Responses on the comments of Referee 2 on the
submitted manuscript “Geostatistical interpolation
by Quantile Kriging “hess-2018-276

We thank the reviewer for the valuable comments. Instead of going into detail
with the individual points we give a description of the model, which could explain
the questionable details.

Description of the Process

Obviously, there is an underlying process assumption behind the model. A
sketchy description is as follows:
Let Yy(z,t) be independent (for each different ¢) normal stationary spatial
fields with E[Yp] = 0 and D?*(Yy) = 1 for each ¢.
Let:
Vi, 1) = Yo(w, ) + M(2) 1)

where M (t) is a process (in time) with zero mean. We may assume that the
distribution of M (%) is normal. In this case each = Y;(z,t) is normally distributed
with N(0,d). Further for each t the distribution of Y;(z,t) is N(M(t),1) . Now
Y5 is defined as:

Yo(z,t) = @ a(Yi(2,1)) (2)
<

where @ 4 is the distribution function of N (0, d). By definition 0 < Y5(x,t)
1
The rainfall is then generated as:

Z(x,t) = F; ' (Ya(z, 1)) (3)

where F), is the distribution function of rainfall at location x. The F,s can
be different due to topography and other influencing factors. These F,.-s can be
interpolated - example see also in Mosthaf and Bardossy (2017).

We use Ys(z,t) for each ¢ and assume that it follows a beta distribution.
In fact its distribution depends on M(t). If M(t) = 0 for all ¢-s then monthly
rainfall is fully characterised by independent realizations over space. In this case
the distribution of Y5 is uniform for each ¢.

This however is not the case with observed data. The reason is that wet and
dry conditions occur simultaneously over the whole area. This is controlled by
M(t). One can take M(t) for example as independent random variables or as
an ARMA process. If M(t) # 0 then the distribution of Y3(x,t) for this ¢ is
not uniform. The reason for assuming it as beta was due to the fact that beta
distributions are very flexible and can well describe distributions in [0, 1]. The
exact form of the corresponding distribution would be something like:

Gi(v) = @01 (D31 (v))



However the use of this would require the exact knowledge of M (t) for each
t. We decided to use a simple beta distribution instead.

The introduction of M(¢) is reasonable as it explains the difference between
the correlation between stations and the spatial correlation calculated using a
variogram type approach for a given time. The later correlations are usually
lower (smaller ranges) which are increased by the common large scale weather
described with M(t).

In our procedure we start with Z(z, t), estimate and interpolate F,. The calcu-
late Y5 for the observation locations. We interpolate Y5 and come back to Z(z, ).

Spatial variograms are calculated for Y5 for each ¢, and Y; is stationary in
space. Non-stationarity and non-Gaussian distributions occur only for Z. That is
the reason why we concentrate on Yj.

February 1989 Beta distribution
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Abbildung 1: Example of the histogram of the observed quantiles in February
1989, along with the fitted Beta-distribution
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