
     

Responses on the Referees 1 comments on the submitted manuscript "Geostatistical 
interpolation by Quantile Kriging" hess-2018-276 
 
We are very thankful to the anonymous referees for their remarks on our submitted manuscript. 
We believe that they will significantly improve the quality of the manuscript.   
We use the nomination e.g. A1.13 (i.e. A(nswer)1 (no. of reviewer).13 (no. of comment)) and numbers 
(page, line, figures, tables) of the original manuscript submitted in order to address all queries 
raised: 
 
RC 1: 
The proposed manuscript presents a new geo-statistical interpolation method (Quantile Kriging 
– QK) that is able to relax three of the main assumption/limitations of the most used Ordinary 
Kriging: 1) spatial stationarity of the process mean, 2) Gaussianity of the interpolated variable 
and 3) independence of the uncertainty on the estimation value. The work extends the 
formulations of other well-known kriging methods with logic and statistical rigour. Although the 
presented technique still has a major limitation in the ability to handle the presence of many 
zero values (as often happens when dealing with rainfall, especially at finer scales than the 
presented one), it can be considered an improvement on the state of the art and a contribution 
to the advancement of the field. Additionally, although the authors do not mention it in the 
manuscript (and should) there are many applications to a variety of environmental variables 
where the presence of zeros is not a problem and the presented technique could be better 
applied. The manuscript is very well written and easy to follow. I suggest the following 
improvements: 
 
1. The introduction explains a lot about the evolution of kriging techniques. However a little 

bit more discussion about applications (especially to rainfall) their limitations in 
hydrology, the main challenges, etc… could help defining the framework. 

A1.1: see A1.3 
 

2. P.4 l. 18, many of the presented geostatistical techniques were developed in geological 
sciences, where the temporal evolution of the studied variables is often irrelevant. I would 
mention this to explain why the temporal variability is often ignored in kriging. 

A1.2: see A1.3 
 
3. I would mention spatio-temporal kriging and other similar techniques as attempts to 

incorporate the temporal variability. How is this method better/different (e.g. 
Gaussianity)? Examples: 

 
 Snepvangers, J. J. J. C., Heuvelink, G. B. M., & Huisman, J. A. (2003). Soil water 

content interpolation using spatio-temporal kriging with external drift. Geoderma, 
112, 253–271. https://doi.org/10.1016/S0016-7061(02)00310-5 

 Sideris, I. V., Gabella, M., Erdin, R., & Germann, U. (2014). Real-time radar-rain-
gauge merging using spatio-temporal co-kriging with external drift in the alpine 
terrain of Switzerland. Quarterly Journal of the Royal Meteorological Society, 
140(April), 1097–1111. https://doi.org/10.1002/qj.2188 

 
A1.3: We try to address all three comments (i.e. A1.1, A1.2 and A1.3) by rephrasing and 

extending the existing paragraph by the following, starting at p.4, l.18:  

[…].  The inclusion of a temporal behavior into the geostatistic models is mostly 
irrelevant for the original geological variables. However, the temporal variability of 
a variable becomes more prominent for other sciences, e.g. hydrology, where  
observations from raingauges over several time steps are implemented into the 
geostatistical models in order to generate spatial precipitation estimates. These 
estimates subsequently serve as input to the hydrological modelling (e.g. Syed et 
al. 2003; Basistha et al. 2008; Cole et al. 2008) over multiple time steps.  
Associated errors in the precipitation estimates may ultimately lead to greater 
errors in the subsequent discharge modelling (Kobold et al. 2005). These errors 



     

strongly depend on the spatial and temporal distribution of the input precipitation 
(Gabellani et al. 2007, Moulin et al. 2009) and may limit the accuracy of rainfall-
runoff simulations.  
There are geostatistical space-time models in order to incorporate the temporal 
variability of the variable, but they are primarily aiming on the extrapolation of the 
variable in time (Snepvangers et al. 2003). Therefore, they require a strong 
dependence of the variable over time, suited e.g. for groundwater modeling where 
temporal changes occur relative slowly. This temporal dependence might be 
absent for other variables, e.g. monthly precipitation.  […] 
 
For demonstration purposes, we remove the seasonality from our observations by 
subtracting the mean precipitation of the specific calendar month from the 
observed precipitation. The graph below shows the autocorrelation (with lag 1) for 
all 226 raingauges (see graph below). There is hardly any (linear) dependence 
between the monthly precipitation of two successive months, i.e. if a specific month 
becomes “wet” or “dry” does hardly depend on if the preceding month was relative 
“wet” or “dry”.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
References: 
 Syed, K.H., Goodrich, D.C.. & Myers, D. E. (2003). Spatial characteristics of 

thunderstorm rainfall fields and their relation to runoff. Journal of Hydrology, 
271, 1–21. https://doi.org/10.1016/S0022-1694(02)00311-6 

 Basistha, A., Arya, D.S.. & Goel, N. K. (2008). Spatial Distribution of Rainfall in 
Indian Himalayas -- A Case Study of Uttarakhand Region. Water resources 
Management, 22, 1325–1346. http://dx.doi.org/10.1007/s11269-007-9228-2 

 Cole, S.J., Moore, R.J. (2008). Hydrological modelling using raingauge- and 
radar-based estimators of areal rainfall. Journal of Hydrology, 358, 159 - 181. 
https://doi.org/10.1016/j.jhydrol.2008.05.025 

 Kobold, M., Suselj, K. (2005). Precipitation forecasts and their uncertainty as 
input into hydrological models. Hydrology and Earth System Sciences, 9, 322-
332. https://www.hydrol-earth-syst-sci.net/9/322/2005/ 

 Gabellani, S., Boni, G. Ferraris, L., von Hardenberg J., & Provenzale A. (2007). 
Propagation of uncertainty from rainfall to runoff: A case study with a stochastic 
rainfall generator. Advances in Water Resources, 30, 2061 - 2071. 
https://doi.org/10.1016/j.advwatres.2006.11.015 

 Moulin, L., Gaume, E. & Obled C. (2009). Uncertainties on mean areal 
precipitation: assessment and impact on streamflow simulations. Hydrology and 
Earth System Sciences, 13, 99-114. https://www.hydrol-earth-syst-
sci.net/13/99/2009/ 

 Snepvangers, J. J. J. C., Heuvelink, G. B. M., & Huisman, J. A. (2003). Soil 
water content interpolation using spatio-temporal kriging with external drift. 
Geoderma, 112, 253–271. https://doi.org/10.1016/S0016-7061(02)00310-5 

 



     

4. Eq. 5: I am not sure why you fit a Beta distribution to the quantiles: isn’t the Normal Score 
Transformation (NST) designed to work with empirical distributions? 

 
A1.4: We used the Beta-distribution due to its definition on the interval [0,1], thus avoiding 

conditioning of the resulting distribution (from interpolation) at the extremes. 

 
5. Eq.6 and Eq.7: You applied the NST, so isn’t this E[F(U)] = m and same for Variance? 

Maybe I’m missing something 
 

A1.5: Yes, you could rewrite Eq.6 and Eq.7 by using E[U(Fx(Z(x,t))] instead. However, to 
our opinion, it does not make a difference. 

 
6. Nowhere is explained how you calculate the variograms for all the interpolations you do. 

Maybe worth mentioning it somewhere.  
 

A1.6: We add the following sentence at the end of the paragraph (p.8, l.4):  

[…]. The corresponding variograms are calculated using Kendall’s tau for a robust 
interpolation (Lebrenz et al. 2017). […] 
 
Reference: 
 Lebrenz, H. & Bárdossy, A. (2017). Estimation of the variogram using Kendall’s 

tau for a robust geostatistical interpolation. Journal of Hydrological Engineering, 
22(9), 04017038. 10.1061/(ASCE)HE.1943-5584.0001568 

 
7. Pg 7 top: you introduce the elevation dataset, but you don’t explain why. Mention you 

use it for both EDK of the parameters and for the reference EDK of the rainfall process. 
 

A1.7: We extend the adding the additional sentence at p.7, l.2:  

[…] The upscaled elevation ultimately serves as external drift for EDK of the 
parameters within QK and for the reference EDK with the original variable. […] 

 
8. is the dry ratio the number of stations that recorded zero rainfall over the whole month 

over the total number of stations? Can you state this a bit more explicitly? 
 

A1.8: We rephrase the sentence at p.7,l.9 in order to clarify the definition of the “dry 
ratio”:  

[…] The observed average monthly precipitation over the twelve calendar months 
c is illustrated in Fig.3 along with the percentage of zero-value observations over 
all observations of the specific calendar month c (hereafter referred to as dry ratio), 
revealing a seasonal variation. […] 

 
9. P.7, l. 18: if you fit a PDF for each month for each station, you have only 22 points to do 

it, it seems a very little number to be statistically robust. maybe one of the reasons why 
you need to fit mean and variance rather than the parameters? 

 
A1.9: The 22 points might be a contributing factor but we rather believe that the resulting 

(very small) parameters ϑ2,c are an outcome from the extrapolation.  

 
10. Eq. 8 and eq. 9: you here present both the distributions but don’t explain why. Do you 

want to compare their performance? How did you select Gamma and Weibull 
distributions? Nowhere in the paper you comment on which one performs best overall. 

 
A1.10: We used Gamma & Weibull – distributions as exemplary distribution, because: 

1. they are both defined on the interval [0, ∞]; 

2. they are frequently used for the variable of monthly distribution; 



     

3. they have only 2 parameters to be interpolated. 

The intention of this paper is not to evaluate the distributions but rather to 
implement the general idea of Quantile Kriging. However, we agree on the 
inclusion of a statement on which one preforms best (see A1.16) 

 
11. P.8, l.27: You need to state that you do EDK with elevation as the drift. One of the 

problems I have in this comparison is that often EDK is performed with radar data, which 
probably would do better than elevation in defining the spatial pattern of rainfall. Can you 
comment on this? 

 
A1.11: We didn’t use radar data for two reasons: First, the availability of radar data is 

limited in South Africa: they are only available for a relatively short time, limited to 
urban centers and are not preprocessed/converted into rainfall sums. Secondly, 
radar images might be useful for real-time predictions but not for long-time (i.e. 
monthly or yearly) sums, where they show strong systematical errors (Pfaff, 2013). 

Reference: 
 Pfaff, T. (2013). Processing and analysis of weather radar data for use in 

hydrology. Ph.D. Thesis, Institute for Modelling Water and Environmental 
Systems, University of Stuttgart, http://dx.doi.org/10.18419/opus-487 

 
12. P.9, l. 19: One of the drawbacks I observe is that QK does not estimate a higher 

uncertainty where there are less rain gauges, eg. top left corner of Figure 5f. 
 

A1.12: Since the entire area (e.g. top left corner, Fig. 5f) shows the same standard 
deviation σK, the estimation uncertainty appears to be less dependent from the 
position of the raingauges.  

 
13. Explain what rho (eq. 12) represent, why you use it, what is its range, and what the 

optimal value) 
 

A1.13: We use the Spearman rank correlation ρS as a non-parametric measure to 
describe the monotonic relation between estimator Z* and estimation standard 
deviation σK, instead of the standard Pearson correlation coefficient, describing 
only the linear relation.  We add the following explanation at p.9, l.26: 

[…]. The non-parametric Spearman rank correlation ρS describes the monotonic 
relation between the estimator Z* and estimation standard deviation σK, ranging 
from -1 (negative) to + 1 (positive) with 0 indicating its absence. […]. 

 
14. P 13: I find the explanation about chi squared a bit confusing. I could not understand 

what had to be uniform and why, until later on you introduce the histogram. Maybe worth 
introducing the histograms first? or at least explain more in details. 

 
A1.14: Yes, we agree: the explanation could be more precise. We will explain in more 

detail by rewording the existing explanation on p.13, l.14 by:  

[…]. The test on uniformity verifies the estimated, conditional distribution FZ* by 
calculating its value FZ*(z(xi, t)) for every original observation z(xi,t). The resulting 
values (or quantiles) should be uniformly distributed on the interval [0,1] (Bárdossy 
and Li,2008). […]. 

 
15. Conclusions: You need to write more here, and remove one of the two paragraphs that 

are repeated (l. 20-26 or 27-3). 
 

A1.15: Yes, they are actually repeating and we remove the first paragraph (p.14,ll.20-26) 
and write more in an additional, subsequent paragraph (see A1.16)  

 



     

16. I feel in general a little bit more discussion of the overall results could be introduced either 
in the Results and Discussion or the Conclusion section, including many of the comments 
I mentioned before. 

 
A1.16: We include an additional paragraph at p.15,l.4, including comments from above:  

[…]. The variable of monthly precipitation, observed at 226 raingauges over 264 
consecutive time steps, serves as input data. We selected the two parametric Γ- 
distribution and Weibull distribution, because they are defined on the interval [0, ∞] 
and are suitable to describe the variable of monthly precipitation. The selected 
distributions are fitted to the observations of a specific calendar month, implying an 
absence of temporal dependence between two sample members (e.g. between the 
monthly precipitation of December 2002 and December 2003). However, QK does 
accommodate temporal independence between consecutive observations, unlike 
existing spatio-temporal Kriging methods. In general, other types of distributions, 
with a higher number of parameters could be selected, especially in case of other 
variables of interest. Finally, we used elevation as external drift, both for the 
interpolation of the parameters within QK as well as for the reference EDK. […]. 
 
And add the following sentences into the last paragraph: 
 
at p.15,l.6: […] In case of the estimator, QK-Γ performs slightly better than QK-Wei 
for most of the selected objective functions. […]. 
 
at p.15,l.8: […] In general, QK-Wei shows a superior estimation of the associated 
uncertainty than QK-Γ. […]. 



Response to reviewer 2

We thank the reviewer for the valueable comments. We provide a detailed point
by point answer to the reviewers remarks.

The authors propose a new kriging technique developed to regionalize non-
normally distributed spatio-temporal variables. The approach, as I understand
it, involves (i) fitting time series observations to a predetermined distribution
type at each gauge independantly; (ii) using the fitted distribution to assign
a probability of non-exceedance to each observation at each gauge; (iii) fit the
subset of these probabilities corresponding to each observation time to (differ-
ent) beta distributions; (iv) map the fitted probabilities to normal quantiles;
(v) use the (now normally distributed and *assumed* second-order stationary)
outcomes as a basis to apply OK or EDK, as described (rather cryptically) in
section 2.1.2. While the approach is intriguing, its description in the paper lacks
statistical rigor and minimal proofs and intuitions. Its application in cross vali-
dation suggests that it does a decent job at predicting some measure of rainfall,
but so would most properly fitted interpolation methods. This does not mean
that the estimator is BLUE (best or even efficient unbiased linear estimator)
of the considered stochastic process. Actually, the apparent correlation between
Z*(x) and sigma2(x) (Figure 4) suggests that the process has some degree of
heteroskedasticity. Under these conditions, linear models (like most kriging
estimators) are not necessarily efficient (see, for instance, the Gauss Markov
Theorem for ordinary least squares). Again, the approach is promising, but its
exposition needs a major overhaul to be convincing.

The reviewer described the procedure we applied reasonably well. However
note that the distributions fitted for each location are the same type (gamma
for example). The parameters of the distribution have to be interpolated, this
step is missing from the reviewers description.

An intuitive description of the procedure is based on the following properties of
precipitation fields:

• The monthly (and daily) precipitation amounts for a given month often
follow a skewed distribution.

• Monthly (even daily) precipitation amounts cannot be considered as sta-
tionary in space. Differences in expected precipitation amounts become
clear if one considers long time accumulations.

• The precipitation generating meteorological processes are usually of large
spatial extent. This means if there is heavy rainfall at one location it likely
that other locations also have heavy rainfall.

• Correlations between time series of precipitation indicate a strong spatial
dependence, while the spatial dependence of precipitation on a given time
accumulations (day, month) usually show a much weaker spatial depen-
dence.

1



A possible process model reflecting the above properties can be described as
follows:

Let Y0(x, t) be independent (for each different t) normal stationary spatial fields
with E[Y0] = 0 and D2(Y0) = 1 for each t.

In order to reflect large scale meteorological processes the process M(t) is intro-
duced. High M(t) values correspond to heavy rainfall covering the area - while
low correspond to dry conditions. This M modifies the spatial process:

Y1(x, t) = Y0(x, t) +M(t) (1)

Were M(t) is a process (in time) with zero mean. We may assume that the
distribution of M(t) is normal. In this case for each x Y1(x, t) is normally
distributed with N(0, d) with d =

√
1 + σ2

M .

For each fixed t the distribution of Y1(x, t) is N(M(t), 1) . Now Y2 is temporal
non-exceedence probability at location x - formally:

Y2(x, t) = Φ0,d(Y1(x, t)) (2)

where Φ0,d is the distribution function of N(0, d). (By definition 0 ≤ Y2(x, t) ≤
1.)

The rainfall is then generated as:

Z(x, t) = F−1
x (Y2(x, t)) (3)

where Fx is the distribution function of rainfall at location x. The Fxs can
be different for different x locations due to topography and other influencing
factors. (These Fx-s can be interpolated - example see also in Mosthaf and
Bardossy (2017)).

We use Y2(x, t) for each t and assume that it follows a beta distribution. In fact
its distribution depends on M(t). If M(t) = 0 for all t-s then monthly rainfall
is fully characterised by independent realizations over space. In this case the
distribution of Y2 is uniform for each t.

This however is not the case with observed data. The reason is that wet and
dry conditions occur simultaneously over the whole area. This is controlled by
M(t). One can take M(t) for example as independent random variables or to
follow an ARMA process. If M(t) 6= 0 then the distribution of Y2(x, t) for this
t is not uniform. The reason for assuming it as beta was due to the fact that
beta distributions are very flexible and can well describe distributions in [0, 1].
The exact form of the corresponding distribution would be something like:

Gt(v) = Φ0,1

(
Φ−1

M(t),1(v)
)

2



However the use of this would require the estimation of M(t) for each t. We
decided to use a simple beta distribution instead.

The introduction of M(t) is reasonable as it explains the difference between
the correlation between stations and the spatial correlation calculated using a
variogram type approach for a given time. The later correlations are usually
lower (smaller ranges) which are increased by the common large scale weather
described with M(t). Note that the introduction of M(t) leads to a correlation
of the precipitation time series even if the individual snapshots Y0(x, t) are
independent in space.

In our procedure we start with Z(x, t), estimate and interpolate Fx. Than
calculate Y2 for the observation locations. We interpolate Y2 and come back to
Z(x, t).

Spatial variograms are calculated for Y2 for each t, and Y2 is stationary in space.
Non-stationarity and non-Gaussian distributions occur only for Z. That is the
reason why we concentrate on Y2.

Non-Gaussianity: In its canonical form, Ordinary Kriging is based on the
method of moment (i.e. variance minimization subject to unbiasedness) and
so is not technically restricted to normally distributed processes. Gaussiannity
is, however, required for maximum likelihood (ML) type estimations, which
some studies have shown can be more efficient for kriging-based regionalization
(e.g., Lark 2000). ML approaches become necessary to have unbiased predic-
tion of both the mean and the variance when it comes to EDK or Universal
Kriging, particularly when subject to more intricate error correlation structures
(e.g., Muller 2015). Since non-gaussianity appears to be a key rationale for the
proposed approach, it is important to be specific on that.

Non-Gaussianity is considered because of the usually skewed distribution of pre-
cipitation amounts for a given time step. The suggested model should enable a
simulation of the precipitation amounts. Non-Gaussianity is only in the sense
of the marginal distribution at a given time-step. The spatial dependenceis con-
sidered to correspond to a multi-Gaussian copula. This kind of transformation
is frequently used - for example for Lognormal Kriging.

Beta-distribution: The use of the beta distribution is intriguiging, but more
intuition is needed on the assumed underlaying stochastic process. Please de-
scribe clearly the properties of the (space-time) stochastic process that you
assume gives rise to the observed sample and use that to demonstrate Eqn 6
and 7 in a rigorous mathematical proof. I find the use of the beta distribution
promising because a common interpretation is that it describes the distribution
of the probabilities associated to a binomial process observed over a finite sam-
ple. Lets say that the binomial process in question is the exceedance of a given
threshold (as eluded to in the manuscript). Then, if the underlaying point pro-
cess is identically distributed in space and if an identically sized sample is taken
at each observation point, the proportion of observations lower than a given

3



threshold across all gauges will be beta-distributed. Perhaps thats a start?

The above description shows that the beta distribution is only a convenient tool,
not a statistically rigorous approach. As the beta distribution is very flexible
it provided an easy and quick approximation of the distribution of the non
exceedence probabilities.

Stationarity: More fundamentally, a main issue that I have is that your approach
involves fitting distributions independantly at different points in space (gamma
or weibull) and time (beta), which implies that the underlaying random point
process follows a different distribution at each point in space. Granted, EDK
and Universal kriging allow the first moment of the underlaying distribution to
vary through space, as allowed by the scaling properties of the expectated value
estimator. However, I am not aware of any existing geostatistical approach
that allows for higher order moments to vary through space. This may be
fine, but please demonstrate that your approach does not violate the second
order stationarity assumption (i.e that the variogram is constant through space),
which is critical (and arguably more important than gaussianity) for kriging.

The distributions fitted to the individual locations are supposed to have a spa-
tial dependence. Further they are assumed to follow the same distribution.
These distributions are then interpolated. Here we use the assumption that the
distributions show a much clearer effect of the large scale rainfall generating
meteorological processes than a sigle mothly (or daily) realization would show.
Therefore the use of extrenal covariates , such as topography is more appropriate
for this interpolation. The use of these distributions transforms the process to a
staionary one. The stationary process is interpolated using the beta distribution
of the non-exceedance probabilities. The reason for this is that we intended to
avoid problems with interpolated probabilities being outside the [0, 1] interval.

We intend to to revise the paper and to include the above description and
discussions.

Mosthaf, T. and A. Bárdossy, Regionalizing non-parametric precipitation amount
models on different temporal scales, Hydrology and Earth System Sciences,21 ,
2463-2481, 2017
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Responses on the Referees 3 comments on the submitted manuscript "Geostatistical 
interpolation by Quantile Kriging" hess-2018-276 
 
We are very thankful for your remarks and reply on them below: 
 
RC 3: 
The article presents an interesting approach to kriging with skewed variables and to non-
stationarity: i) For every single location the distribution over time is estimated and quantiles are 
estimated. ii) To the quantiles of a given time-step a Beta-distribution is fit-ted. iii) The quantiles 
of the Beta-distribution are transformed by a Normal-Score trans-formation into standard 
Gaussian variables. iv) Ordinary kriging of the transformed variables. v) Backtransformation of 
the kriging results to the original scale 
One to my opinion main result now is that the variance of the prediction is dependent on the 
data values themselves, too, and not as in ordinary kriging only dependent on the kriging 
location. The methodology reminds me somewhat to trans-Gaussian kriging, where you have 
a similar effect, with the difference that you are still stationary. Maybe you could a little bit 
comment on this and also on the relationship to copulas. 
 

A3.1: The interpolation of the beta distributed distribution function values can be seen 
as a Trans-Gaussian Kriging. Trans-Gaussian Kriging (Spöck et al., 2009) can 
also be interpreted as a Gaussian copula based linear interpolation.  

Reference: 
 Spöck, G., Kazianka, H. & Pilz, J. (2009). Modeling and Interpolation of Non-

Gaussian Spatial Data: A Comparative Study. Dept. of Statistics, Alpen-Adria 
Universität, Klagenfurt. 
https://www.stat.aau.at/Tagungen/statgis/2009/StatGIS2009_Spoeck_2.pdf  

 
Non-stationarity comes into play because you estimate at each spatial location the quantiles 
separately. You calculate quantiles, and quantiles are always related to copulas,- is there also 
here a relationship to copulas? Please, elaborate on that. I am also not completely sure, why 
you need the Beta-distribution at all and not directly calculate the Normal-Score transformation. 
 

A3.2: compare to reply on comment 4 from Referee 1: we used the Beta-distribution due 
to its definition on the interval [0,1], thus avoiding conditioning of the resulting 
distribution at the extremes of 0 and 1. 

 



hess‐2018‐276 – List of changes 

 

We undertook the following, major changes (compare reviewers comments): 

(Pagennumber/ linenumber acc. “hess‐2018‐276_QuantileKriging_markedup.pdf”) 

 

p4, l.18 – l.29 :    added an paragraph       (acc. comment Reviewer 1) 

p5,l.5      rephrase sentence and 

p7, l.5 – p8, l.31   added chapter         (acc. comment Reviewer 2,3) 

p9, l.8 – l.9 :     added sentence       (acc. comment Reviewer 1) 

p9, l.17 :     rephrased sentence       (acc. comment Reviewer 1) 

p10, l.12 – l.13 :   added sentence       (acc. comment Reviewer 1) 

p12, l.7 – l.9 :     rephrased sentence       (acc. comment Reviewer 1) 

p15, l.18 – l.20 :   rephrased sentence       (acc. comment Reviewer 1) 

p16, l.25 – p17, l.23:   rephrased/rewrote paragraph    (acc. comment Reviewer 1) 
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Abstract. The widely applied geostatistical interpolation methods of Ordinary Kriging (OK) or External Drift Kriging (EDK)

interpolate the variable of interest to the unknown location, providing a linear estimator and an estimation variance as measure

of uncertainty. The methods implicitly pose the assumption of Gaussianity on the observations, which is not given for many

variables. The resulting ’best linear and unbiased estimator’ from the subsequent interpolation optimizes the mean error over

many realizations for the entire spatial domain and, therefore, allows a systematic under- (over-) estimation of the variable in5

regions of relatively high (low) observations. In case of a variable with observed time-series, the spatial marginal distributions

are estimated separately for one time step after the other, and the errors from the interpolations might accumulate over time in

regions of relatively extreme observations.

Therefore, we propose the interpolation method of Quantile Kriging (QK) with a two step procedure prior to interpola-

tion: we firstly estimate distributions of the variable over time at the observation locations and then estimate the marginal10

distributions over space for every given time step. For this purpose, a distribution function is selected and fitted to the ob-

served time-series at every observation location, thus converting the variable into quantiles and defining parameters. At a given

time step, the quantiles from all observation locations are then transformed into a Gaussian-distributed variable by a twofold

quantile-quantile transformation with the Beta- and the Normal-distribution function. The spatio-temporal description of the

proposed method accommodates skewed marginal distributions and resolves the spatial non-stationarity of the original vari-15

able. The Gaussian-distributed variable and the distribution parameters are now interpolated by OK and EDK. At the unknown

location, the resulting outcomes are reconverted back into the estimator and the estimation variance of the original variable.

As a summary, QK newly incorporates information from the temporal axis for its spatial marginal distribution and subsequent

interpolation and, therefore, could be interpreted as a space-time version of Probability Kriging.

In this study, QK is applied for the variable of observed monthly precipitation from raingauges in South Africa. The es-20

timators and estimation variances from the interpolation are compared to the respective outcomes from OK and EDK. The

cross-validations shows that QK improves the estimator and the estimation variance for most of the selected objective func-

tions. QK further enables the reduction of the temporal bias at locations of extreme observations. The performance of QK,

however, declines when many zero-value observations are present in the input data. It is further revealed that QK relates the

magnitude of its estimator with the magnitude of the respective estimation variance as opposed to the traditional methods of25

OK and EDK, whose estimation variances do only depend on the spatial configuration of the observation locations and the

model settings.
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1 Introduction

Many environmental variables (e.g. precipitation, ore grades) are only measured at some distinct observation locations, but

possess a highly variable and unknown spatial distribution (Armstrong, 1998). The regionalization of the variable, i.e. the

interpolation of the variable to the unknown locations, attempts the full description of its spatial distribution as a prerequisite

for practical objectives (e.g. hydrological modeling, efficient exploitation of resources). However, a deterministic description5

of the spatial distribution is severely hampered for many variables since they incorporate a complex genesis which is neither

fully known nor understood.

Therefore, the assessment of the distribution by geostatistical models arose, whose theoretical fundamentals were firstly

laid out by Matheron (1962). The theory regards the (observed) values of a variable z as one realization z(x) of a Random

Variable (RV) Z at the specific location x (= {x1,x2} for R2). Since the variable is often only partially known at a few distinct10

measurement locations xi, ergodicity is assumed and the intrinsic hypothesis for Ordinary Kriging (OK, Matheron (1965)) is

given as:

E[Z(x)] =m(x) = const. (1)

VAR[Z(x+h)−Z(x)] = 2γ(h) (2)

in which γ(h) is the semi-variogram. The increment Z(x+ h)−Z(x) is assumed as a stationary random function and its15

variance only depends on the translation vector h. The set of outcomes by the interpolation to the unknown location x is

described by the linear estimator Z ∗(x) as a measure of their centrality and by the estimation (or Kriging) variance σ 2
K(x) as a

measure of the associated uncertainty.

The stated hypothesis entails three implications: the first condition of the intrinsic hypothesis (Eq.( 1)) demands the variable

to be spatially stationary and yields an unbiased estimation error in the entire domain ( Chilès and Delfiner, 1999). Therefore,20

a systematic under- (over-) estimation is induced for regions of high (low) observations. Secondly, the marginal distribution

of the observed data should ideally be Gaussian in order to be adequately described. Unfortunately, the distribution often

departs from the ideal case (Journal and Alabert, 1989), necessitating an a-priori transformation of the marginal distribution.

And last, the second condition (Eq.(2)) implies that the magnitude of the Kriging variance σ 2
K(x) only depends on the spatial

configuration of the observation locations, the a-priori variance of all observations and on the selected variogram model, but25

not on the magnitude of the linear estimator Z ∗(x) itself (Goovaerts, 2000).

The theoretical extension of External Drift Kriging (EDK, Ahmed and deMarsily (1987)) addresses the first implication.

EDK can be attributed to the non-stationary geostatistical interpolation methods and has been frequently applied in various

disciplines of practice and science (e.g.: Bourennane et al. (2000), van de Kassteele et al. (2009), Motaghian and Mohammadi

(2011)). It incorporates additional information from external variables (or drifts) Y j(x) for the estimation of the variable at the30
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unknown location. The mean m(x) is non-stationary but linearly depends on the external variables. Thus, the first condition

(Eq.(1)) is reformulated to:

E [Z(x)] = a+

k∑
i=1

bi ·Yi((x)) (3)

where k is the number of the incorporated external drifts Y i(x), while a, bi are the unknown constants. The drifts are required

to be known prior to interpolation at all relevant locations. Ideally, EDK still requires a marginal Gaussian distribution.5

The non-parametric methods of Indicator Kriging and Probability Kriging ( Journel, 1983) are further derivatives and allow

an a-priori transformation of the skewed marginal distribution. Indicator Kriging transforms the variable z into a binary variable

by defining a threshold value zth and restates the first condition (Eq.(1)) of the random function I(x;z th) = 1Z(x)<zth to:

E [I(x;zth)] =m= const. (4)

This non-linear transformation is relatively robust and limits the effect of high values on the description of the variable at10

the unknown location. However, a loss of information comes along by the transformation into a binary variable. Therefore,

Probability Kriging defines multiple thresholds and uses the order relation of the observed variable ( Carr and Mao, 1993),

being implemented by using co-kriging in the derived multi-variate context. Both non-parametric methods have been subject to

research, especially for detection limit problems of groundwater contamination (e.g. Goovaerts et al. (2005), Lee et al. (2007),

Adhikary et al. (2011)).15

In summary, geostatistical methods have been derived in the past in order to address the stated shortfalls of the intrin-

sic hypothesis. However, all present methods only regard the observations from the one respective time step for the esti-

mation of their marginal spatial distribution, but do not incorporate observations from other time steps.
���
The

��������
inclusion

��
of

��
a

�������
temporal

��������
behavior

���
into

���
the

����������
geostatistic

������
models

��
is

������
mostly

��������
irrelevant

��
for

���
the

�������
original

���������
geological

��������
variables.

��������
However,

���
the

��������
temporal

��������
variability

���
of

�
a
�������

variable
��������

becomes
�����

more
���������
prominent

���
for

�����
other

��������
sciences,

����
e.g.

���������
hydrology,

������
where

�����������
observations

����
from

����������
raingauges20

���
over

�������
several

����
time

�����
steps

���
are

�����������
implemented

����
into

���
the

������������
geostatistical

������
models

��
in
�����

order
���

to
�������
generate

������
spatial

�����������
precipitation

���������
estimates.

�����
These

��������
estimates

�����������
subsequently

�����
serve

���
as

�����
input

��
to

����
the

����������
hydrological

���������
modelling

�����
(e.g.

���������������
Syed et al. (2003),

������������������
Basistha et al. (2008)

�
,

�������������������
Cole and Moore (2008))

�����
over

�������
multiple

�����
time

�����
steps.

����������
Associated

�����
errors

��
in
����

the
�����������
precipitation

��������
estimates

����
may

���������
ultimately

����
lead

���
to

������
greater

�����
errors

��
in

���
the

����������
subsequent

��������
discharge

���������
modelling

���������������������
(Kobold and Sušelj, 2005)

�
.
�����
These

������
errors

�������
strongly

������
depend

���
on

���
the

������
spatial

���
and

��������
temporal

���������
distribution

���
of

���
the

����
input

�����������
precipitation

�������������������
(Gabellani et al. (2007)

�
,
����������������
Moulin et al. (2009)

�
)
����
and

����
may

����
limit

���
the

��������
accuracy25

��
of

������������
rainfall-runoff

����������
simulations.

�����
There

���
are

�����������
geostatistical

���������
space-time

������
models

��
in

�����
order

��
to

���������
incorporate

���
the

��������
temporal

���������
variability

��
of

���
the

�������
variable,

���
but

����
they

���
are

��������
primarily

������
aiming

��
on

���
the

�����������
extrapolation

��
of

���
the

�������
variable

��
in

����
time

����������������������
(Snepvangers et al. (2003)

�
).

���������
Therefore,

����
they

������
require

�
a
������
strong

����������
dependence

��
of

���
the

�������
variable

�����
over

����
time,

������
suited

���
e.g.

���
for

�����������
groundwater

��������
modeling

������
where

��������
temporal

�������
changes

�����
occur

������
relative

������
slowly.

����
This

��������
temporal

����������
dependence

�����
might

��
be

������
absent

���
for

����
other

��������
variables,

����
e.g.

�������
monthly

�����������
precipitation.

�
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In the following section, we introduce Quantile Kriging as a spatio-temporal description of the variable Z , addressing

the three shortfalls: non-stationary variables, skewed marginal distributions over space and the independence of the error

distribution from the magnitude of the observation.

2 Materials and Methods

The theory of Quantile Kriging (QK) is outlined along with the major theoretical implications,
��������
followed

��
by

��
a

������
general

���������
discussion5

��
of

���
the

���������
underlying

�����������
geostatistical

�����
model

�
and a case study for the variable of monthly precipitation is presented.

FIGURE 1

A preliminary analysis of the selected variable exemplary reveals (Fig. 1) the non-Gaussianity within the data and that the

first assumption of the intrinsic hypothesis (see Eq.(1)) is not fulfilled since e.g. Et[Z(x57, t)] �= Et[Z(x29, t)].

2.1 Theory of Quantile Kriging10

QK presumes the existence of observations of the variable z over consecutive time steps t (= 1,2, ...,J) at every observation

location xi = (x1i,x2i) [for the two-dimensional space R
2], providing an observed time series z(xi, t) at every observation

location i (= 1,2, ...,ni). QK proceeds first with a two step procedure prior to interpolation (see Sect. 2.1.1) and second with

the interpolation itself (see Sect. 2.1.2):

2.1.1 Estimation of the temporal and the spatial marginal distribution15

At first, the distribution over time is estimated at every observation location location x i: an appropriate theoretical cumula-

tive distribution function (cdf) F is selected and fitted to the corresponding time series of observations z(x i, t), yielding ni

specific distributions F (z(xi, t)). The distributions are defined by their corresponding parameter sets Θ(x i) (= ϑk(xi) with

k = 1,2, ...,K) of the K-parametric distribution function F . The quantiles w(x i, t) (= F (z(xi, t);Θ(xi)) are calculated from

the observed values of the variable z(xi, t) and the defining parameter set Θ(xi). The quantiles w(xi, t) possess a uniform20

distribution over time on the interval [0,1] for a given observation location x i. However, their empirical distribution in space is

not uniform on [0,1]. In order to profit from the optimality of Kriging, it requires a transformation into a Gaussian distribution

as a prerequisite of the subsequent interpolation.

The marginal spatial distribution, corresponding to a time step t is, therefore, estimated by a twofold quantile-quantile

conversion as the second step: the two-parametric Beta- distribution is fitted to the quantiles w(x i, t) of a given time step t,25

whose cdf G(w;α,β) is defined as:

G(w;α,β) =

α+β−1∑
n=α

⎡
⎣ (α+ β− 1)!

n! · (α+ β− 1−n)!
·wn · (1−w)(α+β−1−n)

⎤
⎦ (5)

5



on the interval [0,1] by the two parameters α > 0 and β > 0. The quantiles G(w(x i, t);α(t),β(t)) from Eq.(5) are finally

transformed by a Normal Score Transformation into the standard Gaussian variable u(x i, t) with Nu[0|1], which ultimately

serves as spatial marginal distribution to the subsequent geostatistical interpolation.

The transformation via the quantiles into the variable u accounts for spatially non-stationary distributions of the original

variable z with E[Z(x, t)] �=m and exchanges the two conditions of Eq.( 1) and (2) to:5

E[Fx(Z(x, t))] =m= const. (6)

VAR[Fx+h(Z(x+h, t))−Fx(Z(x, t))] = 2γ(h) (7)

resolving the problem of spatial non-stationarity. QK can accommodate skewed marginal distributions of the original variable

Z , which is similar to Probability Kriging, but it newly incorporates the temporal behavior of Z into its estimation of the spatial

marginal distribution.10

2.1.2 Interpolation to the unknown location

The outlined conversion of the variable z(x i, t) into the variable u(xi, t) and its corresponding parameter set Θ(xi) entails

separate interpolations to the unknown location x.

The inherent assumption of second-order stationarity implies the existence of a constant spatial mean for the variable uwithin

the domain for every time step t. The transformed quantiles are implicitly assumed to be more homogeneously distributed over15

space than the original variable z. The variable u is subject to a stationary geostatistical interpolation method (e.g. OK),

providing a linear estimator U ∗(x, t) and the estimation variance σ2
K,U (x, t). They jointly describe the Gaussian distribution of

the random variable U(x, t) with N [U ∗|σ2
K,U ].

The defining parameters ϑk (for k = 1,2, ...,K) of the K-parametric distribution function F are independent from the time

step t and they are separately interpolated to the unknown location x. The separate interpolation, however, requires the indepen-20

dence of the parameters ϑk from each other. Therefore, a Principal Component Analysis examines the ’observed’ parameters

ϑk(xi) in the Cartesian coordinate system (ϑ1|ϑ2|...|ϑK) and determines the corresponding rotation angle α and translation

vector k. The coordinate system is then rotated and translated accordingly prior to interpolation in order to ensure indepen-

dence. A possible spatial non-stationarity of the parameters can be accounted for by the choice of an appropriate non-stationary

interpolation method (e.g. EDK). The interpolation of the independent parameters yields their estimators at the unknown lo-25

cation x, which are rotated and translated back to the original coordinate system. Thus, the estimators ϑ ∗
k(x) are defining the

distribution function at the unknown location x.

At last, the resulting Gaussian distribution of the random variable U(x, t) is reconverted into a distribution of the original

variable Z(x, t) by the outlined steps of conversion (Section 2.1.1), but in reverse order: first the distribution of the quantiles

G(W (x, t);α,β) of the Beta-distribution are calculated by the inverse of the Normal Score Transformation. The distribution of30

the quantiles W (x, t) are calculated next using the inverse of Eq. ( 5) and last, the distribution of the original variable Z(x, t) is

estimated by using the inverse of the selected cdf, being defined by the estimators of its parameters ϑ ∗
k(x). The reconversion

6



of the distribution of U(x, t) to the distribution of Z(x, t) can be implemented by the simple numerical Rosenblueth point esti-

mation method (Rosenblueth, 1975). The resulting distribution of the original variable Z is then described by the expectation

value Z∗(x, t) and the variance σ2
K(x, t). Note that the resulting asymmetrical distribution of Z(x, t) is non-Gaussian due to

the conversion with the non-linear, but monotonic theoretical cdf F .

2.2
���������
Discussion

��
of

���
the

�����������
geostatistical

������
model

�
5

����
Since

���
the

��������
proposed

�������
method

��
of

����
QK

�
is
�������
applied

���
for

���
the

�������
variable

��
of

�������
monthly

�����������
precipitation

����
(see

������
Chapter

�����
2.3),

���
the

���������
discussion

��
of

���
the

���������
underlying

������
process

������
model

�
is
������
based

��
on

���
the

��������
following

���������
properties

��
of

����������
precipitation

������
fields:

–
���
The

�������
monthly

�����
(and

����
even

������
daily)

����������
precipitation

��������
amounts

������
z(x, t)

���
for

�
a
�����
given

�����
time

���
step

��
t
�����
often

�����
show

�
a
�������
skewed

����������
distribution

���
and

������
cannot

��
be

���������
considered

��
as

���������
stationary

����
over

�����
space.

����
The

���������
differences

��
in

��������
expected

����������
precipitation

��������
amounts

������
become

���������
especially

������
obvious

���
for

����
long

����
time

�������������
accumulations.10

–
���
The

�������������
meteorological

���������
processes,

�����
which

����
are

���������
generating

�����������
precipitation,

���
are

�������
usually

��
of

�����
large

������
spatial

������
extent:

��
if

����
one

�������
location

������
receives

������
heavy

�����������
precipitation,

�
it
��
is
�����
likely

����
that

����
other

��������
locations

����
also

������
receive

�����
heavy

�����������
precipitation.

�

–
����������
Correlations

�������
between

����
time

�����
series

���
of

����������
precipitation

�������
indicate

��
a
�����
strong

������
spatial

�����������
dependence,

�����
while

���
the

�����
spatial

����������
dependence

���
of

����������
precipitation

��
at

���
one

�����
given

����
time

����
step

����
(e.g.

����
day,

������
month)

������
usually

�����
show

��
a

����
much

�������
weaker

�����
spatial

�����������
dependence.

�
A
�������
possible

�������
process

�����
model

���������
reflecting

��
the

������
above

��������
properties

���
can

���
be

��������
described

��
as

�������
follows:

�
15

���
Let

������
U(x, t)

��
be

�����������
independent

���
(for

�����
each

�������
different

����
time

����
step

��
t)
�������
normal

��������
stationary

������
spatial

�����
fields

����
with

��������
E[U ] = 0

����
and

����������
D2(U) = 1

��
for

�����
each

����
time

���
step

��
t.
�����
Now,

���
the

������
process

�����
M(t)

��
is
���������
introduced

���
in

����
order

��
to
������
reflect

����
large

�����
scale

������������
meteorological

���������
processes.

�����
High

�����
M(t)

�����
values

���������
correspond

���
to

�����
heavy

����������
precipitation

��������
covering

���
the

����
area,

�����
while

����
low

�����
values

����������
correspond

��
to

���
dry

���������
conditions,

��
as

��
it
��
is

�������
reflected

���
by

�������
seasonal

��������
variations

��
of

�����������
precipitation

��������
amounts.

���
The

���������
introduced

���
M

�������
modifies

���
the

������
spatial

�������
process

��
to:

�

G(
��

x
�
, t) = U(
�������

x
�
, t)+M(t)
��������

(8)20

�����
where

�����
M(t)

��
is

�
a
�������
process

�����
(only

��
in

�����
time)

����
with

�
a
�����
mean

���
of

����
zero.

���
We

����
may

�������
assume

���
that

���
the

����������
distribution

���
of

�����
M(t)

�
is
�������

normal
����
and,

��������
therefore,

������
G(x, t)

�����
would

���
be

�������
normally

���������
distributed

�����
with

������
N(0,d)

�����
(with

�������������
d=

√
1+ σ2

M )
��
at

�����
every

������
location

��
x.
�

���
For

����
each

���������
individual

����
time

����
step

��
t,

���
the

���������
distribution

���
of

������
G(x, t)

��
is

����������
N(M(t),1)

����
and

���
the

�������
resulting

������
spatial

����
field

���
W

��
is

���
the

��������
temporal

�������������
non-exceedance

���������
probability

��
at

�������
location

��
x

����
being

��������
confined

��
to

��������������
0≤W (x, t)≤ 1

���
and

�������
formally

��������
described

���
as:

�

W (
��

x
�
, t) = Φ0,d(G(
�����������

x
�
, t))
���

(9)25

�����
where

����
Φ0,d��

is
���
the

���������
distribution

��������
function

��
of

�������
N(0,d).

����
The

����������
precipitation

��
is

����
then

��������
generated

���
as:

�

Z(
��

x
�
, t) = F−1

x (W (
������������

x
�
, t))
���

(10)
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�����
where

���
Fx��

is
���
the

����������
distribution

�������
function

���
of

�����������
precipitation

��
at

���
the

�������
location

��
x.

����
The

����������
distribution

��������
functions

���
Fx����

may
����
vary

��������
between

�������
different

�������
locations

��
x
���
due

��
to

����������
topography

���
and

����
other

����������
influencing

������
factors,

���
and

����
they

�����
could

��
be

������
subject

��
to

�����������
interpolation

����
(e.g.

���������������������
Mosthaf and Bárdossy (201

�
).
�

���
We

���
use

������
W (x, t)

���
for

����
each

�����
time

���
step

�
t
����
and

������
assume

����
that

�
it
�������
follows

�
a
���������������
Beta-distribution.

��
In

����
fact,

��
its

����������
distribution

�������
depends

��
on

������
M(t).

�
If
���������
M(t) = 0

���
for

��
all

����
time

�����
steps

��
t,

����
then

�������
monthly

����������
precipitation

����
can

��
be

����
fully

������������
characterized

��
by

����������
independent

����������
realizations

����
over

������
space.5

��
In

���
this

����
case,

���
the

����������
distribution

��
of

���
W

��
is

�������
uniform

���
for

����
each

�
t.
�

��������
However,

���
this

��
is

���
not

��
the

����
case

����
with

��������
observed

����
data

������
because

����
wet

���
and

���
dry

���������
conditions

�����
occur

������������
simultaneously

����
over

���
the

�����
entire

�������
domain.

����
This

��
is

��������
controlled

���
by

������
M(t),

�����
which

����
can

��
be

�����
taken

����
e.g.

��
as

���
an

����������
independent

�������
random

�������
variable

��
or

��
to
������

follow
���
an

�������
ARMA

�������
process.

��
If

��������
M(t) �= 0

����
then

���
the

����������
distribution

��
of

�������
W (x, t)

��
is
���
not

��������
uniform

���
for

���
this

�������
specific

����
time

����
step

��
t.

����
The

�����
exact

����
form

��
of
����

the
������������
corresponding

���������
distribution

������
would

��
be

���������
something

����
like:10

Gt(v) = Φ0,1

(
Φ−1

M(t),1(v)
)

����������������������

(11)

��������
However,

��
the

���
use

���
of

�����
Eq.11

�����
would

������
require

���
the

���������
estimation

��
of

����
M(t)

���
for

����
each

����
time

����
step

�
t.
���
We

�������
decided

��
to

���
use

�
a
������
simple

��������������
Beta-distribution

������
instead.

����
The

������
reason

���
for

��������
assuming

�
a
���������������

Beta-distribution
��
is

���
due

��
to

�����
their

��������
flexibility

����
and

����
their

������
ability

��
to

�������
describe

�����������
distributions

����
well

�����
within

���
the

�������
interval

�����
[0,1].

���
The

����������
introduction

���
of

����
M(t)

��
is
���������
reasonable

��
as
��
it
�������
explains

���
the

���������
difference

�������
between

���
the

���������
correlation

�������
between

�������
stations

���
and

���
the

������
spatial15

���������
correlation

��������
calculated

�����
using

��
a

��������
variogram

����
type

��������
approach

���
for

�
a
�����
given

����
time

�����
step.

���
The

����
later

����������
correlations

���
are

�������
usually

�����
lower

�������
(smaller

������
ranges)

�����
which

���
are

��������
increased

���
by

���
the

�������
common

�����
large

�����
scale

������
weather

���������
described

��
by

������
M(t).

����
Note

����
that

���
the

����������
introduction

��
of

�����
M(t)

�����
leads

��
to

�
a
���������
correlation

��
of

���
the

�����������
precipitation

����
time

�����
series

����
even

��
if

���
the

��������
individual

���������
snapshots

��
of

������
U(x, t)

���
are

����������
independent

��
in

������
space.

���
We

�������
estimate

���
and

�����������
subsequently

���������
interpolate

���
Fx������

within
���
the

��������
proposed

�����������
methodology

��
by

���
the

��������
preceding

����������
conversion

��
of

���
the

�������
variable

�������
Z(xi, t). ��

In
�������
addition,

���
we

��������
calculate

�������
W (xi, t)���

for
���
the

���������
observation

��������
locations

��
xi���

and
���������
interpolate

��
it
��
to

���
the

��������
unknown

�������
location

�
x
��
in

�����
order20

��
to

�����
come

����
back

��
to

�������
Z(x, t).

��
In

�����
here,

������
spatial

���������
variograms

����
are

��������
calculated

���
for

���
W

���
for

����
each

�����
time

����
step

�
t,
���������

assuming
���
W

��
to

��
be

��������
spatially

��������
stationary.

������������
Non-Gaussian

����
and

������������
non-stationary

����������
distributions

����
only

�����
occur

���
for

���
the

����������
precipitation

��������
amounts

���
(i.e.

���
the

�������
variable

���
Z).

�

��������������
Non-Gaussianity

�����
should

���
be

���������
considered

���
due

��
to

���
the

������
usually

�������
skewed

����������
distribution

��
of

����������
precipitation

��������
amounts

���
and

��
it

����
only

������
applies

��
to

��
the

��������
marginal

����������
distribution

��
at

�
a
�����
given

����
time

����
step

��
t.

���
The

���������
suggested

�����
model

������
should

������
enable

�
a
���������
simulation

��
of

���
the

�����������
precipitation

��������
amounts.

���
The

������
spatial

�����������
dependencies

���
are

���������
considered

���
to

���������
correspond

��
to

��
a

������������
multi-Gaussian

�������
copula,

�����
being

�
a
����
type

���
of

������������
transformation

���������
frequently25

����
used

����
(e.g.

���
for

���������
Lognormal

��������
Kriging).

���
The

�����������
distributions

���
Fx,

����
fitted

���
to

��
the

���������
individual

��������
locations,

���
are

��������
supposed

��
to

����
have

��
a
�����
spatial

�����������
dependence.

����
They

���
are

������
further

��������
assumed

��
to

�����
follow

����
the

����
same

����������
distribution

�����
(e.g.

��
Γ-

���
or

�����������������
Weibull-distribution)

����
and

���
are

�����������
subsequently

�����������
interpolated.

������
Inhere,

���
we

�������
assume

����
that

��
the

�����
large

�����
scale

�������������
meteorological

��������
processes,

����������
generating

�����������
precipitation,

���
are

�����
better

��������
reflected

���
by

���
the

�����������
distributions

����
than

���
by

�
a
������
single

�������
monthly

���
(or

�����
daily)

���������
realization.

���������
Therefore,

����
the

���
use

��
of

�������
external

���������
covariates,

����
e.g.

��������
elevation,

��
is
�������
deemed

�����
more

���������
appropriate

���
for

�����
their30

�����������
interpolation.

���
The

�����
usage

��
of

�����
these

����������
distributions

���������
transforms

���
the

�������
process

���
into

��
a
��������
stationary

����
one,

�����
which

��
is

����
then

����������
interpolated

�����
using

���
the

��������������
Beta-distribution

��
of

���
the

�������������
non-exceedance

�����������
probabilities.
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2.3 Application of Quantile Kriging

The proposed method of QK is applied for the variable of monthly precipitation in South Africa and the outcomes are compared

to those from OK and EDK.

2.3.1 Study Area and Data

The rectangular study area (3.5◦×3.5◦, Fig.2) covers approx.132000km2 and is located within the Republic of South Africa.5

The second release of the digital elevation model from the Shuttle Radar Topography Mission ( USGS, 2003) serves as elevation

input. The original resolution was upscaled from 3 arcseconds (approx.92m) to 2 arcminutes (approx.3700m) by spatial

averaging, resulting in a mean of 1442m and ranging from 669m to 2197m (a.m.s.l.).
���
The

�������
upscaled

��������
elevation

��������
ultimately

������
serves

��
as

�������
external

����
drift

��
for

�����
EDK

��
of

���
the

���������
parameters

������
within

���
QK

����
and

���
for

���
the

�������
reference

�����
EDK

����
with

���
the

�������
original

�������
variable.

�

FIGURE 210

The observations of monthly precipitation were retrieved from raingauges of four different sources: the Department of Water

Affairs (DWA, 2008), the Global Historical Climatology Network (Vose et al., 1992), the Climate Research Unit (Mitchell and Jones,

2005) and the internal database of the University of KwaZulu-Natal ( Lynch, 2004). Accumulation of daily recordings yield

monthly values for the 264 (= J) consecutive months from January1986 to December2007. A total of 226 (= n i) raingauges

(Fig.2) provided 32226 (=N ) monthly precipitation values, which ultimately serve as input data.15

The observed average monthly precipitation over the twelve calendar months c is illustrated in Fig. 3 along with the percent-

age of zero-value observations
����
over

���
all

����������
observations

���
of

���
the

������
specific

��������
calender

������
month

�
c
�
(hereafter referred to as the dry ratio),

revealing a seasonal variation. High precipitation is typically encountered in the calendar months from October to March, being

characterized by a low dry ratio < 3%. The study area receives relatively low precipitation amounts during the calender months

from April (dry ratio = 11%) to September (dry ratio = 25%).20

FIGURE 3

2.3.2 Adaptation to monthly precipitation

At first, we subdivided the observations of monthly precipitation into the corresponding calendar month c (= 1,2, ...,12)

prior to the fitting of the selected distribution function due to two reasons: the seasonal variation in monthly precipitation

(Fig.3) and to ensure independence of the individual sample members as a theoretical requirement for the fitting method. We25

used the maximum likelihood estimation method for fitting the selected distribution function to the respective measurements

values z(xi, tc) of every calender month c and every measurement location x i, resulting in a total of 2712 (= 12×226) fittings.

In this context, the two-parametric Γ- and Weibull- distribution were selected, whose cdf F (z;Θ) are defined as:

9



Γ - distribution : F (z;Θ) =
γ(μ,λ · z)

Γ(μ)
(12)

Weibull - distribution : F (z;Θ) = 1 − exp

[
−
( z

λ

)k
]

(13)

where Γ(μ) is the gamma function and γ(μ,λ · z) is the lower incomplete gamma function. The parameter set Θ c(xi) is

composed for the Γ- distribution out of μc(xi) (= ϑ1,c(xi)) and λc(xi) (= ϑ2,c(xi)) and for the Weibull- distribution out of

kc(xi) (= ϑ1,c(xi)) and λc(xi) (= ϑ2,c(xi)). All parameters are restrained to values greater than zero and both cdfs are defined5

for z(xi, t)≥ 0.

Thus, the original observations of monthly precipitation z(x i, t) are converted by Eq. (12) or Eq.(13) into the correspond-

ing quantiles w(xi, t) (= F (z(xi, t);Θc)) and their defining parameter set Θc(xi). As outlined in Sect. 2.1, the quantiles

w(xi, t) were further converted into the standard Gaussian variable u(x i, t), ultimately subject to the subsequent OK as our

chosen geostatistical interpolation method. Note that the stationary assumption of more homogeneously distributed quantiles10

in space appear more plausible in the case of monthly precipitation. In total, the variable u(x i, t) was interpolated 264 times

by OK to the unknown location x.
���
The

������������
corresponding

����������
variograms

���
are

��������
calculated

�����
using

��������
Kendall’s

���
tau

���
for

�
a
������

robust
�����������
interpolation

������������������������
(Lebrenz and Bárdossy, 2017)

�
.

We further selected EDK as non-stationary interpolation method for the defining parameters ϑ 1,c and ϑ2,c. Elevation data

(Sect. 2.3.1) are taken as external drift since the distributions of monthly precipitation are assumed to depend on the altitude of15

the terrain. However, it was revealed that the direct use of the parameters may lead to negative or zero estimators at locations

of extreme external drifts. Therefore, the sample mean z̄ c(xi) and the sample variance σ2
c (xi) are estimated instead, using the

two statistical moments of the selected distribution functions, defined as:

Γ - distribution : E[Z] =
μ

λ
; VAR[Z] =

μ

λ2
(14)

Weibull - distribution : E[Z] = λ ·Γ(1+ 1/k) ; VAR[Z] = λ2 ·Γ(1+ 2/k)−E[Z]2 (15)20

The dependence of the two derived parameters z̄ and σ 2 on each other appears obvious in the case of monthly precipitation:

a high mean is likely to be associated with a high variance and v.v.. Their dependence is exemplary illustrated for the calender

month ’May’ in Fig. 4.

FIGURE 4

The principal component analysis allows for the transformation into the new Cartesian coordinate system with the new25

coordinates rc(xi) and sc(xi). They are now independent and subject to a separate interpolation by EDK. A total of 24 (=

12× 2) interpolations by EDK to the unknown location x is performed for each selected type of distribution.
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3 Results and Discussion

The proposed interpolation method of QK, using either a Γ-distribution (QK-Γ) or a Weibull-distribution (QK-Wei), is imple-

mented and compared to the traditional geostatistical interpolation methods of OK and EDK. The respective performances are

evaluated by cross-validation for the resulting estimators Z ∗ and the associated Kriging variances σ2
K . In here, cross-validation

eliminates all values z(xi, t) in turns from the input data, and subsequently calculates the estimator Z ∗(xi) and the associated5

Kriging variance σ2
K(xi) from the remaining data. Only the 32226 data points of the actually recorded values were considered

for the cross-validation and the resulting outcomes are compared to the actual observations.

3.1 Implementation of Quantile Kriging

The outcomes from the interpolation by OK, EDK and QK-Γ are exemplary displayed and examined for a month with low

precipitation and a high dry ratio (August 1993) and a month with high precipitation and a low dry ratio (January 1996). The10

respective spatial patterns of the estimator Z ∗(x) and the associated standard deviation σK(x) are illustrated in Figs. 5 and 6.

FIGURE 5

FIGURE 6

The estimator Z∗ displays similar spatial patterns and value ranges for all the interpolation methods. However, the local

contours of the isohyets are more rugged for QK-Γ (Figs. 5(e) and 6(e)) than for OK (Figs. 5(a) and 6(a)), but smoother than15

for EDK (Figs. 5(c) and 6(c)).

QK utilizes elevation for the interpolation of the two distribution parameters ϑ 1,c and ϑ2,c. The two parameters incorporate

information from all time steps tc of the specific calendar month c and, thus, transfer information over time. They are further

combined with the ordinary kriged quantiles W (x, t), leading to more smooth contours of the isohyets than EDK (compare

Fig.2). We regard the resulting spatial patterns of QK as more plausible, assuming that the accumulated monthly precipitation20

is hardly affected by local features in elevation.

The standard deviations σK of the associated estimation error show notable deviations in spatial pattern for the implemented

interpolation methods. The range of error is notably higher for QK (Figs. 5(f) and 6(f)) and its spatial patterns deviates from

the typical, bull-eye shaped patterns of OK (Figs. 5(b) and 6(b)) or EDK (Figs. 5(d) and 6(d)).

The estimation error from OK and EDK depends on the spatial configuration of the observation locations x i, their global25

variance and the selected variogram model. This typical spatial pattern of the error distribution from the ordinary kriged

quantiles W (x) is converted within QK by the monotonic cdf (Eq. ( 12)). The resulting σK(x) of the original variable Z(x)

is, therefore, increased by relatively flat slopes of the cdfs, which are encountered for relatively high values of W (x). A

relationship between the magnitude of the estimator Z ∗ and the magnitude of the associated standard deviation σK is suggested

by Figs.5 and 6.30
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3.1.1 Relationship between estimator and standard deviation

A relationship between the magnitude of the estimator Z ∗ and the associated standard deviation σK would be possibly an

improvement to geostatistical interpolation and is, therefore, examined next by cross-validation. The Spearman rank correlation

coefficient ρS is chosen for its description, being defined as:

ρS =

n∑
i=1

(rg(Z∗(xi, t))− rgZ∗)× (rg(σK(xi, t))− rgσ)√
n∑

i=1

(rg(Z∗(xi, t))− rgZ∗)2 ×
n∑

i=1

(rg(σK(xi, t))− rgσ)
2

(16)5

where rg(Z∗(xi, t)) and rg(σK(xi, t)) are the ranks of the estimator Z ∗ and the associated standard deviation σK within a

set of data, while rgZ∗ and rgσ are the respective average ranks.
����
The

������������
non-parametric

���������
Spearman

����
rank

���������
correlation

���
ρS ��������

describes

��
the

����������
monotonic

������
relation

��������
between

���
the

��������
estimator

���
Z∗

����
and

���������
estimation

�������
standard

��������
deviation

����
σK ,

�������
ranging

����
from

����
−1

��������
(negative)

��
to
����
+1

��������
(positive)

����
with

��
0

��������
indicating

���
its

�������
absence.

�
A set of data consists of all n values of the corresponding calendar month c. The

evolution of the Spearman rank correlation coefficient ρS over all 12 calendar months is displayed in Fig. 7.10

FIGURE 7

The rank correlation varies over the calendar months for all implemented interpolation methods and reach their seasonal

maximums in June or July (Fig. 7), being characterized by a high dry ratio and low precipitation.

An improvement in the relationship between the estimator Z ∗ and the associated standard deviation σK can be observed

for QK-Γ and QK-Wei, exhibiting superior rank correlation coefficients for all calender months with the exception of QK-Wei15

in December (Fig. 7). QK-Γ deploys the strongest relation during the wetter months from October to March, while QK-Wei

is superior from May to September. The resulting spread of the error distribution is increased by decreasing slopes of the

theoretical cdfs (Eq. 12 and 13) and v.v.. The slope is effectively the probability density function (pdf). Both selected theoretical

distributions imply a monotonic decrease in their respective pdfs for small parameters, being typically encountered during the

dry season, and evoke a higher spread of the error distribution for higher monthly precipitation. Thus, the almost perfect rank20

correlation ρS(c) of QK during the months of low precipitation can be explained. The rank correlation between the estimator

and the standard deviation is weakened for the months with higher precipitation due to the departure from the strict monotonic

decrease of the pdfs, which is induced by increasing distribution parameters.

The inferior correlation coefficients of OK and EDK are nearly congruent due to their inherent geostatistical definition:

although the Kriging weights are altered by the drift, they influence the linear estimator Z ∗ and the standard deviation σK by25

the same extent. Therefore, the non-parametric Spearman descriptor hardly differentiates between OK and EDK.

3.2 Cross-validation of the estimator

The estimator Z∗(xi, tj) from the cross-validation is evaluated by six objective functions: the Pearson correlation coefficient ρ,

the Nash-Sutcliffe-Efficiency coefficient NSE (Nash and Sutcliffe, 1970), the overall bias B1 and the Root Mean Square Error
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(RMSE) are complemented by the temporal bias B2 and the spatial bias B3 ( Bárdossy and Pegram, 2012), which are defined

as:

ρ =

ni∑
i=1

J∑
j=1

(Z∗(xi, tj)− Z̄
∗
)× (z(xi, tj)− z̄)√

ni∑
i=1

J∑
j=1

[
Z∗(xi, tj)− Z̄

∗]2 × ni∑
i=1

J∑
j=1

[z(xi, tj)− z̄]
2

[− ] (17)

NSE = 1−
ni∑
i=1

J∑
j=1

[z(xi, tj)−Z∗(xi, tj)]
2

[z(xi, tj)− z̄]
2 [− ] (18)

B1 =
1

ntot

ni∑
i=1

J∑
j=1

[z(xi, tj)−Z∗(xi, tj)] [ mm ] (19)5

B2 =
1

ntot

ni∑
i=1

⎡
⎣ J∑
j=1

(z(xi, tj)−Z∗(xi, tj))

⎤
⎦
2 [

mm2
]

(20)

B3 =
1

ntot

J∑
j=1

[
ni∑
i=1

(z(xi, tj)−Z∗(xi, tj))

]2 [
mm2

]
(21)

RMSE =

√√√√ 1

ntot

ni∑
i=1

J∑
j=1

[z(xi, tj)−Z∗(xi, tj)]
2

[ mm ] (22)

where J is the number of time steps, ni is the number of observation locations and n tot is the total number of cross-validated

observations. Note that the cross-validation for only one time step (J = 1) would yield the following relations: n tot ×B12 = B310

and B2 = RMSE2.

3.2.1 Summary results

The overall values of the six objective functions from all 32226 original observations, along with a separation into dry season

(calender months: 4 - 9) and wet season (calender months: 1 - 3 and 10 - 12) are given in Table 1.

TABLE 115

The total values of the correlation coefficient ρ, the NSE coefficient, the temporal bias B2 and the RMSE are better for QK-Γ

and QK-Wei than for OK and EDK, evoking from a superior performance especially during the wet season when not many of

many zero-values are present (see Table 1).

Complementary, OK and EDK have superior values for the biases B1 and B3 as a result of the implicit definition as best linear

and unbiased estimator. OK (and to some extent EDK) optimize the spatial bias B3 for a given month by adapting their global20

mean to the observed mean, according to Eq.1 (Eq.3). However, this evokes a systematic underestimation in regions of high

precipitation and a systematic overestimation in regions of low precipitation. Therefore, a temporal bias B2 accumulates for a
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location, which consistently experiences extreme precipitation over time. Especially during the wet season, QK outperforms

OK and EDK with respect to the temporal bias. The following investigations on raingauge ’Wilgervier’ exemplary serve as

illustration for the evolution of a temporal bias.

3.2.2 Temporal bias at the raingauge ’Wilgervier’

The raingauge ’Wilgervier’ (i = 125, see Fig. 2) records a relatively high monthly precipitation of 70.1mm in average compared5

to the average monthly precipitation of 54.7mm in the entire domain.

The evolution of the temporal bias B2 at the raingauge ’Wilgervier’ is calculated from cross-validation according to Eq. 20

and illustrated in Fig. 8 (left). In addition, the relative estimation error εr is estimated from the 218 (out of the 264 possible)

original observations at ’Wilgervier’, being defined as:

εr(x125, tj) =
Z∗(x125, tj)− z(x125, tj)

z(x125, tj)
(23)10

The 218 values of εr(x125) are smoothed by a Gaussian Kernel with a defined range dG (= 0.35). The distribution of the

relative estimation errors should ideally be symmetrical around zero. However, the respective distributions are truncated due

the confinement to εr ≥−1 for the variable of monthly precipitation. The smoothed distributions are factually a summary of

the estimation errors and are illustrated in Fig. 8 (right).

FIGURE 815

OK displays the highest systematic underestimation over time (Fig. 8 (left)) and the relative estimation errors have a mode

of −20% (Fig. 8 (right)). EDK slightly improves the systematic bias of the interpolation, but the relative error distribution still

possess a mode of −15%. QK-Γ and QK-Wei can further improve the systematic underestimation over time and exhibit error

distributions with modes of −12%, and −10% respectively.

The raingauge ’Wilgervier’ illustrates that OK and EDK might optimize the spatial bias (Table 1), but they are hampered to20

minimize the temporal bias in locations of extreme observations. QK, as a spatio-temporal interpolation method, is capable of

reducing the temporal bias within regions of relatively high (or low) precipitation, which is potentially important for possible

successive water balance considerations.

3.2.3 Cross-validation for different calendar months

The effects of the increased occurrence of zero-value observations on the Pearson correlation coefficient ρ (Eq. 17) and the25

RMSE (Eq.22) is exemplary examined next. The respective values are calculated for each calender month from the cross-

validation and are illustrated in Fig. 9 along with the dry ratio (Fig. 3).

FIGURE 9
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QK-Γ and QK-Wei display improved values in comparison to OK and EDK for the two selected objective functions from

October to March (Fig. 9). However, their performance deteriorates from May to September, when many zero-value obser-

vations are present, indicated by a dry ratio of at least 25% or above. The correlation coefficient ρ plunges in July for both

versions of QK (Fig. 9 (left)) and the respective RMSE shows a similar qualitative behavior (Fig. 9 (right)).

The performance of QK is considerably influenced by the dry ratio. The presence of many zero-values in the data leads to5

very steep or nearly vertical theoretical cdfs, hampering the allocation of the quantiles to the respective precipitation values.

3.3 Cross-validation of the uncertainty

The estimated error distribution of the estimator Z ∗(x) is described by the associated standard deviation σK(x) as a measure

of associated uncertainty. The quality of the uncertainty from the cross-validation is assessed by two objective functions: the

adapted Linear Error in the Probability Space LEPS (Ward and Folland, 1991) and a test on uniformity (Bárdossy and Li,10

2008).

LEPS compares the values of the estimator Z ∗(xi, t) and the observation z(xi, t) within the estimated cdf FZ∗ of the error

distribution as:

LEPS =
1

ntot
·
ntot∑
i=1

|FZ∗(z(xi, t))−FZ∗(Z∗(xi, t))| (24)

LEPS is defined on the interval [0,1]: low values indicate a higher probability for the observation to originate from the15

estimated probability density distribution and v.v.. The average over the differences of all observations n tot yields the overall

LEPS value.

The test on uniformity supposes that the values of the observations
������
verifies

���
the

���������
estimated,

���������
conditional

����������
distribution

����
FZ∗

���
by

���������
calculating

��
its

�����
value

������������
FZ∗(z(xi, t))���

for
�����
every

�������
original

���������
observation

�
z(xi, t)from the estimatedcdf FZ∗(z(xi, t)) .

����
The

��������
resulting

�����
values

���
(or

��������
quantiles)

�
should be uniformly distributed on the interval [0,1] (Bárdossy and Li, 2008). We defined ten classes of20

equal width, which should have the same resulting relative frequency. The deviation from uniformity is quantified by the χ 2-

test variable as the sum of the relative squared differences between uniformity and empirical distribution, ranging from zero

(perfect) to nine (improper).

3.3.1 Summary results

The values of the two objective functions from cross-validation of all 32226 original observations of the entire year, and divided25

into dry (calender months: 4 - 9) and wet season (calender months: 1 - 3 and 10 - 12) are displayed in Table 2.

TABLE 2

The best overall LEPS values are received from the traditional EDK and OK (Table 2). QK-Wei is superior to QK-Γ, but both

versions of QK are displaying higher LEPS values than OK or EDK, originating from the dry season when many zero-values

are present in the data.30

15



However, the χ2-test variables (Table 2) exhibit a reverse hierarchy among the implemented interpolation methods: QK

is superior during the dry season and similiar during the wet season. The χ 2-test variables should be read in conjunction

with the corresponding histograms of the FZ∗ values (Fig. 10). Note that the outer classes of the histograms host all the

observations z(xi, t), which are situated outside the estimated distribution. These classes exhibit the largest deviation from the

ideal uniform distribution.5

FIGURE 10

QK-Γ and QK-Wei provide in general a more uniform distribution of FZ∗ than OK and EDK (Table 2), which possess the

same value of the χ2-test variable and similar histograms (Table 2 and Fig. 10) due to their implicit affinity in definition.

3.3.2 Cross-validation for different calendar months

The effect of many zero-value observations on the error distribution is investigated by the differentiation into calendar months.10

The objective functions are recalculated accordingly and illustrated in Fig. 11.

FIGURE 11

The temporal evolution of the LEPS values for the two versions of QK is influenced by the presence of many zero-value

observations. QK-Γ and QK-Wei exhibit LEPS values superior to OK and EDK from September to April, characterized by

a dry ratio of less than 26% (Fig. 11 (left)). However, the performance of QK deteriorates from May to August when many15

zero-value observations are present. This dependence explains the overall inferior LEPS values for QK in Table 2. The LEPS

values for OK and EDK are hardly influenced by the dry ratio (Fig. 11 (left)) and show a congruent behavior.

The temporal evolution of the χ2 test variable (Fig. 11 (right)) shows better values for QK-Γ and QK-Wei than for OK or

EDK during most calender months. QK maintains a more uniform distribution of the F Z∗ values even for the months with a

high dry ratio when OK and EDK deteriorate.20

The cross-validation for the uncertainty suggests an improvement by QK under the prerequisite of a low dry ratio within the

input data. This improvement is attributed to the wider range of the error distribution and the increased relation between the

magnitude of the estimator and the spread of the distribution (see Section 3.1).

4 Conclusions

The geostatistical interpolation method of QK firstly estimates the distribution of the variable over time and thereafter deducts25

the spatial distribution prior to interpolation, thus addressing the spatial
�������
addresses

���
the

������
spatial

�
non-stationarity of the

�
a variable

of interest . The spatio-temporal
��
by

���
its

���������
conversion

����
into

��������
quantiles

���
and

�������
defining

����������
distribution

����������
parameters.

����
The

��������������
spatial-temporal

description of the variable by QK is a novelty in applied geostatistics and can be regarded as a temporal extension of Probability

Kriging. The proposed method accommodates skewed marginal distributions , converting
��

and
��������

converts
�
them into an ideal

Gaussian distribution prior to interpolation as a major theoretical advantage over the traditional OK or EDK. QK describes an30
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asymmetrical distribution of the random variable Z(x) by the
���������
non-linear estimator Z∗(x) and the estimation variance σ2

K(x)

of the error. QK additionally
������
further establishes a relation between the magnitude of both descriptors.

The geostatistical interpolation method of QK addresses the spatial non-stationarity of a variable of interest by its conversion

into quantiles and defining distributionparameters. The spatial-temporal description of the variable by QK is a novelty in

applied geostatistics and can be regarded as a temporal extension of Probability Kriging. The proposed method accommodates5

skewed marginal distributions and converts them into an ideal Gaussian distribution prior to interpolation as a major theoretical

advantage over the traditional OK or EDK. QK describes an asymmetrical distribution of
�������
variable

��
of

�������
monthly

������������
precipitation,

�������
observed

��
at

���
226

����������
raingauges

���
over

����
264

����������
consecutive

����
time

����
steps,

������
serves

��
as

����
input

�����
data.

���
We

�������
selected

��
the

����
two

���������
parametric

��
Γ-

����������
distribution

���
and

�������
Weibull

����������
distribution,

�������
because

����
they

���
are

�������
defined

��
on

���
the

�������
interval

�����
[0,∞]

����
and

���
are

�������
suitable

��
to

�������
describe

���
the

�������
variable

��
of

��������
monthly

�����������
precipitation.

���
The

��������
selected

����������
distributions

����
are

�����
fitted

��
to

�
the random variable Z(x) by the non-linear estimator Z ∗(x) and the10

estimation variance σ2
K(x) of the error. QK further establishes a relation between the magnitude ofboth descriptors

����������
observations

��
of

�
a
�������
specific

�������
calendar

�������
month,

�������
implying

���
an

�������
absence

��
of

��������
temporal

����������
dependence

�������
between

����
two

������
sample

��������
members

����
(e.g.

��������
between

���
the

�������
monthly

�����������
precipitation

��
of

���������
December

�����
2002

����
and

���������
December

������
2003).

��������
However,

����
QK

����
does

������������
accommodate

��������
temporal

������������
independence

�������
between

����������
consecutive

�����������
observations,

�����
unlike

�������
existing

��������������
spatio-temporal

������
Kriging

��������
methods.

���
In

�������
general,

����
other

�����
types

���
of

�����������
distributions,

����
with

�
a
�����
higher

�������
number

��
of

���������
parameters

�����
could

��
be

��������
selected,

��������
especially

��
in

����
case

��
of

����
other

��������
variables

��
of

�������
interest.

������
Finally,

���
we

����
used

��������
elevation15

��
as

�������
external

����
drift,

����
both

���
for

���
the

�����������
interpolation

��
of

���
the

���������
parameters

������
within

���
QK

��
as

����
well

��
as

���
for

���
the

��������
reference

�����
EDK.

The cross-validation of the estimator revealed an improvement for most of the selected objective functions. In particular, QK

addresses the temporal bias, which remains unattended by the traditional geostatistical methods, which only optimize the mean

spatial bias.
��
In

����
case

��
of

���
the

��������
estimator,

������
QK-Γ

�������
performs

�������
slightly

�����
better

����
than

�������
QK-Wei

���
for

����
most

���
of

���
the

������
selected

��������
objective

���������
functions.

The cross-validation of the associated uncertainty shows an improvement by QK in the description of the distribution of the20

estimation errors in comparison to the traditional geostatistical interpolation methods. However, its performance depends on

the percentage of zero-values in the input data and declines when many zero-values are present.
���
In

������
general,

��������
QK-Wei

�����
shows

��
a

�������
superior

��������
estimation

���
of

��
the

���������
associated

����������
uncertainty

����
than

�����
QK-Γ.
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Figure 1. Histogram from the times series of observed monthly precipitation for two random stations: ’Laingsnek’, x57 with z = 81.3mm

(left) and ’Tambotieboom’, x29 with z = 38.3mm (right).
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Figure 2. Study area, elevation and location of raingauges.
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Figure 3. Average monthly precipitation (in mm) and dry ratio (in %) from 226 raingauges. Note that the dry ratio (dashed brown line) is

indicated on the right axis.
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Figure 4. Scatterplot of sample mean z̄5 and sample variance σ2
5 of calendar month ’May’ along with the principle components s5 and r5.
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Figure 5. Spatial patterns of the estimator Z∗(x) and the standard deviation σK(x) from OK, EDK and QK-Γ for August 1993. Note that

crosses indicate positions of raingauges.
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Figure 6. Spatial patterns of the estimator Z∗(x) and the standard deviation σK(x) from OK, EDK and QK-Γ for January 1996. Note that

crosses indicate positions of raingauges.
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Figure 9. Evolution of two objective functions for the estimator over the twelve calendar months: Correlation coefficient ρ (left) and RMSE

(right). Note that the dry ratio (dashed brown line) is indicated as percentage on the right axis.
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Figure 10. Histograms for the FZ∗ -values of four different interpolation methods.
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Figure 11. Evolution of the two objective functions for the error distribution over twelve calendar months: LEPS (left) and χ2 (right). Note

that the dry ratio (dashed brown line) is indicated as percentage on the right axis.
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Table 1. Summary results from the cross-validation of the estimator Z∗ for the twelve calender months of the entire year, and spit into dry

(calender months: 4 - 9) and wet (calender months: 1 - 3 and 10 - 12) season.

ntot ρ NSE B1 B2 B3 RMSE

[− ] [− ] [− ] [mm] [mm2] [mm2] [mm]

Entire year:

OK: 32226 0.902 0.813 0.07 3486.34 49.67 26.48

EDK: 32226 0.897 0.803 0.02 3539.73 76.41 27.16

QK-Γ: 32226 0.905 0.819 -0.45 3480.90 1346.32 26.06

QK-Wei: 32226 0.903 0.814 0.75 3418.60 2105.09 26.40

Dry season:

OK: 16256 0.908 0.824 0.00 2663.82 11.42 11.05

EDK: 16256 0.904 0.816 0.01 2731.59 15.82 11.30

QK-Γ: 16256 0.897 0.803 0.46 2164.02 1147.99 11.69

QK-Wei: 16256 0.875 0.748 2.38 2153.02 3323.72 13.24

Wet season:

OK: 15970 0.801 0.637 0.14 2939.87 88.60 35.93

EDK: 15970 0.790 0.618 0.02 3034.41 138.09 36.86

QK-Γ: 15970 0.809 0.654 -1.39 2509.63 1548.21 35.10

QK-Wei: 15970 0.810 0.654 -0.91 2523.36 864.63 35.05
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Table 2. Summary results from the cross-validation of the estimation error for the entire year, and split into dry (calender months: 4 - 9) and

wet (calender months: 1 - 3 and 10 - 12) season.

ntot LEPS χ2 ntot LEPS χ2 ntot LEPS χ2

[− ] [− ] [− ] [− ] [− ] [− ] [− ] [− ] [− ]

Entire year: Dry Season: Wet Season:

OK: 32226 0.25 0.13 16256 0.19 0.32 15970 0.30 0.17

EDK: 32226 0.24 0.13 16256 0.19 0.33 15970 0.30 0.17

QK-Γ: 32226 0.32 0.11 16256 0.36 0.10 15970 0.28 0.18

QK-Wei: 32226 0.26 0.12 16256 0.27 0.10 15970 0.25 0.18
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