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Abstract. A novel approach ofto stochastic rainfall generation that can reproduce various statistical characteristics of observed 

rainfall at hourly through yearly time scale is presented. The model uses the Seasonal Auto-Regressive Integrated Moving 

Average (SARIMA) model to generate monthly rainfall. Then, it downscales the generated monthly rainfall to the hourly 

aggregation level using the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model, a type of Poisson cluster rainfall 10 

model. Here, the MBLRP model is fine-tunedcarefully calibrated such that it can reproduce the fine-scalesub-daily statistical 

properties of observed rainfall. This was achieved by first generating a set of fine scale rainfall statistics reflecting the complex 

correlation structure between rainfall mean, variance, auto-covariance, and proportion of dry periods, and then coupling it to 

the generated monthly rainfall, which were used as the basis of the MBLRP parameters to downscale monthly 

rainfall.parameterization. The approach was tested at the 29 gaugeson 34 gages located in the Midwest to the East Coast of the 15 

Continental United States with a variety of rainfall characteristics. The results of the test suggest that our hybrid model 

accurately reproduces the first through the third order statistics as well as the intermittency properties from the hourly to the 

annual time scale; and the statistical behaviour of monthly maxima and extreme values of the observed rainfall was wellwere 

reproduced as well. 

1 Introduction and Background 20 

Most human and natural systems affected by rainfall react sensitively to temporal variability of rainfall across small (e.g. 

quarter-hourly) through large (e.g. monthly, yearly) time scalescales. Small scale rainfall temporal variability influences short-

term watershed responses such as flash flood (Reed et al., 2007) and subsequent transport of sediments (Ogston et al., 2000) 

and contaminants (Zonta et al., 2005). Large scale rainfall temporal variability influences long-term resilience of human-flood 

systems (Yu et al., 2017), human health (Patz et al., 2005), food production (Shisanya et al., 2011), and evolution of human 25 

society (Warner and Afifi, 2014) and ecosystems (Borgogno et al., 2007; Fernandez-Illescas and Rodriguez-Iturbe, 2004). 

While the risk exerted by these impacts needs to be precisely assessed for the management of thesuch systems, the observed 

rainfall record is oftentimes not long enough (Koutsoyiannis and Onof, 2001). Furthermore, the rainfall records do not exist 

when the risks need to be assessed for the future. For this reason, stochastic rainfall generators, which can generatecreate 
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synthetic rainfall record with infinite length, have been frequently used to provide the rainfall input data to the modelling 30 

studies for the risk assessment. 

 The Poisson cluster rainfall generation model (Rodriguez-Iturbe et al, 1987; 1988) is one of the most widely applied 

stochastic rainfall generators. Figure 1 shows a schematic of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model, 

which is a typical Poisson cluster rainfall model. The model assumes that a series of rain storms (black circles) comprising a 

sequence of rain cells (red circles), arrives in time according to a Poisson process. Kim et al. (2013a) summarized the MBLRP 35 

model structure as follow: The MBLRP model has six parameters of which brief description is provided in the lower text box 

of Figure 1. 

"In the MBLRP model, X1 [T] is a random variable that represents the storm arrival time, which is governed by a 

Poisson process with parameter λ [1/T]; X2 [T] is a random variable that represents the duration of storm activity (i.e., the time 

window after the beginning of the storm within which rain cells can arrive), which varies according to an exponential 40 

distribution with parameter γ [1/T]; X3 [T] is a random variable that represents the rain cell arrival time within the duration of 

storm activity, which is governed by a Poisson process with parameter β [1/T]; X4 [T] is a random variable that represents the 

duration of the rain cells. The distribution of the rain cell durations is known to have a long-tailed distribution (Rodriguez-

Iturbe et. al., 1987), which was assumed to vary according to an exponential distribution with parameter η [1/T] that, in turn, 

is a random variable represented by a gamma distribution with parameters ν [T] and α [dimensionless]; and X5 [L/T] is a 45 

random variable that represents the rain cell intensity, which varies according to an exponential distribution with parameter μ 

[L/T]. From the physical viewpoint, λ is the expected number of storms that arrive in a given period, 1/γ is the expected 

duration of storm activity, β is the expected number of rain cells that arrive within the duration of storm activity, 1/η is the 

expected duration of rain cells and μ is the average rain cell intensity. Parameters ν and α do not have a clear physical meaning, 

but the expected value and variance of η can be expressed as α/ν and α/ν2. Therefore, the model has six parameters: λ, γ, β, ν, 50 

α and μ; however, it is customary to use the dimensionless ratios φ = γ/η and κ = β/η as parameters instead of γ and β.” 
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Figure 1: Schematic of the Modified Bartlett-Lewis Rectangular Pulse Model. The blue area represents duration (width) and 

intensity (height) of each rain cell, respectively. The dashed line represents superposed sum of the rain cell intensities. 55 

 

As suggested by the figure, Poisson cluster rainfall models are designed to reflect the original spatial structure of rain storms 

containing multiple rain cells (Austin and Houze Jr., 1972; Olsson and Burlando, 2002), so they are good at reproducing the 

first through the third order statistics of the observed rainfall at quarter-hourly through daily accumulation levels, as well as 

other hydrologically important statistics such as proportion of non-rainy period (Olsson and Burlando, 2002). The performance 60 

of the Poisson cluster rainfall models in reproducing the statistical properties of observed rainfall has been validated for various 

climates at numerous locations across the globe (Bo et al., 1994; Cameron et al., 2000; Cowpertwait, 1991; Cowpertwait et al., 

2007; Derzekos et al., 2005; Entekhabi et al., 1989; Glasbey et al., 1995; Gyasi-Agyei and Willgoose; 1997, Gyasi-Agyei; 

1999, Islam et al.; 1990, Kaczmarska et al., 2014; Khaliq and Cunnane, 1996; Kim et al., 2016; Kim et al., 2013b; Kim et al., 

2014; Kossieris et al., 2015;  Kossieris et al., 2016; Onof and Wheater, 1994a; Onof and Wheater, 1994b; Onof and Wheater, 65 

1993;  Rodriguez-Iturbe et al., 1988; Rodriguez-Iturbe et al., 1987; Smithers et al., 2002; Velghe et al., 1994; Verhoest et al., 

1997; Wasko et al., 2015).; Ritschel et al., 2017). For this reason, they have been widely applied to assess the risks exerted on 
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human and natural systems such as floods (Paschalis et al., 2014), water availability (Faramarzi et al., 2009), contaminant 

transport (Solo-Gabriele, 1998), and landslides (Peres and Cancelliere, 2014; 2016)., Thomas et al., 2018). Recently, Poisson 

cluster rainfall models have also been used to generate future rainfall scenario under climate change (Kilsby et al., 2007; 70 

Burton et al., 2010; Fatichi et al., 2011). 

In the meantime, Poisson cluster rainfall models have an intrinsic limitation derived from a fundamental model assumption. 

As described by Figure 1, they generate the rainfall time series assuming that the rain storms arrive according to a Poisson 

process, which assumes that rain storm occurrences are independent. In addition, the rain cells in different storms are 

independent with each other. These model assumptions deprive the model of the ability to reproduce the long-term memory 75 

of rainfall that is often observed in reality (Marani, 2003). 

Let us introduce some notation. The aggregated process 𝑌(ℎ) at time-scale h hours is defined in terms of the continuous time 

process 𝑌 by the equation: 

𝑌𝑖
(ℎ)

= ∫ 𝑌(𝑡)𝑑𝑡
𝑖ℎ

(𝑖−1)ℎ

 

We can then write the variance at time-scale nh as: 80 
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Since 𝐶𝑜𝑣(𝑌𝑖
(ℎ)

, 𝑌𝑗
(ℎ)

) = 𝐶𝑜𝑣(𝑌𝑗
(ℎ)

, 𝑌𝑖
(ℎ)

) 

𝑉𝑛ℎ = 𝑛𝑉𝑎𝑟(𝑌(ℎ)) + 2 ∑ ∑ 𝐶𝑜𝑣(𝑌𝑖
(ℎ)

, 𝑌𝑗
(ℎ)

)𝑛
𝑗=1,𝑗>𝑖  𝑛

𝑖=1              (1) 

, where 𝑉ℎ  is the variance of rainfall depths at scale h hours and 𝐶ℎ(𝑘)𝐶𝑜𝑣( ∙ , ∙ ) is the covariance of lag k at scale h 

hoursoperator between the two random variables. 

The second term of the right-hand side of Equation 1, which represents the rainfall correlation between individual records 90 

separated by k( 𝑖 − 𝑗) time-steps of the time series of rainfall depths at scale h hours, is likely to be underestimated by the 

Poisson cluster rainfall model because it can only reproduce short-term memory in the rainfall signal through its model 

structure, i.e. through the clustering of rain cells. The degree of underestimation will increase as the correlation between the 

individual records ( 𝑌𝑖
(ℎ)

) of the observed rainfall time series increases and as the aggregation level n increases. This 

underestimation was consistently observed in the rainfall data of the United States (Kim et al., 2013a). If ℎ = 1  in Equation 95 
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1, i.e. hourly rainfall, and 𝑛 ≅720 (24hours/day x× 30 days = 720 hours ≅ 1 month), the left-hand side of Equation 1 will 

represent the variance of monthly rainfall, which can be represented on the vertical axis of the box plots in Figure 2. 

In Figure 2, the red box plots represent the variabilitydistribution of the monthly rainfall observed at thegage NCDC rain 

gauge-85663 located in 85663, Florida, USA during the period between 1961 and 2010 The blue box plots represent the 

variability of the monthly rainfall estimated from the 50 years of hourly synthetic rainfall data generated by the Modified 100 

Bartlett-Lewis Rectangular Pulse (MBLRP) model, a type of Poisson cluster rainfall generators. Here, the MBLRP model used 

the parameter set that was calibrated to reproduce the observed rainfall mean, variance, lag-1 auto-covariance, and proportion 

of dry periods at sub-daily aggregation intervals (1, 2, 4, 8, and 16-hour), which is a typical practice of MBLRP model 

calibration (Rodriguez-Iturbe et al., 1987; Rodriguez-Iturbe et al., 1988; Kim et al., 2013a). Note that the vertical length of the 

red box plots are greater than that of the blue box plots in general, which implies that the variability of the observed rainfall is 105 

systematically greater than that of the synthetic rainfall. The discrepancy between the two are shown as the gray shading in the 

figure. In addition, the monthly extreme values shown as star marks are also underestimated by synthetic rainfall. This is, in 

particular, caused by the aforementioned limitations of the Poisson cluster rainfall models. 

Considering that the management strategies of the water-prone human and natural systems may be governed by the few 

extreme rainfall values observed in the shaded domain of Figure 2, the risk analysis based on the rainfall data generated by 110 

Poisson cluster rainfall models may miss the system behaviour that is crucial for development of the management plans. As a 

matter of fact, other rainfall models have the similar issueissues: they cannot reproduce the temporal variability of observed 

rainfall across all time scales (Paschalis et al, 2014). For example, Markov chains, alternating renewal processes, and 

generalized linear models can reproduce the variability only at time scales coarser than one day. Models based on 

autoregressive properties of rainfall are typically good at reproducing the observed rainfall variability only for a limited range 115 

of scales, for instance from one month to a year or two (Mishra and Desai, 2005; Modarres and Ouarda, 2014; Yoo et al., 

2016). 
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Figure 2: Box plots of the observed monthly rainfall at thegage NCDC Gauge -85663 in Florida, US.USA (red). The box plots of the 

synthetic monthly rainfall generated by the Modified Bartlett-Lewis Rectangular Pulse model at the same gauge are shown for 120 
reference (blue).gage are shown for reference (blue). Whiskers reach to minimum and maximum values of monthly rainfall during 

the period between 1961 and 2010 and gray shaded boxes represent the discrepancy of the variability of the two monthly rainfalls. 

Several studies discussed the need to use composite rainfall models to resolve this scale problem of rainfall models. 

Koutsoyiannis (2001) used two seasonal autoregressive models with different temporal resolution to generate two different 

time series referring to the same hydrologic process. Then, they adjusted the fine scale time-series using their novel coupling 125 

algorithm so that this series becomes consistent with the coarser scale time series without affecting the second-order statistical 

properties. Menabde and Sivapalan (2000) combined the alternating renewal process with a multiplicative cascade model in 

which a multi-year rainfall time series generated by a Poisson process based model is disaggregated using a bounded random 

cascade model. Their model reproduced the observed scaling behaviour of extreme events very well up to 6 minutes of 

temporal resolution. Fatichi et al. (2011) developed a model that generates monthly rainfall using an autoregressive model and 130 

disaggregating the generated monthly rainfall using a Poisson cluster rainfall model. Their composite model showed improved 

performance in reproducing the rainfall interannual variability that the latter often fails to reproduce. Kim et al. (2013a) 

proposed a model where the Poisson cluster rainfall model is used to disaggregate the monthly rainfall that is randomly drawn 

from a Gamma distribution. They found that incorporating the observed rainfall interannual variability through their composite 

approach also helps reproduce the statistical behaviour of rainfall annual maxima and extreme values at time scales ranging 135 

from 1 to 24 hours. Paschalis et al. (2014) introduced a composite model consisting of a Poisson cluster rainfall model or 
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Markov chain model for large time scale and a multiplicative random cascade model for small time scale, which performed 

better than individual models across a wide range of scales at four different sites with distinct climatological characteristics. 

This study proposes a composite rainfall generation model that can reproduce various statistical properties of observed rainfall 

at time scales ranging between one hour and one year. First, the model generates the monthly rainfall time series using the 140 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model. Then, it downscales the generated monthly rainfall 

time series to the hourly aggregation level using a Poisson cluster rainfall model. Compared to the previous studies with similar 

methodology (Fatichi et al., 2011; Paschalis et al., 2014), our model has a novelty in that: (i) it models the monthly rainfalls 

so as to generate monthly statistics that will serve to calibrate the MLBRP model; (ii) each of the generated individual monthly 

rainfalls are downscaled using month-specific MLBRP model parameter sets that reflect the complex correlation structure of 145 

various rainfall statistics at fine time scale such as mean, variance, covariance, and proportion of dry periods. This distinctive 

approach of our model enables an accurate reproduction of the first through the third order statistics as well as the proportion 

of dry periods from the hourly to the annual time scale; and the statistical behaviour of monthly maxima and extreme values 

of the observed rainfall is well reproduced. 

 150 

2 Study Area 

Figure 3 shows the study area, which encompasses the Midwest to the East Coast of the Continental United States. We used 

the National Climatic Data Centre (NCDC) hourly rainfall data observed at 29 gauge34 gage locations (triangles in Figure 3) 

for the period between 1981 and 2010. The study area has a variety of rainfall characteristics (Kim et al., 2013b). The northern, 

middle, and the southern part of the study area are classified as Humid Continental (warm summer), Humid Continental (cool 155 

summer), and Humid Subtropical climate, respectively, according to the Köppen Climate Classification (Köppen, 1900; Kottek, 

2006). The annual rainfall of the study area varies from 750 mm to 1500 mm. 
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Figure 3: Study area and 29 NCDC hourly rainfall gauges. 
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 160 

Figure 3: Study area and 34 NCDC hourly rainfall gages. The label of the markers is presented in the following format: 

aaaaaa(i,j,k)(x,y,z)12, where aaaaaa represents the NCDC gage ID, (i, j,k) represent the orders of the autoregressive, differencing, 

and moving average terms of the SARIMA model, and (x,y,z) represent the orders of the seasonal autoregressive, differencing, and 

moving average terms of SARIMA model. The colour of the markers represent the Bayesian Information Criterion (BIC) value of 

the SARIMA model. The lower BIC indicates more parsimonious parameterization, larger likelihood, or both. Model description of 165 
SARIMA is detailed in Section 3.1. 

3 Methodology 

Figure 4 describes the model structure of this study. The model is composed of four distinct modules. The first module 

generates the monthly rainfall. The second module generates the fine-scale (1 hour through 16 hours) rainfall statistics 

corresponding to each of the generated monthly rainfall values in the first module. The third module estimates the parameters 170 
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of the MBLRP model based on the fine-scale rainfall statistics generated by the second module. As a result of this process, 

each of the generated monthly rainfalls is coupled with the MBLRP parameter set reflecting its fine-scale statistical 

characteristics. The fourth module downscales each of the monthly rainfalls using the MBLRP model based on the parameters 

obtained in the third module. 

 175 
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Figure 4: Four different modules of the model of this study 

3.1 Monthly Rainfall Generation 

We applied the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model to generate monthly rainfall. 

Generation of monthly rainfall based on Autoregressive relationship has been widely applied due to its parsimonious nature 180 

(Mishra and Desai, 2005) and was proven to successfully reproduce the first through the third-order statistics of the observed 

rainfall at monthly time scale (Delleur and Kavvas, 1978; Katz and Skaggs, 1981; Ü nal et al., 2004; Mishra and Desai, 2005). 

Rainfall data of different stations have different temporal persistence, so we applied the SARIMA model with different 

autoregressive(p), differencing(d), and moving average terms(q) to different stations. The choice of the optimal model for each 

station was determined through the following processes: First, a model structure of SARIMA(p, d, q)(P, D, Q)m is assumed, 185 

where P, D, Q represent the numbers of seasonal autoregressive, differencing, and moving average terms, respectively, and m 

represents the number of periods (here, months) in each season – here 𝑚 = 12. Second, the parameters of the SARIMA model 
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are determined through the method of maximum likelihood. Third, the the Bayesian Information Criterion (BIC) are calculated 

for the fitted SARIMA model. Lastly, the first to third steps are repeated for a combination of different values of p (0p2), d 

(0d2), q (0q2), P (0P2), D (0D2), and Q (0Q2), and the model structure with the lowest BIC is selected for the 190 

station. Therefore, a total of 729 (=36) SARIMA model structures were tested to obtain the optimal model for a station. The 

optimalselected model structure and the BIC values were shown in Figure 3. Through this process, we generated 200 years of 

monthly rainfall for the 29 gauges34 gages. 

3.2 Generation of fine time scale rainfall statistics 

The second module generates the fine time scale (1hour through 16 hours) statistics corresponding to each monthly rainfall 195 

value generated through the SARIMA model. These synthetic fine time scale statistics will later be used for the calibration of 

the MBLRP model to downscale the monthly rainfall to the hourly level. In so doing we are now consideringfirst consider the 

monthly rainfall, when divided by the number of days in the month times 24, as providing us with an estimate of the mean 

hourly rainfall for that particular month. The second module consists of univariate regressions and functional relations linking 

the Then, this estimated mean hourly rainfall to is provided as the input variable of the other module that generates the statistics 200 

that are requiredneeded to fit the MBLRP model. With these statistics MLBRP model parameters are obtained and these will 

be used to disaggregate the generated monthly rainfall., namely the mean, variance, auto-correlation coefficient, and the 

proportion of dry periods at 1-, 2-, 4-, 8-, and 16-hour aggregation intervals, as described in Figure 5 describes the . In this 

process of , the module employs the information obtained from univariate regression analyses between the fine time -scale 

statistics of the observed rainfall (Figure 6) and the mathematical formulae relating rainfall generation.variance and auto-205 

covariance at different time scales (Equation 4) as explained below.  
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Figure 5: Schematic of the algorithm to generate fine time-scale rainfall statistics. The statistics in the blue boxes are used to calibrate 210 
the MBLRP model and the statistics in gray boxes are used to estimate the 1ag-1 autocorrelation. 
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Figure 5 shows a schematic of the second module. In the figure, 𝑀ℎ , 𝑆ℎ , 𝑉ℎ , 𝑐ℎ(1) = 𝐶ℎ(1)/𝑉ℎ  and 𝑃ℎ  in each rectangle 

represent the rainfall mean, standard deviation, variance, lag-1 autocorrelation, and proportion of dry periods at time-scale h 

hours, respectively. The statistic connected to each solid arrow head is stochastically generated based on its linear relationship 215 

to the one connected to the tail of the same arrow. The statistic connected to the dashed arrow head is calculated based on the 

ones connected to the tail of the same arrow using the mathematical (deterministic) relationship connecting these variables as 

we explain below. In other words, the following equation is used: 

Let ε represent the residual of the linear regression between the two statistics connected by an arrow. Consider, for example, 

statistic 𝑀1 which is connected to 𝑉1 220 

𝑌 = 𝑎[𝑖] 𝑋 + 𝑏[𝑖] + 𝜀[𝑖]            (2) 

 

where Y is the variable being generated, and the X is the variable being used as the basis of the generation. Here, the variable 

X and Y can be substituted by any combination of two variables connected by the solid arrow; 𝑎[𝑖] and 𝑏[𝑖] are the parameters 

of the regression analysis, and 𝜀[𝑖] is a random number drawn from the normal distribution 𝜀[𝑖]~𝑁(0, σ[i]
2 ) fitted to the residuals 225 

of the regression analysis. Here, these three parameters are estimated from the univariate regression analysis relating the two 

variables observed during a given calendar month over multiple years as shown by black scatters in each plot of Figure 6, 

which shows the linear relationship between the rainfall statistics observed at gage NCDC-200164 (star mark in Figure 3) 

during the month of July of different years. 

 230 

Consider, for example, statistic 𝑀1 which is connected to 𝑉1(= 𝑆1
2) through the solid arrow in the figure, which means that 

the variance of one-hour rainfall (𝑉1 = 𝑆1
2) is stochastically generated using its relationship to one-hour rainfall mean (𝑀1) 

(scatter of black dots in Figure 6a) using the following formula: 

𝑆1 = 𝑎[6] 𝑀1 + 𝜀[6]            (23) 

𝑉1 = 𝑆1
2             (34) 235 

where subscripts with square brackets are used for the residuals so as to avoid confusion with the time-scale, and where 𝑎[6] is 

the coefficient determined from the regression analysis (note that the constant term is zero here since, trivially, 𝑆1 = 0 when 

𝑀1 = 0), and 𝜀[6] is normally distributed: 𝜀[6]~𝑁(0, 𝜎[6]
2 ). Note that 𝑀1 which is the mean hourly rainfall for the month in 

question is just the monthly total obtained using the SARIMA model, divided by the number of hours in the month.a random 

number drawn from a normal distribution: 𝜀[6]~𝑁(0, 𝜎[6]
2 ). 240 

Similar principles can be applied to the remaining statistics connected through solid arrows in Figure 5. The black scatters in 

Figure 6 shows the linear relationship between the rainfall statistics observed at thegage NCDC gauge ID -200164 (star mark 

in Figure 3) during the month of July of different years. 
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Figure 6: Linear relationship between various fine time-scale rainfall statistics of the rainfall observed rainfallfor the month of July 

of different years at gage NCDC-200164 (black dots). The solid black line represents the least squares regression line. Based on this 

regression relationship, up to 50 setsa set of the 20 fine-time scale statistics are generated for each of the months (hollow blue 250 

squares) until, which are immediately used as the basis of the MBLRP model parameter calibration. If the objective function of the 

set becomes smallerparameter calibration corresponding to the generated set is greater than a given threshold value. Then,, the 

set is rejected (blue squares), and the set with the objective function less thanlower the threshold in the MBLRP parameter 

calibration process is finallyvalue is only chosen (red squares).e 

Let us look at this process in a little more detail, focusing first upon the dashed arrows: 255 

The statistic connected to the dashed arrow head is calculated based on the ones connected to the tail of the same arrow using 

the mathematical (deterministic) relationship connecting these variables (Equation 4). For instance, in Figure 5, 𝑉1 and 𝑉2 are 

connected to 𝐶1(1) through a dashed arrow, which means that 𝐶1(1) is derived from 𝑉1  and 𝑉2 . The following equations 
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establish the relationship between the variances at time-scales h and 2h from which we shall obtain the relationship between 

𝑉1 and 𝑉2: 260 

𝑉𝑎𝑟(𝑌𝑖
(2ℎ)

) = 𝑉𝑎𝑟(𝑌2𝑖−1
(ℎ)

) + 𝑉𝑎𝑟(𝑌2𝑖
(ℎ)

) + 2𝐶𝑜𝑣(𝑌2𝑖−1
(ℎ)

, 𝑌2𝑖
(ℎ)

) 

Or, in simplified notation: 

𝑉2ℎ = 2𝑉ℎ + 2𝐶ℎ(1) 

The autocorrelation lag-k is 𝑐ℎ(𝑘) = 𝐶ℎ(𝑘)/𝑉ℎ, so, for 𝑘 = 1 and ℎ = 1 hour, we obtain the relation: 

𝑐(1) =
𝑉2

2𝑉1
− 1             (45) 265 

If we estimate the lag-one autocorrelation using standard estimators of the terms in the right-hand side of this relation, i.e. by 

using 
𝑉2̂

2𝑉1̂
− 1, how good is the estimation likely to be? The figure belowFigure 7 compares this estimator with the standard 

estimator 𝑐(1)̂ of the autocorrelation. 

 

Figure 7: (a) Comparison of estimator 𝒄(𝟏)̂ (horizontal axis) with estimator 
𝑽�̂�

𝟐𝑽�̂�
− 𝟏 (vertical axis) of the autocorrelation lag-1 of 270 

hourly rainfall, (b) The histogram of the discrepancies between these two estimators at gage NCDC-200164. 

Using the discrepancies 𝜀 between these two estimators which are approximately normally distributed as shown in Figure 

7(b),7b, i.e. 𝜀~𝑁(0, 𝜎2) we therefore estimate the autocorrelation lag-1 of hourly rainfalls using 
𝑉2̂

2𝑉1̂
− 1 + 𝜀. 

Looking now at the solid arrows in Figure 5, we see that the residual terms (denoted 𝜀[𝑖]) are likely to be correlated. For 

example, consider the following equations relating 𝑉1 to 𝑉2 and 𝑉2 to 𝑉4:  275 
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𝑉2 = a[7]𝑉1 + ε[7]            (56) 

𝑉4 = a[8]𝑉2 + ε[8]            (67) 

From equation (46), it is clear that the term ε[7] is dependent upon the hourly autocorrelation (lag-1) coefficient, and similarly 

therefore that ε[8] in equation (67) is dependent upon the two-hourly (lag-1) autocorrelation coefficient. 

The autocorrelations at various time scales are known to be correlated with each other (Kim et al., 2013a, Kim et al., 2014), 280 

which means that ε[7] and ε[8] should be correlated with each other. Figure 8(a)8a shows the bivariate probability density 

function of these two variables at thegage NCDC gauge 366889-200164 for the month of September. Figure 8(b)8b shows the 

colour map of the correlation coefficient between different ε[i]s. This study developed bivariate probability density functions 

for consecutively numbered random variables ε, i.e. ε[i] and ε[i+1] (for i ranging from 1 to 4 and 6 to 9 respectively - see Figure 

5). These were then used to sample values of ε[i+1] conditional upon ε[i], This procedure in effect assumes that a Markov 285 

structure governs the sequences {ε[i]}𝑖=1,…,,5
 and {ε[i]}𝑖=6,…,,10

. . The bivariate probability density functions were developed 

using the Gaussian Copula and its parameters are determined using the maximum likelihood method. 
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Figure 8: (a) Relationship between 𝛆[𝟕] and 𝛆[𝟖] and the fitted bivariate distribution. (b) Color map of the correlation coefficient 290 

between different 𝛆[𝐢]s at gage NCDC-200164 on September. 

Residual terms (𝜀[𝑖+1]) are thus generated using the conditional distribution: 

𝑓𝜀[𝑖+1]
(𝑦|𝜀[𝑖] = 𝑥) = 

𝑓𝜀[𝑖], 𝜀[𝑖+1]
(𝑥,𝑦)

𝑓𝜀[𝑖]
(𝑥)

          (78) 

, where i = 1, 2, 3, 4, 6, 7, 8, and 9, and 𝑓𝜀[𝑖+1]
(𝑦|𝜀[𝑖] = 𝑥) is the probability density function of 𝜀[𝑖+1] conditional upon 𝜀[𝑖] = 𝑥, 

and 𝑓𝜀[𝑖], 𝜀[𝑖+1]
 is the bivariate distribution function of 𝜀[𝑖] and 𝜀[𝑖+1]. 295 

As a result of this process, a total of 20 rainfall statistics at fine time scale (mean, variance, lag-1 autocorrelation, and proportion 

of dry period at 1-,, 2-,, 4-,, 8-,, and 16-hourly aggregation interval) are sampled using these conditional distributions and the 

individual monthly rainfall that is generated by the SARIMA model. 

3.3 MBLRP Model Parameter Estimation 

In this process, each of the monthly rainfall values generated by the SARIMA model is coupled with one set of six MBLRP 300 

model parameters that define the random nature of rain storm and rain cell arrival frequency, and the intensity and duration of 

rain cells (Figure 1). 

In this study, the parameters of the MBLRP model were determined such that the rainfall statistics of the generated rainfall 

resemble the 20 fine-scale rainfall statistics that were coupled with the monthly rainfall generated by the SARIMA model. The 

Isolated-Speciation Particle Swarm Optimization (ISPSO, Cho et al., 2011) algorithm was employed to identify a set of 305 

parameters that minimizes the following objective function: 
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OF =  ∑ wi ∙20
i=1 [1 −

Fi(λ,ν,α,μ,ϕ,κ)

fi
]

2

𝑂𝐹 =  ∑ 𝑤𝑖 ∙20
𝑖=1 [1 −

𝐹𝑖(𝜆,𝜈,𝛼,𝜇,𝜙,𝜅)

𝑓𝑖
]

2

      

    (89) 

Fi is the ith statistic of the synthetic rainfall time series (e.g. mean of hourly rainfall, standard deviation of 4-hourly rainfall, 

etc.). The mathematical formulae for the Fis were derived by Rodriguez-Iturbe et al. (1988) as a function of the six parameters 310 

(λ, ν, α, μ, ϕ, κ); fi is the ith generated statistic, and wi the weighting factor given to the ith rainfall statistic depending on the use 

of the synthetic rainfall time series (Kim and Olivera, 2011). Here, it should be noted that a time step with rainfall less than 

0.5mm5 mm was considered dry when the proportion of non-rainy period was calculated because small rainfall values are 

known to distort the “true” proportion of non-rainy period exerting an adverse effect on calibration process (Kim et al, 2016, 

Cross et al., 2018). 315 

It is noteworthy that Module 2 may fail to generate a realistic set of fine scale rainfall statistics due to the complex 

interdependencies between them. The unrealistic fine scale rainfall statistics cannot be represented by the MBLRP model that 

reflects the original spatial structure of rainfall in reality, which entails poorly calibrated model parameters with high objective 

function value of Equation 8. To exclude the poorly calibrated parameter sets caused by the unrealistic fine scale rainfall 

statistics generated by Module 2, we repeated the process of Module 2 and Module 3 until the objective function value of 320 

Equation 8 becomes lower than a given threshold value (0.8 in this study). If the algorithm fails to find the parameter set after 

50 repetitions, the parameter set with the lowest objective function value is chosen. Figure 4 describes this filtering process, 

and the red squares in Figure 6 shows the chosen parameter sets. 

 

3.4 Downscaling of Monthly Rainfall Using the MBLRP Model 325 

The MBLRP model was used to downscale the monthly rainfall to the hourly aggregation level. First, the MBLRP model 

generates the hourly rainfall time series using the parameter set for the monthly rainfall being downscaled. Second, the 

discrepancy between the generated fine time scale statistics generated by the second module of the model (Figure 5) and the 

statistics of the generated synthetic hourly rainfall time series generated by the MBLRP model is calculated using the following 

formula: 330 

𝐷𝑗  = ∑ [
𝑆𝑖

𝑗
−𝑓𝑖

𝑅𝑖
]

2

20
𝑖=1            (910) 

,where 𝐷𝑗  is the discrepancy between the generated statistics and statistics of jth synthetic hourly rainfall time series. 𝑆𝑖
𝑗
 is the 

ith statistic of jth time series and 𝑅𝑖 is the difference between maximum and minimum values of 𝑆𝑖
𝑗
 about ith statistic. 

Third, the first and the second process are repeated 300 times. Then the synthetic hourly rainfall time series with the lowest 

discrepancy value is chosen. Finally, we repeated the entire process for 200 times to obtain 200 synthetic hourly rainfall time 335 

series for each of the generated monthly rainfall.  
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3.5 Validation for Ungaged Periods 

One of the primary purposes of the stochastic rainfall model is to provide synthetic rainfall for the ungaged periods, which can 

be the periods of missing data or future periods. For this reason, we separated the period of model calibration and validation 340 

at some gage locations (square marks in Figure 2) where record length of each period is sufficiently long (60+ years). Then, 

we tested our model not only based on the statistics of the calibration period (1981-2010) but also based on the validation 

period (1951-1980). 

4 Result 

4.1 Monthly Rainfall Statistics Reproduction 345 

Figure 9 compares the mean, variance, lag-1 autocorrelation, and skewness of the observed (x) andmonthly rainfall time series 

generated rainfall by the SARIMA model (x axis) to those of the observed monthly rainfall time series (y axis). Each scatter 

represents one rainfall gauge. Thegage. For the calibration period (1981-2010), the first and the second-order moments were 

reproduced accurately with the coefficient of determination ranging between 0.72 and 0.96. Skewness was reproduced fairly 

well with the correlation coefficient of 0.43from 0.69 to 0.95. Skewness was reproduced fairly well with the coefficient value 350 

of 0.36. For the validation period (1951-1980), mean and variance were reproduced, but not 1ag-1 autocorrelation and 

skewness. However, this discrepancy cannot be attributed solely to the limitations in the model because the discrepancy in 

each plot of Figure 9 directly results from the differences between the statistics of the calibration and validation periods. In 

other words, had the statistics of the calibration period been similar to those of the validation period, we would have expected 

similar performance for both periods, and vice versa. 355 
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Figure 9: Comparison of (a) mean, (b) variance, (c) lag-1 autocorrelation, and (d) skewness of the observed (x) and synthetic (x) and 

observed (y) monthly rainfall. Filled circles (dashed line) and hollow triangles (dotted line) correspond to the calibration (1981-2010) 360 
and validation period (1951-1980) respectively. 

4.2 Reproduction of Large Scale Rainfall Variability 

Figure 10 shows the behaviour of the rainfall variance varying with temporal aggregation interval between 1 hour and 1 year 

at thegage NCDC gauge -122738. The behaviour corresponding to the observed rainfall-calibration (black) and the 200 years 

of synthetic rainfall generated by the, 1981-2010), observed-validation (green, 1951-1980), MBLRP model (blue) and by our 365 

hybrid model (red) are shown together. While our model successfully reproduces the rainfall variance across the time scale, 

the MBLRP model is successful in reproducing the rainfall variance only at the hourly accumulation level. This reflects the 

fact that Poisson cluster rainfall models are not designed to preserve the rainfall persistence at the aggregation interval that is 

greater than the typical model storm duration, i.e. a few hours. See Figure 1 for example. Within the duration of one storm, 

rainfall at different time steps may be similar insofar as a portion of it is from the same rain cell. However, the rainfall within 370 

one storm is independent of the rainfall within another storm. Therefore, it is natural that Poisson cluster rainfall models tend 

to underestimate the observed rainfall variance (which reflects the covariance structure - see Equation 1) at time scales 
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exceeding the rain storm duration. Kim et al. (2013b), when mapping the average model storm duration across the continental 

United States using Equation 11, showed that the model storm duration of the MBLRP model approximately ranges from 2 to 

100 hours, so it is not only at the annual scale, but already at the scale of several hours (depending upon the location) that the 375 

variability may be underestimated by the MBLRP model. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑜𝑟𝑚 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ𝑟) ≅
1

𝜙
𝛼

𝜈
[1+𝜙(𝜅+𝜙)−

1

4
𝜙(𝜅+𝜙)(𝜅+4𝜙)+

1

72
𝜙(𝜅+𝜙)(4𝜅2+27𝜅𝜙+72𝜙2]

    (11) 
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Figure 10: Behaviour of the rainfall variance with regard to the aggregation interval of the observed rainfall time series at gage 380 
NCDC-122738. The behaviour corresponding to the observed-calibration (black) and the 200 years of synthetic rainfall generated 

by the, 1981-2010), observed-validation (green, 1951-1980), MBLRP model (blue) and our hybrid model (red).) are shown together. 

A similar trend as exhibited in Figure 1011 was observed at all of the 29 gauges34 gages. Figure 11(a) compares the variance 

of the observedsynthetic (x) and syntheticobserved (y) rainfall time series at yearly (purple), monthly (red), 15-daily (yellow), 

weekly (blue), and 32-hourly (green) aggregation levels. The comparison of the variance at the finer time scale is carried out 385 

in the following section. Figure 10(b) compares the observed (x) and synthetic rainfall time series generated by the traditional 

MBLRP model (y).  
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Figure 11: (a) Comparison of the large scale rainfall variance of the observed rainfall (x) and the rainfall generated by our hybrid 390 

model (x) and the observed rainfall (y); (b) Comparison of the large scale rainfall variance of the observed rainfall (x) and the 
rainfall generated by the traditional MBLRP model (x) and the observed rainfall (y). The different colours of the scatter correspond 

to the different aggregation interval of rainfall time series. Filled circles and hollow triangles correspond to the calibration and 

validation periods respectively. 
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 395 

As indicated by the concentration of the scatters belowabove the 1:1 line in Figure 11(b),11b, the traditional MBLRP model 

systematically underestimates the variability at time scales greater than 32 hours. Our model did not show any bias in this 

range of large time-scales as shown in Figure 11a. 

4.3 Reproduction of Sub-Daily Rainfall Statistics 

Figure 12 compares the mean, standard deviationvariance, lag-1 autocorrelation, and the proportion of dry periods of the 400 

observed (x) and synthetic (x) and observed (y) rainfall time-series at hourly through 16 hourly aggregation levels. The 

colourEach scatter represents the statistics at a given gage for a given calendar month. The colours of the scatters 

representsrepresent the calendar months. In each plot, the coefficient of determination (𝑅2) of the linear regression between 

the two variables is shown. All four statistics were accurately reproduced across various sub-daily time scales with 𝑅2 equal 

to 0.98 (mean), and varying between the following limits for the other statistics: 0.9690 and 0.98 (standard deviation93 405 

(variance), 0.58 and 0.9493 (lag-1 autocorrelation), and 0.7067 and 0.8785 (proportion of dry periods) on the calibration period 

(Figure 12a). Similar ranges of coefficient of determinations were obtained for the validation period (Figure 12b). 
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Figure 12: Comparison of the statistics of the observedsynthetic (x) and syntheticobserved (y) rainfall time series at sub-daily time 

scale. The colour of the dots represents the statistics of each calendar month. The results of (a) the calibration period (1981-2010) 

and (b) the validation period (1951-1980) are shown. 
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4.4 Reproduction of Extreme Values and Distribution of Annual Maxima 

The scatter of circles scatters in Figure 13 comparescompare the (a) 20-, (b), 50-, (c), 100-, (d), and 200-year rainfall estimated 

from the observed rainfall (x) and the synthetic rainfall (y) generated by the compositehybrid model of this study (y). The 

colour of(red) and the scatters represents the duration of the extreme rainfall.MBLRP model (blue) at hourly through daily 

time scale. The Generalized Extreme Value (GEV) distribution was assumedused to model the distribution of the annual 420 

maxima of both rainfall time series, and the three parameters of the GEV distribution were determined using the method of L-

moments. Here, we separated the analysis for each calendar month, so we have 12 sets of extreme rainfall distributions 

corresponding to each gage station. Therefore, we produced each scatter plot of Figure 13 based on 408 points (12 months/gage 

× 34 gages). 

A linear regression line passing through the origin is shown in each plot. As the slope of the regression line approaches the 425 

value of one, the less biased the extreme values reproduced by the model. As the 𝑅2 of the regression line approaches the value 

of one, the more consistent the extreme values reproduced by the model. In all cases, our hybrid model did not show the 

tendency of underestimating extreme values, which is one of the most widely discussed issues in Poisson cluster rainfall 

modelling (Cowpertwait, 1998; Cross et al., 2018; Furrer and Katz, 2008; Verhoest et al., 2010; Kim et al., 2013a; Onof et al., 

2013; Kim et al., 2016). This is a somewhat surprising result: our algorithm to incorporate large scale variability of the observed 430 

rainfall not only served its original purpose but also enhanced the capability of the model to reproduce extreme rainfall values. 
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Figure 13: Comparison of the extreme rainfall values estimated from the observed rainfall (x) and synthetic rainfall (y) generated 

by the model of this study (y).red) and the MBLRP model (blue). The plots comparing (a)compare 20-, (b), 50-, (c), 100-,, and (d) 435 
200-year rainfall are shown. Different colours of the scatter represent the rainfall duration. A circle represents the result according 



36 

 

 

the hybrid model, and a triangle represents the result according to the traditional MBLRP modelat hourly through daily aggregation 

levels. 

Figure 14 shows the degree of bias of extreme value reproduction (slope of the regression line in Figure 13) varying with 

recurrence interval. The values corresponding to the traditional MBLRP model is also shown. The degree of underestimation 440 

of the traditional methods varies between 73% and 87%, and it tends to increase as the recurrence interval increases. A similar 

tendency was observed for our model, but the degree of underestimation was significantly reduced. For our model, the degree 

of underestimation is the greatest for the 1-hour extreme rainfall and tends to decrease as the duration of the rainfall increases. 

This tendency was not observed with the traditional MBLRP model. 

 445 
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Figure 14: Degree of over/underestimation of extreme values by our model (bluered) and the traditional MBLRP model (redblue). 

𝑬𝑹𝒔𝒚𝒏 and 𝑬𝑹𝒐𝒃𝒔 are extreme rainfallrainfalls estimated from synthetic rainfall and observed rainfall, respectively. 

It is important that theA good rainfall model should reproduce not only the extreme rainfall values but also the distribution of 

the rainfall monthly maxima from which extreme rainfall values are derived. We performed the two-sample Kolmogorov-450 

Smirnov (K-S) test between the monthly maxima of the synthetic rainfall and the observed rainfall. A significance level of 5% 

was used. Among all 348408 calendar months (29 gauges x34 gages × 12 months), the null hypothesis of assuming that two 

distributions are the same could not be rejected at 334, 318, 267, 248, 272384, 368, 317, 301, 323, and 282333 months for the 

1-,, 2-,, 4-,, 8-,, 16-, and 24-hour rainfall, respectively (8283 percent of all gaugesgages). On the contrary, the traditional 

approach successfully reproduced the observed monthly maxima distribution only at 292, 243, 202, 189, 165, 168219, 200, 455 

220, and 172219 months (4757 percent of all gauges).gages). 

Figure 15 shows the relative frequency and the fitted GEV distribution of the monthly maxima of January, April, July, and 

October at NCDC gage 132203. The black, red, and blue line correspond to the result of observed rainfall, our hybrid model, 

and the traditional MBLRP model, respectively. The GEV distribution of the 1, 4, and 16-hour rainfall durations are shown in 

the plots of the first, third, and fifth row, respectively. The plots in the second, fourth, and the sixth row magnify the upper 460 

10th percentile part of the distribution of the upper figures that is denoted as the dashed box. For all months and durations, our 

hybrid model outperforms the traditional MBLRP model in reproducing the head through tail part of the distribution. The 

distribution of the traditional MBLRP model was skewed toward the lower values. A similar tendency was observed at most 

gage locations while at some of the gages our hybrid model showed similar or slightly degraded performance compared to the 

traditional MBLRP model in reproducing the distribution of extreme values. We discuss about this finding further in 465 

Discussion 5.1. 
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Figure 16 compares the shape (ξ), the scale (σ), and the location (μ) parameter of the fitted GEV distribution of the monthly 

maxima of the observed rainfall (x) and of the synthetic rainfall generated from our hybrid model (red scatters) and from the 

traditional MBLRP model (blue scatters). The results for 1, 4, and 16-hour rainfall durations are shown. Each scatter point 

represents the result of one calendar month at one gage. A total of 408 scatter points (12 months/gage × 34 gages) are shown 470 

for each of the plot. The traditional MBLRP model underestimates the location parameters at all rainfall durations, and the 

degree of underestimation increases with increased duration. Our hybrid model showed the opposite trend. The location 

parameters tend to be overestimated with an increase in the duration, but the degree of overestimation was not as significant 

as in the case of the traditional model. The traditional model compensates the underestimated location of the distribution with 

the overestimated scale parameters, which were observed for all three durations investigated. Our hybrid model also 475 

compensates the overestimated location of the distribution with the underestimated scale parameters, but the degree of 

compensation was not as significant as in the case of the traditional model. However, the shape parameter of the observed 

monthly maxima was not well reproduced by both models. This result shows the difficulty of precisely reproducing the rainfall 

extreme values. This is mainly because the rainfall extreme values are indeed extreme. For example, 1-hour 100-year rainfall 

of 100 years of rainfall record is theoretically the greatest value of all 72,000 hourly rainfall records (24 hours/day × 30 480 

days/month × 100 years), and precisely reproducing a value with such a low probability of occurrence can be a daunting task 

using the models with only a limited number of parameters. 
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483 
Figure 15. Relative frequency and the fitted GEV distribution of the 1, 4, and 16-hour monthly maxima of January, April, July, and October rainfall at NCDC gage 132203. Results of Observed rainfall 484 
(black), our hybrid model (red), and the traditional MBLRP model (blue) are shown. The upper 10 percentile part of the distribution (dashed box in the plots in the first, third, and fifth row) is magnified 485 
in the lower rows (plots in the second, fourth, and sixth row).486 
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Figure 16. Comparison of the shape (ξ), scale (σ), and location (μ) parameters of the fitted GEV distribution of the monthly maxima. 

The results based on the observed rainfall (x), our hybrid model (red), and the traditional model (blue) are shown. The results of 1, 

4, and 16-hour rainfall durations are shown. 490 
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5 Discussion 

5.1 Variability of the Parameters of the MBLRP model and Extreme Values 495 

Our model uses different parameter sets of the MBLRP model to disaggregate different monthly rainfalls. This means 

that one given calendar month can have many different parameter sets. By contrast, the traditional MBLRP model uses one 

parameter set for each calendar month. Therefore, if we look at the variability of each month's parameters, we can see how the 

model of this study explains the variability of rainfall unlike the MBLRP model. Figure 1517 shows a box plot of the 

parameters for each month at thegage NCDC Gauge -460582. The parameters of the traditional MBLRP model are shown 500 

together for reference (triangles).  

While significant variability is observed for all six parameters, the parameter μ, which represents the average rain cell intensity, 

showed the greatest variability, ranging over two orders of magnitudes. This explains why our model is good at both 

reproducing large scale rainfall variability and small scale extreme values: the variability of the rain cell intensity parameter 

has the effect of stretching out the distribution of rainfall depths at a range of levels of aggregation, thereby increasing the 505 

probability of very large values. And it is course the variability of this cell intensity parameter that is also the most important 

factor responsible for the increase in the large scale rainfall variance. Zorzetto et al. (2016) also briefly discussed this matter. 

They introduced a novel framework of meta-statistical extreme value (MEV) analysis. In this MEV formulation, one can show 

that interannual-variation of exponential-type rainfall process leads to a fat-tail for its extreme values. 

 510 
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Figure 1517: Variability of the six parameters of the MBLRP model of this study (box plot) at thegage NCDC Gauge -460582 (star 

mark in Figure 3). The parameters of the traditional MBLRP model are shown together for reference (triangle). 

 515 

The physical characteristics of rainfall can be estimated using Equation 1011 and Equation 12 through Equation 1415. We 

repeated the same analysis on these variables to compare the variability of the rainfall characteristics of our hybrid mode and 

that of the MBLRP model. 

Average rainfall depth per storm (mm𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑑𝑒𝑝𝑡ℎ 𝑝𝑒𝑟 𝑠𝑡𝑜𝑟𝑚 (𝑚𝑚) = (1 +
𝜅

𝜙
)(

𝜈

𝛼
)μ  

     (10) 520 

Average storm duration (hr) ≅
1

𝜙
𝛼

𝜈
[1+𝜙(𝜅+𝜙)−

1

4
𝜙(𝜅+𝜙)(𝜅+4𝜙)+

1

72
𝜙(𝜅+𝜙)(4𝜅2+27𝜅𝜙+72𝜙2]

    (11) 

Average number of rain cells per storm = 1 +
𝜅

𝜙
 𝜇       (12) 

Average rain cell arrival rate (hr−1𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑖𝑛 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑠𝑡𝑜𝑟𝑚 = 1 +
𝜅

𝜙
   

    (13) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑖𝑛 𝑐𝑒𝑙𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 (ℎ𝑟−1) = 𝜅
𝛼

𝜐
        525 

 (13) 
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Average rain cell duration(hr) =
𝜈

𝛼
         (14) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑖𝑛 𝑐𝑒𝑙𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(ℎ𝑟) =
𝜈

𝛼
         (15) 

 

Figure 1618: Variability of the rainfall characteristics of the MBLRP model of this study (box plot) at thegage NCDC Gauge -460582 530 
(star mark in Figure 3). The rainfall characteristics of the traditional MBLRP model are shown together for reference (triangle). 

Figure 1618 shows box plots of the various rainfall characteristics for each month at thegage NCDC Gauge -460582. The 

values were calculated using Equations 1011 through 1415. The rainfall characteristics of the traditional MBLRP model are 

shown together for reference (triangles). The variability of the average storm depth, the average storm duration, and the average 

number of rain cells per storm was significant, so the y-axes of the box plots were drawn in log-scale. This result suggests that 535 

the parameter variability that is incorporated in our model's distinct algorithm contributes to the highly variable external 
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(average storm depth, average storm duration) and internal (average number of rain cells per storm, average rain cell duration) 

properties of the generated rainfall. 
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5.2 An Issue with Model Parsimoniousness: six versus fifty five 540 

Our hybrid model uses one MBLRP model parameter set per one simulation month of one year while the MBLRP model needs 

only 6 parameters regardless of the simulation length. However, this does not mean that our model requires 600 MBLRP model 

parameters (6 per month × 100 months) to generate 100 months of rainfall. This is because parameters are estimated based on 

the sub-daily scale rainfall statistics that are synthetically generated through the process of the SARIMA model and the 

regression analysis (See Figure 5). Therefore, the parameters of the SARIMA model and the parameters of the regression 545 

analyses shown in Figure 5 should be considered as the “true” parameters of this model because once these parameters are 

given, our model can generate infinite length of rainfall record. The SARIMA model has 6 parameters, and a set of regression 

analysis shown in Figure 5 has 49 parameters (2 for each of ten solid arrows in Figure 5 = 20, 3 per 8 bivariate normal 

distributions relating two subsequent residual terms (εi) in Figure 5 = 24, and one for each of 5 normal distributions perturbing 

autocorrelation terms (ci) = 5). Therefore, our model has a total of 55 parameters. This discrepancy of number of parameters 550 

(6 for the traditional of MBLRP model versus 55 of our hybrid model) can be considered as a cost taken to reproduce the large-

scale rainfall variability that the traditional MBLRP model cannot.  

We admit that this large discrepancy of model parsimoniousness is an issue to be resolved for our model to be applied in 

practice. Regarding this, we are planning to apply our model to additional gage locations across the world and share the result 

through the website (http://www.letitrain.info). The work has been already initiated for the rainfall data of Korean Peninsula. 555 

5.3 Calibration versus validation 

Our approach of separating the period of calibration and validation adopted to some gage locations, may seem surprising 

because most stochastic rainfall generators are calibrated based upon the statistics under an assumption of temporal stationarity 

of the rainfall process. According to this assumption, the statistics of the periods of calibration and the validation should be 

the same, which obviates the needs for validating the model for separate periods. However, this assumption often does not 560 

obtain, for example, in case that the observation period is too short (e.g. a few extreme events are included in only one part of 

the time period) or in when the time series is indeed non-stationary. For this reason, the discrepancy of the model performance 

between the calibration and the validation period should not only attributed to the model's limitations but also to the difference 

between statistics from the two periods. In view of these considerations, our primary purpose of separating the period of 

calibration and validation should be understood as an assessment of the model’s applicability to rainfall generation for a future 565 

period. From the point of view of the calibration period, the validation period is an ungagged period just as any future period, 

and our model can be easily extended to the future period by adding a term accounting for long-term rainfall non-stationarity 

to the SARIMA model (first module). Our hybrid model assumes not only the stationarity of the typical rainfall statistics such 

as mean, variance, covariance and proportion of dry periods but also the relationship between them (See Figure 6). The latter 

has not been explicitly discussed by previous studies, so it was also interesting to see whether such relationships between the 570 
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statistics hold over different temporal periods and how the discrepancy affects the final model performance, if there is any. 

Figure 19 compares the slope of the regression analysis between the statistics shown in Figure 6 for the calibration (x axis) 

and validation (y axis) periods. The plots corresponding to the variances at different scales are not shown because there are 

theoretical reasons for having a solid slope close to 2 (See Equation 5 and the preceding equations). There is no a significant 

discrepancy between slopes estimated using statistics on calibration and validation period implying that relationships between 575 

the fine time scale statistics are stationary and that our model can be used for future or ungagged periods. 
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Figure 19: Comparison of the slope of regression analysis between the statistics shown in Figure 6 for the calibration (x) and 

validation (y) period. The slopes of regression analysis (a) between mean and standard deviation and (b) between mean and 

proportion of dry periods and (c)-(f) between proportion of dry periods at the different time scale were compared. Solid lines are 580 
1:1 line and dashed lines represent the regression lines. 
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6 Conclusion 

The phenomena observed in hydrologic systems and the subsequent effects on human and environmental systems are the 

consequences of the complex interactions between the components that are influenced by rainfall variability at various ranges 

of time scalescales. Therefore, a good or realistic rainfall model must properly reflect the rainfall variability at all 585 

hydrologically relevant time scales. Its importance will gather more attentions because of the recent trend of the hydrologic 

societies that started to recognize the hydrologic, human, and environmental systems from a holistic view point and interpret 

them based on continuous and dynamic simulation as opposed to the event-based ones (Wagener et al., 2010).  

This study is one of many recent efforts in this regard (Fatichi et al., 2011; Kim et al., 2013a; Paschalis et al., 2014). First, we 

showed that the Poisson cluster rainfall model, which is probably the most widely applied stochastic rainfall models, cannot 590 

reproduce large-scale rainfall variability due to in-built limitations that lie in the model assumptions. Then, we showed that a 

combination of an autoregressive model for monthly time scale and the “well-tuned” Poisson cluster rainfall model for the 

finer ranges of time scale is capable of reproducing not only the first through the third order statistics of the rainfall depths, 

but also the intermittency properties of the observed rainfall. 

An additional model could be integrated to our hybrid model to incorporate further rainfall variability. For example, an 595 

approach based on random cascades (Molnar and Burlando, 2005; Müller and Haberlandt, 2016; Pohle et al., 2018) can be 

integrated to our model for reproducing the rainfall variability at the time scale as fine as five minutes. In addition, the SARIMA 

model that was adopted in this study could be further modified to account for the coarser rainfall variability caused by El Niño-

Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Lastly, the genuine structure of our model that is 

composed of a large scale rainfall generation module and a downscaling module, may be integrated to existing space-time 600 

rainfall generators to enhance their ability to generate large temporal-scale rainfall variability (Burton et al., 2008, Müller and 

Haberlandt, 2015, Paschalis et al., 2013; Peleg and Morin, 2014; Peleg et al., 2017; Benoit et al., 2018). 

7 Data Availability 

Our hybrid model is not easy to implement because it requires extensive analysis of the correlation structure of the fine-scale 

rainfall statistics to fine-tune the MBLRP model to downscale the generated monthly rainfall. For this reason, we shall continue 605 

our work on all possible rain gaugegage locations across the world and share the results (several hundred years of synthetic 

rainfall data in text format) through the following website: http://letitrain.info. We ask for cooperation from the international 

community to share their rainfall data. 
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