
Reply to the Interactive comments by A. Palmer 

We  sincerely  thank  to  the  referee  for  taking  a  time  for  a  careful  reading  of  the  manuscript  and 

pointing  to  many  inconsistencies  and  poorly  formulated  statements.  We  are  very  glad  that  the 

reviewer has seen the importance and potential impact of this manuscript, which gives us additional 

confidence in our work. 

 We have considered all comments and suggestions and did appropriate changes as suggested, which 

is  well  visible  in  the  tracked  version  of  the  revised manuscript,  where  all  changes  are  visible  and 

those corresponding to the comments of dr. Palmer are highlighted yellow.  

However,  there  are  some  comments  that  need  a  bit  more  discussion.  These  comments  and 

responses to them are listed below: 

 2/6: The measurements demonstrating this switch was that of Plummer and Wigley (1976) 

Geochimica et Cosmochimica Acta v. 40, p. 191‐202. White (1977) based his suggestion on 

the data and interpretation  in this paper. Wigley  is  (or was at that time) a karst scientist 

with specific interest in the kinetics of cave origin, although the 1976 paper did not pursue 

details on that topic. 

Response: We have changed the text on P 2, L 5‐10: The experiments of Wigley and 

Plummer  (Plummer  and  Wigley,  1976)  demonstrated  a  switch  in  the  dissolution 

kinetics to a non‐linear regime close to the equilibrium concentration of calcium ions 

with respect to calcite . Based on these results White  (1977) suggested that such a 

switch  reduces  the  dissolution  rates  and  causes  deep  penetration  of  dissolution 

power into the rock. 

 Cited  and  added  to  the  literature  list:  Plummer,  L.  N.,  and Wigley,  T.  M.  L.:  The 

dissolution  of  calcite  in  CO2‐saturated  solutions  at  25°C  and  1  atmosphere  total 

pressure,  Geochimica  et  cosmochimica  acta,  40,  191‐202, 

https://doi.org/10.1016/0016‐7037(76)90176‐9, 1976. 

6/18:  This  is  an  important  point,  because  a  tiny  penetration  of  water  at  zero  c 

concentration  through  a  very  narrow  opening  will  appear  to  drive  the  fluid  to 

supersaturation in the model. This has given some modelers the wrong impression 

that no further dissolution can take place in the fissure. The authors are aware of 

this  problem,  although  readers  and  other  modelers  may  come  to  incorrect 

conclusions  (for  example,  that  there  is  a  minimum  aperture  below  which  no 

dissolution  can  take place).  It may be  appropriate  to make brief mention of  this 

point.  

Response: We have mentioned this point and cited a reference to the topic. 

We have added text (P 7, L 10‐15) reads: 

Otherwise wrong conclusions can be the result as in the work of Groves and Howard 

(1994)  who  claimed  that  for  a  achieving  breakthrough  of  a  fracture  a  minimum 

aperture width is necessary. 

 

Cited  and  added  to  the  literature  list:  Groves,  C.  G.,  and  A.D.    Howard,  (1994) 

Minimum  hydrochemical  conditions  allowing  limestone  cave  development,  Water 

Resour. Res., 30, 607‐615 

 



 7/6:  “Periodic”  conditions = unclear. Would “variable” be more appropriate  (i.e.,  varying 

with time)? 

Response: As Periodic Boundary Conditions (PBC) are less known within the broader 

research community, we gave some extra explanation there. Using PBC we excluded 

the influence of  boundaries at the top and bottom of the domain. We introduced PCB 

by »stitching« these two boundaries. This way the »vertical« flow entering the lower 

boundary  continues  down  from  the  upper  boundary  and  vice  versa.  As  said  in  the 

text, we somehow wrap the 2D plain domain around a cylinder. 

At  P7,  L25  we  have  added:  The  upper  and  lower  boundaries  have  have  periodic 

conditions. Topologically this means that a 2D domain is mapped onto a cylinder. This 

makes  the  evolution  of  fractures  independent  from  their  distance  from  the 

upper/lower boundaries, which is not the case if these are no‐flow boundaries. 

 

 12/14: … the vertical outflow increases and, consequently, the input flow rises.” The rate 

of inflow is the result of greater overall efficiency of the conduit, rather than the result of 

increasing vertical outflow.(Both depend on continuity of flow and are the result of greater 

efficiency.) So a minor change in wording is suggested. 

 15/3: … emits transverse flow that increases its input flow.” Here also, it appears that the 

increased inflow (and outflow) is in response to increasing overall efficiency of the conduit, 

rather than the result of  increasing outflow at the tip. On the other hand,  if water  in the 

growing  tip  is  being  attracted  by  the  porous medium  that  it  is  invading,  as when water 

enters a dry sponge, then my statement is less appropriate. 

o Response:  We  have  made  minor  changes  in  the  text  accordingly  to  make  the 

message  clearer.  However,  the  main  mechanism  of  the  wormhole  growth  is  the 

increasing  transverse  flow,  through  which  a  wormhole  »invades«  the  flow  field  of 

competitors.  Offering  small  resistance  to  flow,  the  high  head  from  the  boundary 

penetrates deep into the network along the wormhole, making the wormhole a high 

head  region  injecting  the  flow  upward  and  downward  into  the  adjacent  fractured 

»matrix«. This allows high flow and dissolution rates in the wormhole. It is of course 

true  that  the  resistance  of  the wormhole  itself  is  decreasing  and  that  the  gradient 

between  its  tip  and  the  outflow  boundary  increases  as  well,  making  it  more  flow 

efficient. However, this less effective than the transverse flow, which actually makes 

the difference to a 1D scenario. The referee's concept of »dry sponge« is conceptually 

close to what happens here, although the surrounding matric is not dry, but at lower 

head. 

At P13, L 15 the text is added: With increasing time and length of the wormhole, the 

vertical outflow increases allowing rising input flow at the constant head boundary. 

 

Also  at  P16,  L15‐  the  text  now  reads:  We,  therefore,  postulate  that  the  main 

mechanism  causing  progression  of  the  wormhole  is  an  increase  of  the  input  flow 

caused  by  ejection  of  transverse  flow  into  the  net.  In  conclusion,  the  following 

feedback mechanism seems to be plausible. As soon as one wormhole, for whatever 

reasons,  becomes  longer  than  the  neighbouring  ones  it  emits  transverse  flow  that 

increases  its  input  flow.  The  resulting  enhanced  dissolution  capacity  increases  the 

length from where transverse flow can be emitted and, consequently, the amount of 

outflow increases (see Fig. 8) causing growing inflow. It is interesting to note that for 

a  net  of  soluble  fractures  the  advancing  dissolution  front  retards  breakthrough 

considerably. 



 

 22/2:  If  the net  is  insoluble,  clarify  to  show how wormholes  can develop  in an  insoluble 

net. 

o Response:  This  was  formulated  wrongly.  Of  course  the  line  of  fractures  with  the 

wormhole soluble  while the rest of the net is insoluble.  

At P23, L 0‐5 the text has been changed to make the situation clear. It now reads: If 

only one line of fractures connecting the input to the output boundary is soluble and 

all other fractures in the net are insoluble competition is excluded and the evolution 

of  a  dissolution  front  is  thus  not  possible,  so  that    the  wormhole  starts  to  grow 

immediately. 

 26/10:  Clarify “dimensions of 1 cm by 1 cm and a width of 1 cm.” Should “width” refer to 
the largern block outlined in black, and therefore is greater than 1 cm? Or does it refer to 
thickness of the model? 

o Response: We have revised the text at  this point  to make the concept clearer. The 
revised paragraph on P27, L10 now reads: 
To verify this finding we have employed the following approach (Fig. 23). We consider 
a  fracture,  that  has  just  been  reached  by  the  wormhole  (Fig.  23a,b).  It  has 
experienced almost no dissolution so far. We discretize this fracture into a network of 
100 by 200 fractures, each 1 cm long and 1 cm wide with aperture width of 0.02 cm. 
(Fig.  23c).  Fig.  23a  shows  the  2D  net  with  the wormhole  and  the  even  dissolution 
front.  A  square  marks  the  region  enlarged  in  Figure  23b,  where  the  fracture  of 
interest, at the tip of the wormhole, is marked by the blue arrow. 
 
 



Reply to the Interactive comments by P. Szymczak   

We thank P. Szymczak for the time invested to give some important suggestions for improvement of 

the  paper. We  highly  appreciate  the  overall  positive  comments  that  state  the  importance  of  our 

research on that topic.  

 

We have considered all comments. The replies to comments are listed bellow. he changes can also 

be seen in a tracked version of revised manuscript, where those corresponding to the comments of 

Piotr Szymczak are highlighted  green. 

 

1. Relevance of the previous work and references:  

We agree that there are important contributions of earlier work and we have therefore added into 

the text on page 3: 

Wormhole formation has been in the focus of many researchers from different fields. There are other 

systems with similar competitive dynamics, where  fingers grow. The  longer ones screen the shorter 

ones, thus preventing their growth. 

Side  branches  of  2‐D dendrites  growing by  diffusion  limited  aggregation  show a  similar  behavior  ( 

Couder et al, 2005)  as we find it in this paper.(Budek et al, 2015) investigated growth of anisotropic 

viscous  fingers    in  flow  of  immiscible  fluids  in  a  periodic,  rectangular  network  of  micro  fluidic 

channels. Although the underlying physics  is different    in both cases and from that  in our work   the  

temporal evolution of viscous fingers is similar as we observe it in the basic case. see Fig. 3. 

In  1997 a larger class of  systems with competitive growth is described in the review article by J. Krug, 

1997) dealing with solid state properties of materials generated by molecular beam epitaxy , a topic 

remote from our system. 

Most of the cited work focuses on the mathematical properties of competitive growth. Therefore they 

are  not  perceived  by  the  community  of  earth  science.  In  this  work  we  take  a  different  empirical 

approach.  From  the  results  of  model  realizations  we  detect  the  underlying  mechanisms  of  hydro 

dynamical flow in the fractures and its interaction with dissolution widening their apertures.   

To this end we use the idea of Upadhyay et al., 2015, who has put seeds into the entrance region of 

the modeling domain consisting of areas with  increased fracture aperture width with respect to the 

apertures widths in the net. This way the seed triggers wormhole growth from its region. 

 

and after line 9, page 9: 

 



To this end we use the idea of Upadhyay et al., 2015, who has put seeds into the entrance region of 

the modeling domain consisting of areas with increased fracture aperture width with respect to the 

apertures widths in the net. This way the seed triggers wormhole growth from its region.  

We have not cited the paper of Cabeza, Y et al: Controlling factors of wormhole growth in karst 

aquifers, in Hydrogeological and Environmental Investigations in Karst Systems, pp. 379–385 (2014) 

because it deals only with the evolution of one single wormhole to characterize its capture area and 

does not deal with competition of wormholes.  

2. Applicability of the model to the real systems: 

We have not claimed that all fractures show even dissolution fronts. Maybe this was not stated 

clearly. The first five fractures  show wormholes. But we regarded this as not important. However the 

argument that  the boundary conditions do not show constant head and constant concentrations at 

the entry of the single fractures is important. We have used our method to find out by increasing the 

hydraulic head  and increasing Pe if we can find a condition where all elementary fractures show 

even compact dissolution until breakthrough of the corresponding 2‐D net. The result is that for 

hydraulic heads larger than 27.5 m we observe even dissolution fronts in all fractures. For this case 

hydraulic heads are constant at the junctions of the fractures. Then we have recalculated the basic 

net with a head of 27.5 m and found similar behavior in the evolution of wormholes . This means as 

pointed out by Prof. Szymczak that many features of flow focusing systems are rather generic and 

independent of the particular model. 

We have explained this in the text, lines 3‐2, pages 29‐30: 

 

After about 1200 years in the first five 1‐D  fractures this even front breaks due to the instability and 

wormholes develop. Whereas in all the following 1‐D fractures downstream, due to the increasing 

flow after  the 2D‐ wormhole has arrived there the Peclet number rises sharply by about one order of 

magnitude within a few ten years. Therefore these 1‐D fractures exhibit an even dissolution front. In 

our model we have assumed that in each junction of fractures lateral head differences are smoothed, 

such way that at the downstream input fractures constant head conditions can be applied. P. 

Szymczak in the interactive comment regarding this work has argued correctly that this assumption is 

dubious "as the pressure will be highly non uniform there, with the maximum along the developing 

wormhole" at the output of the fracture. Due to the computational limitations, however,  we have no 

choice in our approximation. A better approximation might have been to limit the width of the 

fractures to about one tenth of the width we use to account for the wormhole formation in the first 

fractures. The basic behavior of the wormhole formation under these conditions will be similar 

qualitatively  to our findings. 



On the other hand under initial boundary conditions of  higher head at the input of our 2‐D model all 

fractures may show even compact dissolution fronts due to higher flow through the system. Therefore 

we have repeated the procedure described above for higher heads imposed onto the 2‐dimensional 

net. For heads higher than 27.5 m we find even compact dissolution fronts in all fractures including 

the entrance one. We have also repeated the calculation for the basic case (see Fig.3) with the 

elevated head of 27.5 m  instead of 15 m and found qualitatively similar behavior as for a head of 15 

m. From this one may conclude that wormholing in the 1‐D fractures does not change the general 

behavior of the nets because as pointed out by P. Szymczak in his interactive comment "many 

features of flow focusing systems are rather generic and independent of the particular model". 

We agree that our model has no quantitative predictive power (in terms of breakthrough time in 

years etc). We have added this to the text on page 30 

 

 Of course our approximation cannot be applied to predict breakthrough times in real systems. The 

target of our work is to get insight into the processes active during the formations of wormholes.  

 

3. Minor comments.   

There is a typo 3 must read 6. See Dreybrodt, 1988. We have added this citation. 

Eq.7.  There is a typo, 3 must read 6 close to the value as used by  Szymczak    See Dreybrodt, 1988. 

We have added this citation. 

p. 17., line 4: We have changed the text to: 

With increasing length, the inflow into the faster growing wormhole increases, whereas, that of the 

delayed one rises only slightly until it declines. This is reasonable because its outflow is inhibited by 

the faster growing wormhole. If, however, the distance down flow between their tips exceeds some 

limit, the flow through the shorter wormhole decreases. 

What is plotted in Fig. 22? 

There is a typo in the text A0 must read a0. We have corrected this. 

 

Technical comments: 

We have made the small lettering because of space limitations. As the paper is electronic, the  

magnification allows to see details. Therefore, we prefer to leave as it stands. 
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Dynamics of wormhole formation in fractured karst 
aquiferslimestones 
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Abstract. The most spectacular wormholes are caves in fractured limestone terrains. Here, a model of their evolution is 

presented. The modeling domain is a two-dimensional square net consisting of one-dimensional fractures with given width b 

and length l. To each of the fractures one designs a constant aperture width, a, (homogeneous net) or an aperture width taken 

from a lognormal distribution (heterogeneous net). The boundary conditions are constant head h at the input driving the 10 

water downstream to the output at h = 0. Linear dissolution kinetics, controlled by surface kinetics and diffusion are active. 

First we discuss the simple case of a homogeneous net. Two steps in its evolution are observed. In the first, all fractures are 

widened evenly and a homogeneous even dissolution front progresses slowly into the aquifer. The second step is triggered 

by an instability when, due to small perturbations, some of the foremost fractures gain length compared to the neighboring 

ones. Then, these fractures eject flow using the parallel resistances of the net. This way they attract more fresh aggressive 15 

water and their propagation is enhanced. Several wormholes (caves) are penetrating into the aquifer but only one reaches the 

output, whereas the others stop growing due to the redistribution of hydraulic heads caused by the leading wormhole. The 

mechanisms governing the evolution of a single wormhole are explored by increasing the aperture width of one selected 

input fracture by Δa << a. In this case, only one single wormhole is created and inspection of the flow rates along it reveal 

the mechanism of flow enhancement in detail. If one uses a heterogeneous net, the first step of evolution is suppressed 20 

because of the large perturbations and wormholes start to grow immediately. We have also modeled the case of several 

competing wormholes in a homogeneous net by putting appropriate seeds. We find that there is a critical distance between 

the wormholes. Within this distance only one wormhole survives, whereas there is no interaction between them when they 

are separated by more than the critical distance. We also answer the question, Why do wormholes in a two-dimensional 

model exhibit breakthrough times at least one order of magnitude smaller than a one-dimensional model representing the 25 

aquifer by one single plane parallel fracture of the same dimensions? Finally, we present several scenarios with non-

homogeneous distribution of initial aperture widths. In these, uniform dissolution front does not develop and wormholes start 

to grow immediately, what is more likely expected in nature.  
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1 Introduction 

The first numerical models of speleogenesis in terrains of soluble rock considered cave evolution only along one single 

isolated plane parallel fracture. First attempts using this concept failed because the linear dissolution rates used caused 

exponential decline of dissolution widening along the fracture. The cave conduits stopped to grow after penetrating only a 

few meters into the rock (Dreybrodt, 1996;White and Longyear, 1962). 5 

The dataexperiments of Wigley and Plummer (1976) demonstrated a switch in the dissolution kinetics to a non-linear regime 

close to the equilibrium concentration of calcium ions with respect to calcite . The paradox that caves could not exist at all 

was resolved byBased on these results White  (1977), who suggested that such a switch in the dissolution kinetics to a non-

linear regime close to the equilibrium concentration of calcium ions with respect to calcite can reduces the dissolution rates 

and causes deep penetration of dissolution power into the rock,. which This allows evolution of caves in geologically 10 

reasonable times. Laboratory experiments showed that this concept is valid for limestone (Svensson and Dreybrodt, 

1992;Eisenlohr et al., 1999),  and also for gypsum (Jeschke et al., 2001). Therefore, it was used in later modeling approaches 

of speleogenesis (Dreybrodt, 1990;Palmer, 1991), although Dreybrodt et al. (2005a) show that linear kinetics do, in fact, 

allow the evolution of caves if one considers simultaneously two processes: linear surface kinetics and transport of the 

dissolved ions by molecular diffusion into the bulk of the water. 15 

In modeling cave genesis, homogeneous fractures with initially even spacing were used as the basic elements in two-

dimensional (2D) models consisting of a net of such fractures (Dreybrodt et al., 2005a). Fracture widening depends only on 

the distance from the fluid inlet. Therefore, these fractures have been described as one-dimensional (1D). Using them in 

speleogenetic models was criticized by Szymczak and Ladd (2011). They showed that homogeneous 1D fractures exhibit an 

instability to infinitesimally small perturbations such that the initially evenly propagating dissolution front breaks up into 20 

channels, hereafter called “wormholes”. The interaction between these wormholes causes competition, whereby only a few 

reach the output boundaries, while the others stop growing. This behavior is well-known from the evolution of wormholes in 

porous media, (Fredd and Fogler, 1998). 

Szymczak and Ladd (2011) questioned the approach used commonly by many model efforts, which uses nets of 1D 

fractures, (e.g. Dreybrodt et al., 2005a) because the formation of wormholes within individual fractures is not taken into 25 

account. This way, the breakthrough time in an individual fracture can be reduced significantly causing a change of the 

hydraulic properties of the global fracture network. It is, in principle, possible to meet this criticism by discretizing each 

single fracture into a 2D aperture field, to permit wormhole formation, however, at high computational cost. 

Alternatively, some models have used circular pipes as basic elements instead of 1D fractures (Bauer et al., 2005;Kaufmann, 

2005). This avoids the formation of wormholes in the 1D elements of the 2D net.  However, the results of such models are 30 

close to those using fractures. This gives confidence that the formation of wormholes in the fracture elements of the 2D net 

does not change the general behavior. Therefore, in this paper, we use nets of 1D fractures to investigate the formation of 

wormholes in 2D networks and the interaction between the evolving channels, favoring those that have gained in length 
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compared to their neighbors. In this paper we use the term wormholes because this is common in that context. In our model 

caves and wormholes have the same meaning.  

Wormhole formation has been in the focus of many researchers from different fields. There are other systems with similar 

competitive dynamics, where fingers grow. The longer ones screen the shorter ones, thus preventing their growth (Couder et 

al., 2005)as we find it in this paper. 5 

Budek et al.(2015)  investigated growth of anisotropic viscous fingers  in flow of immiscible fluids in a periodic, rectangular 

network of micro fluidic channels. Although the underlying physics is different  in both cases and from that in our work  the  

temporal evolution of viscous fingers is similar as we observe it in the basic case. 

A larger class of  systems with competitive growth is described in a review article by J. Krug (1997) dealing with solid state 

properties of materials generated by molecular beam epitaxy , a topic remote from our system. 10 

Most of the cited work focuses on the mathematical properties of competitive growth. Therefore, they are not perceived by 

the community of earth science. In this work we take a different, more empirical approach. From the results of model 

realizations we detect the underlying mechanisms of hydro dynamical flow in the fractures and its interaction with 

dissolution widening their apertures .   

We will answer the following questions. Why are breakthrough times reduced even under linear kinetics when a wormhole 15 

evolves within a net of water-transmitting fractures? How does the feedback causing breakthrough in a net differ from that 

active in a 1D isolated fracture? How do evolving wormholes interact to select the winner and stop the competitors in further 

growth? How does the instability as described by  (Szymczak and Ladd (2011) influence the evolution of karst aquifers? We 

demonstrate that answers can be given by applying the physical mechanisms of flow and dissolution active in a 2D net of 

fractures, without using complex mathematical algorithm. 20 

2 The model 

Here, we describe in short the model suggested by Dreybrodt et al. (2005a). First, construct a 2D square net consisting of 1D 

fractures with given width b and length l. To each of the fractures assign a constant aperture width, a, (homogeneous net) or 

a width taken from a lognormal distribution (heterogeneous net). Figure 1 gives an illustration (Dreybrodt et al., 2005a). 
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Figure 1: Modeling domain used in this work is a rectangular grid of fractures connecting 150 x 150 nodes. Each fracture is 2 m 
long and 1 m wide (see the excerpt in the middle) with initial aperture width a0. The left-hand and right-hand sides are constant 
head boundaries at 15 m and 0 m, respectively. Upper and lower boundaries are periodic. x-y coordinate system is given for the 
node coordinates. The logo of Copernicus Publications. 5 

 

The boundary conditions throughout this work are constant head h = 15 m at the input on the left-hand side (x = 0) and h = 0 

m at the output on the right-hand side (x = 150) and symmetric boundary conditions at the upper and lower borders (y = 0 

and y = 150) of the domain. The walls of all fractures in the net consist of soluble limestone. calcite being the soluble 

medium, cChemical boundary conditions are specified by setting tThe input concentrations of calcium (c)cin = 0  and CO2 10 

are fixed to equal values at all input points. 

In a first step, we calculate the flow in all the fractures of the net. At each confluence of fractures, we assume complete 

mixing of the inflowing solutions. Mass conservation requires  

( ) ( ) 0+ = =∑ ∑ ∑in out ij
j

Q i Q i Q   (1)                                                                                               

where Qin(i) is the flow rate towards node i and Qout(i) is the flow rate away from it. Qij is the flow rate through the fracture 15 

connecting nodes i and j. For laminar flow, Qij is given (Beek and Muttzall, 1975;Dreybrodt, 1996) by 

( )= −ij i j ijQ h h R   (2)                                                                                                                                                 
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Rij is the resistance of the fracture connecting nodes i and j. hi and hj are the hydraulic heads at nodes i and j. For a fracture 

with variable aperture width a(x) along the flow direction x, Rij is given by  

3

12
( )

η
ρ

=
⋅∫

j

ij
i

dxR
g a x b

  (3)                                                                                                                                

where g is gravitational acceleration, ρ is the density of water and η is the viscosity of water. Equations 1 to 3 represent a set 

of linear equations for the unknown heads, which is solved by the Preconditioned Conjugate Gradients method for sparse 5 

matrices (Press et al., 2002;Stewart and Leyk, 1994). 

Next, we specify the calcium concentration cin = 0 of the inflow solution at all input points. From the CO2 concentration of 

the inflowing water in equilibrium with a partial pressure pCO2 = 0.02 atm, the equilibrium concentration with respect to 

calcite, ceq, is calculated for closed system conditions with respect to CO2 to find the dissolution rates by the rate law 

1( ) (1 / )= − eqF c k c c  with  k1 = 4∙10-11mol cm-2 s-1 ( Dreybrodt et al., 2005)  governing dissolution in the fracture draining the 10 

input points. Then, we apply the 1D transport-dissolution model (Dreybrodt, 1996), summarized shortly below, to calculate 

the calcium concentration profile along all fractures, including the concentration of the solution leaving it. 

By following the order of decreasing heads, we select all nodes where the concentrations of all the inflowing solutions are 

known. We assume complete mixing of these solutions before they are transferred into conduits transporting the flow away. 

We repeat this until the input concentrations for all fractures are determined. From this, the new profiles of the fractures after 15 

a time step Δt are obtained, as explained below. Then, the new flow rates are calculated and the entire procedure is repeated 

to obtain the temporal evolution of the net until some defined condition, such as breakthrough, is met. 

2.1 The one-dimensional transport-dissolution model 

Once the flow rate at the input of a fracture and its input concentration of calcium are known, dissolution widening of each 

fracture is calculated by the following procedure. The widening rate at any point in any fracture i is proportional to the 20 

dissolution rate ( ( ))F c x  

2 ( ) γ= ⋅
da F c
dt

  (4)                                                                                                                                                    

where the factor γ converts the dissolution rates from mol cm−2 s−1 to the retreat of the fracture wall in cm per year. 

Therefore, knowledge of the concentration c(x) of calcium ions along the fracture is needed. 
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Figure 2: Discretization and mass conservation in a basic network element; a 1D fracture. The conservation of mass requires that 
the change of concentration between x and is proportional to the surface of a section P(x)dx, where P(x) is a perimeter, to the 
dissolution rates F(x), and inversely proportional to the flow rate Q.  

Mass conservation requires that the amount of calcite dissolved from the walls during the time interval Δt within any part of 5 

the fracture between x and + ∆x x  is equal to the difference between the amount of calcium leaving at + ∆x x  and the 

amount of calcium entering at x during the same time interval (see Fig. 2). 

From this one obtains: 

( ( )) ( )d d⋅ =F c x P x x Q c   (5) 

Integration yields 10 

( )

0

d ( )d
( )

=∫ ∫
in

c x x

c

cQ P x x
F c

  (6) 

For linear dissolution kinetics the dissolution rates are given by Dreybrodt et al. (2005a) and Dreybrodt (1988) 

1

1
1( ) (1 / ) with 1 6eq

eq

k aF c k c c k k Dc

−
 = − = + 
 

  (7) 

where k is the rate constant, ceq is the equilibrium concentration and k1 is the rate constant of the surface reaction. This takes 

into account the common action of surface reactions and transport by molecular diffusion. For small aperture width, a, k is 15 

determined by surface reactions, whereas, for large a, k is governed by diffusion (Dreybrodt, 1988). This is close to the 

expression of k used by Szymczak and Ladd (2009). 

For a uniform plane parallel fracture integration of Eq. (6) using Eq. (7) yields  

( ) ( 0) exp( ) ( 0) exp( / ),  where ( ) / ( )λ λ= = ⋅ − = = ⋅ − = ⋅ ⋅eq
eq

PkF x F x x F x x Q c P k
Qc

  (8) 
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λ is the penetration length, a distance along the fracture where the concentration and the dissolution rate has dropped to 1/e 

= 0.37 of its initial value at the input. 

To obtain the temporal evolution of the profile of any fracture i,j in the net we discretize time and spatial variables t and x 

into suitable increments ∆t and ∆x and perform the following procedure (Dreybrodt, 1996): 

1.  Calculate Qi(t) by using Eqs. (1) to (3) for each fracture. 5 

2.  Calculate Fi(x) from Eqs. (8) and (7). 

3.  Calculate the new profile assuming a constant rate in the time interval ∆t by 

( , ) ( , ) 2 ( ( )) ,
( , ) ( , ) 2 ( ( ))

γ
γ

+ ∆ = + ∆
+ ∆ = + ∆

a x t t a x t F c x t
b x t t b x t F c x t

  (9)            

Discretisation of the spatial variable x has to be done with care. The change of concentration ∆c  within the interval ∆t is 

given by 10 

( , ) ( , )( , )
( )
⋅

∆ = ∆
i

F x t P x tc x t x
Q t

  (10) 

The increments ∆c are chosen such that changes in (ceq − ci) are small to avoid numerical saturation (Dreybrodt, 1996). From 

these, suitable Δx are obtained. Otherwise wrong conclusions can be the result as in the work of Groves and Howard (1994) 

who claimed that for a achieving breakthrough of a fracture a minimum aperture width is necessary. 

 15 

 

 

3. Results  

3.1 Homogeneous net: the basic case 

To get a first insight, we start with a homogeneous net with equal aperture widths a0 = 0.02 cm, equal widths b = 100 cm, 20 

and equal lengths l = 200 cm for all fractures. The net, shown in Fig. 1, consists of 151 nodes in both directions, which 

results in a dimension of 300 m by 300 m. At the left-hand input border, a hydraulic head h = 15 m injects flow into all its 

fractures. The right-hand side output border is at h = 0 and all fractures can drain water. The upper and lower boundaries 

have other boundaries have periodic conditions. Topologically this means that a 2D domain is mapped onto a cylinder. This 

makes the evolution of fractures independent from their distance from the upper/lower boundaries, which is not the case if 25 
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these are no-flow  boundaries. This simulates a 1D problem, where Szymczak and Ladd (2011) found the instability with 

respect to infinitely small perturbations, which causes the evolution of wormholes. 

 

     
Figure 3: Temporal evolution of a uniform fracture network. Panels in the upper row show aperture widths as line thickness and 5 
relative dissolution rates (a ratio between the rate in a fracture and the highest dissolution rate Fmax in the network) given in the 
color code. Lower panels show relative flow rates (ratio between the flow rate in a fracture and flow rate Qmax in the fracture with 
maximal flow in the network) and flow directions as shown by the arrow code. Green lines denote the flow divides by connecting 
nodes with opposite direction of outflow. White regions depict zero flow. Colored triangles mark the position of inputs where later 
wormholes evolve (See also Fig. 4). Numbers denote their y-coordinate.  10 

Figure 3 shows the temporal evolution of the aquifer. The upper panels illustrate the dissolution rates by a color code shown 

below and the fracture aperture widths by a bar code. The distribution of the hydraulic head is depicted by isolines in the 

upper panels. The lower panels depict the flow rates by the thickness of lines shown below and their directions by colors. 

Grey means flow downstream (left–right), blue is the direction along a transverse fracture from the lower boundary to the 

upper one (flow up), and red is flow in the opposite direction (flow down). Note that the flow rates are normalized to the 15 

maximal rate, Qmax, which is the flow rate in the fracture with maximal flow in the entire networkwhich occurs in some 

fracture in the net at that time. They are depicted by a bar code. White regions exhibit flow rates less than 10−4Qmax. 

After 1400 years, an almost even front of widening channels has propagated a few meters downstream (Fig. 3a). Flow (Fig. 

3e), however, exhibits an uneven distribution. There are domains of transverseal flow up (blue) and down (red) originating 

from the different wormholes. 20 
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After 1600 years, due to the instability caused by numerical noise, the front breaks (Fig. 3b and f) and many fractures 

protrude out from the previously even front. The domains of lateral flow have increased. The green color (Fig. 3e–f) 

connects nodes at the crests and troughs of the hydraulic potential field and, therefore, mark water divides between the 

lateral flows originating from the various channels. 

 After 1800 years (Fig. 3c and g), seven prominent channels have propagated into the net. TransversalTransverse flow from 5 

the leading channel dominates, whereas, lateral flow from the channels staying behind becomes low, as shown by the white 

regions (Fig. 3g). After 1890 years, only one channel has reached the output boundary, whereas all others have almost 

stopped growing. Due to the redistribution of the heads, the leading wormhole ejects flow perpendicular to the isolines into 

the net, as can be seen from the red and yellow regions of dissolution rates close to its tip in Fig. 3h. The shorter losing 

wormholes are now located in a region with low hydraulic gradients. Therefore, flow in them is reduced. 10 

 
Figure 4: Temporal evolution of the total flow through the network (solid brown line), input flow rates and lengths of wormholes 
at different positions (given as a y-coordinate of nodes). 

Figure 4 depicts the temporal evolution of the total flow through the domain (solid brown line), flow rates into the inputs of 

the evolving wormholes (full lines) and their lengths (dashed lines) defined as the distance where a(t)/a0 = 2. For the first 15 

thousand years, during the evolution of the even dissolution front, the resistance of the net changes only inside the 

dissolution front close to the input. All input points transmit equal flow into the net. The total flow rate (37.5 cm3 s−1) equals 

the flow through one fracture (0.25 cm3 s−1) multiplied by the total number of input points (150).  The flow into the input 

nodes of all later wormholes stays almost constant until after 1200 years when one observes a rapid increase due to the 

wormhole formation.  20 

Soon after, the curves separate, where more successful wormholes (at y =79, 49 and 3) gain flow on behalf of the less 

successful ones (at y = 146 and 115). The flow into the latter reaches a maximum, but then drops and these wormholes stop 

growing. Between 1500 and 1600 years the winning wormhole (y = 79), takes over the domain and increases in length until 
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it reaches the downstream boundary of the domain. The regression of the remaining competitors are continues also retarded 

until they stop growing. 

3.2 Homogeneous network with one seed to trigger a single wormhole 

In view of the results in Fig. 3, one asks for the detailed mechanisms by which the different wormholes compete for growth 

and the flow they carry. To this end it would be advantageous to deal with scenarios with only a few competing wormholes. 5 

To this end we use the idea of Upadhyay et al. (2015), 2015, who has put seeds into the entrance region of the modeling 

domain consisting of areas with increased fracture aperture width with respect to the apertures widths in the net. This way 

the seed triggers wormhole growth from its region.  

To trigger the instability of the dissolution front, we insert seeds in the following way. Using the net of Fig. 3, we select 

some input point at the left-hand boundary. From there, we assign a fracture aperture width a + Δa to the first 10 horizontal 10 

(horizontal meaning parallel to the x-axis) fractures in the downstream (left–right) direction. These fractures are marked in 

green in Fig. 5a. In order to keep the change in the net small, we chose Δa ≪ a0. 

 
Figure 5: Evolution of a seeded network. Same as Fig. 3, but slightly larger initial aperture by Δa = 10−11 cm are assigned to the 
first 10 fractures at position 75, denoted by green in a. 15 

Figure 5 depicts the evolution of a single wormhole initiated by a seed with Δa = 10−9∙ a0 = 10−11 cm at 75 nodes (150 m) 

from the upper boundary, the position along which the winning channel develops in Fig. 3. After 1005 years (Fig. 5a), the 

first few horizontal fractures are widened evenly such that a sharp reaction front is visible. Most of the flow is directed left–
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right, but at the position of the seed a region of transverse flow is visible (Fig. 5e). From there, a wormhole invades 

downstream, as shown in Fig. 5b at 1305 years. Its aperture width decreases with distance from its input. Dissolution rates 

inside the wormhole are high, as depicted by red color but they decline rapidly beyond its tip. The direction of flow and its 

magnitude are depicted by the lower panels (Fig. 5e–h). Most of the flow leaves the wormhole by flow up and down along 

the transverse fractures, as indicated by the thick blue and red lines close to its tip. As noted before, the line thickness gives a 5 

normalized flow rate Qf/Qmax, where Qf is the flow through the fracture and Qmax is the maximal flow rate occurring in some 

fracture in the net. This way the total flow through the colored fractures amounts to about 95% of the total flow through the 

domain. 

With deeper penetration of the wormhole, the regions of transverse flow increase and high dissolution rates are active along 

the entire wormhole (1455 years; Fig. 5c and g). At 1485 years, shortly before breakthrough, the vertical fractures (vertical 10 

meaning parallel to the y-axis) in the downstream region of the wormhole have experienced widening (Fig. 5d and h). 

Several small competing vertical wormholes have developed in a pattern similar to the reactive front of the smooth fracture 

in Fig. 3. This seems to be caused by the instability inherent to the model. 

The high transverse flow rates are caused by steep transverse hydraulic gradients close to the wormhole. This can be 

envisaged from the lines of equal heads (isolines) shown in the upmost panels of Fig. 5. With increasing distance upstream 15 

from the tip of the wormhole, the flow rates decline because of decreasing hydraulic gradients. At the tip head, gradients in 

the horizontal direction rise and, consequently  the flow rates increase in this direction (grey lines). Flow rates drop along the 

transverse fractures with greater distance from the wormhole because at the junctions with horizontal fractures, flow is partly 

diverted into these horizontal fractures and then guided to the output at h = 0 m. 

 20 

 
Figure 6: Comparison betweenfor the case with no seeds (a, see Fig. 3) and single-seeded case (b, see Fig. 5) at equal length of the 
dominant wormholes. c) Overlaid head distribution from case with no seeds (a, black) and a seeded case (b, red). 
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3.3 Evolution of the winning wormhole 

In Fig. 6, we compare the pressure fields of the evolution in Fig. 3 (no seeds, Fig. 6a) and Fig. 5 (one seed, Fig. 6b) at times 

where their channels have equal lengths. In Fig. 6c, their head distributions are compared. The black isolines show the head 

distribution for the scenario without seeds, the red ones with one seed. In the downstream region for heads smaller than 1200 

cm, the head distributions become very similar. Therefore, the evolution of the leading wormhole seems to be independent of 5 

the presence of other wormholes. On the other hand, the fingers in the non-seeded (homogenous) case (Fig. 6a), would have 

grown deeper into the domain if the leading channel had not existed. 

 

 
Figure 7: Breakthrough situation in a network with (a) three seeds at positions 10, 43, and 76, and (b) two seeds at positions 10 and 10 
43. c) Evolution of input flow rates and wormhole lengths for seeded wormholes in a and b. Note that the winning wormholes, 
black curve (43 b)and red curve (76 a), show a very similar behavior. 

 

To explore this deeper, in Fig. 7, we compare the evolution of a scenario with three seeds at y = 10, 43, and 76  (scenario a) 

and a scenario where the previously winning seed at y = 76 is omitted (scenario b). The evolution in time is illustrated by the 15 

flow rates into the entrances of the wormholes (Fig. 7c). 

In scenario a (Fig. 7a), until 1200 years, all flow rates are equal Fig. 7c. Then, the instability causes an advantage for the 

flow rate through the input at y = 76. The other two seeds, at 10 and 43, are inhibited and flow through them stays constant 

and is reduced later, whereas flow through input at y = 76 increases until breakthrough. If this winning seed is omitted 

(scenario b; Fig. 7b), the evolution of the flow rates into the inputs of the seeds at y = 10 and 43 is identical to that in 20 

scenario a until 1100 years. Then, the seed at y = 43 gains advantage and inhibits the seed at y = 10. The initial evolution of 

the flow rates in both scenarios up to 1100 years is identical for all seeded inputs. After 1200 years, in scenario a the leading 

wormhole gains advantage, whereas, the competing ones stop growing. In scenario b, this event happens 80 years earlier. 

The evolution of the winning wormholes observed from the time of this moment is identical. This confirms the idea that their 

evolution is independent of the presence of losing wormholes. 25 



13 
 

3.4 Evolution of a single wormhole 

To understand the dynamics of the evolution of wormholes, we first investigate in detail the evolution of a single wormhole. 

Then, we study the competition betweenof two wormholes, which are initiated by identical seeds at various distances from 

each other. Finally, a scenario with many seeds is shown. 

We go back to Fig. 5, the scenario with a single seed resulting in the creation of a single wormhole. The high transverse flow 5 

rates are caused by steep transverse hydraulic gradients close to the wormhole. This can be envisaged from the head isolines 

shown in the upmost panels (Fig. 5a–d). With increasing distance upstream from the tip, the flow rates decline because of 

decreasing gradients. At the tip head, gradients in the horizontal direction rise and consequently, although small, the flow 

rates in this direction increase (grey lines). Flow rates drop along the transverse fractures with lateral distance from the 

wormhole because at the junctions with horizontal fractures, flow is partly diverted into them and then guided to the output 10 

at h = 0 m. 

Figure 8a illustrates the flow rates in the central fracture along the wormhole as a function of the distance from the input for 

various times. In the beginning, when the length of the wormhole is small, flow rates along the wormhole are low and, due to 

outflow into the vertical fractures, the flow rate declines to a small value at its tip, which is determined by the overall flow 

resistance of the initial net. With increasing time and length of the wormhole, the vertical outflow increases allowing 15 

increasingrisiung input flow at the constant head boundary. and, consequently, the input flow rises. Close to the tip, due to 

the flow out into the transverse fractures, flow along the wormhole declines to a value determined by the remaining 

resistance of the net. This behaviour continues until breakthrough of the wormhole. 

 

 20 
Figure 8: a) Profiles of flow rates along a wormhole at the given times. b) Profiles of flow rates from the wormhole into the upper 
(black) and lower (red) domain at given times. 

Figure 8b depicts the transverse flow up and down from the wormhole. In the beginning, when the wormhole is short, the 

transverse flow rates increase steeply by orders of magnitude until they reach a maximum close to its tip and then they 
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decline rapidly. Note, that the sum of the total transverse outflow along the wormhole and the longitudinal outflow at its tip 

must be equal to the inflow at its input. The region where the horizontal flow rates decline in Fig. 8a marks the region of 

major transverse outflow. When the length of the wormhole increases, this region is shifted deeper into the net and the 

maximum rate of flow becomes higher, marking the increase of total transverse outflow in time. Thus, the inflow of fresh 

solution, aggressive with respect to limestone, increases with increasing length of the wormhole supporting further 5 

dissolution along its entire length and at its tip. The vertical fractures carrying the transverse flow from the wormhole into 

the upper and lower domain are also subjected to the competition and wormholing, making some of these fractures more 

successful than others. This results in non-uniform transverse pattern seen in Figs. 7a (wormhole at y = 76)  and 7b 

(wormhole at y = 43) and apparent “noise" in lines 4 and 5 on Fig. 8b. 

 10 

 
Figure 9: Evolution of total flow through the network (full red line), input flow into the seeded wormhole (dashed) and length of 
the wormhole (blue line). 

Figure 9 shows the temporal evolution of the total flow through the domain, the flow rate into the input of the wormhole, and 

the length of the wormhole. In the beginning, flow into the wormhole is low and given by the resistance of the net. For the 15 

first thousand years, flow remains almost constant. During this time, the solution front progresses evenly. Then, the 

instability causes initiation of the wormhole and flow through it rises. With increasing length of the wormhole, the resistance 

between the tip and the output becomes smaller and Qtot grows until at breakthrough it rises rapidly. 
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Figure 10: Profiles of aperture widths (solid lines) and saturation ratios (c/ceq, dashed lines), along the wormhole at given times. 

 

To get more insight, in Fig. 10 we have plotted the aperture widths (solid lines) and the saturation ratio c/ceq (dotted lines) 

along the line of the downstream fractures guiding the wormhole for various times of its formation. c/ceq increases steadily 5 

until it reaches saturation at the tip of the wormhole. There, dissolution rates drop to almost zero. The aperture widths along 

the first two thirds of the wormhole length are on the order of centimeters. 

The question arises, how important is dissolution in the net adjacent to the wormhole? Is its increase of permeability 

sufficient to create a feedback or is it of only minor influence? To answer this question, we have investigated a scenario 

where only the walls along the line of horizontal fractures along the wormhole areis soluble and the walls of all remaining 10 

fractures in the net are insoluble. Figure 11a depicts a comparison between the input flow rates in scenarios with and without 

dissolution in the net. 
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Figure 11: a) Evolution of inflow into the wormhole for the case where solubility of fracture walls is limited to the position of 
wormhole (red line) and the case where the complete network is soluble (black line). b) Same cases as in a), but the inflow is shown 
as a functionthe horizontal axis is defined as the time minus the breakthrough time for each caseof time distance to the 
breakthrough (t-TB). 

For a net of soluble fractures, there is a long time of low constant flow due to the even solution front propagating slowly 5 

downstream. As long as the dissolution front is completely uniform, transverse flow is not possible and enhancement of 

dissolution triggered by transverse outflow is absent. Each fracture behaves as an isolated fracture. As soon as the instability 

gives advantage to one fracture it can eject transverse flow and starts to grow rapidly until breakthrough is attained. 

When the fractures of the net are insoluble, except those of the wormhole, an even dissolution front cannot be established. 

The line of soluble fractures along which the wormhole propagates gains advantage immediately and reaches breakthrough 10 

in a much shorter time. It is important to note that the temporal evolutions of the breakthrough curves are almost identical if 

one compares them from the time where flow exceeds 1 cm3 s−1. Figure 11b shows an overlay of the two curves by shifting 

the time by −Tb to t−Tb. This gives evidence that the resistance of the net in both cases is almost equal or, in other words, 

that dissolution outside the leading fracture is practically absent during the evolution of the aquifer. 

We, therefore, postulate that the main mechanism causing progression of the wormhole is an increase of the input flow 15 

caused by ejection of transverse flow into the net. In conclusion, the following feedback mechanism seems to be plausible. 

As soon as one wormhole, for whatever reasons, becomes longer than the neighbouring onesit  it emits transverse flow that 

increases its input flow. The resulting enhanced dissolution capacity increases the length from where transversaltransverse 

flow can be emitted and, consequently, the amount of outflow increases (see Fig. 8) causing growing inflow. It is interesting 

to note that for a net of soluble fractures the advancing dissolution front retards breakthrough considerably. 20 

3.5 Interaction between two wormholes 

In the next step, we study the interaction of two wormholes growing simultaneously. We construct a net with two seeds, at 

the various positions as shown in Fig. 12, which illustrates the temporal evolution of the aquifer. We start with the two 

middle panels (Fig. 12b) depicting the evolution of a domain with two seeds located at y = 60 and y = 90. Until about 1000 

years, all the fractures of the net widen evenly such that a sharp front of wider fractures propagates into the domain (not 25 

shown). After 1200 years, two wormholes have intruded from this front at almost equal length. In this symmetric scenario, 

the analytic solution would exhibit equal length of the wormholes until breakthrough. Due to the instability, however, this 

symmetry is broken and the wormholes develop at different ratespace. The transversal upward and downward transverse 

flow patterns up from the upper wormhole and down from it becomes strikingly different, in contrast to an isolated single 

wormhole where both the corresponding patterns, down from the wormhole and up from it, are symmetric. Due to the 30 

presence of the second wormhole, the transversaltransverse hydraulic gradients in the region between the wormholes are 

reduced significantly in comparison to those in the outside regions. Because of the slightly different lengths of the two 
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wormholes, the inflow of aggressive water into the upper wormhole is lower than that into the one below. Therefore, the 

lower wormhole grows faster, causing increased inflow. 
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Figure 12: Interaction of two wormholes seeded at distances of 10 (a), 30 (b), and 50 (c) nodes. First rows of panels for each case 
show aperture widths and relative dissolution rates, second rows show flow rates and directions. All codes and conditions as 
described in Fig. 3. 

 

Figure 13 shows the dissolution rates and flow rates along the two wormholes at y = 90 and y =60 for various times during 5 

their evolution. As long as the length of the wormholes are close to each other (until 1200 years) their patterns are almost 

equal and, therefore, the flow into the two wormholes is almost equal as well. With increasing length, the inflow into the 

faster growing wormhole increases, whereas, that of the delayed one rises only slightly until it declines. This is reasonable 

because its outflow is inhibited by the faster growing wormhole. Outflow remains low because the hydraulic gradients close 

to the tip of the shorter wormhole stay similar. If, however, the distance down flow between their tips exceeds some limit, 10 

this is no longer the case and the flow through the shorter wormhole decreases. 

 
Figure 13: Profiles of widening (full lines) and flow rates (dashed lines) for the case with seeds at y = 60 (red) and y = 90 (black) 
nodes from the top (Fig. 12b). 

Figure 14 depicts the temporal evolution of the lengths and the input flow rates of the two wormholes for all three scenarios 15 

in Fig. 12 until breakthrough. The middle panel (Fig. 14b) depicts the scenario discussed here. In the initial state, the lengths 

are equal as expected. When the instability becomes active, the lower wormhole grows rapidly, whereas, the upper one 

experiences delayed growth. The same behaviour is exhibited by the input flow rates. This pattern is characteristic for the 

onset of instability in non-linear systems. 
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Figure 14: Temporal evolution of flow (full lines) and length (dashed lines) of the interacting wormholes of Figure 12. Lettering 

Labels corresponds to Figure 12. 

From these findings, one may conclude that the interaction between the wormholes depends on the distance between them in 

the y-direction. If this distance becomes sufficiently large that the transverse flow from both wormholes into the region 5 

between them has decayed to zero at a distance of less than half of the separation between the wormholes, we have a 

situation equivalent to that of an isolated wormhole. This defines a "region of influence" as suggested by (Rajaram et al., 

2009). If two growing wormholes are located within this region of influence, only one of them will achieve breakthrough. 

To give further evidence we study a scenario with two seeds as above, but with increased distance between them, which is 

larger the distance of influence. The lowest panels in Fig. 12 shows the evolution of a domain with two seeds at y = 50 and y 10 

= 100. Both wormholes invade into the net at almost equal speed until breakthrough (Fig. 12c). To illustrate the region of 

influence, the lower panels show flow directions by color. In addition, all fractures with flow less than 10−5∙Qmax are shown 

in green. These green borders define the areas that cannot be crossed by transversaltransverse flow. They separate the 

domains of flow upward and flow downward from the wormholes. There are three borders extending from the tips 

downstream and one in the middle between the domains. They end in a region downstream where flow essentially becomes 15 

horizontal (i.e. parallel to the horizontal axis). With increasing length of the wormholes, this region of horizontal flow is 

shifted closer to the output. A further region of zero transversaltransverse flow extends from the input boundary between the 

wormholes. For all stages of evolution, the flow domains of both wormholes remain clearly separated and both wormholes 

grow independently of each other. 

If, in comparison to Fig. 12b, the distance between the seeds becomes smaller as illustrated in Fig. 12a, one expects 20 

increasing dominance of the winning wormhole. At 1400 years, the two competing wormholes exhibit similar lengths in Fig. 

12a and b. At later times, however, the losing wormhole stops growth in the Fig. 12a, whereas, it still gains length in Fig. 

12b. 

The evolution of flow and length for the three distances is shown in Fig. 14. With increasing distance the time needed to gain 

advantage for the winner increases until both wormholes become too distant to interact and propagate at the same pace. 25 
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3.6 Interaction in an array of wormholes 

From these findings, we conclude that if several wormholes are located inside the region of influence of one another, only 

one of them will reach breakthrough. This is illustrated in Fig. 15, where 10 seeds are inserted at distances of 30 m. After 

1200 years, all seeded wormholes have developed to almost equal lengths. Due to the instability, the wormholes start to grow 

with differing speeds. At this point, it is not possible to predict the further evolution. 5 

 

 
Figure 15: Interaction of set of wormholes seeded at the distance of 15 nodes. Triangles and numbers denote location and y-
coordinates of inputs into the selected wormholes. 

After 1400 years, three wormholes (at y = 5, 65, and 110) have won a lead and have inhibited growth of all their neighbors. 10 

The wormhole at y = 110 has advanced further than its competitors. Therefore, these are also delayed and ultimately lose. 

Figure 16 shows the temporal evolution of inflow into marked wormholes and their lengths. 
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Figure 16: Evolution of input flow rates (solid lines) and wormhole lengths (dashed lines) for the wormholes marked in Fig. 15. 

At the beginning, flow through all fractures is equal. After 1100 years, the instability causes an advantage for wormholes at y 

= 5, 65, and 110 and flow rates there increase (Figs 15 and 16). Wormholes at y = 20 and y = 95 are in the region of 

influence of wormholes at y = 5 and y = 95 and, hence, stop growing. The same happens for wormholes at y = 5 and y = 65 5 

one hundred years later. 

From what we have found so far, the following picture of the evolution of a homogeneous net as described in Fig. 3 arises. 

Due to the instability of the system to small perturbations (Szymczak and Ladd, 2011), the initially uniformeven propagation 

of all equivalent fractures breaks down and some fractures gain advantage. The evolving pattern at that stage is not 

predictable. After some short time, however, the interaction of the different wormholes determines the head distribution and 10 

the flow rates in the entire net. The further evolution proceeds in a deterministic way. Nevertheless, the final patterns are 

predestinated by the initial instability. 

For homogeneous nets with seeds, as in Fig. 14, where an analytical solution predicts equal lengths for all wormholes 

starting at individuala seeds, the final patterns show wormholes only along the directions of the seeds. From this, one can 

suggest that for heterogeneous nets containing percolating pathways of fractures with aperture widths differing from those in 15 

the net, the wormholes should develop favorably along parts of these percolating pathways by a deterministic process where 

the instability plays no role. 

Figure 17 gives an example of a dual network, where a net of prominent fractures with aperture widths of A0 = 0.03 mm is 

superimposed over the homogeneous net with aperture widths of 0.02 mm. The crude net of prominent fractures is 

discretised into elements of 20 m by 20 m with an occupation probability of 0.72. This way percolating pathways from the 20 

input boundary to the output boundary are warrantedassured. The prominent fractures are shown as thick lines in Figure. 17. 
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Figure 17: Evolution of wormholes in a dual network. Network is a superposition of the basic network (Fig. 3) and a crude net of 

prominent fractures with A0 = 0.03 cm, length 20 m and occupation probability 0.72. a–d) Aperture widths and dissolution rates. 

e–h) Flow rates and directions. 

 5 

After 5 years in the dual network (Fig. 17a and e), small wormholes of equal lengths have developed along all the prominent 

fractures originating from the input boundary because the prominent fractures act as seeds. This prevents the creation of an 

even dissolution front along all the inputs without prominent fractures. After 80 years (Fig. 17b and f), wormholes of 

differing lengths have invaded the domain. The leading one inhibits further growth of all others, as can be seen after 230 

years (Fig. 17c and g). After 290 years (Fig. 17d and h), the winning wormhole achieves breakthrough. It is interesting to 10 

note that introduction of prominent fractures reduces breakthrough time from 1900 years in the homogeneous net to 290 

years (see Fig. 3). There are two reasons for this. First, an even dissolution front cannot evolve because perturbations from 

one-dimensionality are strong. Second, due to the wider prominent fractures along the pathway and also transverse to the 

winning channel, flow into its input is higheinput flow is greater thanr than along a pathway with fracture aperture width of 

0.02 mm exclusively. Therefore, more calcite can be dissolved and the wormhole proceeds faster to breakthrough. For 15 

completeness, Fig. 18 illustrates the flow rates into the evolving wormholes and their lengths. 

Another way to break the action of the instability is to select distinct input regions or input points instead of an even head 

along the entire input boundary. Such cases have been explored in Dreybrodt et al. (2005a). 
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Figure 18: Evolution of input flow rates (solid lines) and wormhole lengths (dashed lines) for the wormholes marked in Fig. 17. 
Numbers on curves denote the y-coordinates of the wormholes. 

4. Discussion 

From our findings, so far, we can summarize the evolution of wormholes as follows. 5 

In Fig. 19a, we show the temporal evolution of the inflow into the winning wormhole for the basic case (see Figs. 3 and 4) in 

comparison to the evolution of the same domain with one seed implanted (see Fig. 5). In both cases we find a long initial 

period of about 1000 years during the formation of the even dissolution front with low, almost constant inflow. In both cases 

the instability becomes active, but in the seeded domain this happens about 400 years earlier. After the activation of the 

instability, a fringe with several small channels evolves and flow rates rise slightly to a few tenths of a cubic centimeter 10 

cubed per second. In the unseeded case, several wormholes grow from this fringe with almost equal penetration 

speeduniform rate until one of them has gained advantage in its length and from then on develops independently of its past 

history. If only one line of fractures connecting the input to the output boundary is soluble  and all other fractures in the net 

are insolublethe net is insoluble, the competition is excluded and the evolution of a dissolution front is thus not possible, so 

that  and the wormhole starts to grow immediately. In all cases shown in Fig. 19, the evolution of the wormhole is almost 15 

identical from the moment when it has gained advantage over its competitors. This is shown in Fig. 19b where we have 

shifted each curve by its breakthrough time TB. In a nutshell, once a wormhole has gained advantage over its competitors it 

grows independently of its former history and its evolution is determined by the structure of the domain. This means that the 

evolution of the evendevelopment of a uniform dissolution front retards breakthrough. 

 20 
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Figure 19: Inflow into the wormhole as a function of time (a) and as a function of time distance to the breakthrough time (b) for 
the uniform network (blue line, Fig. 3), single-seeded case (black line, Fig. 5) and for the case where only the fractures along the 
wormhole are soluble (red line). 

 5 

Figure 20, as a further example, illustrates the evolution of a heterogeneous domain with statistically distributed fracture 

aperture widths. These are taken from a log-normal distribution with amin= 0.015 cm, apeak = 0.02 cm, amax = 0.025 cm, σ = 

0.2 cm. There is no appearance of an even dissolution front but instead several competing wormholes start to grow 

immediately. After 300 years, one of them becomes dominant and breakthrough is achieved after only 560 years. 

 10 
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Figure 20: Evolution of wormholes in the network with log-normal distribution of initial aperture widths. a–c) Aperture widths 
and dissolution rates. d–f) Flow rates and directions. 

Compared to a single 1D fracture of the same dimension (300 m x 300 m), the breakthrough times of the same fracture 

embedded into a two dimensional array of fractures is lower by at least one order of magnitude and independent of the 5 

kinetic order of the dissolution kinetics (Dreybrodt et al., 2005b;Szymczak and Ladd, 2011). 

To understand this, we go back to the evolution of the wormhole in a homogeneous aquifer with one seed. Figure 21a shows, 

for various times, the profiles of dissolution rates converted to widening of the fractures in centimeters per year and the 

concentration c/ceq along the fracture. In Fig. 21b the profiles of the aperture widths, the flow into the wormhole and the 

penetration lengths are depicted. The penetration length, 𝜆𝜆, is the distance of exponential decay from the given location, 10 

defined in Eq. 8. It is given by / ( )λ = ⋅ ⋅eqQ c k P ,P = 2(a + b), where a and  b are the aperture width and breadth, Q the flow 

in the fracture at this position, and ceq the equilibrium concentration with respect to calcite. The effective reaction rate k is

1 1/ 3( )1 (/⋅= + ⋅ eqk k k a D c . Here D is the constant of molecular diffusion and k1 is the rate constant of the surface reaction. 

(k1 = 4·10−11 mol cm−2 s−1, ceq = 10−6 mol cm−3, D = 10−5 cm2 s−1). 

 15 
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Figure 21: Profiles of different parameters at given times for the single seeded case (network evolution presented in Fig. 5). a) 
widening rates (black lines, cm y−1), saturation ratio (red lines, c/ceq), b) flow rates (black), penetration lengths (red), and aperture 
widths (blue). 

With increasing a, k decreases and the penetration lengths increase accordingly in time at all locations in the wormhole, 5 

where dissolution is active. In the upstream part, where flow is large, they are on the order of several ten to hundreds of 

meters. The saturation, c/ceq, of the solution increases slowly to about 0.8 close to the tip of the evolving wormhole and 

widening of the fractures is active along the entire length of the wormhole. At its tip, the aperture widths decline rapidly and 

k increases accordingly. Consequently, the penetration lengths decline to a value of a few centimeters and dissolution 

practically stops in fractures beyond the wormhole. 10 

At each location in the fracture, penetration length increases with time. Therefore, dissolution can penetrate deeper into the 

fracture and the length of the wormhole increases. With increasing length, the amount of outflow from the wormhole into the 

net increases and the flow into the wormhole grows because the effective resistance of the part downstream from its tip is 

reduced. Therefore, penetration lengths increase and cause deeper penetration of the wormhole into the aquifer. Here, the 

feedback loop is related to the resistance of the net into which it is embedded. 15 

We have, therefore, explored a scenario where all horizontal fractures (i.e. parallel to the x-axis) at y = 150 have aperture 

widths A0 = 0.02 cm, while the rest of the fractures have generally different initial aperture 0 < a0 < 0.025 cm. Figure 22 

shows the dependence of the breakthrough times on the aperture widths of the net with A0 = 0.02cm for various A0a0. If the 

fractures of the network are closed (a0 = 0 cm), the fractures with A0 are isolated and cannot exchange any flow with the 

network. It is, therefore, equivalent to a single 1D fracture. The breakthrough time is 4∙106 years. With increasing a0, the 20 

breakthrough time decreases to 800 years at a0 = 0.0175 cm and the resistance of the net is reduced, favoring flow from the 

central fracture into the net. If a0 comes close to A0, the central fracture behaves like a seed and an even dissolution front 

arises. This retards breakthrough. In natural environments, the perturbations are generally large such that even dissolution 

fronts are prevented. Since the breakthrough times depend heavily on the unknown complex properties of the surrounding 

aquifer, it is not possible to predict breakthrough times. This example shows that with increasing amount of water, which can 25 

flow from the fracture into the net, breakthrough times are reduced and the instability does not arise because the surrounding 
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net breaks the condition of one-dimensionality. Only when the perturbation is small, even dissolution fronts do develop. This 

scenario was already discussed in Dreybrodt et al. (2005a). 

 
Figure 22: Breakthrough time of a network with a central fracture A0 = 0.02 cm embedded into a network of fractures with initial 
aperture a0 as a function of a0. 5 

 

In our model, the basic element of the 2D net is treated as a 1D fracture. This has been criticised by Szymczak and 

Ladd(2011). They argue that due to the inherent instability, the fracture will not be widened evenly but wormholes will arise 

and the breakthrough time will be reduced. Wormholes, however, are created only in a limited range of Peclet and 

Damköhler numbers (Szymczak and Ladd, 2009). The Peclet number, Pe, is defined as Pe = a·v/D and the Damköhler 10 

number, Da, as Da = k/v, where v is the velocity of flow and is given by v = Q/(ba). Another important parameter for the 

formation of wormholes is the penetration length of concentration, Lp = v·a/2k. Wormholes occur for Da > 0.01 and Pe 

between 10 and 1000. For Da < 0.01 and Pe > 1, however, the dissolution front is compact and uniform and the fracture can 

be described by the 1D approach. In our model, the initial velocity, v0, is 0.125 cm s−1 (see Figs 8a and 9). With this value 

one obtains Pe = 250 and Da = 0.00032 and the initial penetration length is Lp = 16 cm. With such conditions, widening of a 15 

fracture is likely in the range of a uniform compact dissolution front but wormholes cannot be excluded because the values 

of Pe and Da are close to the border between wormhole formation and uniform dissolution (Szymczak and Ladd, 2009, 

Fig.6). In the 2D simulation of a single wormhole (see Fig. 5), we observe the penetration of an even dissolution front 

limited to the first five fractures until, after 1000 years, the instability breaks this front and the wormhole starts to develop. 

During this time, all fractures directed downstream exhibit identical dissolution and transverse flow is absent (see Fig. 9). 20 

Once the instability sets in, transverse flow rises sharply and, consequently, also the flow rates along the wormhole increase 

(Fig. 9). Therefore, the flow velocity in the fractures upstream from the tip of the wormhole rises by at least one order of 

magnitude and the penetration length takes values close to the length of the single fracture element. The Pe and Da−1 

numbers rise and the evolution of the corresponding 1D fractures is shifted deeper into the region of uniform compact 
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dissolution. In other words, all fracture elements of the net behave like 1D fractures, which makes our model a reasonable 

approximation. 

 

 
Figure 23: a) 2D-network with penetrating wormhole. b) Excerpt of an area marked by a square in panel a. Blue arrow marks the 5 
position of a fracture discretized into 2D domain. c) 2D model of an elementary fracture. It shows a front of even dissolution. 
Right-hand part (grey rectangle) shows a set of parallel fractures with time dependent resistances, appended to the outlet of the 2D 
fracture. d) Evolution of aperture width (red line), hydraulic head at the input (black line) and flow rate (blue line) for the fracture 
marked by an arrow in panel b. Evolution of flow rate in a 2D analogue is shown by dashed black line. 

To verify this finding we have employed the following approach (Fig. 23). We consider a fracture, which is justthat has just 10 

been reached by the wormhole (Fig. 23a,b). It has experienced almost no dissolution so far. We discretize this fracture into a 

network of 100 by 200 fractures, each being 1 cm long and 1 cm wide with aperture width of 0.02 cm. into 100 by 200 

elements with dimensions of 1 cm by 1 cm and a width of 1 cm(Fig. 23c). This is illustrated in Fig. 23a that shows the 2D 

net with the wormhole and the even dissolution front (enlarged in Fig. 23b). A square marks the region enlarged in Figure 
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23b, whereT the fracture of interest, at the tip of the wormhole, is marked by the blue arrow. Figure 23c depicts the 

dicretization of this fracture and the dissolution front that is created in it after some time. The downstream boundary nodes of 

the fracture are connected to insoluble fractures with length L, an aperture width of 0.02 cm, and a width of 1 cm 

representing the remaining downstream resistancestivity of the network. Figure 23c represents also the model domain for the 

simulation of the discretized 1D fracture. To account for the increasing flow through this fracture, the length L is chosen 5 

such that the total flow through the fracture is equal to the flow in the corresponding fracture in the 2D simulation. The 

simulation of the dicretized fracture is performed until the breakthrough time of the 2D model. Figure 23d depicts the 

evolution of hydraulic head (black line), aperture width (red line), and flow through the fracture (blue line). Until 1000 years, 

the head and, consequently, the flow remain constant. Then, caused by the intruding wormhole, head and flow rise. When 

the wormhole has reached the fracture (at t = 1250 y), the head reaches its maximal value equal to the head at the input. The 10 

further increase in flow is caused by the wormhole penetrating towards the exit in the 2D simulation, reducing the resistance 

of the remaining net. This flow is shown by the dashed black line. In this way, we find wormholes only in the first three 

fractures in the 2D net located in the pathway of the wormhole. For all the other fractures, downstream along the wormhole 

only even and compact dissolution fronts are observed. In other words, during the evolution of the wormhole, all fracture 

elements of the net behave like 1D fractures. Therefore, our model can be regarded as valid. 15 

During about 1200 years in the first five 1-D  fractures an even front develops but breaks due to the instability and 

wormholes develop. Whereas in all the following 1-D fractures downstream, due to the increasing flow after  the 2D- 

wormhole has arrived there the Peclet number rises sharply by about one order of magnitude within a few ten years. 

Therefore these 1-D fractures exhibit an even dissolution front. In our model we have assumed that in each junction of 

fractures lateral head differences are smoothed, such way that at the downstream input fractures constant head conditions can 20 

be applied. P. Szymczak in the interactive comment regarding this work has argued correctly that this assumption is dubious 

"as the pressure will be highly non uniform there, with the maximum along the developing wormhole" at the output of the 

fracture. Due to the computational limitations, however,  we have no choice in our approximation. A better approximation 

might have been to limit the width of the fractures to about one tenth of the width we use to account for the wormhole 

formation in the first fractures. The basic behavior of the wormhole formation under these conditions will be similar 25 

qualitatively  to our findings. 

On the other hand under initial boundary conditions of  higher head at the input of our 2-D model all fractures may show 

even compact dissolution fronts due to higher flow through the system. Therefore we have repeated the procedure described 

above for higher heads imposed onto the 2-dimensional net. For heads higher than 27.5 m insead of 15 m  we ind even 

compact dissolution fronts in all fractures including the entrance one. We have also repeated the calculation for the basic 30 

case (see Fig.3) with the elevated head of 27.5 m  instead of 15 m and found qualitatively similar behavior as for a head of 

15 m. From this one may conclude that wormholing in the 1-D fractures does not change the general behavior of the nets 

because as pointed out by P. Szymczak in his interactive comment "many features of flow focusing systems are rather 

generic and independent of the  particular model. Of course our approximation cannot be applied to predict breakthrough 
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times in real systems. The target of our work, however, is to get insight into the processes active during the formations of 

wormholes.  

 

5. Conclusion 

To reveal the mechanisms governing the evolution of wormholes in fractured limestone aquifers on the scale of several 5 

hundred meters, we have used a 2D fracture network consisting of an array of 1D fractures with defined hydrodynamic and 

hydro-chemical properties. 

As a basic scenario, we start with an homogeneous network where all the 1D fractures have identical initial properties. We 

find that the evolution of such networks proceeds in two steps. In the beginning, an even dissolution front invades slowly 

into the modeling domain. Dissolution in all fractures in the front is identical. Due to instability inherent in such 10 

homogeneous systems, some fractures in the front gain an advantage and dissolution along them penetrates deeper, thus, 

rendering these evolving wormholes slightly longer than their neighborsneighbours. Wormholes develop along these 

advantaged fractures because, due to the differing lengths, the redistribution of hydraulic heads increases flow along these 

fractures and aggressive water is delivered preferentially from the input, increasing dissolution rates along these fractures. 

The position of the wormholes cannot be predicted deterministically. Then, the second deterministic step of wormhole 15 

formation is triggered. Several competing wormholes invade the aquifer until one of them reaches the output boundary. The 

other wormholes stop growing. 

If one of the input fractures serves as a seed by slightly increasing its initial aperture width a0 by only Δa = 10-9 a0, only one 

wormhole is created. Comparison of the evolution of this wormhole with that of the homogeneous net where several 

wormholes start to grow, shows that the second step of wormhole evolution proceeds in a deterministic way, independently 20 

of the evolution during the first step. Inspection of the flow rates in the fractures belonging to the seeded input reveals that 

the trigger is switched on when flow into the lateral fractures is initiated by the instability. In the initial stage, such flow is 

inhibited because all fractures are widened identically. In the second step, flow through the fractures of the evolving 

wormhole increases with its length because the amount of transverse flow out of the fractures depends on the remaining 

resistance of the net downstream the tip of the wormhole. For a 1D model of the aquifer consisting of only one 1D fracture 25 

with the same length as the 2D array, the breakthrough time is at least one order of magnitude higher than for the 2D fracture 

network because lateral outflow is not possible under these boundary conditions. In summary, evolution of wormholes 

occurs only in 2D models as these, in contrast to 1D models, exhibit a feedback loop by utilizing the many parallel 

resistances in the 2D net. 

Wormholes interact with each other. In a scenario with seeds at various distances, one finds a critical distance. If the 30 

separation of the wormholes is larger than this critical distance, they grow independently of each other. For smaller 

distances, interaction is active and the winning wormhole inhibits the growth of the losing one. If many wormholes grow 
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initially a region of influence can be defined. If two or more growing wormholes are located within this region of influence, 

only one of them will achieve breakthrough. 

For a heterogeneous domain with statistically distributed fracture aperture widths, taken from a log-normal distribution, there 

is no appearance of an even dissolution front. Instead several competing wormholes start to grow immediately. The initial 

step of a slowly invading even dissolution front is prevented since the homogeneity and its corresponding one-5 

dimensionality of the net (i.e. its properties do not depend on the y-axis) is broken and transverse flow is possible from the 

very beginning. We find this behavior in all scenarios where the 1D properties are broken, either by inhomogeneity of the net 

with respect to the aperture width of the fractures or its chemical parameters (regions of insoluble fractures) or if the 

boundary conditions depend on the y-coordinate. In such cases, the time until breakthrough is close to the time of evolution 

in the second step of wormhole formation in the homogeneous scenarios. Therefore, since all natural scenarios are 10 

heterogeneous with respect to the y-coordinate, the evolution of an even dissolution front retarding breakthrough does not 

happen. 
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