in the study area. In order to test this hypothesis, 

statistical models are fitted to additionally model the winter NM7Q. Modeling of the winter values was more difficult 

than of the summer low flows since their causes may not be representable by the utilized indices (e.g. water retention 15 

by snow). The final projections in Fig. 13 suggest that the expected developments for winter are less conclusive than 

for summer. At most stations mostly positive trends are projected for both future periods with lacking robustness. A 

pronounced pattern of change contrasting the summer NM7Q cannot be observed. Accordingly, with overall increasing 

precipitation amounts, the intensities of the severest events of the year are expected to decrease at most stations in the 

area, regardless of their time of occurrence. 20 

Still, the findings indicate that there might be a slight delay in the onset of future low flow events. The ratio of winter 

to summer low flows appears to increase slightly at most stations. While for the observation 10.20% of the annual 

lowest low flow events occur in winter, the models predict on average 15.1% for the reference period, 20.00% for the 

near and 22.67% for the far future.  

 25 
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Figure 12: Catchment areas of the considered gauges.  

 

A comparison of the signals projected in this work to other studies that analyze comparable regions and climate model 

ensembles but use hydrological models for impact assessment is difficult, due to differences in scale, model ensemble 5 

and type of analysis (e.g. based on degree of heating rather than on fixed periods). A regional study that is comparable 

to this work has been carried out by Osuch et al. (2017) for Poland. They investigated climate change impacts on low 

flows, including the annual NM7Q, using the HBV model and, among others, an RCP 8.5 climate model ensemble. 

They found significant positive changes in the NM7Q for the RCP8.5 scenario with more than an average 40% increase 

in the study area in a period from 2071-2100. These changes are much larger than the ones found in this study but are 10 

obtained for a more continental climate. Other studies analyzing climate change effects on low flows over entire Europe 

(e.g. Marx et al., 2018) or global studies (e.g. Wanders and Yada, 2014) using RCP emission scenarios usually find 

inconclusive changes in low flow magnitude for the northwestern parts of Germany (between -10 and +10%). The 

average changes in the annual NM7Q over all stations and ensemble members obtained in this study are +5.62% for 

the near and +8.96% for the far future period and thus within the range of these findings. Van Vliet et al. (2015) show 15 

in their Europe-wide study that especially in central western and northern Europe the projected changes in streamflow 

drought under an RCP8.5 scenario appear to differ between the two hydrological models they applied, both in direction 

and magnitude. In general, it appears difficult to assess future low flow development in the region, especially in 

comparison to the parts of Europe, where expected changes in precipitation are more pronounced and unequivocal 

between climate models. 20 
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Figure 13: Projected changes in winter NM7Q for individual stations over 15 climate models and two future periods. 

5 Conclusions and outlook 

The aim of this work was to assess key low flow drivers using simplified statistical approaches. Several regression 5 

models with varying restrictions and assumptions have been set up and evaluated in a split-validation procedure. In 

order to assess potential future changes in the low flow, the models are applied to an ensemble of climate model data. 

The main findings are: 

- Modeling of low flow values as a function of meteorological indices appears feasible. An approach using just 

a few principal components of several variables as regressors yields the best results for the 60-year 10 

observation period. It showed to simultaneously countervail problems with multicollinearity and omittance 

of important explanatory variables.  

- Non-stationarity within the relationship between meteorological predictors and low flow target variables 

appears to be an issue, resulting from the entire neglect of physical processes and changing interrelationships 

between explanatory metrics. This problematic needs to be considered, when applying the models to future 15 

data, especially in terms of parameter stability. Ideally the models should be revised through inclusion of 

methods to map potential non-stationary processes and interrelationships.  

- More average low flow indices are reproduced better by the statistical models than their more extreme 

counterparts, e.g. the NM30Q compared to the NM7Q. Maximum duration and deficit volume can be 

adequately modeled, while the onset of an event can by no means be predicted by the suggested models. 20 

- The main drivers for all low flow characteristics are metrics related to precipitation and evapotranspiration 

amounts. Temperature indices appear to be relevant at some stations for certain low flow metrics. Usually 

base periods for computation and lead times of the explanatory variables considered in the station models 

depend greatly on catchment size and response time of the catchments.  

- The hydrological model outperforms the statistical approaches, when explicitly calibrated on the low flow 25 

events.  

- Both the statistical and the hydrological model show a major discrepancy in their performances between the 

calibration and the validation periods. This indicates a lack in capturing non-stationary processes or the 



25 

 

presence of a significant non-homogeneity between the calibration and validation period considered for 

analysis.  

- Applying the principal component model with an ensemble of coupled global and regional models based on 

an RCP 8.5 scenario yields on average an increase in summer NM7Q at most stations. Only two small 

headwater catchments show a decrease in NM7Q in the far future. These stations appear to not be influenced 5 

by preceding winter precipitation.  

- A major weakness for the proposed model type is the reproduction of meteorological indices by the climate 

models. However, underestimation of the climatic water balance and upper precipitation quantiles may be a 

likewise limiting factor within process-based impact models. A direct calibration using climate model data 

instead of the observation can potentially help increase the quality of the projections made by the statistical 10 

models. 

There are potential advantages to applying statistical approaches that have not been discussed before. One is that the 

required input consists of variables that are lumped over a significant amount of time (3 – 12 months). Such averages 

can potentially be better reproduced by climate models than the daily variability required for other impact model types. 

Also, the statistical models may be easily extended to include other forcings like large-scale phenomena, which may 15 

be similarly described by indices like local meteorological conditions. Land-use feedbacks also might be includable to 

some extent. What remains difficult to achieve is to statistically model feedbacks between different external variables 

with the simplified approaches. This problem may however be moderated by including non-stationary regression 

coefficients for individual variables. Considering issues with the coupling of global and regional climate and impact 

models (e.g. Dai et al., 2013; Wilby and Harris, 2006), including issues with downscaling, a direct use of large-scale 20 

teleconnections, and the possibility to apply the models directly to extrapolated climate data - rather than just climate 

model data – may suggest that statistical approaches can significantly increase the robustness of predictions. This is 

especially relevant when considered in an ensemble of various model types and information sources, as suggested by 

Laaha et al. (2016) for proper assessment of climate change impacts on low flows.  

The statistical approach can also make use and benefit from inclusion of spatial information, especially with respect to 25 

regional climate change impact analysis. According to the concept of “trading space for time”, simultaneous analysis 

of all information in an area instead of a single-site approach will yield more robust parameter estimates and allow for 

estimation of climate change signals at unobserved sites. Extensions of the existing station models using different 

approaches of non-stationary regional frequency analysis have been proposed in Fangmann (2017). The simultaneous 

consideration of space and time within the simple statistical approaches appeared beneficial at the regional level. 30 

All in all, the approach of modeling specific low flow indices as a function of meteorological indices appears 

promising. Model set up and computation are straightforward and quick, even over large study areas with a high 

number of catchments. The method appears to be able to simulate flow for any catchment, from small to large and flat 

to steep, without any consideration of physiographical characteristics. Being able to consider larger periods for 

calibration would assumingly lead to an increase in robustness of the models and extend the potential horizon for 35 

prognosis. Even though the projected values should not be taken as a basis for dimensioning, the statistical approaches 

can be of assistance for decision making. They can offer a good approximation of the future development, especially 
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when considered in a framework of several climate-impact model ensembles and are worthy of consideration in the 

field of climate change impact analysis. 
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