
Response to reviewer 2

We thank the reviewer for the valueable comments. We provide a detailed point
by point answer to the reviewers remarks.

The authors propose a new kriging technique developed to regionalize non-
normally distributed spatio-temporal variables. The approach, as I understand
it, involves (i) fitting time series observations to a predetermined distribution
type at each gauge independantly; (ii) using the fitted distribution to assign
a probability of non-exceedance to each observation at each gauge; (iii) fit the
subset of these probabilities corresponding to each observation time to (differ-
ent) beta distributions; (iv) map the fitted probabilities to normal quantiles;
(v) use the (now normally distributed and *assumed* second-order stationary)
outcomes as a basis to apply OK or EDK, as described (rather cryptically) in
section 2.1.2. While the approach is intriguing, its description in the paper lacks
statistical rigor and minimal proofs and intuitions. Its application in cross vali-
dation suggests that it does a decent job at predicting some measure of rainfall,
but so would most properly fitted interpolation methods. This does not mean
that the estimator is BLUE (best or even efficient unbiased linear estimator)
of the considered stochastic process. Actually, the apparent correlation between
Z*(x) and sigma2(x) (Figure 4) suggests that the process has some degree of
heteroskedasticity. Under these conditions, linear models (like most kriging
estimators) are not necessarily efficient (see, for instance, the Gauss Markov
Theorem for ordinary least squares). Again, the approach is promising, but its
exposition needs a major overhaul to be convincing.

The reviewer described the procedure we applied reasonably well. However
note that the distributions fitted for each location are the same type (gamma
for example). The parameters of the distribution have to be interpolated, this
step is missing from the reviewers description.

An intuitive description of the procedure is based on the following properties of
precipitation fields:

• The monthly (and daily) precipitation amounts for a given month often
follow a skewed distribution.

• Monthly (even daily) precipitation amounts cannot be considered as sta-
tionary in space. Differences in expected precipitation amounts become
clear if one considers long time accumulations.

• The precipitation generating meteorological processes are usually of large
spatial extent. This means if there is heavy rainfall at one location it likely
that other locations also have heavy rainfall.

• Correlations between time series of precipitation indicate a strong spatial
dependence, while the spatial dependence of precipitation on a given time
accumulations (day, month) usually show a much weaker spatial depen-
dence.
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A possible process model reflecting the above properties can be described as
follows:

Let Y0(x, t) be independent (for each different t) normal stationary spatial fields
with E[Y0] = 0 and D2(Y0) = 1 for each t.

In order to reflect large scale meteorological processes the process M(t) is intro-
duced. High M(t) values correspond to heavy rainfall covering the area - while
low correspond to dry conditions. This M modifies the spatial process:

Y1(x, t) = Y0(x, t) +M(t) (1)

Were M(t) is a process (in time) with zero mean. We may assume that the
distribution of M(t) is normal. In this case for each x Y1(x, t) is normally
distributed with N(0, d) with d =

√
1 + σ2

M .

For each fixed t the distribution of Y1(x, t) is N(M(t), 1) . Now Y2 is temporal
non-exceedence probability at location x - formally:

Y2(x, t) = Φ0,d(Y1(x, t)) (2)

where Φ0,d is the distribution function of N(0, d). (By definition 0 ≤ Y2(x, t) ≤
1.)

The rainfall is then generated as:

Z(x, t) = F−1
x (Y2(x, t)) (3)

where Fx is the distribution function of rainfall at location x. The Fxs can
be different for different x locations due to topography and other influencing
factors. (These Fx-s can be interpolated - example see also in Mosthaf and
Bardossy (2017)).

We use Y2(x, t) for each t and assume that it follows a beta distribution. In fact
its distribution depends on M(t). If M(t) = 0 for all t-s then monthly rainfall
is fully characterised by independent realizations over space. In this case the
distribution of Y2 is uniform for each t.

This however is not the case with observed data. The reason is that wet and
dry conditions occur simultaneously over the whole area. This is controlled by
M(t). One can take M(t) for example as independent random variables or to
follow an ARMA process. If M(t) 6= 0 then the distribution of Y2(x, t) for this
t is not uniform. The reason for assuming it as beta was due to the fact that
beta distributions are very flexible and can well describe distributions in [0, 1].
The exact form of the corresponding distribution would be something like:

Gt(v) = Φ0,1

(
Φ−1

M(t),1(v)
)

2



However the use of this would require the estimation of M(t) for each t. We
decided to use a simple beta distribution instead.

The introduction of M(t) is reasonable as it explains the difference between
the correlation between stations and the spatial correlation calculated using a
variogram type approach for a given time. The later correlations are usually
lower (smaller ranges) which are increased by the common large scale weather
described with M(t). Note that the introduction of M(t) leads to a correlation
of the precipitation time series even if the individual snapshots Y0(x, t) are
independent in space.

In our procedure we start with Z(x, t), estimate and interpolate Fx. Than
calculate Y2 for the observation locations. We interpolate Y2 and come back to
Z(x, t).

Spatial variograms are calculated for Y2 for each t, and Y2 is stationary in space.
Non-stationarity and non-Gaussian distributions occur only for Z. That is the
reason why we concentrate on Y2.

Non-Gaussianity: In its canonical form, Ordinary Kriging is based on the
method of moment (i.e. variance minimization subject to unbiasedness) and
so is not technically restricted to normally distributed processes. Gaussiannity
is, however, required for maximum likelihood (ML) type estimations, which
some studies have shown can be more efficient for kriging-based regionalization
(e.g., Lark 2000). ML approaches become necessary to have unbiased predic-
tion of both the mean and the variance when it comes to EDK or Universal
Kriging, particularly when subject to more intricate error correlation structures
(e.g., Muller 2015). Since non-gaussianity appears to be a key rationale for the
proposed approach, it is important to be specific on that.

Non-Gaussianity is considered because of the usually skewed distribution of pre-
cipitation amounts for a given time step. The suggested model should enable a
simulation of the precipitation amounts. Non-Gaussianity is only in the sense
of the marginal distribution at a given time-step. The spatial dependenceis con-
sidered to correspond to a multi-Gaussian copula. This kind of transformation
is frequently used - for example for Lognormal Kriging.

Beta-distribution: The use of the beta distribution is intriguiging, but more
intuition is needed on the assumed underlaying stochastic process. Please de-
scribe clearly the properties of the (space-time) stochastic process that you
assume gives rise to the observed sample and use that to demonstrate Eqn 6
and 7 in a rigorous mathematical proof. I find the use of the beta distribution
promising because a common interpretation is that it describes the distribution
of the probabilities associated to a binomial process observed over a finite sam-
ple. Lets say that the binomial process in question is the exceedance of a given
threshold (as eluded to in the manuscript). Then, if the underlaying point pro-
cess is identically distributed in space and if an identically sized sample is taken
at each observation point, the proportion of observations lower than a given
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threshold across all gauges will be beta-distributed. Perhaps thats a start?

The above description shows that the beta distribution is only a convenient tool,
not a statistically rigorous approach. As the beta distribution is very flexible
it provided an easy and quick approximation of the distribution of the non
exceedence probabilities.

Stationarity: More fundamentally, a main issue that I have is that your approach
involves fitting distributions independantly at different points in space (gamma
or weibull) and time (beta), which implies that the underlaying random point
process follows a different distribution at each point in space. Granted, EDK
and Universal kriging allow the first moment of the underlaying distribution to
vary through space, as allowed by the scaling properties of the expectated value
estimator. However, I am not aware of any existing geostatistical approach
that allows for higher order moments to vary through space. This may be
fine, but please demonstrate that your approach does not violate the second
order stationarity assumption (i.e that the variogram is constant through space),
which is critical (and arguably more important than gaussianity) for kriging.

The distributions fitted to the individual locations are supposed to have a spa-
tial dependence. Further they are assumed to follow the same distribution.
These distributions are then interpolated. Here we use the assumption that the
distributions show a much clearer effect of the large scale rainfall generating
meteorological processes than a sigle mothly (or daily) realization would show.
Therefore the use of extrenal covariates , such as topography is more appropriate
for this interpolation. The use of these distributions transforms the process to a
staionary one. The stationary process is interpolated using the beta distribution
of the non-exceedance probabilities. The reason for this is that we intended to
avoid problems with interpolated probabilities being outside the [0, 1] interval.

We intend to to revise the paper and to include the above description and
discussions.

Mosthaf, T. and A. Bárdossy, Regionalizing non-parametric precipitation amount
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