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Abstract. Bias correction methods are used to calibrate climate model outputs with respect to observational records. The goal

is to ensure that statistical features (such as means and variances) of climate simulations are coherent with observations. In this

article, a multivariate stochastic bias correction method is developed based on optimal transport. Bias correction methods are

usually defined as transfer functions between random variables. We show that such transfer functions induce a joint probability

distribution between the biased random variable and its correction. The optimal transport theory allows us constructing a5

joint distribution that minimizes an energy spent in bias correction. This extends the classical univariate quantile mapping

techniques in the multivariate case. We also propose a definition of non-stationary bias correction as a transfer of the model

to the observational world, and we extend our method in this context. Those methodologies are first tested on an idealized

chaotic system with three variables. In those controlled experiments, the correlations between variables appear almost perfectly

corrected by our method, as opposed to a univariate correction. Our methodology is also tested on daily precipitation and10

temperatures over 12 locations in southern France. The correction of the inter-variable and inter-site structures of temperatures

and precipitation appears in agreement with the multi-dimensional evolution of the model, hence satisfying our suggested

definition of non-stationarity.

Copyright statement. TEXT

1 Introduction15

Global Climate Models (GCM) and Regional Climate Models (RCM) are used to study the climate system. However, their out-

puts often appear biased compared to observational references (e.g., Randall et al., 2007). For example, the temperature means

can be shifted. Thus removing this bias is often necessary to drive impact studies such as based on crop or hydrological models

(Chen et al., 2013). The main goal of bias correction (BC) is to match the statistical features of climate models outputs with

observations (see, e.g. Ehret et al., 2012; Gudmundsson et al., 2012). The most used method is the quantile mapping (Panofsky20

and Brier, 1958; Wood et al., 2004; Déqué, 2007), which adjusts the quantiles of the variables of interest in the stationary case

(Shrestha et al., 2014). The importance of the stationarity hypothesis has been discussed by a few studies (Christensen et al.,

2008; Maraun, 2012; Nahar et al., 2017). Some extensions, like CDF-t (Cumulative Distribution Function transfer, Michelan-

1



geli et al., 2009), can take into account some of the non-stationarity in GCM or RCM.

Most of those methods are univariate, and do not take into account the spatial and inter-variable correlations, which may alter

the quality of the corrections (e.g., Wilcke et al., 2013; Maraun, 2016). Maraun et al. (2017) have pointed out that correcting

model output could induce biases of physical processes and that such procedures require an understanding of the nature of the5

biases. In particular it is crucial to investigate the way key climate variables co-vary.

This shortcoming has led to the recent development of multivariate techniques. As mentioned by Vrac (2018), two kinds of

methods are currently available. The first type corrects separately each marginal, and apply afterwards a correction of the

dependence structure (e.g., Vrac and Friederichs, 2015; Vrac, 2018; Nahar et al., 2018; Cannon, 2018). The second kind per-10

forms recursive corrections: each variable is corrected conditionally on the previously already corrected variables (Bárdossy

and Pegram, 2012; Dekens et al., 2017). These last methods have two main limitations. First, the correction depends on the

ordering of the marginals. Second, each marginal is adjusted conditionally on previously corrected marginals, which reduces

the number of data at each step. Furthermore, the variability of observations is generally greater than that of the climate models.

To increase the variability, von Storch (1999), Wong et al. (2014) and Mao et al. (2015) suggested to introduce a stochastic15

component in the bias correction procedure. In this paper, we develop a multivariate and stochastic bias correction method,

different from the two categories presented, based on elements from the optimal transport theory.

Optimal transport theory is a natural way to measure the dissimilarity between multivariate probability distributions (Villani,

2008; Muskulus and Verduyn-Lunel, 2011; Robin et al., 2017), especially in a multivariate case. For example, this has been al-20

ready successfully applied in image processing to transfer colors between images (Rubner et al., 2000; Ferradans et al., 2013).

Here, our goal is to apply optimal transport techniques to perform bias correction in estimating a particular joint law (called a

transport plan) that links the probability distributions of a biased random variable and its correction. This joint law minimizes

a cost function, representing the energy needed to transform a multivariate probability distribution to another. In this optimal

transport context, any realization of the biased random variable induces a conditional law of the transport plan, associating25

the realization and its correction. As the corrections are randomly drawn from these conditional laws, the suggested method is

stochastic by construction.

Moreover, Maraun et al. (2017) also stressed that BC methods do not correct the physical processes of the model, and errors

can propagate into the corrections. However, one key-aspect of the present work is to highlight that, in a climate change con-30

text (or more generally, in a framework where corrections are performed in conditions different from the calibration dataset)

a proper BC method should provide changes - from calibration to projection periods - in agreement with the modelled data to

be corrected. Knowing the quality of the raw modelled data (and of the underlying processes) is therefore an important a priori

step. Nevertheless, this is out of the BC method development per se.

35
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This paper is organized as follows. In Section 2, the developed theoretical framework to perform bias correction is presented.

In particular, the classical definition of bias correction as transfer function is generalized with optimal transport theory. Two

methods are presented : Optimal Transport Correction (OTC, stationary case) and dynamical Optimal Transport Correction

(dOTC, non-stationary case). In Section 3, the proposed methodology is tested on an idealized non-stationary case based on

chaotic attractors. In Section 4, a multivariate bias correction is performed on a regional climate model (RCM) simulation of5

temperatures and precipitation, in a cross-validation case. Section 5 provides conclusions and perspectives.

2 Theoretical framework

The general goal of this paper is the correction of a random variable, noted X (e.g., a biased climate model output) with respect

to a reference random variable, noted Y. The random variables X and Y live in dimension d. If d= 1, we note them X and

Y . The probability law of X (resp. Y) is noted PX (resp. PY).10

Following Piani et al. (2010), a bias correction method of X with respect to Y is a map T : Rd→ Rd, called a transfer func-

tion, such that the random variable T (X) (the correction) follows the same law as Y, i.e. PT (X) = PY. This definition covers

most of the practical cases, but we can construct random variables where no deterministic transfer function exists, e.g. if X

is constant and Y is not. Thus, beyond a multivariate transfer function, it is necessary to extend the definition of bias correction.15

In a first part, we highlight our method of bias correction with a univariate example starting from quantile mapping. In a second

part, the mathematical theory is explained. Finally, an extension of our method in a non-stationary context is presented.

2.1 From quantile mapping to optimal transport

We start with the construction of a quantile mapping method in the univariate case, i.e. with d= 1. In this context, the biased20

and reference random variables are noted X and Y , respectively. A transfer function T between X and Y is constructed on the

Cumulative Distribution Functions (CDFs) of X and Y , defined by

FX(x) := PX(X ≤ x), FY (y) := PY (Y ≤ y).

A realization y of Y is the correction of a realization x of X if and only if FX(x) = FY (y). Under the assumption that FY is

invertible, the correction y of x is given by25

y = (F−1Y ◦FX)︸ ︷︷ ︸
T

(x).
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Thus the transfer function is written T = F−1Y ◦FX . This method is called quantile mapping. Indeed, the quantiles of X and

Y are matched through the relation FX(x) = FY (y).

We illustrate the quantile mapping method with an example, in Fig. 1a). In this example, the random variables X and Y are

two Gaussian laws centered respectively on 0 and 10, with standard deviation of 1. We cut R into cells of length 1 and estimate

the histograms. The Fig. 1a) shows the two histograms ofX and Y in red and blue, respectively. The x-axis gives the empirical5

quantiles of the edges of each cell. The black arrows indicate how the quantile mapping connect a cell of X to a cell of Y . For

example, the realizations of X in the first blue cell are corrected and transferred to realizations in the first three red cells of Y .

The main point here is the following: in the univariate context, we can perform a bias correction with only the black arrows. A

realization in a cell of X is corrected to a realization into a cell of Y connected by a black arrow. Because in multivariate con-10

text the quantile mapping can not be used to estimate these arrows (CDFs are not invertible), our problem is : how to construct

these black arrows in a multivariate context?

For this, let xi (resp. yj) be the centers of each cell of the histogram of X (resp. Y ). Let pxi be the number of realizations of

X in the interval xi, and let pyj be the number of realizations of Y in the interval yj . We represent all possible black arrows15

by a collection of coefficients γij . A γij value corresponds to the number of realizations in the cell xi that are transferred to

realizations in the cell yj . We obtain the two following equalities:

pxi =
∑
j

γij ,

representing how the cell xj is split into each cell yj ; and

pyj =
∑
i

γij ,20

representing how the cell yj received the realizations from each cell xi. We depict the γ1j coefficients in Fig. 1b). The black

arrows represent the number of realizations γ1j that are transferred to each yj .

The problem is to calculate the coefficients γij . For each displacement γij , we can associate a cost, which is the square of

the length of the displacement, |xi− yj |2. This choice comes from the optimal transport theory, and will be highlighted in the

next section. To correct γij realizations, we have a cost of γij |xi− yj |2. We thus obtain a global cost associated with the γij25

coefficients:

C(γ) :=
∑
ij

|xi− yj |2γij .
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Our bias correction method is defined by the γij coefficients minimizing the functional C. The γij obtained by minimizing C

for our example are shown in Fig. 1c). Comparing with the quantile mapping in Fig. 1a), we can see that the obtained coeffi-

cients (the black arrows) are similar. Indeed, the coefficients induced by the quantile mapping are precisely those minimizing

the functional C. Proofs of this statement can be found in Farchi et al. (2016, Appendix A) and Santambrogio (2015, Chap. 2).

In other words, even in the absence of CDF, a bias correction can be carried out by calculating the minimum of the function C.

The advantage of this approach is that the functional C can be written in the multivariate case by replacing |xi− yj | by5

‖xi−yj‖, where xi and yj are the center of multivariate cells, and ‖ · ‖ the Euclidean norm. We illustrate in Fig. 1d) how the

displacements are carried out in the case of two bivariate Gaussian distributions. The black arrows again represent the non-zero

coefficients estimated by the OTC method (we only represent 30 arrows).

In the next section we present the mathematical theory behind this example with probability measures of X and Y . If we10

normalize the number of realizations ofX and Y in each bin by the total number of realizations of X and Y , we obtain pxi and

pyj . Therefore, the transport can be written as a transport of a fraction of mass, instead of a transport of number of realizations.

2.2 Bias correction as a joint distribution

In the multivariate context we assume the existence of a transfer function T between X and Y . By construction, the random

variables X and T (X) are dependent, and their associated joint law can be summarized by the function κ : Rd→ Rd×Rd15

κ(x) := (x,T (x)) ∈ Rd×Rd.

The map κ connects the random variable X with its correction T (X) on the space Rd×Rd. Furthermore, the map κ induces a

probability law on Rd×Rd, noted PT , and given for all measurable sets A⊂ Rd×Rd by

PT (A) := PX(κ−1(A)) = PX({x ∈ Rd such that κ(x) ∈A}) = P((x,T (x)) ∈A).

The critical property here concerns the margins of PT : the first (resp. second) margin of PT is PX (resp. PY). To understand20

why it is critical, let Γ(PX,PY) be the set of probability measures on Rd×Rd for which PX is the first margin and PY the

second one. By definition, PT ∈ Γ(PX,PY). Thus, any bias correction method defined by a transfer function is an element of

Γ(PX,PY).

We argue that any probability distribution in Γ(PX,PY) induces a bias correction method. For γ ∈ Γ(PX,PY), γ(x,y) can25

be interpreted as the probability that y is the correction of x. Formally, the Jirina theorem (see e.g., Strook, 1995, chap. 5)

states that there exists a collection of probability laws γx, x ∈ Rd, such that γx are the conditional laws of Y given X. In other

words, for B ⊂ Rd, γx(B) is the probability that the correction y ∈B, given X = x. The correction of x is then sampled from
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the law γx. Thus, any γ ∈ Γ(PX,PY) defines a bias correction method, through the conditional laws γx. This highlights the

stochastic part of this approach: all corrections are sampled from the laws γx, and the corrected values follow the law PY (by30

definition of a conditional law).

We note that the problem where X is constant is easily solved with this approach. The set Γ(PX,PY) is reduced to one element:

the independent law δx×PY, where δx is the Dirac mass in x. Thus, γx = PY, and the correction of X is given by sampling

each correction with the law PY.5

We have defined a bias correction method as an element of Γ(PX,PY). However, this set can be very large. The goal of the

next section is to present a criterion to select an element of Γ(PX,PY).

2.3 Selection of a joint law with optimal transport theory

To select a probability law γ ∈ Γ(PX,PY), we propose to use a cost function on this set. The minimum of this cost function10

corresponds to an optimal bias correction method. We propose to minimize the energy needed to transform a realization x of

X, to its correction y, i.e. minimize ‖x−y‖2, weighted by γ(x,y). Thus, the cost function C is given by :

C :

 Γ(PX,PY) → R+,

γ 7→
∫
Rd×Rd ‖x−y‖2.dγ(x,y).

(1)

This cost function minimizes the square of the distance between x and its correction y. Our bias correction method is associated

with the law γ that minimizes C. This cost function stems from optimal transport theory (Villani, 2008). The choice of the15

square in Eq. (1) guarantees the uniqueness of the solution. In the univariate case, it can be shown that the joint law defined

by the quantile mapping minimizes the cost function C of Eq. (1). Proofs of this statement can be found in Farchi et al. (2016,

Appendix A) and Santambrogio (2015, Chap. 2).

Our next step is to explain how this minimization strategy can be extended in the multivariate case.

2.4 Multivariate bias correction with optimal transport selection : the stationary case20

We assume that (X1, . . . ,Xn) and (Y1, . . . ,Yn) are two independent and identically distributed (i.i.d.) samples of the random

variables X and Y. A first step is to estimate the empirical distributions, P̂X and P̂Y. We note ci a collection of regularly

spaced cells that partition Rd, and cover (X1, . . . ,Xn) and (Y1, . . . ,Yn). The center of each cell is also noted ci. With this

notation, P̂X and P̂Y can be written as a sum of I and J Dirac masses:

P̂X(A) =

I∑
i=1

pX,iδci
(A), where pX,i =

1

n

n∑
l=1

1(Xl ∈ ci), andA⊂ Rd,
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P̂Y(B) =

J∑
j=1

pY,jδcj
(B), B ⊂ Rd.

The scalar pX,i (resp. pY,j) is the empirical weight around ci (resp. cj) and induced from the sampling of X (resp. Y). A

natural estimator of γ ∈ Γ(PX,PY) can be written as

γ̂(A×B) =

I,J∑
i,j=1

γi,jδ(ci,cj)(A×B).5

The coefficients γij are the probabilities to transform ci (i.e. a x ∈ ci) to cj (i.e. a y ∈ cj). They are unknown, and they have

to obey the marginal properties:

J∑
j=1

γij = pX,i, (2)

I∑
i=1

γij = pY,j . (3)

Finally, the cost function defined in Eq. (1) can be approximated by10

Ĉ(γ̂) =

I,J∑
i,j=1

‖ci− cj‖2γij (4)

Finding γij , i.e. solving the problem defined by constraints of Eqs. (2-3) and minimization of Eq. (4), is called a linear pro-

gramming problem. It can be solved (for example) by the network simplex algorithm (see, e.g. Bazaraa et al., 2009). We use

the python implementation of Flamary and Courty (2017). To correct X, we have to follow the plan of γij . For a realization

Xl of X, we take the cell ci that contains Xl. Following γ̂, ci is moved to cj with probability γij/pX,i (applying Eq. (2), the15

sum over j is 1). To determine cj , we randomly draw it according to the conditional law γ̂Xl
= (γi1, . . . ,γiJ)/pX,i. Finally, we

draw uniformly y in cj . This methodology is summarized in Algorithm 1, and we refer to it as Optimal Transport Correction

(OTC).

Note that the traditional one-dimensional quantile mapping preserves the ordering of quantiles. In the multivariate case, this20

type of property can be viewed as the Monge-Mather (1991) shortening principle (see e.g. Villani, 2008, chap. 8). The idea is

that the extremes of a multivariate distribution are moved to extremes, the boundary to the boundary, the level lines to level

lines, etc.
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Algorithm 1 Optimal Transport Correction (OTC)

Require: (X1, . . . ,Xn) a sample i.i.d. of the random variable X

(Y1, . . . ,Yn) a sample i.i.d. of the random variable Y

Ensure: Z1, . . . ,Zn a sample i.i.d., correction of (X1, . . . ,Xn) with respect to the estimation of the law of (Y1, . . . ,Yn)

1: Estimate the law P̂X, from (X1, . . . ,Xn)

2: Estimate the law P̂Y , from (Y1, . . . ,Yn)

3: Compute the optimal plan γij between P̂X and P̂Y (see, e.g. Flamary and Courty, 2017)

4: for all Xl do

5: Find the cell ci containing Xl

6: Construct the vector γ̂Xl =
(
γi,1 . . . γi,J

)
/pX,i (The conditional law)

7: Draw j ∈ {1, . . . ,J} according to probability vector γ̂Xl .

8: Draw uniformly Zl a realization of Y in cell cj .

9: Zl is a realization of Z, corresponding to a correction of Xl

10: end for

2.5 Non stationary bias correction

Climate models offer a valuable tool to study future realistic climate trajectories. Climate model outputs of the present period25

need to be bias corrected with respect to current observations. Future climate simulations also need to be adjusted. However, no

observation is available for the future and clear assumptions have to be made to correct simulations for future periods. Table 1

displays the basic framework of bias correction. Future unobserved data, say Y1, should be inferred from the current reference

vector, Y0, and two numerical runs, one in the present, say X0, and one in the future, say X1. The period 0 is called the

calibration period, the period 1 the projection period. In the univariate case, noting F i (resp. Gi) the CDF of Xi (resp. Y i),5

the CDF-t (CDF transform) method of Michelangeli et al. (2009) assumes that

(G1)−1 ◦G0 = TY 0,Y 1 = TX0,X1 = (F 1)−1 ◦F 0. (5)

Recombining Eq. (5), the CDF of Y 1 is given by G1 =G0 ◦ (F 0)−1 ◦F 1, and can be used to perform a quantile mapping cor-

rection. Here, the fundamental hypothesis TY 0,Y 1 = TX0,X1 means that the transfer functions to capture the temporal changes

are identical in the model and observational worlds.10

CDF-t learns the change between X0 and X1, and transfers it to Y 0 to estimate Y 1. In the multivariate case, following CDF-t,

we want to learn the evolution (i.e. the change or the temporal evolution) between X0 and X1, and apply it to Y0. This gener-

ates Y1, and OTC can then be applied between X1 and Y1. Note also that the reverse hypothesis TY 1,X1 = TY 0,X0 could be

considered, meaning that the bias is learned, and transferred along the dynamic. In this case, the correction of example given15
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in Section 3 does not correspond to the reference (not shown), so we rejected this assumption. Thus, our definition of non-

stationary bias correction assumes a transfer of the evolution of the model to the observational world. Indeed, climate change

is one of the main signal that we want to account for in the projected corrections. However, the change in the observations can

be different, and therefore the resulting corrections can be also different from observations. Nevertheless, this methodology is

justified because different simulations can have different evolutions, e.g., the four RCP scenarios provide four different simu-

lations, giving four different corrections. This is also true for different climate models, which can show different changes. This

information is therefore kept in the corrections.

Using OTC, we define two optimal plans. The optimal plan γ, between X0 and Y0, and the optimal plan ϕ, between X0 and5

X1. The law γ is the bias between X0 and Y0, whereas ϕ is the evolution between X0 and X1. Our goal is to move ϕ along γ,

defining a plan ϕ̃, to estimate Y1 as the evolution of Y0, i.e. Y1 = ϕ̃(Y0). Then, we correct X1 with respect to Y1 = ϕ̃(Y0),

with OTC method. This is summarized in Fig. 2.

The estimation of ϕ̃ is performed in three steps:10

1. transformation of ϕ into a collection of vectors,

2. transfer of these vectors along γ and

3. adaptation of these vectors to Y0.

To illustrate our methodology, Fig. 3 shows an example where the random variables X0, X1 and Y0 follow a bivariate Gaussian

law. They are respectively centered at (0,0), (10,0) and (0,10), with covariance matrices 4×Id2, Id2/4 and Id2/4 (the matrix15

Idd is the d-dimensional identity matrix). Without loss of generality, we write the empirical distribution of X0, X1 and Y0 as

a sum of Dirac masses,

P̂X0 =

I∑
i=1

pX0,iδci
,

P̂Y0 =

J∑
j=1

pY0,jδcj
,

P̂X1 =

K∑
k=1

pX1,kδck
.20

Step 1 : transformation of ϕ. Using OTC method, ϕ moves the bin ci of P̂X0 to the bin ck of P̂X1 . The vector vik := ck−ci

represents the evolution from ci to ck (i.e. the local evolution between X0 and X1). The collection of vectors vik is an estima-

tion of the process between X0 and X1. In Fig. 3, the red arrow is an example of vector vik.
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Step 2 : transfer along γ. Using OTC method, γ moves the bin ci of P̂X0 to the bin cj of P̂Y0 . Thus, the estimation of ϕ̃ could25

be defined by the vector vik applied to cj , i.e. a realization of Y1 is given by cj +vik. The grey arrow in Fig. 3a depicts this

operation. But the vik can cross, and the correction is not coherent. This is due to normalizing issues and because the collection

of vectors vik applied to Y0 do not define an optimal transport plan. The standard deviation decreases between X0 and X1,

whereas it increases between Y0 and Y1 in our example. Furthermore, the quantiles are inverted in this example (low values

are moved to high values). Consequently, we have to adapt the vectors vik to P̂Y0 .

5

Step 3 : adaptation of vik. To solve this problem, we introduce a matrix factor D, which rescales the collection of vectors vik.

In the univariate case, Bürger et al. (2011) proposed a factor σY0σ−1X0 , where σ• is the standard deviation. The idea is to remove

the scale of X0, and to replace it by the scale of Y0. Bárdossy and Pegram (2012); Cannon (2016) proposed a multivariate

equivalent that uses the Cholesky decomposition of the covariance matrix. Noting Σ the covariance matrix, and Cho(Σ) its

Cholesky decomposition, we multiply (in matrix sense) vik by the following matrix:10

D := Cho(ΣY0) ·Cho(ΣX0)−1. (6)

The Cholesky decomposition only exists if Σ is symmetric, and positive-definite. Some covariance matrices do not have this

property, e.g. highly correlated random variables. In such a case, Σ must be slightly perturbed to be positive-definite (see, e.g.

Higham, 1988; Knol and ten Berge, 1989). Furthermore, the Cholesky decomposition can be poorly estimated if the number of

available data is too small compared to the dimension. Indeed, the inverse of a covariance matrix is highly biased. In this case,15

a pragmatic solution is to replace the matrix D by the diagonal matrix of standard deviation, i.e. D = diag(σY0σ−1X0).

Finally, a realization of Y1 is given by cj +D ·vik. Figure 3b shows an estimation of Y1. Visually, the shape of Y1 appears

coherent with the evolution between X0 and X1. The mean of Y1 is (2.53,10). The standard deviation between X0 and X1 is

divided by 4. The mean shift between X0 and X1 is (10,0). This shift of 10 units is correctly taken into account in the rescaling20

of Y0 by the standard deviation (equal to 4) between X0 and X1 :

(2.53,10)︸ ︷︷ ︸
Y1mean

= (10,0)︸ ︷︷ ︸
meanshiftbetweenX0 andX1

/ 4︸︷︷︸
Rescaling

+ (0,10)︸ ︷︷ ︸
Y0mean

.

The value of the covariance matrix of Y1 is ΣY1 ' 0.018×Id2. It is close to the expected value (1/4)/16×Id2 ' 0.015×Id2.

The shift of 10 units of the model is not respected. It is interpreted as a correction of the bias into the evolution of the model.

However, depending on the hypotheses desired by the user, the dOTC method can easily provide corrections whose mean25

evolutions and trends are in agreement with those given by the simulations to be corrected, like in the EDQM bias correction

method (Li et al., 2010). The complete method of correction is summarized in Algorithm 2. We refer to it by dOTC (dynamical

Optimal Transport Correction).
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Algorithm 2 dynamical Optimal Transport Correction (dOTC)

Require: (X0
1, . . . ,X

0
n) a sample i.i.d. of the random variable X0

(X1
1, . . . ,X

1
n) a sample i.i.d. of the random variable X1

(Y0
1, . . . ,Y

0
n) a sample i.i.d. of the random variable Y0

Ensure: (Z1
1, . . . ,Z

1
n) a sample i.i.d. of the random variable Z1

1: Estimate the law P̂X0 , from (X0
1, . . . ,X

0
n)

2: Estimate the law P̂X1 , from (X1
1, . . . ,X

1
n)

3: Estimate the law P̂Y0 , from (Y0
1, . . . ,Y

0
n)

4: Compute the optimal plan γij between P̂X0 and P̂Y0 (see, e.g. Flamary and Courty, 2017)

5: Compute the optimal plan ϕik between P̂X0 and P̂X1

6: Compute the Cholesky factor D between (X0
1, . . . ,X

0
n) and (Y0

1, . . . ,Y
0
n), given by Eq. (6).

7: for all Y0
l do

8: Find the cell cj containing Y0
l

9: Using the plan γij (see Alg. 1), find a cell ci of P̂X0

10: Using the plan ϕik, find a cell ck of P̂X1

11: Compute the vector vik := ck − ci

12: Y1
l =Y0

l +D ·vik is a realization of Y1

13: end for

14: Estimate the law P̂Y1 , from (Y1
1, . . . ,Y

1
n)

15: Apply OTC (see Alg. 1) between (X1
1, . . . ,X

1
n) and (Y1

1, . . . ,Y
1
n) to generate (Z1

1, . . . ,Z
1
n)

We first propose to evaluate OTC and dOTC on an idealized case.

3 Bias correction on an idealized case

3.1 Model and methodology5

To evaluate our bias correction method, we construct an idealized biased case, based on the Lorenz (1984) model. This three

dimensional system is generated by the differential equations

dx

dt
=


−x22−x23− (x1−ψ(t))/4

x1x2− 4x1x3−x2 + 1

x1x3 + 4x1x2−x3

 . (7)
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The function ψ(t) is a linear forcing proposed by Drótos et al. (2015). Classically, ψ contains also a seasonal cycle (Lorenz,

1990), where the length of a “year” is fixed at t= 73 time units. Here we integrate this equation for the following forcing

between 0 and 7× 73 (i.e. 7 “years” of integration):

ψ(t) = 9.5− 20
t−T
T

1{t>T}, T = 6× 73. (8)5

The integration is performed with a Runge-Kutta (order 4) scheme with a time step of size 0.005. All trajectories of the Lorenz

(1984) model converge on a unique subset of R3 (called an attractor), and remain trapped on it. According to Drótos et al.

(2015), the five first “years” correspond to the time required to trap the trajectories.

One realization of random variable Y0 (resp. Y1) is the year 6 (resp. year 7). Each year contains 14600(= 73/0.005) elements.10

According to Eq. (8), the linear forcing is applied during the year 7. The non-stationarity is induced by the change between the

two time periods.

We introduce a bias by multiplying each point of the trajectories by a triangular matrix S, and add a vector m, i.e. X = SY+m.

The addition changes the mean, whereas the multiplication alters the covariances. The matrix S is chosen empirically such that15

the covariance matrices of X0, X1, Y0 and Y1 differ. We fix:

S =


1.22 0 0

−0.41 1.04 0

−0.41 0.56 0.52

 , m =


1

2

3

 .
The random variables X and Y are plotted in Fig. 4a and Fig. 4d. The blue (resp. red) curve of Fig. 4a is the trajectory of Y0

(resp. X0). The mean is largely altered. We estimate the covariance matrices as20

ĈovY0 =


0.43 −0.37 −0.24

−0.37 0.93 0.17

−0.24 0.17 0.69

 , ĈovX0 =


0.64 −0.68 −0.62

−0.68 1.39 1.0

−0.62 1.0 0.92


Similarly to Fig. 4a, Fig. 4d depicts in blue Y1, and in red X1. The forcing of Eq. (8) has changed the properties of the

trajectories, and they became chaotic. It is worthwhile to notice that the dynamic of Y is comparable to the one of X. The

covariance matrices are largely affected:

ĈovY1 =


0.27 −0.09 −0.14

−0.09 0.81 0.08

−0.14 0.08 0.73

 , ĈovX1 =


0.4 −0.25 −0.29

−0.25 1.0 0.65

−0.29 0.65 0.64
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We estimate the empirical distributions PY0 , PY1 , PX0 and PX1 with a 3 dimensional histogram. We cut a large cube around

the trajectories into cells of size 0.2× 0.2× 0.2. Then we count the number of points in each cell.

5

Finally, we evaluate the quality of the correction by comparing the covariance matrices of Y0 and X0, and the covariance

matrices of Y1 and X1.

3.2 Correction of biased Lorenz (1984) model

We apply our method to correct X0 and X1. The random variable X0 is corrected with respect to Y0 and using the OTC

method. The random variable X1 is corrected with respect to the estimation of Y1, coming from the dOTC method. The re-10

sulting random variables Z0 and Z1 are given in green on panels b and e of Fig. 4. We depict also on Fig. 4c and Fig. 4f a

univariate correction with quantile mapping (resp. CDF-t) for the period 0 (resp. 1), generating the random variables Q0 (resp.

Q1).

The correction Z0 is visually very similar to the reference in blue in Fig. 4a. The covariance matrix is almost perfectly repro-15

duced

ĈovZ0 =


0.42 −0.36 −0.24

−0.36 0.93 0.17

−0.24 0.17 0.69

 , sup
∣∣ĈovZ0 − ĈovY0

∣∣= 0.004.

The correction Z1 is depicted in green in Fig. 4d. It is visually hard to compare to Fig. 4b, but we recognize Y1. The covariance

matrix is correctly rectified

ĈovZ1 =


0.26 −0.11 −0.11

−0.11 0.82 0.08

−0.11 0.08 0.71

 , sup
∣∣ĈovZ1 − ĈovY1

∣∣= 0.03.20

Finally, the cost of transformation (given by Eq. (1)) of Z1 into Y1 is 93% smaller than the cost between Y1 and X1, i.e.

PZ1 is more similar to PY1 than PX1 . Furthermore, if we replace the Cholesky matrix of dOTC by the matrix of standard

deviation, the maximum difference between covariance matrices increases to 0.22, but the cost is 85% smaller. Thus, using the

standard deviation slightly degrades the correction. However, visually, it is very hard to distinguish the corrections with the

Cholesky matrix or the standard deviation matrix. The figure corresponding to Fig. 4 with standard deviation matrix is given

in the supplementary material.
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On the contrary, Q0 and Q1, depicted respectively in Fig. 4c and 4f, do not reproduce Y0 and Y1. Thus, the multivariate

correction is largely better than the univariate correction. and Y1. It is confirmed by the covariance matrices, and Y1, which5

reproduce exactly the covariances of X0 and X1:

ĈovQ0 =


0.42 −0.42 −0.42

−0.42 0.95 0.68

−0.42 0.68 0.69

 , sup
∣∣ĈovQ0 − ĈovY0

∣∣= 0.51,

ĈovQ1 =


0.13 −0.1 −0.14

−0.1 0.59 0.39

−0.14 0.39 0.46

 , sup
∣∣ĈovQ1 − ĈovY1

∣∣= 0.31.

We have performed a tri-variate correction on a non linear system exhibiting non standard probability measures (i.e. non

Gaussian, non exponential, etc.). In the stationary case, the OTC method works almost perfectly. In the non-stationary case,10

the dOTC method produces a probability distribution closed to the expected result. We propose now to apply OTC and dOTC

on climate model simulations.

4 Bias correction of an RCM simulation

4.1 Data

The dataset used as reference for the bias correction (BC) is the reanalysis "Systeme d’Analyse Fournissant des Renseigne-15

ments Atmospheriques a la Neige" (SAFRAN, Vidal et al., 2010). SAFRAN is a hourly reanalysis over France between 1958

and present, with a horizontal resolution of 8 km × 8 km. Quintana-Seguí et al. (2008) claimed that daily mean of the Sur-

face Atmospheric Temperature (tas) and Precipitation (pr) present no bias compared to observations from the climatological

database of Météo-France. This justifies the use of SAFRAN as a reference.

20

We test our multivariate BC method on a simulation of the Weather Research and Forecast (WRF) atmospheric model (Ska-

marock et al., 2008) performed within the EURO-CORDEX initiative (Vautard et al., 2013; Jacob et al., 2014) with a 0.11◦×
0.11◦ horizontal resolution. The boundaries of the simulation were forced by a historical simulation of the Institut Pierre-Simon

Laplace (IPSL) coupled model (Marti et al., 2010; Dufresne et al., 2013). This EURO-CORDEX historical simulation will be

called “WRF” in the following.25

SAFRAN and WRF data are re-mapped onto the same grid, with a spatial resolution of 0.11◦×0.11◦ (i.e. ∼ 12km × 12km).

The nearest neighbor interpolation is used. We only keep the land region comprised in 1.8− 7.85◦ E× 41.8− 45.2◦ N i.e.

covering the south-east of France. This region is characterized by a complex topography, which creates a strong spatial hetero-

geneity, especially for precipitation. For the present application, we extract 12 grid points regularly spaced, see Fig. 5a, with a

14



one to one spatial correspondence between SAFRAN and WRF.5

In both datasets, we will consider daily surface air temperatures and precipitation. The goal of this section is to correct the bias

in tas and pr in the WRF data with respect to SAFRAN.

4.2 Cross-validation protocol

We focus on the daily time scale over the 1970–2000 period. We correct the warm season (May–September). The analysis and10

conclusions are available for the cold season, and the corresponding figure (ie. Fig.5) is given in the supplementary material.

We split that period into two sub-periods, 1970-1985 (2295 days), and 1985-2000 (2295 days) to perform a cross-validation.

The SAFRAN (resp. WRF) values over the first time period correspond to the random variable Y0 (resp. X0), and is called the

calibration period. The SAFRAN (resp. WRF) values over the second time period correspond to Y1 (resp. X1), and is called

the projection period. SAFRAN during 1985-2000 (i.e. Y1) is assumed to be unknown, and is used for cross-validation.15

We perform two bias corrections: univariate and 24-variate (12 grid points and 2 variables).

1. For univariate correction, quantile mapping is used for the calibration period, and CDF-t for the projection period.

2. For 24-variate correction, OTC is used for the calibration period, and dOTC for the projection period. The spatial struc-

ture and the dependence between the two variables are used. Due to the dimension, the Cholesky matrix is poorly20

estimated. We replace it by the matrix of standard deviation in the rescaling step.

We estimate the empirical distributions by computing histograms with bins of size 0.1 in each dimension. Furthermore, CDF-t

and dOTC can shift close to 0 values to negative values for precipitation. Thus, negative precipitation values are replaced by

0 after correction. We test the quality of the correction by plotting the evolution of the mean, of the standard deviation, and

the spatial and inter-variables covariance, i.e. the difference between projection and calibration period. These indicators are25

summarized in Fig. 5. During calibration period, the goal is that the probability distribution of correction of the WRF simulation

is the probability distribution of SAFRAN. By construction of OTC, the correction is almost perfect, and we focus on projection

period. In projection period, the goal is that the evolution of corrections is close to the evolution of WRF simulation.

4.3 Evolution analysis

As we have seen in previous section, the correction of X1 and Y1 are identical only if the evolution of SAFRAN is identical to30

the evolution of WRF. To analyze the evolution of WRF, SAFRAN and the corrections, we compute the difference of statistical

indicators between the projection and the calibration period at each grid points. The indicators are the mean (Fig. 5b,f), the

variance (Fig. 5c,g), the covariance between pr and tas (Fig. 5e) and the spatial covariance for each variables (Fig. 5d,h).

The x axis of Figs. 5a-h is the evolution of the correction (i.e. E(Z1)−E(Z0),. . . ). The y axis of Figs. 5a-h is the evolution

of WRF in red (i.e. E(X1)−E(X0),. . . ), and the evolution of SAFRAN in blue (i.e. E(Y1)−E(Y0),. . . ). Furthermore, the5
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red line is the linear regression between the evolution of the 24-variate correction and the evolution of WRF. The correlation

(r-value), p-value and standard error of each linear regression are summarized in Tab. 2.

The linear regression between evolution of 24-variate correction and evolution of WRF (red line) shows a strong statistical link

for all statistical indicators. The evolution of the mean is almost perfectly reproduced for the two variables (r-values is at least10

equal to 0.98, with a maximal p-value at 10−9). The evolution of variance of WRF is also reproduced, the linear regression

being significant (maximal p-value is 5× 10−2).

The evolution of dependence structure is given by the evolution of spatial and inter-variables covariance. The minimal r-value

for linear regression is equal to 0.59 with a maximal p-value equal to 2×10−3. This means that dOTC reproduces the evolution15

of WRF between calibration and projection period. Because the calibration period is perfectly corrected, the correction during

projection period appears as the evolution of WRF, applied to SAFRAN.

A linear regression, the Spearman rank correlation between the evolution of SAFRAN, and the evolution of the correction

with WRF do not show a significant statistical link (not shown). We conclude that the evolution of WRF is different of the20

evolution of SAFRAN. This indicates it is not possible to reproduce SAFRAN during projection period using dOTC and WRF.

For example, WRF predicts an increase between 0.2 and 0.4 K of the mean temperature, whereas SAFRAN gives an increase

between 0.2 and 1 K.

The correction with CDF-t appears to be satisfactory for the temperatures, and very similar to the correction with dOTC. But25

for the precipitation, the structure is not coherent with WRF or SAFRAN. This dissimilarity is due to the difference between

the probability distribution of temperatures (quasi-Gaussian) and precipitations (exponential/Gamma laws).

We conclude that the evolution of the 24-variate correction with dOTC between calibration and projection period is close to

the evolution of WRF. Furthermore, the evolution of SAFRAN is very different from the evolution of WRF. In particular, this30

example illustrates how the classical cross-validation methodology does not differentiate the variations of SAFRAN and WRF,

and that the correction can not be compared to the reference during the projection period.

5 Conclusions

We have developed a new method for multivariate bias correction, generalizing the quantile mapping in the multivariate case. To

do so, we have developed a new theoretical framework to understand any bias correction (BC) method: any BC method is here

characterized by a joint law between the biased dataset and the correction. This joint probability distribution is estimated based

on optimal transport techniques, and the BC method is then refer to as "Optimal Transport Correction" (OTC). A definition of
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non-stationary bias correction is also proposed: the evolution of the model is learned, and transfered to the reference world. An5

extension of OTC called dynamical OTC (dOTC) has been developed to account for temporal non-stationarities.

OTC and dOTC methods have been tested on an idealized 3 dimensional case based on Lorenz (1984) time-dependent attrac-

tors, which induced changes in the correlation between variables. The bias correction appeared to perform very well in those

idealized experiments.

10

Then, 12 grid points of a WRF simulation have been corrected with respect to SAFRAN reanalyses for precipitation and tem-

perature in Southern France. A 24-variate correction was performed. The correction in stationary context was almost perfect.

In the non-stationary case, the evolutions of WRF and SAFRAN were different, and, as expected, the correction with dOTC

differed from SAFRAN. However, the correction presented a multidimensional evolution similar to that of WRF. We can there-

fore conclude that the correction is consistent with the definition proposed for the non-stationary case.15

This is consistent with the results of Maraun et al. (2017): the fundamental errors of a model are not corrected, but transferred

to the world of observations. The dOTC method preserves the signal of climate change inferred from the model simulations. As

suggested by Maraun and Widmann (2018) our cross-validation method does not compare the correction to the observations

on the validation period, which can produce false positive or true negative due to internal variability of model or observations,20

but assesses whether the statistical evolution of the model is kept.

Furthermore, although the number of available data is very small compared to the dimension (2295 days and 24 dimensions),

the OTC and dOTC performed a correction without numerical problems, and, moreover, only in a few minutes on a personal

computer.25

The methods OTC and dOTC are able to correct the dependence structure (i.e. the joint law), and not only the inter-variable

and spatial correlations. In particular, the copula function (which contains the information about dependence) is corrected. In

addition, dOTC proposes a definition of non-stationarity, and explicitly gives what the correction corresponds to (the evolution

of the model applied to observations). In the particular case of the temperatures / precipitation correction, compared to, e.g.,30

Piani and Haerter (2012); Räty et al. (2018), the correction is at least as good during the calibration period, although the com-

parison is not done over the projection period, because the indicators are different.

As a perspective of improvement of the method, we note that the optimal plan can only be used to correct data points that

are already known. If a new data point is obtained, and alters the estimate of the probability density function, then the plan

needs to be recomputed. However, such a situation is relatively rare in bias correction. Indeed, the corrections usually have

to be performed on climate model simulations that cover many years and decades. This means that the whole time series are

available at once and are not continuously updated. One possibility would be to "smooth" the optimal plan that, thus, could5

be applied to new points without recalculating the plan. Finally, a promising application of this method is the post-processing

17



of operational forecasts. In such a case, the question of internal variability (Maraun et al., 2017) would not affect the bias

correction procedure as climate dynamics is consistently represented between the model and observations.

Code and data availability. OTC and dOTC are implemented in two packages: ARyga (R) and Apyga (python3). These packages are avail-

able at https://github.com/yrobink/Ayga.git. The example of Sec. 3 is given in Apyga. SAFRAN and EURO-CORDEX data are respectively

available at http://www.drias-climat.fr and https://www.euro-cordex.net.
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Figure 1. Histogram of two Gaussian laws X and Y in blue and red. a) The x-axis indicates the edges of each bar. The black arrows indicate

how the quantile mapping matches an element of X with its correction. b) The x-axis gives the center of each bar. The black arrows indicate

the possibilities for how the probability of obtaining the value x1 for X can be distributed among the possible values yj of Y . The γ1j

correspond to the number of realizations moved. These arrows can be generalized to each xi. c) The x-axis gives the center of each bar.

The black arrows indicate the non-zero γij estimated by the OTC method. d) Bivariate histogram of two Gaussian laws. The black arrows

represent how the OTC method fits each xi with its correction. To facilitate readability, only 30 arrows are represented.
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Figure 2. Estimation of the unobserved random variable Y1. The random variables X0, X1 and Y0 are known. The plans γ and ϕ are the

optimal joint laws in the sense of equations (2-4). ϕ̃ is the evolution of Y0 estimated from γ and ϕ. OTC is used to correct X1 with respect

to the estimation of Y1.

Figure 3. Bivariate histogram with bin size equal to 0.1. On each Panel we have: a Gaussian law centered in (0,0) with covariance 4Id2

(P̂X0 ), a Gaussian law centered in (10,0) with covariance 1/4Id2 (P̂X1 ) and a Gaussian law centered in (0,10) with covariance 1/4Id2

(P̂X1 ). The red arrow is the local evolution between P̂X0 and P̂X1 . (a) The probability distribution P̂Y1 is the correction with OTC-t and

D= Id2. The grey arrow is the estimation of the evolution of P̂Y0 . (b) The probability distribution P̂Y1 is the correction with dOTC and D

given by Eq. (6). The grey arrow is the estimation of the evolution of P̂Y0 .
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Figure 4. Random variables generated by Lorenz (1984) model, OTC, dOTC, quantile mapping and CDF-t. (a) Biased random variable

X0 (red) and references Y0 (blue) for time period 0. (b) Biased random variable X0 (red) and correction Z0 with OTC (green). (c) Biased

random variable X0 (red) and correction Q0 with quantile mapping (green). (d) Biased random variable X1 (red) and references Y1 (blue)

for time period 1. (e) Biased random variable X1 (red) and correction Z1 with dOTC (green). (f) Biased random variable X1 (red) and

correction Q1 with CDF-t (green).
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Figure 5. (a) Map of the south east of the France. The 12 black squares are the locations where corrections are performed. (b-h) The x axis

of panels a-h is the evolution of the correction with dOTC. The y axis of panels a-h is the evolution of WRF in red and the evolution of

SAFRAN in blue. The red line is the linear regression between the evolution of correction and the evolution of WRF. The black cross marker

are the scatter plot between the evolution of correction with CDF-t and evolution of WRF. (b) Evolution of mean precipitation, i.e. difference

between the projection period and the calibration period. (c) Evolution of variance of precipitation. (d) Evolution of spatial covariance of

precipitation. (e) Evolution of covariance between precipitation and temperatures. (f) Evolution of mean temperatures. (g) Evolution of

variance of temperatures. (h) Evolution of spatial covariance of temperatures.
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Table 1. Representation of bias correction in context of climate change.

Present Future

Numerical model X0 X1

Observations Y0 unknown (Y1)

Table 2. r-value, p-value and standard error of linear regression between evolution of correction and evolution of WRF.

r-value p-value standard error

Mean evolution Pr 0.98 10−8 0.08

Mean evolution Tas 0.99 10−9 0.05

Variance evolution Pr 0.71 10−2 0.37

Variance evolution Tas 0.57 5× 10−2 0.25

Covariance Pr/Tas evolution 0.81 2× 10−3 0.24

Spatial covariance Pr 0.59 10−14 0.08

Spatial covariance Tas 0.76 10−29 0.05
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