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The authors propose a new kriging technique developed to regionalize non-normally
distributed spatio-temporal variables. The approach, as | understand it, involves (i) fit-
ting time series observations to a predetermined distribution type at each gauge inde-
pendantly; (ii) using the fitted distribution to assign a probability of non-exceedance to
each observation at each gauge; (iii) fit the subset of these probabilities corresponding
to each observation time to (different) beta distributions; (iv) map the fitted probabilities
to normal quantiles; (v) use the (now normally distributed and *assumed* second-order
stationary) outcomes as a basis to apply OK or EDK, as described (rather cryptically)
in section 2.1.2.

While the approach is intriguing, its description in the paper lacks statistical rigor and
minimal proofs and intuitions. Its application in cross validation suggests that it does
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a decent job at predicting some measure of rainfall, but so would most properly fitted
interpolation methods. This does not mean that the estimator is BLUE (best — or even
efficient — unbiased linear estimator) of the considered stochastic process. Actually,
the apparent correlation between Z*(x) and sigma2(x) (Figure 4) suggests that the
process has some degree of heteroskedasticity. Under these conditions, linear models
(like most kriging estimators) are not necessarily efficient (see, for instance, the Gauss
Markov Theorem for ordinary least squares). Again, the approach is promising, but its
exposition needs a major overhaul to be convincing.

In particular:

Non-Gaussianity: In its canonical form, Ordinary Kriging is based on the method of
moment (i.e. variance minimization subject to unbiasedness) and so is not technically
restricted to normally distributed processes. Gaussiannity is, however, required for
maximum likelihood (ML) type estimations, which some studies have shown can be
more efficient for kriging-based regionalization (e.g., Lark 2000). ML approaches be-
come necessary to have unbiased prediction of both the mean and the variance when
it comes to EDK or Universal Kriging, particularly when subject to more intricate error
correlation structures (e.g., Muller 2015). Since non-gaussianity appears to be a key
rationale for the proposed approach, it is important to be specific on that.

Beta-distribution: The use of the beta distribution is intriguiging, but more intuition is
needed on the assumed underlaying stochastic process. Please describe clearly the
properties of the (space-time) stochastic process that you assume gives rise to the
observed sample and use that to demonstrate Eqn 6 and 7 in a rigorous mathematical
proof. | find the use of the beta distribution promising because a common interpre-
tation is that it describes the distribution of the probabilities associated to a binomial
process observed over a finite sample. Let’s say that the binomial process in question
is the exceedance of a given threshold (as eluded to in the manuscript). Then, if the
underlaying point process is identically distributed in space and if an identically sized
sample is taken at each observation point, the proportion of observations lower than a
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given threshold across all gauges will be beta-distributed. Perhaps that’s a start?

Stationarity: More fundamentally, a main issue that | have is that your approach in-
volves fitting distributions independantly at different points in space (gamma or weibull)
and time (beta), which implies that the underlaying random point process follows a dif-
ferent distribution at each point in space. Granted, EDK and Universal kriging allow the
first moment of the underlaying distribution to vary through space, as allowed by the
scaling properties of the expectated value estimator. However, | am not aware of any
existing geostatistical approach that allows for higher order moments to vary through
space. This may be fine, but please demonstrate that your approach does not violate
the second order stationarity assumption (i.e that the variogram is constant through
space), which is critical (and arguably more important than gaussianity) for kriging.
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